岩石学报  2019, Vol. 35 Issue (11): 3443-3460, doi: 10.18654/1000-0569/2019.11.12   PDF    
扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义:LA-ICPMS研究
吴越1,2, 孔志岗3, 陈懋弘4, 张长青4, 曹亮5, 唐友军1, 袁鑫1, 张沛1     
1. 长江大学油气资源与勘探技术教育部重点实验室, 武汉 430100;
2. 长江大学资源与环境学院, 武汉 430100;
3. 昆明理工大学国土资源工程学院, 昆明 650093;
4. 中国地质科学院矿产资源研究所, 北京 100037;
5. 中国地质调查武汉地质调查中心, 武汉 430205
摘要:扬子板块周缘铅锌多金属成矿带内分布着数以百计的沉积岩容矿型铅锌矿床,它们不仅是我国主要的铅锌矿产地,同时也是重要的稀散元素(Ge、Ga等)生产基地。本次研究采用LA-ICPMS技术分别测定了扬子板块西南缘的会泽铅锌矿床、金沙厂铅锌矿床、大梁子铅锌矿床,扬子板块北缘的马元铅锌矿床以及扬子板块东南缘的凤凰茶田锌(铅)汞矿床中闪锌矿的微量元素组成,以揭示闪锌矿中微量元素(稀散元素)的富集规律和赋存状态,并为矿床成因类型的厘定及稀散元素矿产资源综合利用提供更多依据。LA-ICPMS微量元素测定结果显示闪锌矿中不同微量元素(稀散元素)分布不均匀,但这些矿床中闪锌矿总体以富集稀散元素Ge、Ga、Cd,贫In、Se、Tl、Te为特征,其Fe、Mn含量要明显低于与岩浆热液有关的高温闪锌矿,指示了扬子板块周缘铅锌矿床可能形成于中-低温成矿流体,而与岩浆热液无直接的成因联系,此外这些矿床中闪锌矿富Ge贫In的特征与其他的密西西比河谷型铅锌矿床(MVT)一致。同时,本次研究综合分析了闪锌矿中不同微量元素(稀散元素)之间的相关关系,并与闪锌矿微量元素LA-ICPMS时间分辨率特征相结合,研究表明:这些铅锌矿床中稀散元素Ge可能主要通过3Zn2+↔Ge4++2(Cu+,Ag+)和2Zn2+↔Ge4++□(晶体空位)的替代方式进入闪锌矿,Ga在闪锌矿中富集机理主要为2Zn2+↔(Cu,Ag)++(Ga,As,Sb)3+。此外,为进一步揭示不同成因类型铅锌矿床中稀散元素的富集规律,本文还系统对比了全球范围内不同类型铅锌矿床闪锌矿的稀散元素(均为LA-ICPMS数据)组成特征,并初步探讨了造成不同成因闪锌矿中稀散元素(Ge、Ga和In)差异性富集的主要控制因素,研究表明:(1)Ge在中低温盆地卤水成矿系统(MVT和SEDEX矿床)和岩浆-火山热液成矿系统(浅成脉状铅锌矿床和VMS矿床)形成的闪锌矿中均可能富集成矿,但中低温浅成脉状矿床中Ge的富集程度要明显高于高温脉状矿床,指示了成矿温度是控制闪锌矿中Ge富集的一个重要因素。(2)铅锌矿床闪锌矿中In主要为岩浆来源,In倾向于在成矿温度较高的岩浆及火山热液成因铅锌矿床中富集成矿,而壳源的MVT和SEDEX型铅锌矿床中闪锌矿均贫In。可见除形成温度外,成矿物质来源是决定闪锌矿是否富In的关键因素。(3)除矽卡岩型铅锌矿床外,其他不同成因类型、不同形成温度的铅锌矿床中闪锌矿均可能富Ga。矽卡岩型铅锌矿床闪锌矿具有明显的贫Ga、Ge的特征,这可能是由于矽卡岩化过程中稀散元素Ga、Ge大量进入早期矽卡岩矿物,进而导致了成矿流体以及随后形成的闪锌矿中Ga、Ge的贫化。综上所述,闪锌矿中稀散元素富集与否和富集程度受成矿物质来源、成矿流体性质以及流体演化过程等多因素的综合控制。(4)扬子板块周缘铅锌矿床闪锌矿的微量元素(稀散元素)组成特征指示了它们形成于中低温成矿环境,稀散元素的富集规律与其它MVT型铅锌矿床类似。
关键词: 扬子板块周缘铅锌矿床     闪锌矿     微量元素     稀散元素     LA-ICPMS     矿床成因类型    
Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LA-ICPMS study
WU Yue1,2, KONG ZhiGang3, CHEN MaoHong4, ZHANG ChangQing4, CAO Liang5, TANG YouJun1, YUAN Xin1, ZHANG Pei1     
1. MOE Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Wuhan 430100, China;
2. College of Resources and Environment, Yangtze University, Wuhan 430100, China;
3. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
4. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
5. Wuhan Center of Geology Survey, China Geological Survey, Wuhan 430205, China
Abstract: There are hundreds of sedimentary rock-hosted Pb-Zn deposits in several Pb-Zn polymetallic metallogenic belts around the margins of the Yangtze Block. These Pb-Zn polymetallic metallogenic belts are not only the important production bases for the Pb and Zn metals, but also main suppliers for the dispersed elements such as the Ge and Ga in China. In this study, the technique of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is employed to determine the trace elements (dispersed elements) composition in sphalerites from the Huize giant Pb-Zn deposit, the Jinshachang Pb-Zn deposit and the Daliangzi Pb-Zn deposit in the southwestern margin of the Yangtze Block, the Mayuan Pb-Zn deposit in the northern margin of the Yangtze Block as well as the Chatian Zn-(Pb)-Hg deposit in the southeastern margin of the Yangtze Block. The LA-ICPMS technique allows us to precisely identify the enrichment regularity and occurrence state of trace elements (dispersed elements) in these sphalerites, which could give some insight into the genesis of Pb-Zn deposits as well as provide basis for comprehensive utilization of dispersed elements mineral resources. The results show that although the distribution of trace elements (dispersed elements) in sphalerites form these Pb-Zn deposits are inhomogenous, the sphalerites are generally characterized by significant enrichment of dispersed elements Ge, Ga and Cd, and depletion of In, Se, Tl as well as Te. In addition, the contents of Fe and Mn elements in sphalerites of the Pb-Zn deposits around the margins of the Yangtze Block are significantly lower than that of the high-temperature sphalerites of magmatic-volcanic hydrothermal origin. These composition characteristics of trace elements (dispersed elements) in sphalerites indicate that these Pb-Zn deposits could be formed from the ore-forming fluids with medium-low temperature and there is no directly genetic relationship between the Pb-Zn deposits and magmatic activities. Moreover, the enrichment characteristics of trace elements in sphalerites from these sedimentary rock-hosted Pb-Zn deposits around the Yangtze Block are similar to those of other Mississippi Valley-type Pb-Zn deposits elsewhere. Furthermore, we combine the study on the correlation between different trace elements with the time-resolved depth profiles by LA-ICPMS of sphalerites to reveal the substitution mechanism of trace elements(dispersed elements)in sphalerites. Through this research, the coupled substitutions of Ge (3Zn2+↔Ge4+ + 2(Cu, Ag)+) and Ga (2Zn2+↔(Cu, Ag)++(Ga, As, Sb)3+) in sphalerites are revealed, while the 2Zn2+↔Ge4+ +□ (vacancy) is also identified in some Pb-Zn deposits. On the other hand, in order to further explore the enrichment regularity of dispersed elements (Ge, Ga and In) in sphalerites from the Pb-Zn deposits of different genetic types, comparative analysis of the content characteristics of the Ge, Ga and In in sphalerites from different types of Pb-Zn deposits worldwide is carried out in this study. The main controlling factors for the enrichment of dispersed elements (Ge, Ga and In) in sphalerites are also preliminary proposed. The research shows:(1) Ge could be enriched in sphalerites both formed in the basinal brine-related mineralization system (MVT deposits and SEDEX deposits) and magmatic and volcanic-related hydrothermal system (Vein-type Pb-Zn deposits and VMS deposits). Sphalerites from epithermal Pb-Zn deposits with the low ore-forming temperature generally have higher Ge values than that of the xenothermal Pb-Zn deposits. The ore-forming temperature is an important factor controlling the enrichment of Ge in sphalerites. (2) The indium in the sphalerites could be mainly derived from the magma, and its concentration tends to be higher in sphalerites of magmatic and volcanic-related hydrothermal Pb-Zn deposits with the high-temperature. While the crust-sourced MVT and SEDEX Pb-Zn deposits are generally depleted in indium. These indicate that, in addition to the precipitation temperatures of sphalerites, the source of metallogenic materials is the key factor to determine whether the sphalerite is enriched with In. (3) Except for the skarn type Pb-Zn deposits, Ga can be enriched in sphalerites from all other Pb-Zn deposits of different genetic types and metallogenic temperatures. The low concentrations of Ga as well as Ge in sphalerites of the skarn Pb-Zn deposits could be attributed to that the most of Ga and Ge elements may be incorporated in early skarn minerals during the skarnization process which could lead to the depletions of Ga and Ge in both ore-forming fluids as well as sphalerites. In summary, the enrichment or not and the degree of enrichment of the dispersed elements (Ga, Ge and In) in sphalerites are controlled by multiple factors such as the source of ore-forming materials, the characteristics of ore-bearing fluids, as well as the evolution process of ore-forming fluids during mineralization. (4) The trace elements (dispersed elements) composition of the sphalerites indicates the Pb-Zn deposits around the margins of Yangtze Block could be formed from the ore-forming fluids with medium-low temperature, and the enrichment characteristics of the dispersed elements of these deposits are consistent with that of the other MVT deposits.
Key words: The lead-zinc deposits around the margins of Yangtze Block     Sphalerite     Trace elements     Dispersed elements     LA-ICPMS     Genetic types of deposits    

