岩石学报  2020, Vol. 36 Issue (1): 5-12, doi: 10.18654/1000-0569/2020.01.02   PDF    
硼的地球化学性质及其在俯冲带的循环与成矿初探
林秋婷1,2, 陈晨3,4, 刘海洋1,2     
1. 中国科学院海洋研究所, 深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
3. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广州 510640;
4. 中国科学院大学, 北京 100049
摘要: 硼是广泛应用于化工、农业、材料科学及核工业领域的重要元素。硼与氢的核聚变反应是未来具备运用潜力的清洁能源。硼作为典型的亲石元素,是高度不相容元素。硼元素容易富集于蚀变洋壳及蛇纹石化地幔橄榄岩中。而在板块俯冲过程中,由于硼具有强的流体活动性,会优先赋存于流体中。因此,当蛇纹石化的大洋岩石圈及覆于其上的沉积物在俯冲过程中发生脱水,这使得弧前地幔楔发生大规模的蛇纹石化。此时大量硼元素很可能随俯冲流体释放并封存于弧前地幔楔中。目前已发现的超大型硼矿床主要位于聚合型板块边缘,尤其土耳其拥有世界上最大的硼酸盐储量。我们推测这些矿床的形成基础条件之一可能与弧前高度蛇纹石化的地幔楔有关。尤其是在洋-陆俯冲环境,弧前蛇纹岩或蛇绿混杂岩首先通过俯冲侵蚀再循环到火山弧岩浆中,使得岩浆更富集硼。随后弧火山喷发大量富硼的火山岩、岩浆热液及水气。在岩浆冷却过程中,硼元素析出、沉淀于火山表面,并伴随风化、侵蚀过程汇聚至碰撞造山带的封闭湖盆之中。此外,干冷的气候条件下也进一步促进了硼的成矿。我国具有形成大型、超大型硼矿的地质条件,应加大研究及探勘力度,并适当购买硼作为战略储备。
关键词:     硼矿床    蛇纹岩    地幔楔    火山弧    
Boron prospecting based on boron cycling in subduction zone
LIN ChiouTing1,2, CHEN Chen3,4, LIU HaiYang1,2     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Boron is an important element widely used in chemical engineering, agriculture, material sciences, and nuclear industries. The nuclear fusion reactions of hydrogen (H) with the boron isotope 11B can be potential as an ideal clean energy in the future. There are amounts of boron strongly enriched in subducted sediments, altered oceanic crust and serpentinized lithospheric mantle. Boron is an incompatible lithophile and soluble element. Boron can be readily transported during subduction dehydration, resulting in the serpentinization of forearc mantle wedge with such born-rich fluids. The mantle wedge is extensively serpentinized by fluids derived from forearc dehydration of the subducting slab, with boron captured in the serpentinized mantle wedge. Most of borate deposit seemingly primarily occur along the collision suture zone, especially along that continent-continent collision develops after ocean-continent subduction. Therefore, the primary known economic borate deposits mainly occur in the high altitude intermontane basins developed at the convergent plate margins. Anatolia Plateau in Turkey hosts the largest borate reserves around the world which may be associated with the massive forearc serpentinite or serpentinized mélange recycled to magma source during subduction erosion. The erupted volcanic magmas transport boron-rich volcanic rocks, ashes and hydrothermal fluids to the surface, from which boron is leached into closed basins, the typical byproducts of orogeny. Combined with extensive evaporation and, dry and cold climate, borate deposits eventually develop in orogen. The boron reserves of China are only 3% of the global ones, mainly from the Liaodong Peninsula, Qaidam Basin of Qinghai, Tibet, Sichuan, and Hunan Province. There may be more potential boron resources for China. We thus call on more efforts on the research and exploration of borate deposits and purchase of abroad boron resources as strategic reserves.
Key words: Boron    Borate deposits    Serpentinite    Mantle wedge    Volcanic arc    

硼为典型的亲石元素。硼能与VIIA族(卤组元素)直接化合,形成卤化硼。与IVA族(碳、硅、锡)、VA族(氮、磷、砷)、VIA族(硫)元素形成的化合物具有熔点高的特性。此外,高温下硼能与过渡金属或金属氧化物反应,形成金属硼化物。这些化合物通常具有高硬度、耐熔、高电导率的性质,被广泛应用在化工、农业、材料科学及核工业领域,价值远高于天然硼。例如:二硼化铼(ReB2)、碳化硼(B4C)、钕铁硼(Nd2Fe14B)。前两者的硬度皆可超过摩氏硬度9,可应用于坦克车装甲、防弹衣等军事工业产品中,后者则是当今磁性最强的永久性磁铁,在电子技术产业中亦被广泛的应用。值得注意的是,在核工领域,碳化硼是理想的中子吸收剂,因而可用来控制核分裂的速率。此外,硼与氢的核聚变反应会产生氦四,不会释放具危害性的高能中子,是和平利用核聚变的优质材料,也是未来值得期待的清洁能源(Hora et al., 2017)。

硼矿床类型主要有火山沉积型、火山热泉型、沉积变质型、现代盐湖型、矽卡岩型(唐尧等, 2013)。目前世界上发现的超大型硼矿床也主要集中于聚合型板块边界(Helvacı et al., 2017)。火山活动对于硼矿床的形成有重要的影响(Smith and Medrano, 1996; Helvacı, 2005),即使是现代盐湖沉积的硼矿床,也被认为与火山活动或热液活动有直接或间接的关系(Helvacı and Alonso, 2000; Pueyo et al., 2001; Risacher and Alonso, 2001; Warren, 2010)。我国虽然具有形成大型、超大型硼矿的地质条件,但从目前探明储量看硼矿资源却只占了全球硼矿储量的3%(USGS, MRDS数据库)。为增进对硼成矿机制的了解以提供将来探采硼矿的研究参考,本文将讨论硼在俯冲带中的循环机理,并提出硼元素在聚合型板块边界周边成矿的可能模式。

