岩石学报  2020, Vol. 36 Issue (1): 13-22, doi: 10.18654/1000-0569/2020.01.03   PDF    
钨的地球化学性质与华南地区钨矿成因
祝红丽1,2, 张丽鹏1,2, 杜龙3, 隋清霖1,2,4     
1. 中国科学院海洋研究所深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿床资源评价与探测技术功能实验室, 青岛 266237;
3. 山东科技大学地球科学与工程学院, 山东省沉积成矿作用实验室, 青岛 266590;
4. 中国科学院大学, 北京 100049
摘要: 在地球演化早期的强还原条件下,钨表现为中等亲铁元素,因此地球中>90%的钨进入地核。在地幔和地壳的演化过程中,钨是极度不相容亲石元素,从而导致钨元素在地壳中的丰度约是地幔丰度的250倍。钨在岩浆熔体中主要以钨酸的形式迁移,在成矿热液中主要以氟、硼化合物或其络合物的形式运移。钨的矿化需要其在部分熔融、岩浆演化和晚期热液等各阶段逐渐富集。中国是世界上钨矿产资源最丰富的国家,约占世界总储量的60%以上,其中绝大多数矿床产在华南地区,与华南大规模的中生代岩浆活动具有密切的时空联系。微量元素特征(高Rb/Sr和K/Rb比值,低Nb/Ta和Zr/Hf比值)显示它们往往经历了强烈的岩浆分异,这可能与这些花岗岩通常具有高挥发分含量(如F)有关。岩浆中高的F含量对钨的富集和矿化十分重要,它可以降低熔体固相线、粘度和密度,有利于提高岩浆的结晶分异程度,因而使得高度不相容的钨元素在岩浆演化过程和后期热液阶段的富集与矿化。富挥发分岩浆的形成可能与俯冲板块后撤,软流圈物质上涌导致的多硅白云母等富F矿物的高温分解有关。研究表明,华南南岭地区侏罗纪的钨矿化花岗岩主要形成于太平洋板块的俯冲后撤,而华南南部晚白垩世钨成矿作用与新特提斯洋的俯冲后撤有关。
关键词: 钨矿    花岗岩    华南地区    岩浆演化    板块后撤    
The geochemical behavior of tungsten and the genesis of tungsten deposits in South China
ZHU HongLi1,2, ZHANG LiPeng1,2, DU Long3, SUI QingLin1,2,4     
1. Center of Deep Sea Research Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Tungsten (W) is a moderately siderophile element under reducing condition in the early history of the Earth, and thus has been mostly sequestered into the Earth's core. During partial melting and magma evolution of the silicate Earth, tungsten is a highly incompatible lithophile element and thus can be dramatically enriched through these processes. The abundance of tungsten in the crust is about 250 times greater than that in the mantle. Tungsten migrates mainly in the form of tungstic acid in magmatic melts and in fluorine, boron compounds or their complexes in ore-forming hydrothermal fluids. The mineralization of tungsten in granitic magma requires the enrichment of tungsten in various stages, such as partial melting, magmatic evolution and late hydrothermal solution. The magmatic tungsten deposit is an important type of tungsten deposits. It can be further divided into different subtypes based on the characteristics of tungsten deposits, including quartz vein type, greisen type, porphyry type, skarn type, etc. China hosts more than 60% W reserves in the world, which were mainly formed in South China during the Mesozoic and were closely related to highly evolved granites. These granites generally have high F contents and have experienced significant differentiation as indicated by their high Rb/Sr and K/Rb ratios, and low Nb/Ta and Zr/Hf ratios. High F content is critical for W mineralization, because it decreases the viscosity and solidus of the magma, which consequently promote magmatic evolution and enrichment of W in the residual magmas. The high F characteristics in granites have been attributed to the Pacific and/or Neo-Tethys plate slab rollback, which leads to decomposition of phengite ±apatite in the subducting slab due to abruptly elevated temperatures caused by asthenosphere upwelling during slab rollback, and releasing F and Li.
Key words: Tungsten deposit    Granite    South China    Magma evolution    Slab rollback    

钨(W)是一种重要的战略金属,广泛应用于国防和国民经济各个领域,因其硬度高,素有“工业牙齿”之称。世界上的钨矿床分布不均匀,其中我国是世界上钨矿产资源最丰富的国家,约占世界总储量的60%以上,储量和产量均位居世界第一位。我国的钨矿床在时间和空间上的分布也不均匀,绝大多数钨矿床形成于中生代,主要分布在华南的南岭、赣东北和华南南缘等地区。这些钨矿床与华南地区大规模出露的中生代岩浆作用在时间、空间和成因上具有密切联系,因此华南地区中生代岩浆活动的成岩和成矿作用一直是研究的热点。本文以钨的地球化学性质为切入点,论述华南地区与花岗岩相关钨矿的富集机制和成矿过程,以期促进与钨矿床相关的研究。

1 钨的地球化学性质

钨的原子序数为74,其外层电子排布特征为5d46s2,在化学上可呈多种价态,但是在自然界中主要以+6价形式存在。由于W6+离子半径小、电价高、极化能力强,易形成络阴离子([WO4]2-),该络阴离子可以与溶液中的Fe2+、Mn2+、Ca2+等阳离子结合形成黑钨矿或白钨矿沉淀。

钨在自然界中的存在形式主要有以下四种(刘英俊等, 1984):(1)钨的独立矿物。已发现的钨矿物和含钨矿物有20多种,包括黑钨矿族、白钨矿族以及钨华类矿物等。但是,具有开采经济价值的主要是黑钨矿和白钨矿。黑钨矿约占全球钨矿资源总量的30%,白钨矿约占70%。(2)当钨元素浓度不高时,呈类质同象进入造岩矿物和副矿物中。与W类质同象关系最亲密的元素为Mo、Nb、Ta等。其中,Mo6+与W6+离子半径相等,[MoO4]2-与[WO4]2-络阴离子半径也相近,因而Mo与W之间的类质同象置换较为广泛。(3)呈钨酸或者各种络合物状态存在于各种天然流体中,如天然水、岩浆和粒间流体等。(4)呈离子吸附状态存在于表生的细屑、胶体中。

