岩石学报  2019, Vol. 35 Issue (12): 3825-3837, doi: 10.18654/1000-0569/2019.12.16   PDF    
安徽庐枞矿集区东顾山钨矿床成矿流体来源与演化:来自H、O、S同位素和流体包裹体的证据
聂利青1,2,3, 周涛发1,2, 汪方跃1,2, 张千明4, 张明4, 汪龙虎4     
1. 合肥工业大学资源与环境工程学院, 合肥工业大学矿床成因与勘查技术研究中心(ODEC), 合肥 230009;
2. 安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009;
3. 安徽建筑大学土木工程学院, 合肥 230601;
4. 安徽省地质矿产勘查局327地质队, 合肥 230011
摘要: 长江中下游成矿带是我国重要的铁铜金等金属成矿带,庐枞矿集区中新勘探发现的东顾山矿床与成矿带内燕山期铁、铜大规模成矿作用不同,矿化以钨为主,且已达大型规模。前人已对该矿床开展了基础地质特征和成岩成矿年代学工作,但该矿床的成矿流体和来源特征仍不清楚,矿床成因的确定需要开展相关研究。本文在详细的野外调查基础上,对各成矿阶段流体包裹体及H、O、S同位素进行了系统测定及分析,并结合地质事实,确定了成矿流体特征和来源,为成矿带内钨矿床的成因认识和下一步找矿提供理论依据。流体包裹体研究表明,东顾山矿床流体包裹体类型以纯液相包裹体(L)和气液两相包裹体(V+L)为主,矽卡岩阶段(Ⅰ)的包裹体均一温度集中变化于351~397℃,盐度变化于10.87%~13.60% NaCleqv;氧化物阶段(Ⅱ)的包裹体均一温度集中变化于283~367℃,盐度变化于7.73%~10.62% NaCleqv;第三阶段石英-硫化物阶段(Ⅲ)的包裹体均一温度变化于180~284℃,盐度变化于4.08%~7.57% NaCleqv。从Ⅰ阶段到Ⅲ阶段,均一温度和盐度均有降低的趋势,显示流体混合的特征,可能是其矿质沉淀的重要机制。H-O同位素分析结果(δ18OH2O值为-0.37‰~2.79‰,δD值为-60.56‰~-46.16‰)显示成矿流体主要为岩浆流体,并有约40%大气降水的加入。硫化物S同位素研究显示,黄铁矿δ34S值范围为4.39‰~6.00‰,高于幔源硫,略低于赋矿地层硫值(7.60‰~8.13‰),指示东顾山钨矿床硫源为地层硫和岩浆硫混合,地层硫的贡献不容忽视。综合矿床地质、流体包裹体及H、O、S同位素特征可知,东顾山矿床热液成矿过程中发生了显著的流体混合作用,破坏了钨络合物的稳定性,使得大量钨等金属离子从络合物载体中脱离出来并与Ca2+相结合,最终钨酸钙沉淀成矿。通过与成矿带铜铁矿床的成矿流体对比可知,长江中下游成矿带内钨矿床与铜(金)、铁矿床的成矿流体温度和盐度特征相似(中高温、中高盐度向中低温、中低盐度演化),但是由于围岩性质不同导致硫来源不同,且沉淀机制各不相同,根本原因是不同矿种的成矿岩体性质和搬运金属元素的方式存在差异。
关键词: 流体包裹体    氢-氧-硫同位素    矽卡岩矿床    东顾山钨矿床    长江中下游成矿带    
Study of fluid inclusions and H-O-S isotopic compositions of Donggushan tungsten skarn deposit, Anhui Province, China
NIE LiQing1,2,3, ZHOU TaoFa1,2, WANG FangYue1,2, ZHANG QianMing4, ZHANG Ming4, WANG LongHu4     
1. School of Resources and Environmental Engineering, Ore Deposit and Exploration Centre(ODEC), Hefei University of Technology, Hefei 230009, China;
2. Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei 230009, China;
3. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China;
4. No. 327 Geological Party, Anhui Bureau of Geology and Mineral Exploration, Hefei 230011, China
Abstract: The Middle-Lower Reaches of Yangtze Metallogenic Belt (MLYB) is one of the most important Fe-Cu-Au-polymetallic metallogenic belts in eastern China. The Donggushan deposit was different from the other Fe-Cu-Au deposits in MLYB because of tungsten mineralization. The previous research mainly worked on ore deposit geology and geochronology, but the study on source and characteristic of ore-forming fluid are poor. Based on petrographic observations, primary inclusions of the Donggushan deposit primarily belong to two types:two-phase liquid-vapor and liquid-only fluid inclusions. Fluid inclusions occurred in the skarn stage (Ⅰ) show homogenization temperatures of 351~397℃ and salinities of 10.87%~13.60% NaCleqv. Fluid inclusions occurred in the oxide stage (Ⅱ) of main ore-forming stage show homogenization temperatures of 283~367℃ and salinities of 7.73%~10.62% NaCleqv. Fluid inclusions occurred in the quartz-sulfide phase (Ⅲ) show homogenization temperatures of 137~314℃ and salinities of 4.08%~7.57% NaCleqv. From the first (Ⅰ) to the third (Ⅲ) stage, the homogenization temperatures and salinities of the fluid inclusions all had a reduced tendency, showing the characteristics of fluid mixing, which may be the mechanism of the precipitation of ore-forming metals. Hydrogen and oxygen isotopic results (δ18OSMOW:-0.37‰~2.79‰, δD:-60.56‰~-46.16‰) indicate that magmatic fluids and meteoric water were mixed and reached to 40%. The δ34S values of sulfides vary from 4.39‰ to 6.00‰, which indicate that sulfur of the sulfide stem from the magmatic source with parts of contribution from the ore-bearing strata sulfide. According to the fluid inclusions and isotope compositions, the ore-forming fluid was formed by mixing of magma water and meteoric water. Fluid mixing is the main ore-forming mechanism of tungsten mineralization in the Donggushan deposit. By comparing with copper and iron deposits fluid characteristics in MLYB, we interpreted that the temperature and salinity are similar among these three type deposits, but the sulfur source and precipitation mechanism of metal are different. The primary reason is the differences in fertile intrusive rocks and metal element transport modes among tungsten, copper and iron deposits.
Key words: Fluid inclusions    Hydron-oxygen-sulfur isotope    Skarn deposit    Donggushan tungsten deposit    Middle-Lower Yangtze metallogenic Belt    

