岩石学报  2019, Vol. 35 Issue (12): 3797-3810, doi: 10.18654/1000-0569/2019.12.14   PDF    
江南隆起带(安徽段)西坞口铷矿床岩浆岩锆石U-Pb年龄及Hf同位素特征研究
陈雪锋1,2, 范裕1,2, 庾江华3, 钱仕龙3, 陆中秋3, 杨张一3, 洪建民3, 肖鑫1,2     
1. 合肥工业大学资源与环境工程学院, 合肥工业大学矿床成因与勘查技术研究中心(ODEC), 合肥 230009;
2. 安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009;
3. 安徽省地质矿产勘查局322地质队, 马鞍山 243000
摘要: 江南隆起带(安徽段)是中国东部重要的钨钼多金属产地之一,钨钼多金属矿床成矿作用与燕山期中酸性岩浆活动关系密切,钨钼成矿岩体的相关研究已经广泛开展。安徽省地质矿产勘查局322地质队在江南隆起带(安徽省)新发现了西坞口花岗岩型铷矿床。铷成矿岩浆岩的时代、成因和性质仍不清楚。本次工作在详细矿床地质研究的基础上,通过对西坞口花岗斑岩锆石LA-ICP-MS U-Pb定年、锆石微量元素和原位Hf同位素分析,厘定了岩体形成时代为141.7±1.0Ma,属于江南隆起带(安徽段)燕山期早阶段岩浆活动的产物。西坞口岩体具有高硅(SiO2=74.29%~76.25%)、富碱(ALK=7.85%~8.62%)、贫钙(CaO=0.14%~0.73%)的特征,∑REE的变化范围为140.1×10-6~235.9×10-6,LREE/HREE为1.42~5.44、(La/Yb)N为0.89~4.49、δEu为0.02~0.28,富集Rb、Th、U而亏损Ba、Sr、P、Ti等元素,属于A2型花岗岩。西坞口岩体的εHft)的变化范围为-6.7~-1.3(平均值为-4.2),tDM1=870~1173Ma(平均值为1025Ma),tDM2=1273~1613Ma(平均值为1457Ma),显示其来源于上溪群浅变质岩的部分熔融。西坞口花岗斑岩具有较高的分异指数(DI=91.87~95.57)、锆石的Zr/Hf比值为25.0,强烈的富集U(5436×10-6)和Th(1900×10-6),形成温度为735.4℃,稀土元素具有明显的四分组效应,以及高Rb背景值,岩体中还发育有绿柱石和锂白云母,具有典型高分异花岗岩特征,这明显不同于江南隆起带(安徽段)内同时期(150~134Ma)的与钨钼矿床形成有关的岩浆岩。通过对比分析,提出江南隆起带(安徽段)仍有同类型高分异花岗岩,具有铷等稀有金属元素矿床成矿潜力。
关键词: 江南隆起带    西坞口    铷矿床    锆石U-Pb年代学    Hf同位素    
Zircon U-Pb dating and Lu-Hf isotopes of the ore-associated porphyry in the Xiwukou Rb deposit, Jiangnan Uplift Belt (Anhui Province), SE China
CHEN XueFeng1,2, FAN Yu1,2, YU JiangHua3, QIAN ShiLong3, LU ZhongQiu3, YANG ZhangYi3, HONG JianMin3, XIAO Xin1,2     
1. School of Resources and Environmental Engineering, Ore Deposit and Exploration Centre(ODEC), Hefei University of Technology, Hefei 230009, China;
2. Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei 230009, China;
3. No. 322 Geological Party, Bureau of Geology and Mineral Resources Exploration of Anhui Province, Maanshan 243000, China
Abstract: The Jiangnan Uplift Belt (Anhui Province) (JBA) is one of the important tungsten-molybdenum polymetallic producing areas in eastern China. The tungsten-molybdenum polymetallic deposits all of which are closely related to Yanshanian Period intermediate to felsic igneous rocks. The research works focus on tungsten-molybdenum polymetallic deposits has been widely developed. The Xiwukou deposit is a recently discovered rubidium (Rb) deposit in the JBA by No.322 Geological Party, Bureau of Geology and Mineral Resources Exploration of Anhui Province. Xiwukou is a granite-related Rb deposit. The ore-forming related magmatic rock is granite porphyry. The research about magmatic rocks related to Rb mineralization is very limited in the JBA. Based on zircon LA-ICP-MS U-Pb dating, zircon trace elements and in situ Hf isotope analyses, combined with previous studies, showed that zircons from the Xiwukou granite porphyry yield a U-Pb age of 141.7±1.0Ma, belonging to the early stage of the Yanshanian Period. The Xiwukou granite porphyry show high SiO2 (74.29%~76.25%), ALK (7.85%~8.62%), low CaO (0.14%~0.73%). The contents of ∑REE are ranging from 140.13×10-6 to 235.93×10-6, with relatively low LREE/HREE (1.42~5.44), (La/Yb)N (0.89~4.49) and δEu (0.02~0.28), enriched Rb, Th, U and depleted Ba, Sr, P, Ti. The Xiwukou magmatic rock belongs to A2 type granite. The εHf(t) of granite porphyry vary from -6.7 to -1.3 (average:-4.2), tDM1=870~1173Ma (average:1025Ma), tDM2=1273~1613Ma (average:1457Ma), the source of magma is closely related to the argillaceous rocks in the shallow metamorphic basement of the JBA. The Xiwukou granite porphyry has a high differentiation index (DI=91.87~95.57), and the Zr/Hf ratio value is 25.0, the strongly enriched in U (5436×10-6) and Th (1899×10-6), the formation temperature is 735.4℃, the REE tetrad effect, the high Rb background value, also has beryl and trilithionite, which is characterized by typical highly differentiated granite, but an obviously difference from the W-Mo deposit-related intrusions in the same period (150~134Ma) in the JBA. In summary, it is proposed that the JBA still has the same type of magmatic rock, and has the potential for mineralization of rare metal elements such as rubidium.
Key words: Jiangnan Uplift Belt    Xiwukou deposit    Rubidium    Zircon U-Pb geochronology    Hf isotopes    

铷作为“三稀”资源中的稀有元素之一,现已被广泛应用于军工部门、科学技术领域和民生设施中。美国、加拿大和俄罗斯的铷生产总量分别占全球铷资源的48.1%、18.9%和15.9%,而我国的铷产量仅占全球的3.3%,但铷使用量位居世界前列,因此铷是我国的紧缺矿种之一(孙艳, 2013; 王瑞江等, 2015)。目前工业上的铷元素主要提取自盐湖卤水、锂云母[(K, Rb) Li2AlSi4O10F2]和铯榴石[Cs2Al2Si4O12],具有开采价值的铷矿床工业类型主要为盐湖卤水型和花岗伟晶岩型(孙艳, 2013)。近年来花岗岩型铷矿床的勘探和开发日益得到重视,2018年广东省河源市发现了世界上第一例超大型花岗岩型铷矿床,探明铷资源量约17.5万吨(肖勇, 2018)。