① USGS. Mineral Resources Data System (MRDS). https://mrdata.usgs.gov/mrds/find-mrds.php

1 硼的元素地球化学性质

硼的原子序数为5,原子质量为10.81mol/g (Baxter and Scott, 1921)。在元素周期表中,硼位于第2周期、IIIA族。硼的密度约为2.34g/cm3, 熔点2076℃,沸点3927℃。晶体结构为三方晶系,摩氏硬度>9,在非结晶状况之下,硼的粉末呈棕黄色,而晶体为黑色并带金属光泽。硼的价态主要为+3价,为易溶元素,流体活动性较强,会优先进到流体中,是岩浆和热液过程中重要的挥发性组分。硼在自然界中鲜少以单质存在,通常以硼砂(Borax: Na2B4O7·10H2O)、四水硼砂(Kernite: Na2B4O7·4H2O)或硼酸(Sassolite: H3BO3)的形式赋存,或进入多种含硼矿物之中,例如电气石、白云母、蛇纹石等。过去针对硼在气-液体中的分配、迁移能力和存在形式的实验表明,硼的气-液分配能力受液体或熔体中硼含量的影响较小,且随着温度上升,硼的分配系数增加(张生等, 2014)。硼砂是硼酸盐工业中最重要的含硼矿物(Kistler and Helvacı, 1994),主要发现于非海相蒸发岩中(Smith and Medrano, 1996; Garrett, 1998)。此外,硼酸易溶于水,其溶解度随着温度升高而增加。在火山活动地区,天然硼酸主要在温度下降的过程中自高温水蒸气中逐步凝析并沉淀于火山岩表面(张生等, 2014)。

硼有14个同位素,其中两个为稳定同位素11B及10B (Aston, 1920),在自然界的丰度分别为80.1%及19.9% (Baxter and Scott, 1921; Briscoe and Robinson, 1925),两者相对质量差异较大(Aston, 1927)。实验及理论计算证明硼同位素可以在地质过程中发生显着的分馏(Kakihana et al., 1977; Marschall et al., 2007),其分馏主要受控于B(OH)3和B(OH)4的相对含量。重同位素11B主要富集在B(OH)3中,轻同位素10B主要富集在B(OH)4中(Kakihana et al., 1977; Jiang and Palmer, 1998; 蒋少涌, 2000; Jiang, 2001; Jiang et al., 2008; Marschall and Jiang, 2011)。硼同位素组成主要以δ11B表示:δ11B(‰)=[(11B/10B)样品/(11B/10B)NIST-SRM951-1]1000。低温条件之下硼显着的分馏,其广泛应用于示踪地球表生过程(Hemming and Hanson, 1992; Barth, 1998)、海底热液系统及俯冲带中的水岩反应过程等研究(Spivack and Edmond, 1987; Ishikawa and Nakamura, 1994; Xiao et al., 2011; Scambelluri and Tonarini, 2012)。

2 全球硼矿分布

根据美国USGS统计,2018年全球硼矿资源储量约为11亿吨,主要分布于土耳其、美国、智利、秘鲁、俄罗斯、哈萨克斯坦。图 1为全球硼矿床分布与全球大地构造的关系图,其中清楚展现了硼矿床的主要产区主要分布于洋-陆俯冲的聚合型板块边界处。环太平洋构造火山活动带的硼矿床主要集中于南、北美西部,阿尔卑斯-喜马拉雅造山带著名的硼成矿区则分布于土耳其安那托利亚高原及我国青藏高原。这意味着研究俯冲带硼循环与碰撞造山过程对于寻找硼矿是必要的。

图 1 全球硼矿床分布与板块边界图(数据来源于MRDS, USGS) Fig. 1 Worldwide distribution of major borate deposits (data source: MRDS, USGS)

至目前为止已知约有86%的硼分布在土耳其安纳托利亚高原(Anatolia Plateau),该地区拥有全球最大的超大型的硼矿床(Helvacı, 1995, 2015; Orti et al., 2016; Helvacı et al., 2017)。土耳其硼矿床主要形成于中新世时期,为火山沉积型硼矿床,主要发育高盐度及高碱度的湖盆中(Helvacı and Firman, 1976; Helvacı, 1986, 1989; Helvacı and Alonso, 2000)。这是由于与阿拉伯板块和欧亚板块于此碰撞所孕育出的一系列地堑断陷盆地形成新生湖盆,为硼酸岩的沉积提供了条件。这些盆地中填充着来自弧岩浆的凝灰岩、熔岩等,同时,富硼的流体亦沿着断层循环流入盆地之中(Helvacı, 1986, 1989; Helvacı and Alonso, 2000),即强烈的火山活动将热泉注入湖盆并与火山碎屑沉积物混合最终形成了该地区的硼矿床(Helvacı, 1984, 1986; Helvacı and Alonso, 2000)。此外,位于加利福尼亚南部及安地斯山西部的硼矿床,与土耳其硼矿的成矿背景相似,亦属于火山沉积及盐湖沉积复合的硼矿床(Helvacı and Alonso, 2000; 申军, 2013)。根据前人研究(Warren, 2010),目前大多数已开采的大型层状硼酸盐矿床几乎均位于干燥气候地区,并且产出于火山及断层活动所形成的山间洼地的盐湖或盐沼中,例如:分布于南美洲安地斯山的沙漠地区(如:阿根廷、秘鲁、智利)的硼矿带。然而,这些地区的硼储量却远不及于土耳其,说明土耳其的成矿条件应有其特殊性,而不仅是受到邻近俯冲带火山弧及封闭湖盆等成矿因素的影响。