闪锌矿作为铅锌矿床主要的矿石矿物,其微量元素组成蕴含着丰富的矿床成因信息。20世纪80年代始,研究人员就开始尝试利用闪锌矿微量元素组成特征来揭示成矿物理-化学条件,判别矿床成因类型,并取得了一定的成果(张乾,1987韩照信,1994)。但由于传统的微量元素分析方法可能存在样品纯度不够(单矿物溶样法)或精度有限(电子探针)等局限,进而导致所获结果不能真实地反映其微量元素组成,在运用过程中实用性不强(叶霖等,2012)。近十年来,硫化物原位微区微量元素测试技术(LA-ICPMS)开始广泛地应用于不同类型铅锌矿床的研究中,该方法突破了传统手段的局限,所获得的高精度结果可更真实地反映闪锌矿中微量元素的富集规律,结合元素时间分辨率曲线特征可有效揭示闪锌矿中微量元素的赋存状态(Cook et al., 2009Ye et al., 2011),但对于一些微量元素在闪锌矿中的赋存机制仍然存在争议,例如稀散元素Ge是以等价替代的方式:Zn2+↔Ge2+(Cook et al., 2009)还是以双替代的方式:3Zn2+↔Ge4+ + 2(Cu+, Ag+)(Belissont et al., 2016)进入闪锌矿。