长江中下游成矿带是我国重要的铜铁金等金属成矿带(常印佛等, 1991; 唐永成等, 1998; 华仁民和毛景文, 1999; 毛景文等, 2004; 周涛发等, 2008, 2016; 蒋少涌等, 2011; Pirajno and Zhou, 2015; Xie et al., 2016; Zhang et al., 2017)。近年来在鄂东南、铜陵、皖南等地区有钨矿化的发现和报道,如阮家湾、姚家岭、桂林郑矿床等(常印佛等, 1991; Xie et al., 2007; 谢桂青等, 2013; 钟国雄等, 2014; 陈雪锋等, 2017),把我国华南地区钨矿化的范围向北推移;庐枞矿集区北部勘探发现的东顾山钨矿床(聂利青等, 2016),为成矿带长江以北目前唯一达到矿床规模的钨矿床,有别于庐枞矿集区先前存在的铁铜矿床,也不同于鄂东南矿集区阮家湾钨矿床。而东顾山矿床的成矿时代(~100Ma)更是明显晚于其他矿集区铜金矿床主成矿期(~140Ma)和玢岩型铁矿床成矿期(~130Ma),指示长江中下游成矿带存在与华南中生代大规模成矿作用相对应的最晚一期成矿事件。前人对华南地区钨矿床成矿流体也开展了广泛研究(Ni et al., 2015; Chen et al., 2018; Song et al., 2018),但对于长江中下游成矿带内钨矿床的流体特征仍不明确。作者等对东顾山钨矿床的成矿岩体的岩相学和岩石地球化学等方面已经进行了初步研究(聂利青等, 2017; 张赞赞等, 2018),本次工作在矿床地质工作基础上,分析测试了东顾山钨矿床不同成矿阶段的石榴子石和磁铁矿的O同位素,石英的H、O同位素及方解石C同位素,对不同成矿阶段的脉石矿物(石榴子石、石英)开展了流体包裹体显微测温工作,在此基础上探讨了成矿流体的性质、演化过程及成矿物质沉淀机制,旨在探讨成矿流体的性质和钨沉淀的机制,并总结区域钨与铜铁矿床成矿流体差异。

1 区域及矿床地质

长江中下游成矿带受南北边界断裂及“中轴线”的主干断裂所控制,可分为大体上平行延伸的中亚带、南亚带和北亚带(常印佛等, 2017; 周涛发等, 2017)。三个亚带矿床类型均为矽卡岩-斑岩型矿床,其中主亚带的矿化类型以铜、铁、金为主,南、北亚带的矿化类型以钨、铜、钼为主,兼有金、锑、铅锌矿化。

东顾山矽卡岩型钨矿床位于长江中下游成矿带北亚带(图 1),地理位置在安徽省合肥市庐江县境内,大地构造位置上处于长江中下游成矿带北亚带内的滁河断裂北侧、黄栗树-破凉亭断裂以南,是北亚带内目前探明的大型矽卡岩型钨矿床。该矿床由矿床安徽省地矿局327地质队于2014年发现,已探明WO3资源量72500t,平均品位0.19%并伴生钼铅锌矿化(安徽省地矿局327地质队, 2014)。

① 安徽省地质矿产勘查局327地质队. 2014.安徽省庐江县顺港地区铜金多金属矿普查实施方案.内部资料

图 1 长江中下游成矿带矿床分布图(底图据常印佛等, 1991; 周涛发等, 2017) XGF-襄樊-广济断裂;TLF-郯庐断裂;HPF-黄栗树-破凉亭断裂;SMF-商麻断裂;CCF-崇阳-常州断裂;CHF-滁河断裂;JNF-江南断裂 Fig. 1 Simplified map of the distribution of deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (after Chang et al., 1991; Zhou et al., 2017) XGF-Xiangfan-Guangji Fault; TLF-Tancheng-Lujiang Fault; HPF-Huanglishu-Poliangting Fault; SMF-Shangcheng-Magushan Fault; CCF-Chongyang-Changzhou Fault; CHF-Chuhe Fault; JNF-Jiangnan Fault

研究区震旦系、寒武系、奥陶系、志留系、泥盆系、二叠系、侏罗系、第四系等岩层均有不同程度出露(图 2)。其中,奥陶系下统红花园组为主要赋矿地层,岩性为浅灰色中-厚层状含硅质砂屑灰岩夹泥质灰岩、生物碎屑灰岩,且有沉积黄铁矿顺层产出,与下伏地层呈整合接触,发生大理岩化,岩性坚硬,与下伏仑山组呈整合接触关系。

图 2 东顾山钨多金属矿床地质图(据安徽省地质矿产勘查局327队, 2014修改) Fig. 2 Simplified geological map of Donggushan tungsten polymetallic deposit

东顾山向斜呈北东30°方向展布,向斜核部地层以二叠系栖霞组下段为主,零星见银屏组和孤峰组,受纵向断层影响,地层出露不全。北西翼依次出露坟头组、仑山组、红花园组;南东翼依次出现五通组,坟头组和高家边组,地层产状倒转。褶皱轴面近乎直立仅局部倒转,向南东倾斜。矿床内NE向走向断裂和NW向横断裂发育,较大规模的断层为东顾山断裂(F1)(图 2)。

矿床勘探钻孔深度800m左右揭露东顾山隐伏岩体,岩性为黑云母花岗岩,浅肉红色,半自形粒状结构,块状构造。成岩成矿时代分别为99.9±1.7Ma(锆石U-Pb)和97.22±0.70Ma(辉钼矿Re-Os法)(聂利青等, 2016)。

根据该矿床矿物组合和矿物交代关系,从早到晚可划分为4个阶段:矽卡岩阶段(Ⅰ)(石榴子石、透辉石、透闪石、蛇纹石、硅镁石、绿泥石)(图 3a, b)→氧化物阶段(磁铁矿、白钨矿、金云母)(Ⅱ)(图 3c, d)→石英-硫化物阶段(Ⅲ)(硬石膏、辉钼矿、黄铜矿、闪锌矿、方铅矿、黄铁矿、石英)(图 3e, f)→碳酸盐岩阶段(Ⅳ)(方解石、白云石、白云母)。

图 3 东顾山矿床矿物组合 (a)白钨矿化矽卡岩荧光手标本照片;(b)矽卡岩阶段石榴子石显微照片;(c)白钨矿矿石手标本照片;(d)氧化物阶段白钨矿和磁铁矿显微照片;(e)石英-硫化物阶段手标本照片;(f)石英-硫化物阶段显微照片. Grt-石榴子石;Sch-白钨矿;Cal-方解石;Mol-辉钼矿;Py-黄铁矿;Sp-闪锌矿;Ccp-黄铜矿;Q-石英 Fig. 3 The paragenesis of mineral assemblages in Donggushan deposit (a) fluorescent photograph of scheelite mineralized skarn; (b) microphotograph of garnet in skarn stage; (c) fluorescent photograph of scheelite ore rock; (d) microphotographs of scheelite and magnetite in oxide stage; (e) photograph of quartz-sulfide stage; (f) microphotograph of sulfide and quartz in quartz-sulfide stage rock. Grt-garnet; Sch-scheelite; Cal-calcite; Mol-molybdenite; Py-pyrite; Sp-sphalerite; Ccp-chalcopyrite; Q-quartz
2 测试样品及分析方法