钨属于难熔元素,因此地球整体的钨元素丰度近似为球粒陨石丰度值0.096×10-6 (Arevalo and McDonough, 2008; König et al., 2011)。钨的地球化学性质决定了该元素在地球各个圈层中的分布特征和富集程度。在强还原条件下钨表现为中等亲铁元素,因此在地球演化早期,如地球吸积和核-幔分异过程中,地球中>90%的钨元素进入地核,使得地核中钨的丰度为0.47×10-6,而初始地幔的丰度为0.012×10-6(Newsom and Palme, 1984; König et al., 2011)。通常,钨在造岩矿物(橄榄石、辉石、角闪石、石榴子石等)/熔体(碧玄岩、玄武质熔体等)的分配系数小于或远小于1 (Adam and Green, 2006; Klemme et al., 2006; Fulmer et al., 2010),导致钨在硅酸盐地球发生分异时表现为极度不相容(Newsom et al., 1996)。因此,钨在地幔中亏损,而在地壳中相对富集。钨在亏损上地幔中的丰度为0.0024×10-6(König et al., 2011);在地壳中的丰度为0.6×10-6,其中在上地壳、中地壳和下地壳中的丰度分别为1.9×10-6、0.6×10-6和0.5×10-6(Rudnick and Gao, 2003)。

如上所述,钨属于极度不相容亲石元素,因此在地壳受热发生部分熔融时,钨优先进入熔体相(Newsom et al., 1996)。在花岗质熔体上升侵位过程中,随着温度的降低而发生分离结晶作用,由于钨的极度不相容,可进一步导致成矿物质在残余岩浆中的富集。对于一个多旋回构造运动区,每一次构造运动都伴随着地壳的反复熔融以及花岗岩类的形成,而花岗岩类的发展演化则是钨元素活化转移和富集成矿的重要途径(许泰等, 2012)。在岩浆熔体中,钨主要以简单钨酸(如H2WO4、H[WO4]-、[WO4]2-、KHWO4)和碱性钨酸盐离子对(如NaHWO4、K[WO4]-、Na[WO4]-)形式迁移(Wood and Samson, 2000)。依据钨与流体活动性元素(如B、Be、As)之间的正相关性,钨元素被证实在地表水、地下水和成矿热液流体中具有活动性(Kishida et al., 2004; Kamber et al., 2005; Arnórsson and óskarsson, 2007),进而有利于钨元素的迁移。在成矿热液中,钨主要以氟、硼化合物或其络合物的形式运移,挥发分的存在使钨元素更容易进入硅酸盐熔体中,并一直保持至岩浆晚期,进而使得钨元素随岩浆演化逐渐在熔流体中富集,最终随着岩浆和成矿热液温度的降低而发生沉淀并成矿。

2 钨的矿床类型

根据不同的划分准则,钨矿床可分为不同的类型。例如,根据矿石矿物种类,钨矿床主要分为白钨矿床和黑钨矿床。白钨矿或者黑钨矿的形成一般由围岩成分、成矿流体物理化学性质等因素决定,通常情况下,黑钨矿床的围岩成分多为高硅铝质岩石,而白钨矿床的围岩成分多为碳酸盐岩或其它钙质岩石。根据矿床成因,钨矿床可划分为岩浆成因矿床、沉积成因矿床、(火山)沉积-变质改造成因矿床和现代表生矿床四种类型(石洪召等,2009)。其中,岩浆成因钨矿床是储钨的重要矿床类型,根据矿床特征,它可进一步分为不同的亚类,包括石英脉型、云英岩型、斑岩型、矽卡岩型等(图 1)(Ni et al., 2015; 蒋少涌等, 2015; Chen et al., 2019; 许泰等, 2019)。本章节将对这四种亚类的围岩特征、物质来源、成矿模式等方面内容分别进行概述。

图 1 钨矿床成矿模式图 (a)石英脉型;(b)云英岩型;(c)斑岩型;(d)矽卡岩型 Fig. 1 Sketch maps of metallogenic models of W deposits (a) quartz-vein type; (b) greisen type; (c) porphyry type; and (d) skarn type
2.1 石英脉型

该类型矿床以西华山钨矿和漂塘钨矿为典型矿床(王旭东等,2008; Ni et al., 2015; Zhang et al., 2017d)。它们所处的区域构造活动一般都很强烈,断裂、褶皱、节理尤为发育,经历过多次叠加构造运动,同时频繁的岩浆活动为成矿热液的形成创造了条件。石英脉型钨矿床与壳源改造花岗岩类侵入体密切相关,矿体多产于岩体内外接触带裂隙中,以岩体内接触带为主,因此矿体受张剪性断裂控制,多呈脉状、似脉状分布,有的矿体还产在岩体顶部的围岩中(图 1a)。围岩的性质与钨矿床的形成有密切的关系,一方面可能会对钨矿的物质来源进行直接控制,另一方面会影响钨矿床的矿化作用,从而对矿体的矿化富集、形态特征以及蚀变交代等起到一定的控制作用。华南绝大多数石英脉型钨矿产在震旦寒武系地层中,以板岩、片岩、变质砂岩等变质岩为主(王明燕等, 2014; 许泰等, 2019)。由于变质岩存在塑性、致密和不透水等惰性特征,不利于交代作用,因此对矿化溶剂起到屏蔽作用(许泰等, 2019)。脉体周边多为云英岩,且伴随着云英岩型和斑岩型等钨矿化作用。石英脉型钨矿床的脉体主要由黑钨矿石英脉构成,有些包含白钨矿等矿物。目前普遍认为,石英脉型钨矿成矿物质主要是岩浆热液来源,岩浆作用以及花岗岩的岩浆演化是钨元素活化转移和富集成矿的重要途径(许泰等, 2019)。我国学者对华南地区石英脉型钨矿床的成矿模式研究比较深入,其中以“五层楼”模式最具影响力,它将脉体在垂向自下而上分为根脉、大脉、薄脉、细脉和线脉(Gu, 1982; Liu and Ma, 1993; Li et al., 2011; 祝新友等, 2015)。另有研究者发现下覆花岗岩中也发育较多脉体,因此在“五层楼”模式基础上,提出了“五层楼+地下室”找矿模式(许建祥等, 2008华仁民等, 2015)。