西钨口矿床最早是由安徽省地矿局322地质队于1975年在江南隆起带(安徽段)普查发现的一处中型热液脉型钨锡矿床,含钨矿物为黑钨矿(安徽省地调院, 2011; 陈雪锋等, 2018),受限于当时分析技术手段,未对铷矿资料进行评价。2018年,安徽省地矿局322地质队对西坞口铷矿床进一步开展勘探工作并圈定了具有规模的铷矿体,矿石中铷品位为0.21%~0.25%,含铷矿物为云母,初步估算铷资源量可达到大型矿床规模(陈雪锋等, 2018)。江南隆起带(安徽段)作为我国最重要的钨钼多金属产地之一,区域内已发现有70多处与燕山期中酸性岩浆活动相关的钨钼矿床(常印佛等, 1991; 陈江峰等, 1993; Wu et al., 2012)。前人对区域内的钨钼矿床及其岩浆岩地质特征(Song et al., 2014)、成岩成矿时代(吴荣新等, 2005; 宋国学, 2010; Li et al., 2012; Wu et al., 2012; 范羽, 2015; 陈雪锋, 2016; 肖鑫等, 2017; 陈雪锋等, 2018)、岩浆岩地球化学(薛怀民等, 2009; 彭戈等, 2012; 谢建成等, 2012; Song et al., 2014; 施珂, 2016; 施珂等, 2017)及成岩成矿背景(周涛发等, 2004; 袁峰等, 2005; Wu et al., 2012)等方面的研究已经广泛开展,取得了非常重要的研究成果,西坞口铷矿床的发现进一步丰富了江南隆起带(安徽段)的矿产资源类型,但对于铷矿床的研究相对较少,目前,仅限于陈雪锋等(2018)对西坞口铷矿床中的含铷矿物进行了分析,施珂(2016)对西坞口中与成矿有关的花岗斑岩进行了全岩地球化学分析。

①安徽省地调院. 2011.皖南地区钨(锡钼)矿资源潜力调查评价报告

本次研究在矿床地质研究的基础上,将对西坞口花岗斑岩开展锆石LA-ICP-MS U-Pb定年、锆石微量元素和锆石Lu-Hf同位素分析,结合前人对西坞口花岗斑岩的研究成果,厘定西坞口铷矿床的岩浆岩的成岩时代,确定岩浆岩类型及源区,并与区域内同时代钨钼矿床的成矿岩体进行对比,进一步丰富区域内三稀金属矿产资源成岩成矿作用研究。

1 地质概况

“江南隆起带”是扬子板块与华夏板块之间的拼接带,是一条近NE向的前寒武纪地质单元,长约1500km,宽约200km,主要由中-新元古代浅变质岩组成(Li et al., 2003),自西向东延伸至安徽省南部地区(图 1a)。江南隆起带(安徽段)出露的基底地层为新元古界浅变质基底上溪群,盖层为古生界到中生界的海相沉积地层,局部发育第四系(唐永成等, 1998; 陈雪锋等, 2018)(图 1b)。江南隆起带(安徽段)的构造线方向为NNE-NE向,主要的断层有高坦断裂、周王断裂、江南断裂和天目山-白际山断裂。江南隆起带(安徽段)内岩浆岩主要形成于晋宁期(850~772Ma)和燕山期(150~121Ma)(Li et al., 2003; 薛怀民等, 2009; 陈雪锋等, 2018)。江南隆起带(安徽段)内目前发现的70余个矿床均与燕山期岩浆作用有关,主要矿种为W、Mo、Pb-Zn、Cu、Au、和Re。矿床的成因类型以矽卡岩型为主(高家塝钨矿床、桂林郑钨钼铅锌矿床、东源钨矿床、百丈岩钨钼矿床、竹溪岭钨钼矿床、逍遥钨钼矿床和上金山钨钼矿床),其次是斑岩型(马头钼矿床、湛岭铼钼铜矿床)和石英脉型(天井山金矿床)(图 1b)。区内的钨钼矿床主要形成于燕山期早阶段(150~134Ma),而钼矿床与燕山期晚阶段(134~121Ma)岩浆活动有关(宋国学, 2010; 陈雪锋等, 2018)。

图 1 江南隆起带(安徽段)大地构造位置(a)及区域矿产分布图(b)(据江西省地质矿产局, 1984; 陈雪锋等, 2018) TBF-天目山-白际山断裂;JNF-江南断裂;GTF-高坦断裂;ZWF-周王断裂;CCF-崇阳-常州断裂 Fig. 1 Tectonic location (a) and deposits distribution map (b) of the Jiangnan Uplift Belt (Anhui Province) (after BGMRJ, 1984; Chen et al., 2018) TBF-Tianmushan-Baijishan fault; JNF-Jiangnan fault; GTF-Gaotan fault; ZWF-Zhouwang fault; CCF-Chongyang-Changzhou fault

西坞口铷矿床地理位置上位于安徽省宁国市南部大约40km,大地构造位置上处于江南隆起带(安徽段)东部(图 1b)。矿区出露的地层有南华系下统休宁组粉砂岩,南华系下统南沱组含砾砂岩,震旦系下统蓝田组条带状泥质灰岩和震旦系下统皮园村组硅质页岩(庾江华和黄涛, 2016)(图 2)。矿区内发育的三组断裂分别为NE向、EW向和NWW向,其中NE向断层(F3)是主要控矿断裂(图 2),走向30°~60°,倾向SE,形成于成矿前,成矿期发生活化(陈雪锋等, 2018)。EW(F4)和NWW(F2)向断层切割NE向断层(F3),与石英-黑钨矿脉关系密切(图 2)。矿区内发育的岩浆岩为花岗斑岩(图 3),主要呈岩株状侵位于南华系下统休宁组地层(陈雪锋等, 2018),在地表可见花岗斑岩岩脉(图 2)。按产出位置的不同,铷矿体可以分为三类(图 3):第Ⅰ类矿体赋存于花岗斑岩体中,呈透镜状;第Ⅱ类矿体形成于岩体与围岩的接触带,呈透镜状;第Ⅲ类矿体主要呈脉状分布于地层中,受F3断层控制。其中以第Ⅰ类和第Ⅱ类矿体为主(陈雪锋等, 2018)。第Ⅰ类和第Ⅱ类铷矿体中的铷矿石类型为云母型,含铷矿物为锂白云母,矿石中锂云母的体积分数可达到70%以上,脉石矿物主要为萤石和石英。第Ⅲ类铷矿体中矿石类型为云母型,但含铷矿物为铁锂云母,矿石中铁锂云母的体积分数大于30%,脉石矿物为萤石和石英(陈雪锋等, 2018)。