本文在东顾山钨矿床中采集了矽卡岩阶段石榴子石、氧化物阶段白钨矿和石英-硫化物阶段石英样品,开展流体包裹体研究。本次实验在合肥工业大学资源与环境工程学院流体包裹体实验室完成,仪器型号为英国LINKAM THMS600型冷热台,在测试过程中,升温速度为0.2~5℃/min,含液相包裹体在其冰点温度和均一温度附近的升温速率为0.2℃/min。

选取东顾山矿床6件石榴子石样品和9件磁铁矿样品分别进行氧同位素分析,同时选取7件石英样品进行氢氧同位素分析;其中石榴子石样品取自矽卡岩阶段,磁铁矿样品取自氧化物阶段,石英样品取自石英-硫化物阶段,样品号后三位为钻孔采样深度。H-O同位素分析单位为广州澳实矿物实验室,采用Br3F3完成,分析仪器是MAT251EM质谱仪,分析结果以SMOW标准表达,分析精度为±0.2‰。

挑选了东顾山矿床中11件硫化物样品进行δ34S测试,包括6件黄铁矿、1件黄铜矿、1件方铅矿、1件闪锌矿、2件辉钼矿;其中2件黄铁矿样品采于赋矿围岩奥陶系白云质灰岩,其余硫化物为石英-硫化物阶段产物,样品号后三位为钻孔采样深度。δ34S同位素分析单位为广州澳实矿物实验室,首先将碎至60~80目的粉末在双目镜下分别挑选出黄铁矿等硫化物单矿物,单矿物挑选纯度达到99%左右。硫同位素分析单位为广州澳实矿物实验室,测定方法为S-ISTP01,取硫化物(黄铁矿、闪锌矿、方铅矿、黄铜矿和辉钼矿)粉末样品,称取适量放入锡舟中,采用Costech ECS4010元素分析仪配套Finnigan MAT 253稳定同位素比质谱仪测定样品中的34S/32S比值,数据经V-CDT国际标准物质标准化,得到δ34S数据,以‰表示方法精度优于0.2‰。

3 测试结果 3.1 包裹体岩相学特征

矿床中较易研究的包裹体的寄主矿物为石榴子石、白钨矿和石英。石榴子石呈浸染状、块状,代表了成矿前的矽卡岩阶段;白钨矿呈浸染状分布于矽卡岩中,代表了主成矿阶段(氧化物阶段);石英呈浸染状、条带状分布于金属硫化物中,代表了成矿后阶段(石英硫化物阶段)。

根据Roedder (1984)卢焕章等(2004)流体包裹体分类方案,东顾山矿床各阶段的流体包裹体类型以纯液相包裹体(L)和气液两相包裹体(V+L)为主,未见含CO2包裹体。

(1) 矽卡岩阶段(Ⅰ):石榴子石中包裹体为圆形、椭圆形(图 4a),大小为2~20μm,多数约为10μm,沿着石榴子石环带分布,少数随机分布气液比10%~30%,主要为15%~20%。

图 4 东顾山矿床包裹体显微照片 (a)石榴子石中产出的沿环带分布的原生包裹体;(b)白钨矿中面状分布的原生包裹体;(c)石英中成群分布的原生包裹体;(d)石英中不规则形状的包裹体 Fig. 4 Photomicrographs showing different types of fluid inclusions observed in Donggushan deposit (a) banded fluid inclusions in garnet; (b) a surface shaped protogenetic inclusions in scheelite; (c) clusters of protogenetic inclusions in quartz; (d) irregular shape inclusion in quartz

(2) 氧化物阶段(Ⅱ):白钨矿中包裹体则多呈圆形、椭圆形、不规则状或蠕虫状(图 4b),大小为3~25μm,多数为5~15μm,多为面状或星点状分布,气液比5%~25%,主要为10%~20%。

(3) 石英-硫化物阶段(Ⅲ):石英中包裹体主要呈椭圆形、长条形及不规则状等形态(图 4c, d),包裹体大小为3~40μm,主要为面状、星点状及孤立分布,气液比5%~30%,主要为10%~20%。

3.2 流体包裹体显微测温结果和盐度计算

在对包裹体进行了详细的岩相学研究基础上,对东顾山矿床三个阶段的气液两相包裹体(L+V)进行了系统的显微测温学及包裹体盐度测试研究。

所得流体包裹体温度和盐度见表 1,在均一温度直方图上(图 5),矽卡岩阶段(Ⅰ)的包裹体均一温度集中变化于351~397℃,盐度变化于10.87%~13.60% NaCleqv;氧化物阶段(Ⅱ)的包裹体均一温度集中变化于283~367℃,盐度变化于7.73%~10.62% NaCleqv;第三阶段石英-硫化物阶段(Ⅲ)的包裹体均一温度变化于180~284℃,盐度变化于4.08%~7.57% NaCleqv。

表 1 东顾山矿床流体包裹体温度和盐度测试结果 Table 1 Temperatures and salinities of fluid inclusions from Donggushan deposit

图 5 东顾山矿床所测流体包裹体均一温度(a)和盐度直方图(b) Fig. 5 Diagrams of fluid inclusions' homogenization temperatures (a) and salinities (b) from Donggushan deposit
3.3 成矿流体H、O、S同位素测试结果

东顾山矿床中用来测试氧同位素的样品为含矿的矽卡岩阶段和氧化物阶段石榴子石和磁铁矿(表 2),东顾山矿床石榴子石δ18OSMOW值范围为2.96‰~4.34‰,平均值为3.93‰;磁铁矿δ18OSMOW值范围为11.71‰~13.32‰,平均值为12.66‰。东顾山矿床石英硫化物阶段中石英的H-O同位素测试结果见表 3δ18OSMOW值范围为10.63‰~13.79‰,平均值为12.19‰;δ18DSMOW值范围为-60.56‰~-46.16‰,平均值为-52.95‰。

表 2 东顾山矿床石榴子石、磁铁矿的氧同位素测试结果 Table 2 Oxygen isotopic data for garnet and magnetite from Donggushan deposit

表 3 东顾山矿床石英的氢氧同位素测试结果 Table 3 Oxygen and hydrogen isotopic data for quartz from Donggushan deposit