2.2 云英岩型

国外典型的云英岩型钨矿床有哈萨克斯坦阿克沙套云英岩型大型钨钼矿床,我国代表性的该类型矿床有江西荡坪钨矿九西矿区云英岩型钨矿床、湖北通城大坪钨矿等。该类型矿床分布于花岗岩类岩体上部以及顶部的硬砂岩、砂岩和页岩层等围岩中(图 1b)。该矿床矿化作用一般为高温热液作用,且围岩中常见钾长石化和云英岩化蚀变现象。同一矿床中,有时可同时存在石英脉型、云英岩型和矽卡岩型。云英岩型钨矿床的金属矿物一般为黑钨矿、白钨矿、辉钼矿、锡石、黄铁矿等,非金属矿物为石英、白云母、黑云母、萤石、长石等(王明燕等, 2014; Chen et al., 2019)。

2.3 斑岩型

华南具有代表性的斑岩型钨矿床主要有江西大湖塘超大型钨多金属矿床、福建行洛坑矿床、安徽东源钨钼矿床以及广东莲花山钨矿床等(王明燕等, 2014; 蒋少涌等, 2015; Wu et al., 2019b)。与该类型矿床矿化有关的侵入岩体为斑岩,主要包括花岗闪长斑岩、二长斑岩、花岗斑岩、石英斑岩等。斑岩型钨矿床的矿体一般产出较浅,主要分布在岩体内,有的分布在斑岩侵入体与围岩接触带及其附近(图 1c)。矿化呈浸染状、网脉状和细脉状,矿体呈似层状、透镜状及不规则状,与围岩无明显界限。该类型钨矿床品位低,规模大,常伴生辉钼矿,围岩蚀变具有分带现象。矿石中金属矿物常见有白钨矿、黑钨矿、辉钼矿、黄铜矿、闪锌矿等。斑岩型钨矿床的成矿时代主要为燕山期(夏庆霖等, 2018)。

2.4 矽卡岩型

华南地区典型的矽卡岩型钨矿床有新田岭白钨矿床、柿竹园钨钼多金属矿床和朱溪钨铜多金属矿床等,它们的形成和分布与中深成-浅成中酸性岩浆岩密切相关(Chen et al., 2016; Song et al., 2019),矿体主要产在岩体与碳酸盐类岩石接触变质带及其附近的围岩中(图 1d)(Xie et al., 2019)。与变质砂岩相比,碳酸盐类围岩相对活泼,一般成矿热液易对其进行交代反应发生矽卡岩化,并在晚期复杂矽卡岩阶段富集成矿(许泰等, 2012; 王明燕等, 2014)。矿体形态较为复杂,多为不规则的囊状、扁豆状、透镜状,也有呈层状、似层状以及脉状等形态。成矿热液沿构造裂隙或接触带交代围岩,导致矿石多以浸染粒状发育于细脉或裂隙以及花岗岩接触带的碳酸盐类岩石中。通常矿石品位较低,矿化较为均匀。矿石以白钨矿为主,少量为黑钨矿,常伴生钼、铜、锡石等,从而形成多金属组合矿床(王明燕等, 2014; Leng et al., 2018; Wu et al., 2019a)。

3 华南地区钨矿床成因

世界钨矿资源分布不均,主要分布在环太平洋成矿域、特提斯成矿域和中亚成矿域。中国是重要的钨矿大国,全球60%以上的钨储量分布在中国。图 2显示,中国众多大型和超大型钨矿床集中在华南地区,且矿化时代主要发生在中生代,与该时期发生的大规模花岗质岩浆活动密切相关。大量高精度年代学数据表明中生代华南钨矿床主要分为三个时期:第一成矿时期为230~210Ma,但是成矿规模较小(Mao et al., 2013; Zhang et al., 2015);第二成矿时期约为165~140Ma,主要分布在南岭地区,是华南最重要的钨矿床成矿时期(Wang et al., 2011; Hu et al., 2012; Mao et al., 2013; Zhang et al., 2015; Chen et al., 2016; Li et al., 2016; Su and Jiang, 2017);第三成矿时期约为100~80Ma,大多分布在华南地区的南部,如云南、广西和广东省,成矿规模较南岭地区小(Cheng and Mao, 2010; Cheng et al., 2016; Zhang et al., 2017b, 2018; Guo et al., 2018a, b)。本节将从钨矿化的物质来源、岩浆结晶温度、岩浆演化以及构造背景等方面详细阐述侏罗纪和白垩纪这两期钨矿床的成因模式。

图 2 中国钨矿资源分布示意图(据刘壮壮等, 2014修改) Fig. 2 Distribution of tungsten deposits in China (modified after Liu et al., 2014)
3.1 成矿条件

前人研究表明,与岩浆岩有关的W-Sn矿床的成矿过程受多种因素控制,包括岩浆源区、氧逸度、结晶温度和岩浆演化等(Groves and McCarthy, 1978; Dingwell et al., 1993; Huang and Jiang, 2014; Zhang et al., 2017b, 2018)。

华南地区的钨矿床主要与中生代花岗质岩浆有关。目前,有关这些花岗岩类型的认识还没有完全统一,有些学者认为与成矿有关的岩浆岩具有高度演化的I型或S型花岗岩的特征,其源区主要为壳源物质,没有或者有少量幔源物质的加入(Mao and Li, 1995; Chen et al., 2014; Guo et al., 2015)。另外一些学者发现这些花岗岩通常具有高的K2O+Na2O和Nb+Ce+Y+Zr含量,高的FeOT/(FeOT+MgO)、10000×Ga/Al、Y/Nb、Yb/Ta和Ce/Nb比值,表现为A2型花岗岩特征(Jiang et al., 2006; Chen et al., 2016; Zhang et al., 2017b, 2018; Du et al., 2018, 2019a, b),说明岩浆源区受到了俯冲流体的影响(Li et al., 2012b)。钨是极度不相容元素,其在地壳中的丰度约是地幔的250倍(Newsom et al., 1996; König et al., 2011; Rudnick and Gao, 2014),而且在地壳物质发生部分熔融时,钨元素倾向进入熔体相。因此,花岗质岩浆可以为钨矿床的形成提供初始的成矿物质来源。大量同位素研究(如Sr-Nd-Hf等)表明,华南地区与钨矿化有关的花岗岩同位素组成相对地壳亏损,因此其源区除地壳来源外,还有幔源物质的参与(Mao and Li, 1995; Chen et al., 2014; Wang et al., 2014; Guo et al., 2015)。