我国硼的储量仅为全球储量的3%,约为3200万吨,主要集中在辽东、青海柴达木盆地,西藏、四川、湖南等地区。其中辽宁省、吉林省的硼矿床属沉积变质型,其储量约占全国的40%以上。此处硼矿床为含硼的变质火成岩系,原岩系由酸性熔岩与海相蒸发岩交互的沉积旋回,形成于断陷盆地之中(Peng and Palmer, 2002)。同时,受到海底热泉的影响,造成含硼矿物以热水沉积和粘土吸附的方式开始富集,为此区硼矿的形成提供了重要基础(邵世宁和熊先孝,2010)。青海柴达木盆地为现代盐湖硼矿成矿区,盆地基底为变质岩组成并中酸性侵入岩及陆缘碎屑。青藏高原所产的硼矿主要来自第四纪盐湖型硼矿,储量约占全国的50%,位于冈底斯弧盆系的狮泉河-申扎-嘉黎混杂岩带、革吉-则弄火山弧、班戈-伯舒拉岭-高黎贡山岩浆弧等构造带中的山间构造盆地中(邵世宁和熊先孝,2010)。其成矿条件与前述土耳其及南、北美硼矿床极为类似,主要与俯冲带火山物质及热液带来的硼元素有关,断层活动导致的断陷湖盆提供了成矿空间,尤其辅以干冷气候与高海拔等要素综合决定了硼的富集与成矿(Warren, 2010)。

3 硼元素的储库

硼元素富集于现代海水(4.5×10-6; Spivack and Edmond, 1987)、俯冲沉积物(1×10-6~150×10-6)、大陆地壳(10×10-6~11×10-6; Rudnick and Gao, 2003; Marschall et al., 2017)、蚀变洋壳(9×10-6~70×10-6; Marschall et al., 2017)及亏损地幔(0.060×10-6~0.173×10-6; Marschall et al., 2017)等各种不同的储库中,且不同储库的硼同位素组成亦有很大的不同。因此,硼同位素体系成为研究海洋-地壳-地幔系统演化及相互作用的有效示踪剂(Leeman and Sisson, 1996; Jiang and Palmer, 1998; Xiao et al., 2011; Marschall, 2018)。其中,蚀变的大洋岩石圈包括基性、超基性岩及覆于其上的沉积物和孔隙水是硼元素的主要来源(Palmer, 2017; De Hoog and Savov, 2018)。

绝大部分的大洋地壳在扩张洋脊或转型断层处经历了广泛的低到中温的热液变质,形成了蚀变洋壳。与未蚀变的洋壳相比,蚀变洋壳中含有更多的含水矿物(例如:绿泥石、绿帘石、黝帘石、符山石、葡萄石、沸石、透闪石、滑石、水镁石、蛇纹石),及多达3%~5%的水及流体活动性元素(Sun et al., 2007),例如锂,硼,钾等。受到热液交代蚀变之前的大洋玄武岩硼浓度非常低,仅有0.4×10-6~2.5×10-6(Marschall et al. 2017),而蚀变后的洋壳则具有高浓度的硼含量(9×10-6~70×10-6Marschall et al., 2017)。此外,由于硼元素可以很好的进入蛇纹石的晶格之中,因此蛇纹岩成为硼元素的最主要的寄主(Pabst et al., 2011)。洋底大量的蛇纹石化的超基性岩是硼的重要储库,硼含量约为10×10-6~91×10-6 (图 2; Spivack and Edmond, 1987; Lécuyer et al., 2002; Boschi et al., 2008; Harvey et al., 2014)。俯冲沉积物中的硼浓度资料目前相对较缺乏,总体介于1×10-6~150×10-6之间。其中生物成因碳酸岩和燧石岩分别为28×10-6~56×10-6 (Allison and Finch, 2010)和49×10-6~97×10-6 (Kolodny and Chaussidon, 2004),它们具有相对低的硼含量;而远洋黏土(101×10-6~163×10-6; Tonarini et al., 2011)与浊流沉积物(75×10-6~105×10-6; You et al., 1995)则具有相对高的硼含量(Plank, 2014; De Hoog and Savov, 2018)。

图 2 俯冲带硼及硼同位素循环图(据De Hoog and Savov, 2018修改) Fig. 2 Schematic diagram of the boron cycle in subduction zones illustrating the B concentrations and isotopic compositions (modified after De Hoog and Savov, 2018)
4 板块俯冲与硼的地球化学循环与成矿 4.1 硼在俯冲带的地球化学循环

硼在上地幔中强烈亏损,但却在俯冲沉积物、蚀变洋壳、洋底及地幔楔蛇纹石化橄榄岩中高度富集。在板块俯冲过程中,富含硼元素的蚀变大洋岩石圈物质及沉积物随着俯冲板片进入俯冲循环。硼为流体活动性元素,会优先进入流体之中,并伴随显著的同位素分馏(最多可达40‰)。因此,硼同位素被认为是用来示踪俯冲带流体循环的重要利器(图 2)。11B倾向于在流体相中富集(Hervig et al., 2002; Wunder et al., 2005; Harvey et al., 2014),原始大洋玄武岩(δ11B=-12‰~0‰; Marschall et al., 2017),受海水(δ11B=+39.6‰; Foster et al., 2010)及热液影响进而使蚀变洋壳中富集重硼同位素,其δ11B的范围从-4‰~+25‰,平均值为+3.4‰ (Smith et al., 1995)。洋底蛇纹石化超基性岩δ11B普遍介于+7‰~+20‰之间(Spivack and Edmond, 1987; Lécuyer et al., 2002; Boschi et al., 2008; Harvey et al., 2014),部分蛇纹岩样品δ11B可以达+30‰~+41‰ (Vils et al., 2009)。