图 2 西坞口矿区地质图(据施珂, 2016; 陈雪锋等, 2018) Fig. 2 Simplified geological map of the Xiwukou deposit (after Shi, 2016; Chen et al., 2018)

图 3 西坞口铷矿床7号勘探线剖面图(据陈雪锋等, 2018) Fig. 3 Simplified No.7 exploration line sectional map of the Xiwukou deposit (after Chen et al., 2018)

围岩蚀变类型主要为云英岩化、硅化、萤石化等。云英岩化和硅化主要分布于花岗斑岩与围岩的接触带中(图 3)。萤石化蚀变形成较晚,主要呈石英-萤石-黑钨矿脉体分布于休宁组和南沱组地层中(陈雪锋等, 2018)。

花岗斑岩具有斑状结构,块状构造(图 4a)。斑晶的含量约为40%~50%,斑晶主要为钾长石(35%~50%)和石英(25%~30%),其次是斜长石(10%~15%)和黑云母(< 5%)。钾长石呈灰白色,自形-半自形粒状,粒径>3mm,部分钾长石表面发育轻微的粘土化(图 4b);斜长石呈灰白色,半自形-他形粒状结构,粒径一般>2mm左右,发育简单聚片双晶(图 4b);石英呈无色透明,粒状,粒径为1mm左右,颗粒边缘发育有溶蚀结构;黑云母呈黄绿-红褐色,板状、长柱状,在单偏光显微镜下表现出多色性(图 4b)。基质的含量约占50%~60%,主要为微粒石英(10%~15%)和长石(12%~15%),少量鳞片状黑云母。副矿物主要有锆石和磁铁矿。岩体中靠近矿体的部位局部发育有绿柱石(图 4c, d)。

图 4 西坞口花岗斑岩手标本(a、c)和正交偏光镜下照片(b、d) (a)花岗斑岩;(b)花岗斑岩中的钾长石和石英斑晶;(c)花岗斑岩中发育的绿柱石;(d)石英晶体被绿柱石穿切. Kfs-钾长石;Pl-斜长石;Bi-黑云母;Qtz-石英;Brl-绿柱石 Fig. 4 Hand specimen (a, c) and microphotographs under cross-polarized light (b, d) of the Xiwukou granite porphyry (a) granite porphyry; (b) K-plagioclase and quartz phenocrysts in granite porphyry; (c) beryl in granite porphyry; (d) the quartz crystal crosscut by the beryl. Kfs-K-feldspar; Pl-Plagioclase; Bi-biotite; Qtz-quartz; Brl-beryl
2 样品采集与分析方法

花岗斑岩样品(705-600)采自于西坞口铷矿床钻孔ZK705。锆石的初步处理工作是在南京市宏创地质服务有限公司完成,锆石U-Pb测年分析工作是在合肥工业大学LA-ICP-MS实验室完成。具体过程见陈雪锋(2016)。分析仪器:德国Geolas pro 193nm ArF准分子激光器+Agilent 7500a ICP-MS。载气为He,采用NIST SRM610进行仪器最佳化,采用国际标准锆石91500作为同位素分析外标,以Si作为内标。激光束斑为30μm,剥蚀频率为6Hz,激光能量为10J/cm2。采用ICP MS Data Cal(12.1版)软件对数据进行分析。采用Andersen and Griffin (2004)的方法进行普通Pb校正,采用Isoplot(2.49版)(Ludwig, 2001)进行图件绘制和年龄计算。

锆石Hf同位素分析工作是在武汉上谱分析科技有限责任公司完成。实验仪器为Thermo Finnigan Neptune MC-ICP-MS,激光剥蚀系统为New wave UP213。激光束斑为30μm,剥蚀时间为40s。外标为91500和GJ-1,实验过程中每隔10个点测2个91500和1个GJ-1标样点。外标91500的176Hf/177Hf变化范围为0.282305~0.282014,GJ-1的176Hf/177Hf变化范围为0.282013~0.282018,与标准结果在误差范围内一致。

3 分析结果 3.1 锆石U-Pb年龄及微量元素分析结果

西坞口花岗斑岩中锆石颗粒呈60~150μm的长柱状或短柱状,可见明显的震荡环带(图 5),指示具有岩浆锆石的特征。本次测年结果及微量元素数据分别如表 1表 2所示,西坞口岩体中的锆石具有非常高的U含量(497×10-6~17408×10-6,平均值为5436×10-6)、Th含量(246×10-6~4032×10-6,平均值为1898×10-6)和较高的普通Pb含量(13×10-6~442×10-6),所有锆石的232Th/238U比值的变化范围为0.1~0.7(平均值为0.402),介于标准的岩浆锆石范围之内(Th/U>0.4, Hoskin and Schaltegger, 2003)。西坞口花岗斑岩中的锆石也具有典型岩浆锆石的Ce正异常和Eu负异常(图 6)。本次测得西坞口花岗斑岩中18颗锆石的206Pb/238U加权平均年龄是141.7±1.0Ma(MSWD=0.41,n=18)(图 7),能够代表花岗斑岩体的形成时代。

图 5 西坞口花岗斑岩中锆石阴极发光图像及分析点位 Fig. 5 CL images of zircon and analysis points of the Xiwukou granite porphyry

表 1 西坞口花岗斑岩中锆石的LA-ICP-MS年龄测定结果 Table 1 LA-ICP-MS dating result of zircons from the Xiwukou granite porphy

表 2 西坞口花岗斑岩中锆石微量元素分析结果(×10-6;SiO2:wt%) Table 2 The results of trace elements for the single-grain zircon of the Xiwukou granite porphry(×10-6; SiO2:wt%)

图 6 西坞口花岗斑岩中锆石球粒陨石标准化稀土元素配分图解(标准化值据Boynton, 1984) Fig. 6 Chondrite-normalized rare earth element pattern of zircons in the Xiwukou granite porphyry (normalization values after Boynton, 1984)

图 7 西坞口花岗斑岩中锆石LA-ICP-MS U-Pb谐和图 Fig. 7 LA-ICP-MS U-Pb concordia diagram of the Xiwukou granite porphyry
3.2 锆石Ti温度计算结果