岩体的氧逸度是影响成矿作用的另一重要因素,并且不同的金属元素发生矿化所需要的氧逸度条件不同(图 3)(Ishihara, 1977; Thompson et al., 1999; Liu et al., 2020)。例如,与斑岩型Cu-(Mo-Au)矿床相关的花岗岩体通常具有较高的氧逸度(Sun et al., 2011, 2013; Li et al., 2012a; Zhang et al., 2017c),而与锡矿床相关的花岗岩体氧逸度较低(图 3)(Zhang et al., 2017b, 2018)。相比之下,钨对成矿岩体氧逸度不敏感。在华南地区,钨矿床虽然通常与锡矿床伴生,但是与锡元素相比,钨元素的矿化过程对氧逸度敏感程度相对较弱。例如,以锡矿床为主的花岗岩体氧逸度变化范围通常比以钨矿床为主的岩体大(Zhang et al., 2018)。

图 3 岩浆岩相关的不同矿床类型与氧逸度关系图(据Thompson et al., 1999修改) Fig. 3 Schematic plot of Fe content in magmas versus oxidation stage (fO2) for calc-alkaline to alkaline magmas associated with porphyry Cu, Cu-Mo, Mo, W and Sn deposits (modified after Thompson et al., 1999)

花岗岩的岩浆演化作用对钨的富集与成矿十分重要,因为钨是高度不相容亲石元素,岩浆演化过程可以促进钨元素在残余岩浆中的富集(Groves and McCarthy, 1978; Huang and Jiang, 2014)。一般而言,与钨矿相关的花岗岩具有显著的Eu、Sr、Ba、Ti和P的负异常,表明斜长石、磷灰石和钛铁矿的分离结晶。而且通常情况下,这些花岗岩还具有比地幔、球粒陨石和地壳低的Nb/Ta和Zr/Hf比值(图 4a)(Sun and McDonough, 1989; Rudnick and Gao, 2003),以及高的Rb/Sr和K/Rb比值,并且Nb/Ta和Zr/Hf比值与SiO2含量存在负相关性(Zhang et al., 2018),说明它们经历了显著的岩浆演化过程,Nb/Ta和Zr/Hf比值随着分离结晶的进行而降低(陈璟元和杨进辉, 2015)。近期还有一些研究认为,Nb/Ta比值的降低除了与分离结晶过程有关外,还与热液蚀变有关(Ding et al., 2009, 2013),并提出Nb/Ta≈5是花岗质岩浆-热液流体发生转变的标志,也是区分花岗岩成矿与否的重要指标(Ballouard et al., 2016)。

图 4 与不同多金属矿化(如德兴Cu矿、石菉Cu-Mo矿、鹦鹉岭W-Sn矿、锡山Sn-W矿、柿竹园W矿等)相关花岗岩全岩的F含量-Nb/Ta比值图解(a)和F-Cl含量图解(b) 数据蒋国豪(2004)Chen et al. (2016)Zhang et al.(2017b, c, 2018) Fig. 4 Diagrams of F vs. Nb/Ta (a) and Cl (b) for granites from the Dexing Cu deposit, Shilu Cu-Mo deposit, Yingwuling W-Sn deposit, Xishan Sn-W deposit and Shizhuyuan W deposit The data from Jiang (2004), Chen et al. (2016) and Zhang et al.(2017b, c, 2018)

与Cu-Mo矿化相关的花岗岩以及没有成矿的花岗岩相比,华南地区与钨矿化有关的花岗岩通常具有高的F含量(图 4),一些岩体中的钨含量还与F含量存在一定的正相关性(Chen et al., 2016; Zhang et al., 2017b, 2018; Yang et al., 2018)。Wood and Samson (2000)认为,作为钨酸盐物种(H2WO4、H[WO4]-、[WO4]2-)和碱性钨酸盐离子对(NaHWO4、Na[WO4]-),白钨矿和/或黑钨矿的溶解度可以高达数百至数千×10-6,可以满足钨的搬运与成矿,因此可能不需要钨的氟化物对钨进行络合、迁移与矿化。那么,与钨矿化有关的花岗岩为什么比没有成矿的花岗岩具有高的F含量,而且有些成矿岩体中的钨含量与F含量存在一定的正相关性?一些研究认为,富F熔体的固相线温度低、粘度低、扩散系数高(图 5)(Dingwell et al., 1985; Dingwell and Webb, 1992; Agangi et al., 2010),从而提高了熔体发生矿物分离结晶的速度和程度(Dingwell et al., 1993)。此外,富F熔体还可以降低熔体的密度,加速晶体与熔体之间重力分异的过程(Dingwell et al., 1993)。所以,岩浆的高F含量是促进岩浆演化程度的重要因素。如前所述,钨是高度不相容元素,强烈的岩浆演化过程更加有利于钨的富集与成矿。例如,Zhang et al. (2018)对鹦鹉岭岩体进行了详细研究,发现鹦鹉岭岩体具有高的F含量,通过锆石的Ti温度计计算发现温度从1100℃变化至670℃,说明岩体具有很高的初始温度,岩浆中较高的F含量使得该岩体经历了长时间的岩浆演化和分离结晶过程,从而表现出较大的温度变化范围。

图 5 挥发分对酸性熔体固相线和粘度的影响(据Dingwell and Webb, 1992修改) (a)挥发分对酸性熔体固相线的影响: F对固相线温度降低的斜率与H2O相似,说明F对固相线的影响与H2O相似; (b)在1200℃条件下,挥发分对酸性熔体粘度的影响. η代表在特定温度下的粘度 Fig. 5 The effects of volatiles on the solidus and viscosity of felsic melts (modified after Dingwell and Webb, 1992) (a) comparison of the effects of H2O (marked H2O) and F on the solidus of rhyolite and albite melts; (b) comparison of the effects of different volatiles on the viscosity of felsic melts at 1200℃. η represents the viscosity of felsic melts at a certain temperature
3.2 构造背景

大量研究表明,华南地区中生代不同阶段大规模侵入的花岗岩岩体以及矿化作用可能与不同的大洋板块俯冲相关,如太平洋板块和新特提斯洋板块。大洋板块俯冲后撤导致软流圈上涌,引发俯冲板片中多硅白云母的分解,进而释放大量F和Li进入地幔楔,降低了岩浆固相线引发部分熔融作用(Jiang et al., 2005, 2006; Wang et al., 2011; Li et al., 2012b; Zhang et al., 2017b, 2019)。