硼元素的富集程度与硼同位素的分馏行为会随着俯冲板片的年龄、俯冲带的几何型态的不同导致脱水程度的差异而改变(Leeman et al., 2004; Marschall et al., 2007; Pabst et al., 2012)。在俯冲板片上覆的浅部地幔楔(10~40km),受到俯冲板片脱水交代使得弧前发生广泛的蛇纹石化(Reynard, 2013)。大量来自俯冲板片的硼元素释放伴随着流体重新富集在弧前蛇纹石化地幔楔中(6.6×10-6~126×10-6; Benton et al., 2001; Deschamps et al., 2010; Harvey et al., 2014; De Hoog and Savov, 2018),且随着俯冲深度增加残余板片硼元素则逐渐减少(图 2)。

蚀变的大洋岩石圈在俯冲过程中,从板片释放的流体一部分沿着楔形裂缝和断层排出(Martin et al., 2016),一部分则交代弧前地幔楔使之发生蛇纹石化(Wu et al., 2018)。板片脱水过程伴随着硼同位素分馏,重的硼同位素进入流体,残余蚀变洋壳和沉积物便具更轻的硼同位素特征。这使得弧前蛇纹岩中硼浓度高(6.6×10-6~126×10-6),且普遍有较富重硼同位素(δ11B>+20‰)。由于局部蛇纹岩具有正向浮力,可以上升并加积到增生楔及弧前混杂岩中,形成富硼的蛇纹岩海山或蛇纹石泥(Benton et al., 2001; Savov et al., 2007),造成弧前地幔楔及蛇绿混杂岩中富集了大量的硼(Benton et al., 2001; Savov et al., 2005, 2007; Kodolányi and Pettke, 2011; Pabst et al. 2012; De Hoog and Savov, 2018)。因此,一些研究认为火山弧中重硼同位素主要来源于俯冲侵蚀(subduction erosion)与弧前蛇绿混杂岩(forearc serpentinized mélange)的复合贡献(Harvey et al., 2014; Martin et al., 2016; De Hoog and Savov, 2018)。然而,在最近的研究中指出并不是所有的地幔楔都具有高的δ11B值,反而其值具有很广的分布区间(-15.3‰~9.7‰),而这主要与沉积物中的流体交代作用会降低δ11B值(Cannaò et al., 2015, 2016)有关。

4.2 硼在俯冲及碰撞造山带的成矿机制

硼矿床的成因与俯冲带之间的关联性很早就被提出(Ozol, 1978),尤其以与火山岛弧之间的关联更被关注。目前已知火山弧岩石中硼的浓度范围介于1.3‰~36.6‰,平均值为12×10-6~15×10-6δ11B值大于+18‰。硼同位素组成在高温岩浆过程中几乎没有分馏,因而火山弧玄武岩的同位素特征应与地幔楔熔融形成的熔体相似。弧岩浆产物被认为是硼矿的主要成矿物质来源(Ersoy et al., 2010)。火山弧中丰富的硼显示了岩浆源中广泛存在的流体-岩石相互作用(Ryan and Langmuir, 1993),而这些硼元素主要来自大洋岩石圈物质及覆于其上的沉积物受到俯冲带区域变质及热液蚀变的过程(Warren, 2010)。前述已知在俯冲过程中受到板片脱水的影响,造成硼元素伴随着流体而富集在弧前蛇纹石化地幔楔中,本文认为这可能是造成聚合型板块边界易发生硼成矿的条件之一。根据世界硼矿的分布趋势,我们发现在洋-陆俯冲转变为陆-陆碰撞的区域地质条件之下似乎更容易形成硼矿带。部分文献指出,硼倾向于优先富集在后期花岗岩浆、伟晶岩浆以及出溶的富挥发分流体中(Černý, 1992; Grew and Anovitz, 1996; Thomas, 2002; 张生等, 2014)。而大陆地壳的主要组成为花岗岩,因此我们认为洋-陆俯冲带相较于洋-洋俯冲更容易在碰撞的过程中通过岩石圈加厚增温,使得弧前蛇纹石化地幔岩石逐步发生脱水熔融,将富硼特征转移至浅表,使得早期的弧岩浆岩更加富硼。一方面随着俯冲结束转为碰撞造山之后易于造山带边缘发育断陷盆地;另一方面,当火山喷发物及热液汇入邻近构造活动形成的湖盆中,尤其在干燥气候与高海拔的气候条件之下,再通过表生蒸发作用进而促使硼元素进一步富集成矿。