扬子板块周缘分布着我国几个重要的铅锌多金属成矿带:扬子板块西南缘川滇黔成矿带,扬子板块北缘马元-白玉成矿带和扬子板块东南缘湘西-黔东成矿带(Hu and Zhou, 2012Hu et al., 2017a, b)(图 1)。这些成矿带内的铅锌矿床众多,资源丰富(见后文)。此外,铅锌矿床中还普遍伴生有Ga、Ge、Cd等多种稀散元素,构成了我国主要的稀散元素基地。但对这些矿床的成因认识还存在一定分歧,例如对于川滇黔成矿带内的铅锌矿床,研究人员提出了:与岩浆活动无关的密西西比河谷型(MVT)铅锌矿床(张长青等,2005Wu et al., 2013Zhang et al., 2015Hu et al., 2017b );虽有别于典型的MVT型铅锌矿床,但与岩浆活动亦无直接的成因联系(韩润生等,2012);峨眉山玄武岩提供了部分成矿物质(流体)并(或)驱动了流体运移(黄智龙等, 2004Bai et al., 2013Zhou et al., 2018)等不同的成因认识。此外,现阶段扬子板块周缘铅锌矿床硫化物原位微量元素研究主要集中于川滇黔铅锌成矿带内的部分矿床,对于湘西-黔东成矿带内的铅锌矿床尚无相关报导,同时该成矿带内铅锌矿床中伴生的Ge、Ga等稀散元素的赋存方式还有争议(见后文)。

图 1 扬子板块周缘铅锌成矿带与研究矿床分布简图(据Ye et al., 2011修编) Fig. 1 Distribution of lead-zinc metallogenic belts around the Yangtze Block and the research deposits (modified after Ye et al., 2011)