岩浆岩锆石中Ti的含量对于形成时的温度变化非常敏感,Watson and Harrison (2005)提出岩浆体系中存在金红石等代表TiO2含量饱和条件时,锆石晶格中的Ti4+含量主要受温度控制,Ferry and Watson (2007)通过实验岩石学研究,认为锆石中的Ti含量主要受SiO2(αSiO2)、TiO2(αTiO2)和温度(T)控制,计算公式及条件如下:

当熔体中存在石英时,αSiO2=1;当熔体中存在锆石时αTiO2≧0.5,钛铁矿存在时αTiO2≧0.6,榍石和钛铁矿存在时αTiO2=0.7,金红石存在时αTiO2=1.0(高晓英和郑永飞, 2011; 原垭斌等, 2018)。由于西坞口花岗斑岩中除钛铁矿外,并未发现其他富Ti矿物,所以αSiO2=1、αTiO2≈0.6。根据以上公式和参数计算获得西坞口花岗斑岩的形成温度如表 2所示,温度变化范围为596.9~850.1℃,平均值为735.4℃。

3.3 锆石Hf同位素分析结果

本次测得西坞口花岗斑岩中锆石的Hf同位素数据如表 3所示,176Lu/177Hf的平均值为0.001746(< 0.002, 吴福元等, 2007; Patchett et al., 1982),表明放射性成因的176Hf在锆石形成后积累很少,本次实验测试的锆石176Lu/177Hf比值可以代表初始的Hf同位素特征。锆石176Yb/177Hf的比值为0.063022~0.170080,平均值为0.108150,176Hf/177Hf的比值范围为0.282508~0.282653,平均值为0.282574。根据LA-ICP-MS锆石U-Pb的原位定年数据进行校正后获得了西坞口花岗斑岩的εHf(t)的变化范围为-6.7~-1.3,平均值为-4.2,tDM1=870~1173Ma,平均值为1025Ma,tDM2=1273~1613Ma,平均值为1457Ma。

表 3 西坞口花岗斑岩中锆石Hf同位素组成 Table 3 The compositions of zircon Hf isotopes of granite porphyry in the Xiwukou deposit
3.4 主量、微量元素分析结果

西坞口花岗斑岩的全岩地球化学数据于施珂(2016)。花岗斑岩的主量元素分别为SiO2(74.29%~76.25%)、TiO2(0.05%~0.28%)、Al2O3(12.46%~13.08%)、Fe2O3(0.43%~1.79%)、FeO(0.36%~1.19%)、MgO(0.09%~0.15%)、MnO(0.01%~0.04%)、CaO(0.14%~0.73%)、Na2O(2.45%~3.88%)、K2O(4.39%~5.40%),具有相对较高的K2O/Na2O(1.22~2.20)、ALK(7.85%~8.62%)和非常低的P2O5(Bdl~0.05%),属于准铝质-高钾钙碱性系列(图 8)。

图 8 西坞口岩石A/NK-A/CNK图解(a,底图据Maniar and Piccoli, 1989)和K2O-SiO2岩石序列图解(b,底图据Ewart, 1982) Fig. 8 A/NK vs. A/CNK diagram (a, base map after Maniar and Piccoli, 1989) and K2O vs. SiO2 diagram (b, base map after Ewart, 1982) of the Xiwukou granite porphyry

西坞口花岗斑岩的∑REE的变化范围为140.1×10-6~235.9×10-6,具有相对较低的LREE/HREE(1.42~5.44)、(La/Yb)N(0.89~4.49)和δEu(0.02~0.28)。西坞口花岗斑岩的稀土元素配分曲线表现出明显的“V”字型和负Eu异常(图 9a)。相对于地壳元素组成,西坞口花岗斑岩强烈富集HREE、Rb、U、Th等元素,亏损Ba、Sr、P、Ti(图 9b)。

图 9 西坞口花岗斑岩球粒陨石标准化稀土元素配分曲线(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Galer et al., 1989) (Crust值据Sun and McDonough, 1989) Fig. 9 Chondrite-normalized rare earth element patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element variation diagrams (b, normalization values after Galer et al., 1989) of the Xiwukou granite porphyry (the crust values from Sun and McDonough, 1989)
4 讨论 4.1 成岩时代

江南隆起带(安徽段)内岩浆岩形成于晋宁期(850~772Ma)和燕山期(150~121Ma)(Li et al., 2003; Wu et al., 2012; 薛怀民等, 2009),燕山期岩浆岩主要以复式岩体为主,按岩浆岩类型和成岩时代可分为两个阶段:早阶段(150~134Ma)岩浆岩以花岗闪长岩和二长花岗岩为主,是江南隆起带(安徽段)内复式岩体的主体,属高钾钙碱性Ⅰ型花岗岩,与W矿化关系密切;晚阶段(134~121Ma)岩浆岩主要为碱性花岗岩和正长花岗岩,是江南隆起带(安徽段)内复式岩体的补体组成部分,属高钾钙碱性准铝质A型花岗岩,与Mo矿化有关(Wu et al., 2012; 袁峰等, 2005; 宋国学, 2010; 薛怀民等, 2009; 范羽, 2015; 翁望飞等, 2011)。本次工作确定西坞口花岗斑岩的成岩时代为141.7±1.0Ma,应属于区内燕山期早阶段岩浆活动的产物。

4.2 岩浆岩类型与源区

岩浆岩类型的判别对于岩浆源区、岩浆演化和构造环境的识别非常重要(Pearce et al., 1984; Sylvester et al., 1997)。通常,岩浆岩的成因类型可以划分为I、S、M和A型。A型花岗岩具有富硅、富钾、富Ga、Zr、Nb、Ta等高场强元素的特征(King et al., 2001)。西坞口花岗斑岩具有高SiO2(74.29%~76.25%)、ALK(7.85%~8.62%)的特征,属准铝质高钾钙碱性系列(图 8),微量元素具有较低的LREE/HREE、(La/Yb)NδEu,亏损Ba、Sr、P、Ti而富集Rb、Th、U等元素的特征(图 9),这一特征与A型花岗岩的富硅、富钾基本特征非常相似(Loiselle and Wones, 1979; Collins et al., 1982; King et al., 2001)。在岩浆岩成因类型判别图解中(图 10a-d),西坞口花岗斑岩数据落入了A型花岗岩的区域,FeOT的含量(平均值为2.09%)高于高分异Ⅰ型花岗岩(< 1.00%)(王强等, 2003),P随着岩浆演化作用的进行也未表现出标准的S型花岗岩特征(图 10f)。