根据上述有关俯冲带中硼循环的研究结果,本文提出几种土耳其硼矿床相较于其他国家更富集硼的可能假设:(1) δ11B的富集主要取决于俯冲角度:从δ11B与倾角的变化关系已知,平板俯冲所发育的火山弧比在陡峭俯冲板片上的火山弧其δ11B值更低(De Hoog and Savov, 2018)。(2)俯冲板片释出的流体中的δ11B值大小与沟弧前缘距离呈负相关:研究(Leeman et al., 2004; Marschall et al., 2007; Pabst et al., 2012)表明,远离海沟的火山弧受到俯冲板片释出的流体影响较小,流体主要是在接近海沟处释放(Savov et al., 2007; Hyndman et al., 2015)。以上两者皆可能导致弧前地幔楔蛇纹石化的位置与程度有所差异。目前的研究表明,出露于弧前地区的蛇纹岩及蛇绿混杂岩富含重硼同位素(Benton et al., 2001; Savov et al., 2004, 2005, 2007; Tonarini et al., 2007, 2011)。这些相对富硼的弧前地幔楔物质,在透过俯冲剥蚀或地幔楔角流搬运到深地幔楔的过程中,会再伴随着脱水及熔融过程而进入水气、热液等流体之中(Tatsumi, 1989; Straub and Layne, 2002, 2003; Hattori and Guillot, 2003; Deschamps et al., 2010; De Hoog and Savov, 2018)。研究还表明,在火山喷气温度约为105~886℃的气体中硼含量范围介于13×10-6~700×10-6之间(Kracek et al., 1938; Kanzaki et al., 1979; Quisefit et al., 1989; Taran et al., 1995; Leeman et al., 2005), 远低于硼酸在100℃水中的饱和溶解度(张生等, 2014)。火山气体的冷却和凝结过程中, 水气和硼酸发生分离, 随着温度的降低,硼酸从高温蒸气中凝析、沉淀于火山岩石表面(张生等, 2014)。本文认为世界著名的大型硼矿床的形成可能与火山弧物质及热液流体本身就具有相对高浓度的硼有关,而地幔楔与岛弧火山岩的硼的浓度可能取决于特定的俯冲参数。有关硼的成矿,则取决于后续是否能够在造山带中发育出利于硼成矿的构造环境及气候等条件(包括封闭湖盆、干燥及高海拔等)。

5 结语

从全球大地构造的角度可以观察到,目前已知的大型硼矿床主要位于聚合型板块边缘,尤其在洋-陆俯冲转变为陆-陆碰撞的造山带。俯冲板片脱水及弧前地幔楔蛇纹石化对硼在弧前地幔楔的富集起着关键作用。

土耳其安纳托利亚高原的硼储量占了全球的86%以上,其形成可能与板片的俯冲角度较陡,并与板片释出的流体及弧前物质的俯冲侵蚀有关。高的俯冲角度使得该处地幔楔蛇纹石化程度更高、更富集硼。这些富集硼的弧前蛇纹岩伴随着俯冲侵蚀携带硼元素进入火山弧,其火山产物中的成矿物质经风化、淋滤汇入干旱气候带内的封闭蒸发盆地,最终成矿。

我国青藏高原除了具备高海拔及干燥等气候条件,还具有典型自洋-陆俯冲转化为陆-陆碰撞的区域地质背景,发育由断层活动而形成的断陷湖盆,为形成大型、超大型硼矿提供了良好的成矿的空间和条件,建议应加强其硼矿基础地质方面的研究及探勘力度,並适当购买国外硼矿以作为战略储备。