古太平洋板块至少在侏罗纪前就已经开始向中国东部俯冲,并根据太平洋岛链方向的转变,发现在125Ma以前太平洋板块向南西方向俯冲(Sun et al., 2007)。在早侏罗世(~170Ma)太平洋板块俯冲到德兴地区部分熔融形成斑岩铜矿(Zhang et al., 2017a),到~165Ma板块俯冲到南岭地区,随着俯冲角度的增大,板块发生后撤,形成了相应的大规模南岭岩浆活动和W-Sn矿化,随后板块继续后撤又形成了相应的矿床。在该构造背景下,侏罗纪华南地区不同类型的矿床和成矿时代显示时空分布规律。从华南的北东方向向南西方向延伸,矿床类型从Cu-Au-Mo矿逐渐向Pb-Zn-Ag矿、W-Sn矿转变,且成矿时代逐渐变年轻(Wang et al., 2011; Sun et al., 2012)。与Cu-Mo矿化相关的花岗岩相比,华南地区与钨矿相关的花岗岩通常具有较高的F含量和较低的Cl含量(图 4),该特征与板块后撤模型十分吻合。在板块俯冲的初始阶段,Cl具有较高的活动性(Lassiter et al., 2002; Sun et al., 2007),而F主要赋存在硬柱石、多硅白云母、磷灰石中。其中多硅白云母可以把F带到300km深度。在板块后撤时,软流圈上涌,可以导致俯冲板块的温度从600℃显著上升至1300℃ (Peacock et al., 1994; Davies, 1999),从而引起多硅白云母的分解,并释放大量的F和Li进入地幔楔(Li et al., 2012a; Chen et al., 2016; Liu et al., 2020)。板块后撤引起的软流圈上涌为上覆地幔以及地壳物质的部分熔融作用提供了热源,另外源区较高的F和Li含量,可以显著降低岩浆的固相线,进而形成侏罗纪华南地区高演化的富Li-F、W-Sn-Nb-Ta矿化的花岗岩(Li et al., 2012a; Chen et al., 2016)。

部分学者认为与华南南部晚白垩世形成的钨矿床也与太平洋板块俯冲有关(Nguyen et al., 2004; Cheng et al., 2016)。但是,晚白垩世包括云南、广西、广东等在内的W-Sn矿床呈东西向展布,与当时太平洋板块的俯冲方向不一致,而与新特提斯板块在晚白垩世期间的向北俯冲方向一致(Sun, 2016; Zhang et al., 2017b; Sun et al., 2018b; 孙卫东等, 2018)。另外,通过华南地区应力场的研究发现,华南在约80Ma存在一次南北向的拉张,这也不同于当时的太平洋板块俯冲方向(Li et al., 2014)。因此,这一时期华南南部地区更可能受新特提斯板块俯冲的影响(Zhang et al., 2017b, c, 2018; Sun et al., 2018a)。新特提斯对华南的影响长期没有引起重视的原因是现今的俯冲带离华南较远,但是通过东南亚地区的板块重建显示,在白垩纪时新特提斯俯冲带离华南并不远(Zhang et al., 2017c),并且特提斯板块向北俯冲早期,发生了洋脊俯冲,由于洋脊处热量高、密度低容易产生平板俯冲,可以俯冲到离俯冲带较远的距离,并发生洋壳部分熔融形成石菉Cu矿(Zhang et al., 2017c)。随着板块俯冲的进行,新特提斯板块发生后撤,软流圈上涌,造成多硅白云母分解,释放出大量的富F流体,并产生锡山、鹦鹉岭等W-Sn矿床(Zhang et al., 2017b, 2018)。

4 结语

(1) 在地球演化早期的还原环境下,钨属于中等亲铁元素,>90%的钨元素进入地核。钨是极度不相容亲石元素,在部分熔融和岩浆演化过程中都发生富集,其在地壳中的丰度约是地幔丰度的250倍。钨在热液流体中的活动性有利于钨元素的迁移。

(2) 世界上的钨矿产资源分布极其不均匀,主要分布在环太平洋、特提斯和古亚洲洋三大成矿域,其中中国的钨矿储量占世界储量的60%以上,主要分布在华南地区。

(3) 中生代华南地区的钨矿床与大规模出露的花岗岩密切相关。这些花岗岩通常具有高的F含量,并经历了强烈的岩浆演化过程。岩浆中高的F含量对钨的富集和矿化十分重要,它可以降低熔体固相线、粘度和密度,有利于提高岩浆的结晶分异程度,进而促进了高度不相容的钨元素在岩浆演化后期的富集与矿化。

(4) 富F花岗岩的形成可能与古太平洋板块或特提斯板块的俯冲和后撤有关,板块后撤时可以引起软流圈上涌,导致俯冲板块温度快速升高,促使多硅白云母分解,释放大量F和Li等元素进入岩浆源区。