图 10 西坞口花岗斑岩成因类型判别图解(底图据Collins et al., 1982; Whalen et al., 1987) Fig. 10 Discrimination diagrams for the Xiwukou granite porphyry (base map after Collins et al., 1982; Whalen et al., 1987)

在岩浆岩矿物组成上,西坞口花岗斑岩中也未发现有代表Ⅰ型花岗岩的角闪石,也未发现有代表S型花岗岩的堇青石和石榴子石等矿物(Wang et al., 2018),说明西坞口花岗斑岩的成因类型应属于A型。Eby (1992)将Y/Nb比值作为A型花岗岩进一步分类的判别依据(< 1.2为A1型花岗岩;>1.2为A2型花岗岩)。西坞口花岗斑岩的Y/Nb比值变化范围为1.3~2.8(平均值为2.2),在Nb-Y-Ce判别图解中,测试点同样落入了A2型花岗岩区域(图 10e)。综上所述,西坞口花岗斑岩应属于A2型花岗斑岩,明显不同于燕山期早阶段与钨钼矿床(白钨矿)有关的Ⅰ型花岗岩(薛怀民等, 2009; Song et al., 2014)。

A型花岗岩的成因主要有以下几种(汪洋, 2009):(1)由富F麻粒岩相下地壳的部分熔融作用形成(Collins et al., 1982; Whalen et al., 1987);(2)由长英质和镁铁质源区的岩石部分熔融形成(Landenberger and Collins, 1996; King et al., 2001);(3)由幔源的碱性基性岩-中性岩分异演化形成(Bonin, 2007)。西坞口花岗斑岩富集Rb、Th、U、K等大离子亲石元素,亏损Ti、Ba、Sr、P等高场强元素,Nb/U(2.4)和Ta/U(0.30)明显低于地幔平均值(47和2.7, Taylor and McLennan, 1995),(Rb/Nb)N(9.18)高于陆壳平均值(2.3~4.8, Taylor and McLennan, 1995),Sm/Nd(0.29)与陆壳平均值(0.17~0.25, Taylor and McLennan, 1995)相近。Mg#值(3.86~10.38)低于地幔平均值(40),Al2O3(12.46%~13.08%)和FeOT(0.78%~2.74%)的含量也相对于全球中-上地壳的平均值(15.0%~15.4%和1.53%~4.43%, Rudnick and Gao, 2003)较低。西坞口εHf(t)的变化范围为-6.7~-1.3(平均值为-4.2)(表 3图 11)。综合以上特征,说明西坞口花岗斑岩的形成有古老地壳物质的参与,可能是由富F麻粒岩相下地壳物质部分熔融形成的。

图 11 西坞口花岗斑岩Hf同位素图解 Fig. 11 Diagram of εHf(t) values vs. ages for zircons of the Xiwukou granite porphyry

江南隆起带(安徽段)出露的上溪群,富含W、Mo、Pb、Zn等成矿元素(唐永成等, 1998),因此被认为可能为江南隆起带(安徽段)内的W-Mo矿床提供了成矿物质(宋国学, 2010; 秦燕等, 2010; 王德恩等, 2011; 陈雪霏等, 2013; 范羽, 2015; 陈雪锋, 2016)。西坞口花岗斑岩的tDM1的变化范围为870~1173Ma(平均值为1025Ma),这与区域内出露的上溪群基底地层中火山岩和细碧岩的形成时代基本相同(805~1023Ma)(谢窦克和姜月华, 1998),西坞口花岗斑岩的tDM2变化范围为1273~1613Ma(平均值为1457Ma),这也介于上溪群中沉积岩和火山岩tDM1(1240~1650Ma; 周泰禧等, 1995)的变化范围之内,说明西坞口花岗斑岩源区可能为上溪群浅变质基底部分熔融的产物。

4.3 对勘探工作的启示

目前江南隆起带(安徽段)所发现的与燕山期早阶段岩浆活动有关的矿床有高家塝、鸡头山、东源、竹溪岭等钨钼矿床,矿石矿物为白钨矿,而西坞口铷矿内所发育的含钨矿物为黑钨矿。前人研究发现与稀有金属或稀有元素有关的岩浆岩也是高分异花岗岩中分异最为彻底的一个端元,而高分异花岗岩特征也可作为寻找稀有金属矿产的重要指标(吴福元等, 2017),如我国的江西雅山414稀有金属矿床、江西大吉山、湖南正冲、广西栗木等。相对于燕山期早阶段与钨钼矿床有关的岩浆岩,西坞口花岗斑岩具有明显的高分异花岗岩特征,主要有以下证据:

(1) 西坞口花岗斑岩具有高硅(SiO2=74.29%~76.25%)、富碱(ALK=7.85%~8.62%)、贫钙(CaO=0.14%~0.73%)的特征(陈雪锋, 2016),岩浆分异指数DI为91.87~95.57,高于江南隆起带(安徽段)同时期(150~134Ma)形成的钨钼矿床,如高家塝(70.17, 范羽, 2015)、东源(83.96, 秦燕等, 2010; 王德恩等, 2011)、鸡头山(60.90, 宋国学, 2010)、竹溪岭(75.30, 陈雪霏等, 2013)、马头(68.5, 宋国学, 2010),说明西坞口花岗斑岩的演化程度高于同时期(150~134Ma)形成的钨钼矿床。

(2) 西坞口花岗斑岩中,含锂云母聚集部位形成了铷矿体,矿石矿物为锂白云母(陈雪锋等, 2018)。吴福元等(2017)研究发现在岩浆中云母的演化方向为镁质黑云母、镁铁质黑云母、铁质黑云母、锂铁云母和锂云母。锂云母或含锂白云母也是高分异花岗岩最重要的造岩矿物标志之一(李洁和黄小龙, 2013; Li et al., 2015)。

(3) 在西坞口花岗斑岩中发育有绿柱石(图 4c, d)。London and Evensen (2002)的研究认为只有花岗质岩浆经历强烈的结晶分异作用,才能结晶出绿柱石。目前,在江南隆起带同时期(150~134Ma)形成的钨钼矿床中尚未绿柱石报道(范羽, 2015; 秦燕等, 2010; 宋国学, 2010; 王德恩等, 2011; 陈雪霏等, 2013)。

(4) 根据锆石的Zr/Hf比值将花岗岩划分为普通花岗岩(Zr/Hf>55)、中等分异花岗岩(25 < Zr/Hf < 55)以及高分异花岗岩(Zr/Hf < 25)(Breiter et al., 2014)。在分异程度较低或者未发生分异的岩浆中,锆石结晶较早,但在高分异花岗岩中正好相反(Breiter et al., 2014; 吴福元等, 2017)。西坞口花岗斑岩中锆石的Zr/Hf比值为25.0,并强烈的富集U(5436×10-6)和Th(1900×10-6),具有明显的高分异特征。