致谢      二位审稿人提出了宝贵的修改意见和建议,在此表示感谢。

参考文献
Allison N and Finch AA. 2010. δ11B, Sr, Mg and B in a modern Porites coral:The relationship between calcification site pH and skeletal chemistry. Geochimica et Cosmochimica Acta, 74(6): 1790-1800 DOI:10.1016/j.gca.2009.12.030
Aston FW. 1920. LXXII:The mass-spectra of chemical elements (Part 2). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(239): 628-634 DOI:10.1080/14786441108636168
Aston FW. 1927. Bakerian Lecture:A new mass-spectrograph and the whole number rule. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 115(772): 487-514 DOI:10.1098/rspa.1927.0106
Barth S. 1998. 11B/10B variations of dissolved boron in a freshwater-seawater mixing plume (Elbe Estuary, North Sea). Marine Chemistry, 62(1-2): 1-14 DOI:10.1016/S0304-4203(98)00023-1
Baxter GP and Scott AF. 1921. The atomic weight of boron. Science, 54(1404): 524-525 DOI:10.1126/science.54.1404.524
Benton LD, Ryan JG and Tera F. 2001. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth and Planetary Science Letters, 187(3-4): 273-282 DOI:10.1016/S0012-821X(01)00286-2
Boschi C, Dini A, Früh-Green GL and Kelley DS. 2008. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N):Insights from B and Sr isotope data. Geochimica et Cosmochimica Acta, 72(7): 1801-1823 DOI:10.1016/j.gca.2008.01.013
Briscoe HVA and Robinson PL. 1925. XCIX:A redetermination of the atomic weight of boron. Journal of the Chemical Society, Transactions, 127: 696-720 DOI:10.1039/CT9252700696
Cannaò E, Agostini S, Scambelluri M, Tonarini S and Godard M. 2015. B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction melange (Cima di Gagnone, Swiss Central Alps). Geochimica et Cosmochimica Acta, 163: 80-100 DOI:10.1016/j.gca.2015.04.024
Cannaò E, Scambelluri M, Agostini S, Tonarini S and Godard M. 2016. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface:The Voltri Massif case study (Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta, 190: 115-133 DOI:10.1016/j.gca.2016.06.034
Černý P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7(5): 393-416 DOI:10.1016/0883-2927(92)90002-K
De Hoog JCM and Savov IP. 2018. Boron isotopes as a tracer of subduction zone processes. In: Marschall H and Foster G (eds.). Boron Isotopes. Cham: Springer, 217-247 https://link.springer.com/chapter/10.1007/978-3-319-64666-4_9
Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M and Hattori K. 2010. In situ characterization of serpentinites from forearc mantle wedges:Timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269(3-4): 262-277 DOI:10.1016/j.chemgeo.2009.10.002
Ersoy EY, Helvacı C and Palmer MR. 2010. Mantle source characteristics and melting models for the Early-Middle Miocene mafic volcanism in Western Anatolia:Implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings. Journal of Volcanology and Geothermal Research, 198(1-2): 112-128 DOI:10.1016/j.jvolgeores.2010.08.014
Foster GL, Pogge von Strandmann PAE and Rae JWB. 2010. Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 11(8): Q08015
Garrett DE. 1998. Borates:Handbook of Deposits, Processing, Properties, and Use. London: Academic Press, 1-483
Grew ES and Anovitz LM. 1996. Boron:Mineralogy, Petrology and Geochemistry. Washington, DC: Mineralogical Society of America, 1-862
Harvey J, Garrido CJ, Savov I, Agostini S, Padrón-Navarta JA, Marchesi C, Sánchez-Vizcaíno VL and Gómez-Pugnaire MT. 2014. 11B-rich fluids in subduction zones:The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 376: 20-30 DOI:10.1016/j.chemgeo.2014.03.015
Hattori KH and Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6): 525-528 DOI:10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2
Helvacı C and Firman RJ. 1976. Geological setting and mineralogy of Emet borate deposits, Turkey. Transactions/section B, Institute of Mining and Metallurgy, 85: 142-152
Helvacı C. 1984. Occurrence of rare borate minerals:Veatchite-A, tunellite, teruggite and cahnite in the Emet borate deposit, Turkey. Mineralium Deposita, 19(3): 217-226 DOI:10.1007/BF00199788
Helvacı C. 1986. Geochemistry and origin of the Emet borate deposits, western Turkey. Faculty of Engineering Bulletin, Cumhuriyet University, Series A, Earth Sciences, 3(1): 49-73
Helvacı C. 1989. A mineralogical approach to the mining, storing and marketing problems of the Turkish borate production. Geological Engineering, 34-35: 5-17
Helvacı C. 1995. Stratigraphy, mineralogy, and genesis of the Bigadiç borate deposits, western Turkey. Economic Geology, 90(5): 1237-1260 DOI:10.2113/gsecongeo.90.5.1237
Helvacı C and Alonso RN. 2000. Borate deposits of Turkey and Argentina:A summary and geological comparison. Turkish Journal of Earth Sciences, 9: 1-27
Helvacı C. 2005. Borates. In: Selley RC, Cocks LRM and Plimer IR (eds.). Encyclopedia of Geology. Amsterdam: Elsevier, 510-522
Helvacı C. 2015. Geological features of Neogene basins hosting borate deposits:An overview of deposits and future forecast, Turkey. Bulletin of Mineral Research and Exploration, 151: 169-215
Helvacı C, Öztürk YY and Emmermann A. 2017. Fluorescence survey of Turkish borate minerals:Comparative measurements of fluorescence spectra of the most important borate mineral species, Turkey. Neues Jahrbuch für Mineralogie-Abhandlungen:Journal of Mineralogy and Geochemistry, 194(1): 1-17 DOI:10.1127/njma/2016/0016
Hemming NG and Hanson GN. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56(1): 537-543 DOI:10.1016/0016-7037(92)90151-8
Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR and Roggensack K. 2002. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. American Mineralogist, 87(5-6): 769-774 DOI:10.2138/am-2002-5-620
Hora H, Eliezer S, Kirchhoff GJ, Nissim N, Wang JX, Lalousis P, Xu YX, Miley GH, Martinez-Val JM, Mckenzie W and Kirchhoff J. 2017. Road map to clean energy using laser beam ignition of boron-hydrogen fusion. Laser and Particle Beams, 35(4): 730-740 DOI:10.1017/S0263034617000799