根据流体包裹体的均一温度和矿物-水体系的O同位素分馏方程:1000lnα石榴子石-水=1.27×106/(273.16+T)2-3.65(Bottinga and Javoy, 1975);1000lnα磁铁矿-石英=5.57×106/(273.16+T)2-0.00(Bottinga and Javoy, 1975);1000 lnα石英-水=3.38×106/(273.16+T)2-2.90(Clayton et al., 1972)(T为均一温度)。

结合包裹体测温结数据,T采用矽卡岩阶段、氧化物阶段和石英-硫化物阶段的峰值温度分别为380℃、310℃和220℃,计算获得矽卡岩阶段成矿流体的δ18OH2O值变化范围为3.63‰~5.01‰,平均值4.60‰,氧化物阶段成矿流体的δ18OH2O值变化范围为3.18‰~4.02‰,平均值3.36‰(表 2)。石英-硫化物阶段成矿流体的δ18OH2O值变化范围为-0.37‰~2.79‰,平均值1.19‰(表 3)。

硫同位素测试结果见表 4,东顾山矿床白云质灰岩地层中的黄铁矿δ34S同位素值最高,在7.60‰~8.13‰之间,平均值为7.87‰;其余硫化物样品δ34S同位素值在4.39‰~6.03‰之间,平均值为5.23‰。对于同一种硫化物,如黄铁矿,随着深度的增加,其硫同位素值逐渐降低。

表 4 东顾山矿床黄铁矿、黄铜矿、辉钼矿、方铅矿和闪锌矿样品的δ34S测试结果 Table 4 S isotopic compositions of pyrite, chalcopyrite, molybdenite, galena and sphalerite in Donggushan deposit
4 讨论 4.1 成矿流体特征

上述包裹体测温结果表明,东顾山矿床的矽卡岩化阶段以富H2O-NaCl中高温流体活动为特征,其均一温度范围为351~397℃;相对应的盐度范围为10.87%~13.60% NaCleqv,为具有中高温中等盐度特征的岩浆热液流体。氧化物阶段以中温中盐度流体活动为特征,其均一温度范围为283~367℃;相对应的盐度范围为7.73%~10.62% NaCleqv,相较矽卡岩阶段显著降低,而石英硫化物阶段以低温低盐度流体为特征,其均一温度范围为180~284℃;相对应的盐度范围为4.08%~7.57% NaCleqv。东顾山矿床从矽卡岩阶段→氧化物阶段→石英-硫化物阶段温度逐渐降低,气液两相的包裹体盐度也逐渐降低,表明东顾山矿床的成矿流体属于中高温中盐度的热液流体。

东顾山钨矿床中成矿期石榴子石和磁铁矿的δ18OSMOW平均值分别为4.60‰和3.36‰,表明在成矿期成矿流体中有天水混入;成矿后期石英的氢氧同位素特征由图 6可知,样品投点均落在岩浆水和雨水之间,并向大气水方向漂移,石榴子石、磁铁矿和石英的氧同位素特征共同指示了该矿床的流体来源是岩浆水与雨水。相对于长江中下游成矿带池州地区的钨钼矿床(如鸡头山-百丈岩矿床,宋国学等, 2010),东顾山矿床中雨水对成矿流体的贡献更大,并在成矿矽卡岩阶段就发生了天水的加入;而长江中下游成矿带鄂东矿集区的钨铜钼矿床(例如,阮家湾矿床,颜代蓉等, 2012)其成矿流体早期主要是岩浆水,并有天水混入,后期又有新的岩浆水再次注入,而东顾山矿床中成矿流体后期δDSMOW没有显著增加,表明没有新的岩浆水注入。与钦杭成矿带内特大型钨矿床相比可知,大湖塘矿床中含黑钨矿、辉钼矿、黄铜矿脉及无矿脉中的石英均投在原生岩浆水区域及其附近(毛志昊, 2016),表明成矿流体以岩浆水为主。综上,长江中下游成矿带内的钨矿床都受到不同程度的天水混合,以东顾山矿床中天水混合比例最高,而钦杭成矿带内的典型钨矿床成矿热液主要来源是岩浆水,天水对其影响很小可以忽略。

图 6 东顾山矿床成矿流体氢氧同位素组成 数据来源:鸡头山-百丈岩矿床(宋国学等, 2010);阮家湾矿床(颜代蓉等, 2012) Fig. 6 δD and δ18O values of the ore-forming fluids in the Donggushan deposit Data sources: Jitoushan-Baizhangyan deposit (Song et al., 2010); Ruanjiawan deposit (Yan et al., 2012)

如前所述,东顾山矿床成矿流体受到天水混合的影响,可以通过石英氧同位素特征估算混合比例。不同机制下石英δ18O值随流体包裹体捕获温度的理想演化曲线(图 7)显示,冷却、沸腾和混合作用所沉积的石英氧同位素组成明显不同。与低δ18O流体的混合使得矿物δ18O值有规律地减小(低于140℃微弱增大),而沸腾和冷却则导致矿物δ18O值随演化而有规律地增大,这与东顾山矿床同位素测试分析结果明显不符。该矿床流体δ18O值没有明显增大,因此排除了冷却和沸腾在矿质沉淀中的作用。观测到的石英的δ18O值变化特征,=可用岩浆水与大气降水的混合模型合理解释。如图 7所示,石英的氧同位素值的投影点,与冷却和沸腾演化曲线相差甚远,而与混合演化曲线比较吻合。在石英形成时,XA值约为0.7,说明在矿质沉淀后期岩浆中已有相当比例(约40%)的大气降水混入岩浆流体中。综上所述,东顾山矿床成矿流体为中高温度、中低盐度的流体,成矿流体在钨的沉淀阶段发生了岩浆水与大气水的混合,在石英硫化物阶段大气降水混合比例约为40%,流体混合很可能是导致矿质沉淀成矿的主要机制。

图 7 流体沸腾、冷却或混合成因的石英氧同位素组成(底图据Matsuhisa, 1986; Matsuhisa et al., 1979) Fig. 7 Diagram of quartz oxygen isotopic composition caused by fluid boiling, cooling and mixing of magma water and meteoric water (base map after Matsuhisa, 1986; Matsuhisa et al., 1979)
4.2 成矿流体来源

硫具有三种不同的δ34S储库(Rollison, 1993):幔源硫,其δ34S值约为0±3‰(Chaussidon and Lorand, 1990);海水硫,其δ34S值为+20‰;以及具有δ34S的负值的强还原沉积硫。我们测得东顾山矿床奥陶系灰岩中的黄铁矿δ34S同位素值在7.60‰~8.14‰之间,平均值为7.87‰,黄铁矿等硫化物的δ34S同位素值平均值为5.23%(图 8a),高于幔源硫,略低于地层硫,表明东顾山钨矿床硫源为地层硫和岩浆硫混合,地层硫的贡献不容忽视。