(5) 西坞口花岗斑岩中∑REE=205×10-6,LREE/HREE=2.8,δEu=0.08,稀土配分型式表现出明显的四分组效应,岩浆形成温度为735.4℃,表明岩浆经历长时间的高度分离结晶作用,熔体中出现发育大量流体,熔流体相互作用改变了稀土元素的地球化学行为(Bau, 1996; 吴福元等, 2017)。这一特征不同于江南隆起带(安徽段)同时期(150~134Ma)形成的与钨钼矿床有关的岩浆岩,如高家塝、鸡头山、东源、竹溪岭等矿床(秦燕等, 2010; 宋国学, 2010; 王德恩等, 2011; 陈雪霏等, 2013; 范羽, 2015)。

(6) 高Rb背景值也是铷矿床成矿岩体的一个典型特征,目前我国所发现的典型铷矿床成矿岩浆岩均具有明显的高铷背景值,如内蒙古石灰窑(1824×10-6, 孙艳, 2013)、内蒙古赵井沟(689×10-6, 孙艳, 2013)、湖南正冲(1680×10-6, 孙艳, 2013)、大吉山(776×10-6, 左梦璐, 2016)、江西雅山(2423×10-6, 左梦璐, 2016)。陈雪锋等(2018)对比了江南隆起带(安徽段)内主要岩体中铷的含量,发现西坞口花岗斑岩岩Rb含量(423×10-6)相对较高,整个江南隆起带(安徽段)具有高铷背景值的还有黄山岩体(586×10-6, 张舒等, 2009),黄山岩体和西坞口花岗斑岩均具有A2型花岗岩特征(张舒等, 2009),它们的Rb含量远高于同时期(150~121Ma)形成的青阳-九华山岩体(198×10-6)、城安岩体(150×10-6)、旌德岩体(130×10-6)、太平岩体(213×10-6)(陈雪锋等, 2018),以及燕山期早阶段(150~134Ma)发现的高家塝(104×10-6, 范羽, 2015)、东源(146×10-6, 秦燕等, 2010; 王德恩等, 2011)、鸡头山(160×10-6, 宋国学, 2010)、竹溪岭(95×10-6, 陈雪霏等, 2013)等矿床。

综合以上分析,应在江南隆起带(安徽段)寻找与高分异花岗岩有关的铷等稀有金属矿床。

5 结论

(1) 西坞口花岗斑岩形成时代为141.7±1.0Ma,属于江南隆起带(安徽段)燕山期早阶段岩浆活动的产物。

(2) 西坞口花岗斑岩具有高硅、富碱、贫钙的特征,属于A2型花岗岩,明显不同于同时期(150~134Ma)与钨钼矿床(白钨矿)有关的Ⅰ型,岩浆源区可能是新元古代浅变质基底上溪群的部分熔融。

(3) 西坞口花岗斑岩具有高分异花岗岩特征,应在江南隆起带(安徽段)寻找与高分异花岗岩有关的铷等稀有金属矿床。

谨以此文祝贺岳书仓教授八十八华诞!