致谢      感谢孙卫东研究员对完善本文所提供的建设性意见;感谢匿名审稿人对本文提出的宝贵修改意见和建议。

参考文献
Adam J and Green T. 2006. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt:1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1): 1-17
Agangi A, Kamenetsky VS and McPhie J. 2010. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas:Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3-4): 314-325 DOI:10.1016/j.chemgeo.2010.03.008
Arevalo Jr R and McDonough WF. 2008. Tungsten geochemistry and implications for understanding the Earth's interior. Earth and Planetary Science Letters, 272(3-4): 656-665 DOI:10.1016/j.epsl.2008.05.031
Arnórsson S and óskarsson N. 2007. Molybdenum and tungsten in volcanic rocks and in surface and < 100℃ ground waters in Iceland. Geochimica et Cosmochimica Acta, 71(2): 284-304 DOI:10.1016/j.gca.2006.09.030
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234 DOI:10.1130/G37475.1
Chen B, Ma XH and Wang ZQ. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93: 301-314 DOI:10.1016/j.jseaes.2014.07.022
Chen JY and Yang JH. 2015. Petrogenesis of the Fogang highly fractionated I-type granitoids:Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31(3): 846-854 (in Chinese with English abstract)
Chen LL, Ni P, Dai BZ, Li WS, Chi Z and Pan JY. 2019. The genetic association between quartz vein-and greisen-type mineralization at the Maoping W-Sn deposit, southern Jiangxi, China:Insights from zircon and cassiterite U-Pb ages and cassiterite trace element composition. Minerals, 9(7): 411 DOI:10.3390/min9070411
Chen YX, Li H, Sun WD, Ireland T, Tian XF, Hu YB, Yang WB, Chen C and Xu DR. 2016. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling range, South China:Implications for Shizhuyuan W-Sn mineralization and tectonic evolution. Lithos, 266-267: 435-452 DOI:10.1016/j.lithos.2016.10.010
Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China:Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4): 258-276 DOI:10.1016/j.lithos.2010.08.013
Cheng YB, Mao JW and Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sciences, 1(3): 79-88 DOI:10.1016/j.sesci.2016.12.001
Davies JH. 1999. Simple analytic model for subduction zone thermal structure. Geophysical Journal International, 139(3): 823-828 DOI:10.1046/j.1365-246x.1999.00991.x
Ding X, Lundstrom C, Huang F, Li J, Zhang ZM, Sun XM, Liang JL and Sun WD. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6): 473-501 DOI:10.1080/00206810902759749
Ding X, Hu YH, Zhang H, Li CY, Ling MX and Sun WD. 2013. Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. The Journal of Geology, 121(3): 255-274 DOI:10.1086/669978
Dingwell DB, Scarfe CM and Cronin DJ. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2:Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70(1-2): 80-87
Dingwell DB and Webb SL. 1992. The fluxing effect of fluorine at magmatic temperatures (600~800℃):A scanning calorimetric study. American Mineralogist, 77(1-2): 30-33
Dingwell DB, Knoche R and Webb SL. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78(3-4): 325-330
Du L, Long XP, Yuan C, Zhang YY, Huang ZY, Sun M and Xiao WJ. 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China:Response to post-collisional extension triggered by slab breakoff. Lithos, 318-319: 47-59 DOI:10.1016/j.lithos.2018.08.006
Du L, Yuan C, Li XP, Zhang YY, Huang ZY and Long XP. 2019a. Petrogenesis and geodynamic implications of the Carboniferous granitoids in the Dananhu belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6): 1243-1252 DOI:10.1007/s12583-019-1256-3
Du L, Zhang YY, Huang ZY, Li XP, Yuan C, Wu B and Long XP. 2019b. Devonian to Carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China:Insights from three episodes of granitoids. Lithos, 350-351: 105243 DOI:10.1016/j.lithos.2019.105243
Fulmer EC, Nebel O and van Westrenen W. 2010. High-precision high field strength element partitioning between garnet, amphibole and alkaline melt from Kakanui, New Zealand. Geochimica et Cosmochimica Acta, 74(9): 2741-2759 DOI:10.1016/j.gca.2010.02.020
Groves DI and McCarthy TS. 1978. Fractional crystallization and the origin of tin deposits in granitoids. Mineralium Deposita, 13(1): 11-26
Gu JY. 1982. Morphological zoning of the vein-type tungsten deposits in southern China. In: Proceedings of Symposium on Tungsten Geology. Beijing: Geological Publishing House, 35-45
Guo CL, Wang RC, Yuan SD, Wu SH and Yin B. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineralogy and Petrology, 109(2): 253-282 DOI:10.1007/s00710-014-0355-1
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018a. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China:Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M and Zhang LC. 2018b. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions. Ore Geology Reviews, 95: 863-879 DOI:10.1016/j.oregeorev.2018.03.023
Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY and Chen YW. 2012. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150: 111-118 DOI:10.1016/j.lithos.2012.05.015
Hua RM, Wei XL, Wang DS, Guo JS, Huang XE and Li GL. 2015. A new metalloginetic model for tungsten deposit in South China's Nanling Area:Up veins+underneath mineralized granite. China Tungsten Industry, 30(1): 16-23 (in Chinese with English abstract)
Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226 DOI:10.1016/j.lithos.2014.05.030
Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293-305
Jiang GH. 2004. Chlorine and fluorine control on copper and tungsten mineralization in hydrothermal deposits: Case of Dexing porphyry copper deposit and Dajishan tungsten deposit in Jiangxi Province. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL and Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639-655 (in Chinese with English abstract)
Jiang YH, Ling HF, Jiang SY, Fan HH, Shen WZ and Ni P. 2005. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154 DOI:10.1093/petrology/egi012