图 8 东顾山矿床S同位素组成特征图解 (a)东顾山矿床主成矿期矿石硫化物S同位素组成图;(b)东顾山矿床与长江中下游成矿带典型矿床或端元S同位素组成对比.数据来源:储雪蕾等,1986张建, 1992王世伟,2015Zhang et al., 2017Li et al., 2019刘一男,2019 Fig. 8 Diagram of sulfur isotope composition of samples from Donggushan deposit (a) histogram showing δ34S values of ore sulfides from major ore-forming period in Donggushan deposit; (b) contrast chart of S isotopes compositions from different sources in Cu-Au, Fe and W deposits. Data sourves: Chu et al., 1986; Zhang, 1992; Wang, 2015; Zhang et al., 2017; Li et al., 2019; Liu, 2019

前人对长江中下游成矿带内主要矽卡岩型、斑岩型铜金、铁矿床的硫化物δ34S研究显示:新桥S-Fe-Cu-Au矿床黄铁矿δ34S值为1.8‰~6.46‰(Zhang et al., 2017; Li et al., 2019);沙溪Cu-Au矿床黄铁矿δ34S值为0.06‰~2.07‰,黄铜矿δ34S值为-1.29‰~0.01‰(王世伟, 2015);舒家店Cu-Au矿床黄铁矿δ34S值为3.53‰~5.95‰,辉钼矿δ34S值为6.49‰~6.65‰(王世伟, 2015);冬瓜山Cu-Au矿床黄铁矿δ34S值为3.00‰~10.20‰(王世伟, 2015);安基山Cu矿床黄铁矿δ34S值为-2.6‰~3.1‰(张建等, 1992)。罗河Fe矿床总硫浓度δ34S范围为10.0‰~14.0‰(刘一男, 2019),泥河Fe矿床总硫浓度δ34S范围为14‰~15‰(储雪蕾等, 1986)。可以看出,成矿带内Fe矿床和Cu-Au矿床的硫化物δ34S分布范围与东顾山钨矿床热液期硫化物的δ34S值范围(4.39‰~6.00‰)差距较大(图 8b),而成矿带内Cu-Au矿床的成矿流体S主要自于岩浆热液,并有少量地层硫加入(王世伟, 2015);Fe矿床的成矿流体S可能来自于岩浆热液和三叠纪的海相硬石膏混合作用的结果(储雪蕾等, 1986; 刘一男, 2019),反映成矿带内钨成矿作用与铁铜金成矿作用存在差异,进一步证明奥陶系红花园组赋矿地层硫和岩浆硫共同作为东顾山矿床的硫来源。

4.3 矿质沉淀机制

计算和实验研究表明,热液体系中钨溶解度在酸性、含盐、还原的热水溶液中最大(Wood and Samson, 2000)。钨在热液体系中的迁移形式包括含氯、氟、羰基、氟羰基硫、碳酸和重碳酸、钨酸、多钨酸、硫代钨酸盐等络合物等(马东升, 2009)。在NaC1-HCl-CO2热液体系中,钨主要以简单钨酸(H2WO4、HWO4-、WO42-)和碱性钨酸盐离子对(KHWO04、NaHWO4、KWO4、NaWO4)形式迁移(Wood and Samson, 2000)。因此,白钨矿沉淀可能是由fO2增加、温度和配位体离子活度降低以及pH增加引起的。钨沉淀的机制可能包括冷却、沸腾、成矿流体与围岩的反应、压力降低、不同组分或不同性质的流体间的混合或上述机制的综合作用(Seal et al., 1987; Jackson et al., 1989; Kelly and Rye, 1979; Clark et al., 1990; 魏文凤等, 2011; Wang et al., 2017; 张明超等, 2019)。由前文流体包裹体中没有观察到流体沸腾的证据,野外也没有支持流体沸腾的现象(例如:①水力-热液角砾岩,即爆破角砾岩的存在;②同期包裹体气液比范围很大,气体包裹体与高盐度的包裹体共存;③沸腾面上、下为绢云母化到冰长石化的热液蚀变),该矿床形成中即使发生了沸腾作用,其程度也是有限的,没有形成规模且沸腾作用持续的时间短,难以形成大规模矿化。结合上节由同位素数据得知流体混合在矿床形成中发挥着重要作用,大多数热液矿床矿质沉淀的最重要机制是流体相分离和流体混合(Skinner, 1979; 张德会, 1997),如赣南钨锡多金属矿床(丰成友等, 2007)、同一成矿带内的阮家湾钨矿床(颜代蓉, 2013)。因此,本文认为流体混合是东顾山矿床矿质沉淀的主要原因,且东顾山矿床断裂发育,有利于与大气降水的混入,同时,石榴子石同位素特征也表明在矽卡岩阶段流体有岩浆水和大气水两个来源。在矿床形成时期(100Ma),东顾山地区处于新一期的伸展构造背景下(聂利青等, 2016),矿区广泛发育的断裂为热液与大气降水发生充分混合提供了极为有利的条件,这与矿床中石英δ18O值随热液流体演化而减小的岩浆流体与大气降水的混合模型相符。因此,流体混合是东顾山矿床金属沉淀的直接原因,大气降水加入导致成矿流体氧逸度升高,pH值增大,配位体活度降低,破坏了钨络合物的稳定性,使得大量钨等金属离子从络合物载体中脱离出来并与Ca2+相结合,最终钨等金属沉淀成矿。