参考文献
Andersen T and Griffin WL. 2004. Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway:Implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos, 73(3-4): 271-288 DOI:10.1016/j.lithos.2003.12.010
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333 DOI:10.1007/s004100050159
Bonin B. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29 DOI:10.1016/j.lithos.2006.12.007
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Breiter K, Lamarão CN, Borges RMK and Dall'Agnol R. 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos, 192-195: 208-225 DOI:10.1016/j.lithos.2014.02.004
Bureau of Geology and Mineral Resources of Jiangxi Province (BGMRJ). 1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing House, 1-921 (in Chinese with English abstract)
Chang YF, Liu XP and Wu YC. 1991. Metalorganic Belt of the Middle and Lower Yangtze River. Beijing: Geological Publishing House, 1-397 (in Chinese with English abstract)
Chen JF, Zhou TF, Li XM, Foland KA, Huang CY and Lu W. 1993. Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui Province. Geochimica, (3): 261-281 (in Chinese with English abstract)
Chen XF, Wang YG, Sun WD and Yang XY. 2013. Zircon U-Pb chronology, geochemistry and genesis of the Zhuxiling granite in Ningguo, southern Anhui. Acta Geologica Sinica, 87(11): 1662-1678 (in Chinese with English abstract)
Chen XF. 2016. Ore-forming system of Guilinzheng-Huangshanling deposit in Jiangnan transitional zone. Master Degree Thesis. Hefei: Hefei University of Technology, 1-92 (in Chinese with English summary)
Chen XF, Fan Y, Yu JH, Qian SL, Lu ZQ, Yang ZY, Hong JM and Zhou TF. 2018. The first discovered Rb deposit and their signification in Jiangnan Uplift belt (Anhui Province). Mineral Deposits, 37(6): 1349-1354 (in Chinese with English abstract)
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Ewart A. 1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesitic-basaltic compositional range. In: Thorpe RS (ed.). Andesites. Chichester: Wiley, 25-95
Fan Y. 2015. Study on tungsten-molybdenum mineralization in Qingyang area. Master Degree Thesis. Hefei: Hefei University of Technology, 1-128 (in Chinese with English summary)
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437 DOI:10.1007/s00410-007-0201-0
Galer SJG, Goldstein SL and O'Nions RK. 1989. Limits on chemical and convective isolation in the Earth's interior. Chemical Geology, 75(4): 257-290 DOI:10.1016/0009-2541(89)90001-6
Gao XY and Zheng YF. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417-432 (in Chinese with English abstract)
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514 DOI:10.1046/j.1440-0952.2001.00881.x
Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1): 145-170 DOI:10.1093/petrology/37.1.145
Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012. A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction. Lithos, 105: 26-36
Li J and Huang XL. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English abstract)
Li J, Huang XL, He PL, Li WX, Yu Y and Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China:Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793-781 DOI:10.1016/j.oregeorev.2014.09.028
Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109 DOI:10.1016/S0301-9268(02)00208-5
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, 11(7): 468
London D and Evensen JM. 2002. Beryllium in silicic magmas and the origin of Beryl-bearing pegmatites. In:Grew ES (ed.). Beryllium:Mineralogy, Petrology, and Geochemistry. Reviews in Mineralogy and Geochemistry, 50(1): 445-486
Ludwig KR. 2001. User's manual for Isoplot/Ex Rev. 2.49. Berkeley Geochronology Centre Special Publication
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 615-643
Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1982. Evolution of continental crust and mantle heterogeneity:Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297 DOI:10.1007/BF00398923
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peng G, Yan J, Chu XQ, Li QZ and Chen ZH. 2012. Zircon U-Pb dating and geochemistry of Guichi intrusive rocks:Petrogenesis and deep dynamic processes. Acta Petrologica Sinica, 28(10): 3271-3286 (in Chinese with English abstract)
Qin Y, Wang DH, Li YH, Wang KY, Wu LB and Mei YP. 2010. Rock-forming and ore-forming ages of the Baizhangyan tungsten-molybdenum ore deposit in Qingyang, Anhui Province and their geological significance. Earth Science Frontiers, 17(2): 170-177 (in Chinese with English abstract)
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Treatise on Geochemistry. Amsterdam: Elsevier, 1-64
Shi K. 2016. Study on tungsten mineralization in Fuling area, South Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-78 (in Chinese with English summary)
Shi K, Zhang DY, Ding N, Wang DE and Chen XF. 2017. Geochronology, geochemistry and formation of Xiaoyao rock in southern Anhui Province. Journal of Jilin University (Earth Science Edition), 47(6): 1746-1762 (in Chinese with English abstract)
Song GX. 2010. Research on magmatism-mineralization and metallogenic system of skarn-porphyry type W-Mo deposits in Chizhou area, the Middle-Lower Yangtze Valley. Ph. D. Dissertation. Beijing: Graduate School of Chinese Academy of Sciences, 1-217 (in Chinese with English summary)
Song GX, Qin KZ, Li GM, Evans NJ and Li X. 2014. Mesozoic magmatism and metallogeny in the Chizhou area, Middle-Lower Yangtze Valley, SE China:Constrained by petrochemistry, geochemistry and geochronology. Journal of Asian Earth Sciences, 91: 137-153 DOI:10.1016/j.jseaes.2014.04.025
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Sun Y. 2013. Research on of typical rubidium deposits and tectonic background in China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-180 (in Chinese with English summary)
Sylvester PJ, Campbell IH and Bowyer DA. 1997. Niobium/Uranium evidence for early formation of the continental crust. Science, 275(5299): 521-523 DOI:10.1126/science.275.5299.521
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-439 (in Chinese with English abstract)
Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265
Wang DE, Zhou X, Yu XQ, Du YD, Yang HM, Fu JZ and Dong HM. 2011. SHRIMP zircon U-Pb dating and characteristics of Hf isotopes of the granodiorite porphyries in the Dongyuan W-Mo ore district, Qimen area, southern Anhui. Geological Bulletin of China, 30(10): 1514-1529 (in Chinese with English abstract)
Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China (Series D), 46(8): 801-815 DOI:10.1007/BF02879524
Wang RJ, Wang DH and Li JK, et al. 2015. Rare Earth Mineral Resources are Extremely Exploited and Utilized. Beijing: Geological Publishing House, 1-429 (in Chinese with English abstract)
Wang XD, Xu DM, Lv XB, Wei W, Mei W, Fan XJ and Sun BK. 2018. Origin of the Haobugao skarn Fe-Zn polymetallic deposit, southern Great Xing'an range, NE China:Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints. Ore Geology Reviews, 94: 58-72 DOI:10.1016/j.oregeorev.2018.01.022