Jiang YH, Jiang SY, Zhao KD and Ling HF. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting. Geological Magazine, 143(4): 457-474 DOI:10.1017/S0016756805001652
Kamber BS, Greig A and Collerson KD. 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta, 69(4): 1041-1058 DOI:10.1016/j.gca.2004.08.020
Kishida K, Sohrin Y, Okamura K and Ishibashi JI. 2004. Tungsten enriched in submarine hydrothermal fluids. Earth and Planetary Science Letters, 222(3-4): 819-827 DOI:10.1016/j.epsl.2004.03.034
Klemme S, Günther D, Hametner K, Prowatke S and Zack T. 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3-4): 251-263 DOI:10.1016/j.chemgeo.2006.05.005
König S, Münker C, Hohl S, Paulick H, Barth AR, Lagos M, Pfänder J and Büchl A. 2011. The Earth's tungsten budget during mantle melting and crust formation. Geochimica et Cosmochimica Acta, 75(8): 2119-2136 DOI:10.1016/j.gca.2011.01.031
Lassiter JC, Hauri EH, Nikogosian IK and Barsczus HG. 2002. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands:Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 202(3-4): 525-540 DOI:10.1016/S0012-821X(02)00826-9
Leng CB, Wang YH, Zhang XC, Gao JF, Zhang W and Xu XY. 2018. Constraints of molybdenite Re-Os and scheelite Sm-Nd ages on mineralization time of the Kukaazi Pb-Zn-Cu-W deposit, Western Kunlun, NW China. Acta Geochimica, 37(1): 47-59 DOI:10.1007/s11631-017-0205-z
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012a. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 DOI:10.1016/j.lithos.2012.04.001
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Li GL, Hua RM, Zhang WL, Hu DQ, Wei XL, Huang XE, Xie L, Yao JM and Wang XD. 2011. He-Ar isotope composition of pyrite and wolframite in the Tieshanlong tungsten deposit, Jiangxi, China:Implications for fluid evolution. Resource Geology, 61(4): 356-366 DOI:10.1111/j.1751-3928.2011.00172.x
Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012b. A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction. Lithos, 150: 26-36 DOI:10.1016/j.lithos.2011.09.021
Li JH, Zhang YQ, Dong SW and Johnston ST. 2014. Cretaceous tectonic evolution of South China:A preliminary synthesis. Earth-Science Reviews, 134: 98-136 DOI:10.1016/j.earscirev.2014.03.008
Liu H, Liao RQ, Zhang LP, Li CY and Sun WD. 2020. Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology, 38(1): 64-74 DOI:10.1007/s00343-019-8339-y
Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Element Geochemistry. Beijing: Science Press (in Chinese)
Liu YJ and Ma DS. 1993. Vein-type tungsten deposits of China and adjoining regions. Ore Geology Reviews, 8(3-4): 233-246 DOI:10.1016/0169-1368(93)90018-T
Liu ZZ, Xia QL, Wang XY and Li TF. 2014. Distribution of tungsten resources and division of metallogenic belts in China. Mineral Deposits, 33(S1): 947-948 (in Chinese)
Mao JW and Li HY. 1995. Evolution of the Qianlishan granite stock and its relation to the Shizhuyuan polymetallic tungsten deposit. International Geology Review, 37(1): 63-80 DOI:10.1080/00206819509465393
Mao JW, Cheng YB, Chen MH and Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294 DOI:10.1007/s00126-012-0446-z
Newsom HE and Palme H. 1984. The depletion of siderophile elements in the Earth's mantle:New evidence from molybdenum and tungsten. Earth and Planetary Science Letters, 69(2): 354-364 DOI:10.1016/0012-821X(84)90194-8
Newsom HE, Sims KWW, Noll Jr PD, Jaeger WL, Maehr SA and Beserra TB. 1996. The depletion of tungsten in the bulk silicate earth:Constraints on core formation. Geochimica et Cosmochimica Acta, 60(7): 1155-1169 DOI:10.1016/0016-7037(96)00029-4
Nguyen TTB, Satir M, Siebel W and Chen FK. 2004. Granitoids in the Dalat zone, southern Vietnam:Age constraints on magmatism and regional geological implications. International Journal of Earth Sciences, 93(3): 329-340
Ni P, Wang XD, Wang GG, Huang JB, Pan JY and Wang TG. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062-1077 DOI:10.1016/j.oregeorev.2014.08.007
Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244 DOI:10.1016/0012-821X(94)90042-6
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Shi HZ, Lin FC and Zhang LK. 2009. Spatio-temporal distribution and current state of the research of the tungsten deposits:An overview. Sedimentary Geology and Tethyan Geology, 29(4): 90-95 (in Chinese with English abstract)
Song SW, Mao JW, Xie GQ, Chen L, Santosh M, Chen GH, Rao JF and Ouyang YP. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Mineralium Deposita, 54(4): 569-590 DOI:10.1007/s00126-018-0831-3
Su H and Jiang S. 2017. A comparison study of tungsten-bearing granite and related mineralization in the northern Jiangxi-southern Anhui provinces and southern Jiangxi Province in South China. Science China (Earth Sciences), 60(11): 1942-1958 DOI:10.1007/s11430-016-9071-6
Sun SJ, Zhang LP, Zhang RQ, Ding X, Zhu HL, Zhang ZF and Sun WD. 2018a. Mid-Late Cretaceous igneous activity in South China:The Qianjia example, Hainan Island. International Geology Review, 60(11-14): 1665-1683 DOI:10.1080/00206814.2017.1402379
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY and Fan WM. 2011. The genetic association of adakites and Cu-Au ore deposits. International Geology Review, 53(5-6): 691-703 DOI:10.1080/00206814.2010.507362
Sun WD, Yang XY, Fan WM and Wu FY. 2012. Mesozoic large scale magmatism and mineralization in South China:Preface. Lithos, 150: 1-5 DOI:10.1016/j.lithos.2012.06.028
Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275 DOI:10.1016/j.gca.2012.10.054
Sun WD. 2016. Initiation and evolution of the South China Sea:An overview. Acta Geochim, 35(3): 215-225 DOI:10.1007/s11631-016-0110-x
Sun WD, Liu LJ, Hu YB, Ding W, Liu JQ, Ling MX, Ding X, Zhang ZF, Sun XL, Li CY, Li H and Fan WM. 2018b. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sciences, 3(1): 1-7
Sun WD, Lin QT, Zhang LP, Liao RQ and Li CY. 2018. The formation of the South China Sea resulted from the closure of the Neo-Tethys:A perspective from regional geology. Acta Petrologica Sinica, 34(12): 3467-3478