4.4 与区域铜、铁矿床成矿流体对比

前人对长江中下游成矿带内发育的铜(金)、铁矿床的成矿流体特征开展了广泛的研究,由于均为岩浆热液矿床,故成矿流体的温度和盐度都呈现逐渐降低的趋势,但成矿流体的组分和矿质沉淀机制则不尽相同(表 5)。如沙溪、舒家店铜金矿床的成矿流体以CO2和水为主,盐度范围为4.5%~23.2% NaCleqv,硫化物的δ34S值浅部有不断变大的趋势,显示硫源以岩浆硫为主,后期有地层硫加入,二次沸腾是Cu、Au矿质沉淀的主要机制(王世伟, 2015);小包庄硫铁矿床的成矿流体以NaCl和水为主,盐度范围为2%~21% NaCleqv,硫化物的δ34S显示有膏岩层和岩浆硫混合(温冰冰等, 2018);陶村磁铁矿矿床的成矿流体以NaCl和水为主,盐度范围为9%~13% NaCleqv,硫化物的δ34S也表明膏岩层加入,岩浆热液与膏岩层的交代作用形成磁铁矿等金属矿物(滕霞等, 2018)。结合本文研究,长江中下游成矿带内的钨矿床与铜(金)、铁矿床的流体差异明显,主要表现在流体来源和流体演化方面,引起这种差异的根本性原因是成矿地质体和围岩性质。成矿带内铜金矿床和铁矿床的成矿岩体分别为石英闪长/二长斑岩和辉石闪长玢岩,钨矿床成矿岩体为黑云母花岗岩/花岗闪长岩,比前二者更偏酸性,分异程度更高。围岩岩性的影响也十分显著,尤其是对成矿带内铁矿床的形成,三叠系膏岩层带入SO42-、Cl-、Na+等矿化剂,岩浆热液发生钠化蚀变进而富集Fe元素并最终形成磁铁矿。成矿金属元素的不同是导致成矿带内铜金、铁、钨矿床矿质沉淀差异的直接原因,因为Cu元素是以Cl的络合物进行搬运的,二次沸腾会导致流体温度和压力发生明显变化进而导致Cu元素沉淀,而W元素的沉淀则与流体的氧逸度和pH值关系密切,大气降水加入可以明显改变体系的氧逸度和酸碱度,因此流体混合更可能是导致W元素沉淀的原因。综上,长江中下游成矿带内钨矿床与铜(金)、铁矿床的成矿流体温度和盐度具有中高温中高盐度向中低温中低盐度过渡的特征,但是由于围岩性质不同导致硫来源不同,且沉淀机制各不相同,根本原因是不同矿种的成矿岩体性质和金属元素的搬运方式存在差异。

表 5 长江中下游成矿带钨、铜(金)、铁矿床成矿流体特征对比 Table 5 Characteristics of metallogenic fluids in W, Cu(Au) and Fe ore deposits from MLYB
5 结论

(1) 东顾山矿床成矿流体为中高温度、中低盐度,成矿流体在成矿期(氧化物阶段)已发生岩浆水与大气水的混合,在石英硫化物阶段大气降水比例约为40%,流体混合更显著。

(2) 黄铁矿等硫化物的δ34S值为4.39‰~6.00‰,高于幔源硫,略低于赋矿地层硫值,表明东顾山钨矿床硫源为地层硫和岩浆硫混合。

(3) 大气降水加入导致成矿流体氧逸度升高,pH值增大,配位体活度降低,破坏了钨络合物的稳定性,使得大量钨等金属离子与Ca2+相结合,最终钨等金属沉淀成矿。

(4) 长江中下游成矿带内钨矿床与铜(金)、铁矿床的成矿流体温度和盐度特征相似,但是硫来源和矿质沉淀机制不同,差别的根本原因是不同成矿岩体性质和金属元素的搬运方式存在差异。

     谨以此文祝贺岳书仓教授八十八华诞!