Wang Y. 2009. Geochemistry of the Baicha A-type granite in Beijing Municipality:Petrogenetic and tectonic implications. Acta Petrologica Sinica, 25(1): 13-24 (in Chinese with English abstract)
Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844 DOI:10.1126/science.1110873
Weng WF, Zhi LG, Cai LY, Xu SF and Wang BM. 2011. Petrogenesis and geochemical comparison of two types of Yanshanian granite in South Anhui and its surrounding area. Bulletin of Mineralogy, Petrology and Geochemistry, 30(4): 433-448 (in Chinese with English abstract)
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Wu FY, Ji WQ, Sun DH, Yang YH and Li XH. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150: 6-25 DOI:10.1016/j.lithos.2012.03.020
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
Wu RX, Zheng YF and Wu YB. 2005. Zircon U-Pb age, element and oxygen isotope geochemistry of Neoproterozoic granodiorites in South Anhui. Acta Petrologica Sinica, 21(3): 587-606 (in Chinese with English abstract)
Xiao X, Zhou TF, Yuan F, Fan Y, Zhang DY, Liu DZ, Huang WP and Chen XF. 2017. The geochronology of the Qingyang Gaojiabang tungsten-molybdenum deposit and its geological significance, Anhui Province, East China. Acta Petrologica Sinica, 33(3): 859-872 (in Chinese with English abstract)
Xiao Y. 2018. The world's large independent rubidium deposit was discovered in Heyuan, Guangdong Province. Conservation and Utilization of Mineral Resources, 214(2): 144 (in Chinese with English abstract)
Xie DK and Jiang YH. 1998. Evolution ARY process and structural framework of the crust of South China. Journal of Chengdu University of Technology, 25(2): 153-161 (in Chinese with English abstract)
Xie JC, Chen S, Rong W, Li QZ, Yang XY and Sun WD. 2012. Geochronology, geochemistry and tectonic significance of Guniujiang A-type granite in Anhui Province. Acta Petrologica Sinica, 28(12): 4007-4020 (in Chinese with English abstract)
Xue HM, Wang YG, Ma F, Wang C, Wang DE and Zuo YL. 2009. The Huangshan A-type granites with tetrad REE:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton?. Acta Geologica Sinica, 83(2): 247-259 (in Chinese with English abstract)
Yu JH and Huang T. 2016. Geological characteristics and genesis of tungsten (tin) deposit in Xiwukou, Anhui Province. Modern Mining, (8): 177-179 (in Chinese with English abstract)
Yuan F, Zhou TF, Fan Y, Yue SC, Zhu G and Hou MJ. 2005. Tectonic setting of granitoids of Yanshanian Stage in the adjoining region of Anhui and Jiangxi provinces and its significance. Journal of Hefei University of Technology (Natural Science), 28(9): 1130-1134 (in Chinese with English abstract)
Yuan YB, Yuan SD, Zhao PL and Zhang DL. 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan:Their constraints to mineralization differences. Acta Petrologica Sinica, 34(9): 2565-2580 (in Chinese with English abstract)
Zhang S, Zhang ZC, Ai Y, Yuan WM and Ma LT. 2009. The Petrology, mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province. Acta Petrologica Sinica, 25(1): 25-38 (in Chinese with English abstract)
Zhou TF, Yuan F, Hou MJ, Du JG, Fan Y, Zhu G and Yue SC. 2004. Genesis and geodynamic background of Yanshanian granitoids in the eastern Jiangnan Uplift in the adjacent area of Anhui and Jiangxi provinces, China. Journal of Mineralogy and Petrology, 24(3): 65-71 (in Chinese with English abstract)
Zhou TX, Chen JF, Zhang X, Wen D, Xie Z, Xu X and Xing FM. 1995. Nd isotope ratios of sedimentary rocks from the southeastern margin of Yangtze Block, China. Acta Sedimentologica Sinica, 13(3): 39-45 (in Chinese with English abstract)
Zuo ML. 2013. The research of differences of the rare-metal granites mineralization between Yichun Yashan and Quannan Dajishan in Jiangxi Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-82 (in Chinese with English summary)
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-397.
陈江峰, 周泰禧, 李学明, Foland KA, 黄承义, 卢伟. 1993. 安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约. 地球化学, (3): 261-281. DOI:10.3321/j.issn:0379-1726.1993.03.007
陈雪霏, 汪应庚, 孙卫东, 杨晓勇. 2013. 皖南宁国竹溪岭地区花岗岩锆石U-Pb年代学及地球化学及其成因研究. 地质学报, 87(11): 1662-1678.
陈雪锋. 2016.江南过渡带桂林郑-黄山岭钼铅锌矿床成矿系统研究.硕士学位论文.合肥: 合肥工业大学, 1-92
陈雪锋, 范裕, 庾江华, 钱仕龙, 陆中秋, 杨张一, 洪建民, 周涛发. 2018. 江南隆起带(安徽段)首次发现铷矿床及其意义. 矿床地质, 37(6): 1349-1354.
范羽. 2015.安徽青阳地区钨钼成矿作用研究.硕士学位论文.合肥: 合肥工业大学, 1-128
高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432.
江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社, 1-921.
李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311-4322.
彭戈, 闫峻, 初晓强, 李全忠, 陈志洪. 2012. 贵池岩体的锆石定年和地球化学:岩石成因和深部过程. 岩石学报, 28(10): 3271-3286.
秦燕, 王登红, 李延河, 王克友, 吴礼彬, 梅玉萍. 2010. 安徽青阳百丈岩钨钼矿床成岩成矿年龄测定及地质意义. 地学前缘, 17(2): 170-177.
施珂. 2016.皖南伏岭地区钨-多金属矿床成岩成矿作用研究.硕士学位论文.合肥: 合肥工业大学, 1-78
施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 2017. 皖南逍遥岩体的年代学、地球化学特征及其成因分析. 吉林大学学报(地球科学版), 47(6): 1746-1762.
宋国学. 2010.长江中下游池州地区矽卡岩-斑岩型钨钼矿成岩成矿作用与成矿系统研究.博士学位论文.北京: 中国科学院研究生院, 1-217
孙艳. 2013.我国铷典型矿床及其成矿构造背景研究.博士学位论文.北京: 中国地质大学, 1-180
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-439.
王德恩, 周翔, 余心起, 杜玉雕, 杨赫鸣, 傅建真, 董会明. 2011. 皖南祁门地区东源钨钼矿区花岗闪长斑岩SHRIMP锆石U-Pb年龄和Hf同位素特征. 地质通报, 30(10): 1514-1529. DOI:10.3969/j.issn.1671-2552.2011.10.005
王强, 许继峰, 赵振华, 熊小林, 包志伟. 2003. 安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约. 中国科学(D辑), 33(4): 323-334.
王瑞江, 王登红, 李建康, 等. 2015. 稀有稀土稀散矿产资源及其开发利用. 北京: 地质出版社, 1-429.
汪洋. 2009. 北京白查A型花岗岩的地球化学特征及其成因与构造指示意义. 岩石学报, 25(1): 13-24.
翁望飞, 支利庚, 蔡连友, 徐生发, 王邦民. 2011. 皖南及邻区燕山期两个类型花岗岩地球化学对比与岩石成因. 矿物岩石地球化学通报, 30(4): 433-448. DOI:10.3969/j.issn.1007-2802.2011.04.012
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
吴荣新, 郑永飞, 吴元保. 2005. 皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究. 岩石学报, 21(3): 587-606.
肖鑫, 周涛发, 袁峰, 范羽, 张达玉, 刘东周, 黄伟平, 陈雪锋. 2017. 安徽青阳高家塝钨钼矿床成岩成矿时代及其地质意义. 岩石学报, 33(3): 859-872.
肖勇. 2018. 广东河源发现世界首个超大型独立铷矿床. 矿产保护与利用, 214(2): 144.
谢窦克, 姜月华. 1998. 华南地壳演化过程及其构造格架. 成都理工学院学报, 25(2): 153-161.
谢建成, 陈思, 荣伟, 李全忠, 杨晓勇, 孙卫东. 2012. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义. 岩石学报, 28(12): 4007-4020.
薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙. 2009. 高度演化的黄山A型花岗岩:对扬子克拉通东南部中生代岩石圈减薄的约束?. 地质学报, 83(2): 247-259.
庾江华, 黄涛. 2016. 安徽省西坞口钨(锡)矿地质特征及成因. 现代矿业, (8): 177-179. DOI:10.3969/j.issn.1674-6082.2016.08.056
袁峰, 周涛发, 范裕, 岳书仓, 朱光, 侯明金. 2005. 皖赣相邻区燕山期花岗岩类构造背景及其意义. 合肥工业大学学报(自然科学版), 28(9): 1130-1134. DOI:10.3969/j.issn.1003-5060.2005.09.037
原垭斌, 袁顺达, 赵盼捞, 张东亮. 2018. 湘南黄沙坪多金属矿床花岗质岩浆性质及演化对成矿差异的约束. 岩石学报, 34(9): 2565-2580.
张舒, 张招崇, 艾羽, 袁万明, 马乐天. 2009. 安徽黄山花岗岩岩石学、矿物学及地球化学研究. 岩石学报, 25(1): 25-38.
周涛发, 袁峰, 侯明金, 杜建国, 范裕, 朱光, 岳书仓. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景. 矿物岩石, 24(3): 65-71. DOI:10.3969/j.issn.1001-6872.2004.03.008
周泰禧, 陈江峰, 张巽, 文东, 谢智, 徐祥, 邢凤鸣. 1995. 扬子地块东南缘沉积岩的Nd同位素研究. 沉积学报, 13(3): 39-45.
左梦璐. 2013.江西雅山与大吉山两类稀有金属花岗岩成矿差异性研究.硕士学位论文.北京: 中国地质大学, 1-82