Hyndman RD, McCrory PA, Wech A, Kao H and Ague J. 2015. Cascadia subducting plate fluids channelled to fore-arc mantle corner:ETS and silica deposition. Journal of Geophysical Research, 120(6): 4344-4358
Ishikawa T and Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370(6486): 205-208 DOI:10.1038/370205a0
Jiang SY and Palmer MR. 1998. Boron isotope systematics of tourmaline from granites and pegmatites:A synthesis. European Journal of Mineralogy, 10(6): 1253-1266 DOI:10.1127/ejm/10/6/1253
Jiang SY. 2000. Boron isotope and its geological applications. Geological Journal of China Universities, 6(1): 1-16 (in Chinese with English abstract)
Jiang SY. 2001. Boron isotope geochemistry of hydrothermal ore deposits in China:A preliminary study. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 851-858 DOI:10.1016/S1464-1895(01)00132-6
Jiang SY, Radvanec M, Nakamura E, Palmer M, Kobayashi K, Zhao HX and Zhao KD. 2008. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia:Constraints on magmatic and metamorphic fluid evolution. Lithos, 106(1-2): 1-11 DOI:10.1016/j.lithos.2008.04.004
Kakihana H, Kotaka M, Satoh S, Nomura M and Okamoto M. 1977. Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of the Chemical Society of Japan, 50(1): 158-163 DOI:10.1246/bcsj.50.158
Kanzaki T, Yoshida M, Nomura M, Kakihana H and Ozawa T. 1979. Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-Jima, Japan. Geochimica et Cosmochimica Acta, 43(11): 1859-1863 DOI:10.1016/0016-7037(79)90035-8
Kistler RB and Helvacı C. 1994. Boron and borates. In: Carr DD (ed.). Industrial Minerals and Rocks. 6th Edition. Littleton, Colorado: Society for Mining, Metallurgy and Exploration Inc., 171-186
Kodolányi J and Pettke T. 2011. Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite:An example from Guatemala. Chemical Geology, 284(3-4): 351-362 DOI:10.1016/j.chemgeo.2011.03.016
Kolodny Y and Chaussidon M. 2004. Boron isotopes in DSDP cherts: Fractionation and diagenesis. In: Hill RJ, Leventhal J, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M and Peters K (eds.). Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R. Kaplan: The Geochemical Society, 1-14 https://www.sciencedirect.com/science/article/pii/S1873988104800038
Kracek FC, Morey GW and Merwin HE. 1938. The system, water-boron oxide. American Journal of Science, 35: 143-171
Lécuyer C, Grandjean P, Reynard B, Albarède F and Telouk P. 2002. 11B/10B analysis of geological materials by ICP-MS Plasma 54:Application to the boron fractionation between brachiopod calcite and seawater. Chemical Geology, 186(1-2): 45-55 DOI:10.1016/S0009-2541(01)00425-9
Leeman WP and Sisson VB. 1996. Geochemistry of boron and its implications for crustal and mantle processes. In: Anovitz LM and Grew ES (eds.). Boron: Mineralogy, Petrology, and Geochemistry. Berlin, Boston: De Gruyter https://www.researchgate.net/publication/258374806_Geochemistry_of_boron_and_its_implications_for_crustal_and_mantle_processes
Leeman WP, Tonarini S, Chan LH and Borg LE. 2004. Boron and lithium isotopic variations in a hot subduction zone:The southern Washington cascades. Chemical Geology, 212(1-2): 101-124 DOI:10.1016/j.chemgeo.2004.08.010
Leeman WP, Tonarini S, Pennisi M and Ferrara G. 2005. Boron isotopic variations in fumarolic condensates and thermal waters from Vulcano Island, Italy:Implications for evolution of volcanic fluids. Geochimica et Cosmochimica Acta, 69(1): 143-163 DOI:10.1016/j.gca.2004.04.004
Marschall HR, Altherr R and Rüpke L. 2007. Squeezing out the slab:Modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology, 239(3-4): 323-335 DOI:10.1016/j.chemgeo.2006.08.008
Marschall HR and Jiang SY. 2011. Tourmaline isotopes:No element left behind. Elements, 7(5): 313-319 DOI:10.2113/gselements.7.5.313
Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T and Monteleone BD. 2017. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica et Cosmochimica Acta, 207: 102-138 DOI:10.1016/j.gca.2017.03.028
Marschall HR. 2018. Boron isotopes in the ocean floor realm and the mantle. In: Marschall H and Foster G (eds.). Boron Isotopes: The Fifth Element. Cham: Springer, 189-215 https://link.springer.com/chapter/10.1007/978-3-319-64666-4_8
Martin C, Flores KE and Harlow GE. 2016. Boron isotopic discrimination for subduction-related serpentinites. Geology, 44(11): 899-902 DOI:10.1130/G38102.1
Orti F, Rosell L, Garcia-Veigas FJ and Helvacı C. 2016. Sulfate-borate association (glauberite-probertite) in the Emet Basin:Implications for evaporite sedimentology (Middle Miocene, Turkey). Journal of Sedimentary Research, 86(5): 448-475 DOI:10.2110/jsr.2016.32
Ozol AA. 1978. Plate tectonics and the processes of volcanogenic-sedimentary formation of boron. International Geology Review, 20(6): 692-698 DOI:10.1080/00206817809471439
Pabst S, Zack T, Savov IP, Ludwig T, Rost D and Vicenzi EP. 2011. Evidence for boron incorporation into the serpentine crystal structure. American Mineralogist, 96(7): 1112-1119 DOI:10.2138/am.2011.3709
Pabst S, Zack T, Savov IP, Ludwig T, Rost D, Tonarini S and Vicenzi EP. 2012. The fate of subducted oceanic slabs in the shallow mantle:Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos, 132-133: 162-179 DOI:10.1016/j.lithos.2011.11.010
Palmer MR. 2017. Boron cycling in subduction zones. Elements, 13(4): 237-242 DOI:10.2138/gselements.13.4.237
Peng QM and Palmer MR. 2002. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin provinces, Northeast China. Economic Geology, 97(1): 93-108
Plank T. 2014. The chemical composition of subducting sediments. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. 2nd Edition. Amsterdam: Elsevier, 607-629 https://www.researchgate.net/publication/285115954_The_Chemical_Composition_of_Subducting_Sediments
Pueyo JJ, Chong G and Jensen A. 2001. Neogene evaporites in desert volcanic environments:Atacama Desert, northern Chile. Sedimentology, 48(6): 1411-1431