Thompson JFH, Sillitoe RH, Baker T, Lang JR and Mortensen JK. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34(4): 323-334 DOI:10.1007/s001260050207
Wang FY, Li CY, Ling MX, Zhang H, Sun YL and Sun WD. 2011. Geochronology of the Xihuashan tungsten deposit in southeastern China:Constraints from Re-Os and U-Pb dating. Resource Geology, 61(4): 414-423 DOI:10.1111/j.1751-3928.2011.00176.x
Wang MY, Jia MX, Xiao YW, Sun CY, Li YF and Jin JW. 2014. Present situation and sustainable development countermeasures of tungsten resources in China. Nonferrous Metals Engineering, 4(2): 76-80 (in Chinese)
Wang XD, Ni P, Jiang SY, Huang JB and Sun LQ. 2008. Fluid inclusion study on the Piaotang tungsten deposit, southern Jiangxi Province, China. Acta Petrologica Sinica, 24(9): 2163-2170
Wang ZQ, Chen B and Ma XH. 2014. Petrogenesis of the late Mesozoic Guposhan composite plutons from the nanling range, South China:Implications for W-Sn mineralization. American Journal of Science, 314(1): 235-277 DOI:10.2475/01.2014.07
Wood SA and Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments:I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95(1): 143-182
Wu SH, Mao JW, Ireland TR, Zhao Z, Yao FJ, Yang YP and Sun WD. 2019a. Comparative geochemical study of scheelite from the Shizhuyuan and Xianglushan tungsten skarn deposits, South China:Implications for scheelite mineralization. Ore Geology Reviews, 109: 448-464 DOI:10.1016/j.oregeorev.2019.04.021
Wu SH, Sun WD and Wang XD. 2019b. A new model for porphyry W mineralization in a world-class tungsten metallogenic belt. Ore Geology Reviews, 107: 501-512 DOI:10.1016/j.oregeorev.2019.02.035
Xia QL, Wang XQ, Liu ZZ, Li TF and Feng L. 2018. Tungsten metallogenic and geological features and mineral resource potential in China. Earth Science Frontiers, 25(3): 50-58
Xie GQ, Mao JW, Bagas L, Fu B and Zhang ZY. 2019. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China:Implications for a distal reduced skarn W formation. Mineralium Deposita, 54(3): 459-472 DOI:10.1007/s00126-018-0816-2
Xu JX, Zeng ZL, Wang DH, Chen ZH, Liu SB, Wang CH and Ying LJ. 2008. A new type of tungsten deposit in southern Jiangxi and the new model of "five floors+basement" for prospecting. Acta Geologica Sinica, 82(7): 880-887
Xu T, Gao HD, Li YZ and Wei X. 2012. On the metallogenic characteristics of China's tungsten deposits. China Tungsten Industry, 27(3): 1-5
Xu T, Liu XF, Zhang JF and Yang FF. 2019. The research progress of quartz vein type tungsten deposits. Contributions to Geology and Mineral Resources Research, 34(2): 196-200
Yang JH, Kang LF, Peng JT, Zhong H, Gao JF and Liu L. 2018. In-situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons:Implication for Jurassic granitoid-related Cu-Pb-Zn and W mineralization in the Nanling Range, South China. Ore Geology Reviews, 93: 382-403 DOI:10.1016/j.oregeorev.2017.12.023
Zhang CC, Sun WD, Wang JT, Zhang LP, Sun SJ and Wu K. 2017a. Oxygen fugacity and porphyry mineralization:A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363 DOI:10.1016/j.gca.2017.03.013
Zhang LP, Zhang RQ, Hu YB, Liang JL, Ouyang ZX, He JJ, Chen YX, Guo J and Sun WD. 2017b. The formation of the Late Cretaceous Xishan Sn-W deposit, South China:Geochronological and geochemical perspectives. Lithos, 290-291: 253-268 DOI:10.1016/j.lithos.2017.08.013
Zhang LP, Hu YB, Liang JL, Ireland T, Chen YL, Zhang RQ, Sun SJ and Sun WD. 2017c. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochimica, 36(2): 132-150 DOI:10.1007/s11631-017-0146-6
Zhang LP, Zhang RQ, Wu K, Chen YX, Li CY, Hu YB, He JJ, Liang JL and Sun WD. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China:Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129 DOI:10.1016/j.oregeorev.2018.04.012
Zhang LP, Zhang RQ, Chen YX, Sun SJ, Liang JL and Sun WD. 2019. Geochronology and geochemistry of the Late Cretaceous Xinpeng granitic intrusion, South China:Implication for Sn-W mineralization. Ore Geology Reviews, 113: 103075 DOI:10.1016/j.oregeorev.2019.103075
Zhang RQ, Lu JJ, Wang RC, Yang P, Zhu JC, Yao Y, Gao JF, Li C, Lei ZH, Zhang WL and Guo WM. 2015. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China. Ore Geology Reviews, 65: 1021-1042 DOI:10.1016/j.oregeorev.2014.09.021
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017d. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
Zhu XY, Wang YL, Cheng XY, Tian Y, Fu QB, Li ST and Yu ZF. 2015. Metallogenic system of Yaogangxian quartz vein-type tungsten deposit, Hunan Province. Mineral Deposits, 34(5): 874-894
陈璟元, 杨进辉. 2015. 佛冈高分异Ⅰ型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约. 岩石学报, 31(3): 846-854.
华仁民, 韦星林, 王定生, 郭家松, 黄小娥, 李光来. 2015. 试论南岭钨矿"上脉下体"成矿模式. 中国钨业, 30(1): 16-23. DOI:10.3969/j.issn.1009-0622.2015.01.004
蒋国豪. 2004.氟、氯对热液钨、铜成矿的制约——以江西德兴铜矿、大吉山钨矿为例.博士学位论文.贵阳: 中国科学院地球化学研究所 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y579440
蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639-655.
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.
刘壮壮, 夏庆霖, 汪新庆, 李童斐. 2014. 中国钨矿资源分布及成矿区带划分. 矿床地质, 33(S1): 947-948.
石洪召, 林方成, 张林奎. 2009. 钨矿床的时空分布及研究现状. 沉积与特提斯地质, 29(4): 90-95. DOI:10.3969/j.issn.1009-3850.2009.04.016
孙卫东, 林秋婷, 张丽鹏, 廖仁强, 李聪颖. 2018. 跳出南海看南海——新特提斯洋闭合与南海的形成演化. 岩石学报, 34(12): 3467-3478.
王明燕, 贾木欣, 肖仪武, 孙传尧, 李艳峰, 金建文. 2014. 中国钨矿资源现状及可持续发展对策. 有色金属工程, 4(2): 76-80. DOI:10.3969/j.issn.2095-1744.2014.02.018
夏庆霖, 汪新庆, 刘壮壮, 李童斐, 冯磊. 2018. 中国钨矿成矿地质特征与资源潜力分析. 地学前缘, 25(3): 50-58.
许建祥, 曾载淋, 王登红, 陈郑辉, 刘善宝, 王成辉, 应立娟. 2008. 赣南钨矿新类型及"五层楼+地下室"找矿模型. 地质学报, 82(7): 880-887. DOI:10.3321/j.issn:0001-5717.2008.07.003
许泰, 高海东, 李元志, 魏欣. 2012. 中国钨矿床成矿特征探讨. 中国钨业, 27(3): 1-5. DOI:10.3969/j.issn.1009-0622.2012.03.001
许泰, 刘雪芬, 张巨峰, 杨峰峰. 2019. 石英脉型钨矿成矿研究进展. 地质找矿论丛, 34(2): 196-200.
王旭东, 倪培, 蒋少涌, 黄建宝, 孙立强. 2008. 赣南漂塘钨矿流体包裹体研究. 岩石学报, 24(9): 2163-2170.
祝新友, 王艳丽, 程细音, 田野, 傅其斌, 李顺庭, 于志峰. 2015. 湖南瑶岗仙石英脉型钨矿床成矿系统. 矿床地质, 34(5): 874-894.