参考文献
Bottinga Y and Javoy M. 1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Reviews of Geophysics, 13(2): 401-418 DOI:10.1029/RG013i002p00401
Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Middle and Lower Reaches of Yangtze River. Beijing: Geological Publishing House, 1-379 (in Chinese with English abstract)
Chang YF, Zhou TF and Fan Y. 2017. Review of exploration and geological research progress in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3333-3352 (in Chinese with English abstract)
Chaussidon M and Lorand JP. 1990. Sulphur isotope composition of orogenic Spinellherzolite massifs from Ariege, northeastern Pyrenees, France:Anionmicroprobe study. Geochimica et Cosmochimica Acta, 54: 2835-2846 DOI:10.1016/0016-7037(90)90018-G
Chen LL, Ni P, Li WS, Ding JY, Pan JY, Wang GG and Yang YL. 2018. The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, southern Jiangxi, China:Fluid inclusion and stable isotope evidence. Journal of Geochemical Exploration, 192: 18-32 DOI:10.1016/j.gexplo.2018.01.001
Chen XF, Zhou TF, Zhang DY, Xiong ZY, Lü QL, Yuan F, Ren Z and Fan Y. 2017. Geochronology, geochemistry and geological characteristics of the granite porphyry beneath Guilinzheng Mo deposit, Chizhou, southern Anhui. Acta Petrologica Sinica, 33(10): 3200-3216 (in Chinese with English abstract)
Chu XL, Chen JS and Wang SX. 1986. Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Luohe iron deposit, Anhui. Scientia Geologica Sinica, 26(3): 276-289 (in Chinese with English abstract)
Clark AH, Kontak DJ and Farrar E. 1990. The San Judas Tadeo W(-Mo, Au) deposit:Permian lithophile mineralization in southeastern Peru. Economic Geology, 85(7): 1651-1668 DOI:10.2113/gsecongeo.85.7.1651
Clayton RN, O'Neil JR and Mayeda TK. 1972. Oxygen isotope fractionation in quartz and water. Journal of Geophysical Research, 77: 57-67
Feng CY, Feng YD, Xu JX, Zeng ZL, She HQ, Zhang DQ, Qu WJ and Du AD. 2007. Isotope chronological evidence for Upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area, southern Jiangxi. Geology of China, 34(4): 642-650 (in Chinese with English abstract)
Hua RM and Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in East China. Mineral Deposits, 18(4): 300-308 (in Chinese with English abstract)
Jiang SY, Ding QF, Yang SY, Zhu ZY, Sun ZM, Sun Y and Bian LZ. 2011. Discovery and significance of carbonate mud mounds from Cu-polymetallic deposits in the Middle and Lower Yangtze Metallogenic Belt:Examples from the Wushan and Dongguashan deposits. Acta Geologica Sinica, 85(05): 744-756 (in Chinese with English abstract)
Kelly WC and Rye RO. 1979. Geologic fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portual. Economic Geology, 74(8): 1721-1822 DOI:10.2113/gsecongeo.74.8.1721
Li Y, Li QL and Yang JH. 2019. Tracing water-rock interaction in carbonate replacement deposits:A SIMS pyrite S-Pb isotope perspective from the Chinese Xinqiao System. Ore Geology Reviews, 107: 238-257
Liu YN. 2019. Metallogenic system and model of Fe deposits in Luzong volcanic basin, Anhui, eastern China. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-314 (in Chinese with English summary)
Lu HZ, Fan HR, Ni P, Ou GX, Shen K and Zhang WH. 2004. Fluid Inclusions. Beijing: Science Press, 1-487 (in Chinese with English abstract)
Ma DS. 2009. Advances in geochemistry of tungsten. Geological Journal of China Universities, 15(1): 19-34 (in Chinese with English abstract)
Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River Belt and its implications for mineralization. Earth Science Frontiers, 78(1): 121-131 (in Chinese with English abstract)
Mao ZH. 2016. Geodynamic setting and mineralization of the giant veinlets-disseminated tungsten ore field in Jiangxi Province, China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-149 (in Chinese with English summary)
Matsuhisa Y, Goldsmith JR and Clayton RN. 1979. Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43(7): 1131-1140 DOI:10.1016/0016-7037(79)90099-1
Matsuhisa Y. 1986. Effect of mixing and boiling of fluids on isotopic compositions of quartz and calcite from epithermal deposits. Mining Geology, 36(6): 487-493
Ni P, Wang XD, Wang GG, Huang JB, Pan JY and Wang TG. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Review, 65: 1062-1077 DOI:10.1016/j.oregeorev.2014.08.007
Nie LQ, Zhou TF, Fan Y, Zhang QM, Zhang M and Wang LH. 2016. LA-ICP MS U-Pb zircon age and molybdenite Re-Os dating of Donggushan, the first tungsten deposit found in the Luzong orefield, Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 303-318 (in Chinese with English abstract)
Nie LQ, Zhou TF, Zhang QM, Zhang M and Wang LH. 2017. Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China. Acta Petrologica Sinica, 33(11): 3518-3530 (in Chinese with English abstract)
Pirajno F and Zhou TF. 2015. Intracontinental porphyry and porphyry-skarn mineral systems in eastern China:Scrutiny of a special case "Made-in-China". Economic Geology, 110(3): 603-629 DOI:10.2113/econgeo.110.3.603
Roedder E. 1984. Fluid inclusions. Review in mineralogy. Mineral. Soc. America, 12: 644
Rollison HR. 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Scientific and Technical: 1-351
Seal RR, Clark AH and Morrissey CJ. 1987. Stock work tungsten (scheelite)-molybdenum mineralization, Lake George, Southwestern New Brunswick. Economic Geology, 82: 1259-1282 DOI:10.2113/gsecongeo.82.5.1259
Skinner BJ. 1979. The many origins of hydrothermal mineral deposits. Geochemistry of Hydrothermal Ore Deposit: 1-2
Song GX, Qin KZ and Li GM. 2010. Study on the fluid inclusions and S-H-O isotopic composition of skarn-porphyry-type W-Mo deposits in Chizhou area in the Middle-Lower Yangtze Valley. Acta Petrologica Sinica, 26(9): 2768-2782 (in Chinese with English abstract)
Song WL, Yao JM, Chen HY, Sun WD, Ding JY, Xiang XK, Zuo QS and Lai CK. 2018. Mineral paragenesis, fluid inclusions, H-O isotopes and ore-forming processes of the giant Dahutang W-Cu-Mo deposit, South China. Ore Geology Review, 99: 116-150 DOI:10.1016/j.oregeorev.2018.06.002
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-85 (in Chinese)
Teng X, Huang DZ, Lu Y and Wang L. 2018. Ore-forming fluid and mineralization of the Taocun magnetite deposit in the Ningwu Basin. Geotectonica et Metallogenia, 42(1): 73-83 (in Chinese with English abstract)
Wang SW. 2015. Porphyry deposits and associated magmatic activity in the Anhui segment of the Middle-Lower Yangtze River Valley metallogenic Belt. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-252 (in Chinese with English summary)
Wang YY, Kerkhof AG and Xiao Y. 2017. Geochemistry and fluid inclusions of scheelite-mineralized granodiorite porphyries from southern Anhui Province, China. Ore Geology Reviews, 89: 988-1005 DOI:10.1016/j.oregeorev.2017.08.004