Quisefit JP, Toutain JP, Bergametti G, Javoy M, Cheynet B and Person A. 1989. Evolution versus cooling of gaseous volcanic emissions from Momotombo Volcano, Nicaragua:Thermochemical model and observations. Geochimica et Cosmochimica Acta, 53(10): 2591-2608 DOI:10.1016/0016-7037(89)90131-2
Reynard B. 2013. Serpentine in active subduction zones. Lithos, 178: 171-185 DOI:10.1016/j.lithos.2012.10.012
Risacher F and Alonso H. 2001. Geochemistry of ash leachates from the 1993 Lascar eruption, northern Chile:Implication for recycling of ancient evaporites. Journal of Volcanology and Geothermal Research, 109(4): 319-337 DOI:10.1016/S0377-0273(01)00198-6
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Ryan JG and Langmuir CH. 1993. The systematics of boron abundances in young volcanic rocks. Geochimica et Cosmochimica Acta, 57(7): 1489-1498 DOI:10.1016/0016-7037(93)90008-K
Savov IP, Tonarini S, Ryan J and Mottl MJ. 2004. Boron isotope geochemistry of serpentinites and porefluids from Leg 195, Site 1200, S. Chamorro Seamount, Mariana forearc region (abstract). Florence, Italy: International Geological Congress
Savov IP, Ryan JG, D'Antonio M, Kelley K and Mattie P. 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125:Implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4): Q04J15
Savov IP, Ryan JG, D'Antonio M and Fryer P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system:Insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research, 112(B9): B09205
Scambelluri M and Tonarini S. 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology, 40(10): 907-910 DOI:10.1130/G33233.1
Shao SN and Xiong XX. 2010. Discussion on China boron-concentrating area and the resource potential. Geology of Chemical Minerals, 32(2): 65-74 (in Chinese with English abstract)
Shen J. 2013. Overview of boron resources and boron industry at home and abroad. Industrial Minerals & Processing, 42(3): 38-42 (in Chinese with English abstract)
Smith GI and Medrano MD. 1996. Continental borate deposits of Cenozoic age. Reviews in Mineralogy, 33: 223-284
Smith HJ, Spivack AJ, Staudigel H and Hart SR. 1995. The boron isotopic composition of altered oceanic crust. Chemical Geology, 126(2): 119-135 DOI:10.1016/0009-2541(95)00113-6
Spivack AJ and Edmond JM. 1987. Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta, 51(5): 1033-1043 DOI:10.1016/0016-7037(87)90198-0
Straub SM and Layne GD. 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth and Planetary Science Letters, 198(1-2): 25-39 DOI:10.1016/S0012-821X(02)00517-4
Straub SM and Layne GD. 2003. Decoupling of fluids and fluid-mobile elements during shallow subduction:Evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochemistry, Geophysics, Geosystems, 4(7): 9003
Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH and Arculus RJ. 2007. Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71(6): 1542-1552 DOI:10.1016/j.gca.2006.12.003
Tang Y, Chen CL, Xiong XX and Gao P. 2013. World boron distribution and current status of its exploitation and development. Modern Chemical Industry, 33(10): 1-4, 6 (in Chinese with English abstract)
Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI and Shmulovich KI. 1995. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochimica et Cosmochimica Acta, 59(9): 1749-1761 DOI:10.1016/0016-7037(95)00079-F
Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94(B4): 4697-4707 DOI:10.1029/JB094iB04p04697
Thomas R. 2002. Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. American Mineralogist, 87(1): 56-68 DOI:10.2138/am-2002-0107
Tonarini S, Agostini S, Doglioni C, Innocenti F and Manetti P. 2007. Evidence for serpentinite fluid in convergent margin systems:The example of El Salvador (Central America) arc lavas. Geochemistry, Geophysics, Geosystems, 8(9): Q09014
Tonarini S, Leeman WP and Leat PT. 2011. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc:Evidence from boron isotope systematics. Earth and Planetary Science Letters, 301(1-2): 275-284 DOI:10.1016/j.epsl.2010.11.008
Vils F, Tonarini S, Kalt A and Seitz HM. 2009. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth and Planetary Science Letters, 286(3-4): 414-425 DOI:10.1016/j.epsl.2009.07.005
Warren JK. 2010. Evaporites through time:Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3-4): 217-268 DOI:10.1016/j.earscirev.2009.11.004
Wu K, Ding X, Ling MX, Sun WD, Zhang LP, Hu YB and Huang RF. 2018. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions. Lithos, 302-303: 50-64 DOI:10.1016/j.lithos.2017.12.019
Wunder B, Meixner A, Romer RL, Wirth R and Heinrich W. 2005. The geochemical cycle of boron:Constraints from boron isotope partitioning experiments between mica and fluid. Lithos, 84(3-4): 206-216 DOI:10.1016/j.lithos.2005.02.003
Xiao YL, Hoefs J, Hou ZH, Simon K and Zhang ZM. 2011. Fluid/rock interaction and mass transfer in continental subduction zones:Constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contributions to Mineralogy and Petrology, 162(4): 797-819 DOI:10.1007/s00410-011-0625-4
You CF, Chan LH, Spivack AJ and Gieskes JM. 1995. Lithium, boron, and their isotopes in sediments and pore waters of Ocean drilling program site 808, Nankai trough:Implications for fluid expulsion in accretionary prisms. Geology, 23(1): 37-40 DOI:10.1130/0091-7613(1995)023<0037:LBATII>2.3.CO;2
Zhang S, Chen GW, Seward TM, Wang YR and Hu GQ. 2014. Experimental study on boron distribution between coexisting water vapor and boron-rich melt and its geological implications. Geochimica, 43(6): 583-591 (in Chinese with English abstract)
蒋少涌. 2000. 硼同位素及其地质应用研究. 高校地质学报, 6(1): 1-16. DOI:10.3969/j.issn.1006-7493.2000.01.001
邵世宁, 熊先孝. 2010. 中国硼矿主要矿集区及其资源潜力探讨. 化工矿产地质, 32(2): 65-74. DOI:10.3969/j.issn.1006-5296.2010.02.001
申军. 2013. 国内外硼矿资源及硼工业发展综述. 化工矿物与加工, 42(3): 38-42.
唐尧, 陈春琳, 熊先孝, 高鹏. 2013. 世界硼资源分布及开发利用现状分析. 现代化工, 33(10): 1-4, 6.
张生, 陈根文, Seward TM, 王玉荣, 胡光黔. 2014. 硼在共存水蒸气-富硼熔体之间分配的实验研究及其地质意义. 地球化学, 43(6): 583-591.