Wei WF, Hu RZ, Peng JT, Bi XW, Song SQ and Shi SH. 2011. Fluid mixing in Xihuashan tungsten deposit, southern Jixangxi Province:Hydrogen and oxygen isotope simulation analysis. Geochimica, 40(1): 45-55 (in Chinese with English abstract)
Wen BB, Zhang ZC, Xie QH, Chen ZG, Fei XH and Li ZX. 2018. Geological characteristics and metallogenic mechanism of the Xiaobaozhuang iron deposit and their genetic relationship with the Luohe iron deposit in Lujiang-Zongyang Basin, Anhui Province. Acta Geologica Sinica, 92(7): 1474-1492 (in Chinese with English abstract)
Wood SA and Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments:Ⅰ. Relative solubilities of ferberite and scheelite as a function of T, P, pH and NaCl. Economic Geology, 95: 143-182
Xie GQ, Mao JW, Li RL, Qu WJ, Pirajno F and Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology, 90: 249-270 DOI:10.1007/s00710-006-0176-y
Xie GQ, Zhu QQ, Yao L, Wang J and Li W. 2013. Discussion on regional metal mineral deposit model of Late Mesozoic Cu-Fe-Au polymetallic deposits in the Southeast Hubei Province. Bulletin of Mineralogy, Petrology and Geochemistry, 32(4): 418-426 (in Chinese with English abstract)
Xie GQ, Mao JW, Li W, Zhu QQ, Liu HB, Jia GH, Li YH, Li JJ and Zhang J. 2016. Different proportion of mantle-derived noble gases in the Cu-Fe and Fe skarn deposits:He-Ar isotopic constraint in the Edong district, eastern China. Ore Geology Reviews, 72: 343-354 DOI:10.1016/j.oregeorev.2015.08.004
Yan DR, Deng XD, Hu H and Li JW. 2012. U-Pb age and petrogenesis of the Ruanjiawan granodiorite pluton and Xiniushan granodiorite porphyry, Southeast Hubei Province:Implications for Cu-Mo mineralization. Acta Petrologica Sinica, 28(10): 3373-3388 (in Chinese with English abstract)
Yan DR. 2013. Geological characteristics and genesis of the Ruanjiawan Cu-Mo-W and Yinshan Pb-Zn-Ag deposits. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-139 (in Chinese with English summary)
Zhang DH. 1997. Questions about the geochemistry of ore-forming fluid. Geochemistry, 3: 49-57 (in Chinese with English abstract)
Zhang DY, Zhou TF, Yuan F, Fan Y, White NC, Ding N and Jiang QS. 2017. Petrogenesis and W-Mo fertility indicators of the Gaojiabang "satellite" granodiorite porphyry in southern Anhui Province, South China. Ore Geology Review, 88: 550-564 DOI:10.1016/j.oregeorev.2017.03.006
Zhang MC, Chen RY, Li JC, Li YS, Yao L, Chen H, Lai SH and Wang T. 2019. Carbon, oxygen and strontium isotope geochemical characteristics of the Qixiashan Pb-Zn polymetallic deposit, Jiangsu Province, and their indication significance. Geological Bulletin of China, 38(9): 1529-1542 (in Chinese with English abstract)
Zhang J. 1992. Geological characters and metallogenic model of Anjishan copper deposit. Journal of Geology, (Suppl.): 50-57 (in Chinese with English abstract)
Zhang Y, Shao YJ, Chen HY, Liu ZF and Li DF. 2017. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, eastern China:Evidence from sulfide geochemistry and sulfur isotopes. Ore Geology Reviews, 88: 534-549 DOI:10.1016/j.oregeorev.2016.08.002
Zhang ZZ, Wu MA, Du JG, Zhang S, Zhang QM and Lu SM. 2018. Geochronology and geochemistry of the tungsten deposit-related granites in the Luzong orefield:Petrogenesis and insights for Late Cretaceous metallogeny in the Middle and Lower Reaches of Yangtze River Metallogenic Belt. Acta Petrologica Sinica, 34(1): 217-240 (in Chinese with English abstract)
Zhong GX, Zhou TF, Yuan F, Jiang QS, Fan Y, Zhang DY and Huang JM. 2014. Discovery of scheelite in Yaojialing large zinc-gold deposit in Tongling ore district, Anhui Province, China. Acta Geologica Sinica, 88(4): 620-629 (in Chinese with English abstract)
Zhou TF, Fan Y and Yuan F. 2008. Advances on petrogenesis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract)
Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF and White NC. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 271-288 (in Chinese with English abstract)
Zhou TF, Yuan F, Fan Y, Chang YF, Wang SW and White NC. 2017. metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract)
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-380.
常印佛, 周涛发, 范裕. 2017. 长江中下游成矿带矿产勘查-科研工作回顾和展望. 岩石学报, 33(11): 3333-3352.
陈雪锋, 周涛发, 张达玉, 熊珍银, 吕启良, 袁峰, 任志, 范羽. 2017. 皖南池州桂林郑钼矿床成矿岩体的年代学和地球化学特征及其地质意义. 岩石学报, 33(10): 3200-3216.
储雪蕾, 陈锦石, 王守信. 1986. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究. 地质科学, 26(3): 276-289.
丰成友, 丰耀东, 许建祥, 曾载淋, 佘宏全, 张德全, 屈文俊, 杜安道. 2007. 赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据. 中国地质, 34(4): 642-650. DOI:10.3969/j.issn.1000-3657.2007.04.013
华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-307. DOI:10.3969/j.issn.0258-7106.1999.04.002
蒋少涌, 丁清峰, 杨水源, 朱志勇, 孙明志, 孙岩, 边立曾. 2011. 长江中下游成矿带铜多金属矿床中灰泥丘的发现及其意义——以武山和冬瓜山铜矿为例. 地质学报, 85(5): 744-756.
刘一男. 2019.安徽庐枞盆地铁矿床成矿系统和成矿模式研究.博士学位论文.合肥: 合肥工业大学, 1-314
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1-487.
马东升. 2009. 钨的地球化学研究进展. 高校地质学报, 15(1): 19-34. DOI:10.3969/j.issn.1006-7493.2009.01.002
毛景文, Stein H, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1): 121-131.
毛志昊. 2016.江西大湖塘超大型斑岩钨矿床成矿动力学背景与成矿作用.博士学位论文.北京: 中国地质大学, 1-149 http://cdmd.cnki.com.cn/Article/CDMD-11415-1016184047.htm
聂利青, 周涛发, 范裕, 张千明, 汪龙虎. 2016. 长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义. 岩石学报, 32(2): 303-318.
聂利青, 周涛发, 张千明, 张明, 汪龙虎. 2017. 安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示. 岩石学报, 33(11): 3518-3530.
宋国学, 秦克章, 李光明. 2010. 长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究. 岩石学报, 26(9): 2768-2782.
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 60-85.
滕霞, 黄德志, 卢洋, 汪龙. 2018. 宁芜陶村磁铁矿矿床成矿流体及成矿作用. 大地构造与成矿学, 42(1): 73-83.
王世伟. 2015.长江中下游成矿带(安徽段)斑岩型矿床成岩成矿作用研究.博士学位论文.合肥: 合肥工业大学, 1-252 http://cdmd.cnki.com.cn/Article/CDMD-10359-1015723306.htm
魏文凤, 胡瑞忠, 彭建堂, 毕献武, 宋生琼, 石少华. 2011. 赣南西华山钨矿床的流体混合作用:基于H、O同位素模拟分析. 地球化学, 40(1): 45-55.
温冰冰, 张招崇, 谢秋红, 程志国, 费详惠, 李子羲. 2018. 安徽庐枞盆地小包庄铁矿的矿床地质特征和成矿机制以及与罗河铁矿的关系. 地质学报, 92(7): 1474-1492. DOI:10.3969/j.issn.0001-5717.2018.07.010
谢桂青, 朱乔乔, 李瑞玲, 姚磊, 王建, 李伟. 2013. 鄂东南地区斑岩-矽卡岩型铜铁多金属矿的矿化类型、分布规律及找矿方向. 资源环境与工程, 27(12): 36-46.
颜代蓉, 邓晓东, 胡浩, 李建威. 2012. 鄂东南地区阮家湾和犀牛山花岗闪长岩的时代、成因及成矿和找矿意义. 岩石学报, 28(10): 3373-3388.
颜代蓉. 2013.湖北阳新阮家湾钨铜钼矿床和银山铅锌银矿床地质特征及矿床成因.博士学位论文.武汉: 中国地质大学, 1-139
张德会. 1997. 关于成矿流体地球化学研究的几个问题. 地质地球化学, 3: 49-57.
张明超, 陈仁义, 李景朝, 李永胜, 姚磊, 陈辉, 来守华, 王涛. 2019. 江苏栖霞山铅锌多金属矿床深部碳-氧-锶同位素地球化学特征及其指示意义. 地质通报, 38(9): 1529-1542.
张建. 1992. 安基山复合型铜矿床成矿地质特征及成矿模式. 地质学刊, (增): 50-57.
张赞赞, 吴明安, 杜建国, 张舒, 张千明, 陆三明. 2018. 庐枞矿集区与钨矿床有关的花岗岩的年代学及地球化学特征:岩石成因及其对长江中下游晚白垩世成矿的启示. 岩石学报, 34(1): 217-240.
钟国雄, 周涛发, 袁峰, 蒋其胜, 范裕, 张达玉, 黄建满. 2014. 安徽铜陵姚家岭大型锌金矿床中新发现白钨矿. 地质学报, 88(4): 620-629. DOI:10.3969/j.issn.1006-0995.2014.04.034
周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678.
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White NC. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271-288.
周涛发, 范裕, 常印佛, 王世伟, White NC. 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372.