本次研究采用LA-ICPMS技术测定了扬子板块周缘的四川大梁子铅锌矿床、云南金沙厂铅锌矿床、云南会泽铅锌矿床、陕西马元铅锌矿床和湖南茶田铅锌矿床闪锌矿的微量元素组成,对比总结上述矿床闪锌矿中微量元素的分布规律,揭示微量元素的赋存状态。同时,还系统收集了近十年来国内外发表的不同类型铅锌矿床闪锌矿微量元素LA-ICPMS测试数据,探讨了稀散元素(Ga、Ge、In)在不同类型铅锌矿床中的富集规律,尝试从微量元素的角度为厘定铅锌矿床成因类型提供参考,为矿产资源的综合利用提供依据。

1 扬子板块周缘铅锌成矿带矿床地质特征简介

扬子板块西南缘川滇黔铅锌多金属成矿带是我国主要的Pb、Zn、Ag、Ge生产基地之一,也是极具特色的华南低温热液成矿域的重要组成部分(Hu et al., 2017b)。区内现已发现铅锌矿床(点)400多个,探获Pb+Zn资源量超20.00Mt(Zhang et al., 2015)。这些铅锌矿床中普遍富集Ge、Ga、Cd等多种稀散元素,据不完全统计,仅滇东北地区的铅锌矿床中就伴生有Ge 780.5t(薛步高,2004)。该区绝大部分的铅锌矿床赋存在震旦系-二叠系白云岩中,成矿受构造控制,矿体多呈层状、似层状、透镜状产出于与逆冲褶皱系统有关的层间构造带内(如会泽铅锌矿、金沙厂铅锌矿等),或是呈筒柱状、大脉状受控于高角度断层(如大梁子铅锌矿);铅锌硫化物通常以充填或交代等方式成矿,主要发育有块状构造、角砾状构造、条带状构造、浸染状构造、脉状-网脉状构造等(图 2);矿石的矿物组合简单,主要为闪锌矿-方铅矿-黄铁矿-方解石-白云石-(石英)-(重晶石)-(萤石);矿石品位不一,会泽和毛坪超大型铅锌矿床平均品位特高,Pb+Zn可达25.00%~35.00%,其他铅锌矿床Pb+Zn多在8.00%~10.00%;矿床围岩蚀变以中、低温蚀变为特征,发育碳酸盐化、硅化,部分矿床还发育有萤石化、重晶石化和沥青化等,指示了成矿流体属中低温热液,与流体包裹体测温结果一致(表 1)。

表 1 扬子板块周缘铅锌矿床地质特征表 Table 1 Geological characteristics of lead-zinc deposits around the Yangtze Block

扬子板块北缘马元-白玉铅锌矿带位于陕西省汉中市境内,围绕碑坝古隆起分布有南、东、北三个铅锌矿段,矿带共探获Pb+Zn资源量2.28Mt,其中南部楠木树矿段已探明Zn>1.00Mt,Zn平均品位4.02%,Pb平均品位4.16%(侯满堂等,2007高永宝等,2016)。矿体赋存在震旦系灯影组角砾状白云岩中,受层间构造带控制;矿石以角砾状为主,次为脉状-网脉状(图 2j, k);矿物组合简单,主要为闪锌矿-方铅矿-黄铁矿与热液碳酸盐;围岩发育有硅化、重晶石化、白云石化等中低温蚀变,成矿流体属中低温、中高盐度流体(表 1图 2l)。

图 2 扬子板块周缘铅锌矿床矿化特征 (a-d)会泽铅锌矿床矿化特征:(a)会泽铅锌矿床中块状铅锌硫化物矿体,(b)围岩呈大小不一的角砾分布于硫化物矿体中,(c)脉状铅锌矿体充填于层间断裂内,(d)块状铅锌矿石;(e、f)大梁子铅锌矿床矿化特征:(e)铅锌硫化物胶结围岩角砾成角砾状矿石,(f)富碳质细脉状铅锌矿石;(g-i)金沙厂铅锌矿床矿化特征:(g)矿床上部梅树村组地层中闪锌矿-萤石-重晶石条带,(h)梅树村组地层中浸染状闪锌矿,(i)产出于矿床下部灯影组层间构造带内的铅锌矿体;(j-l)马元铅锌矿床矿化特征:(j)闪锌矿与热液白云石胶结围岩角砾,(k)角砾状矿石,可见沥青,(l)矿体附近热液亮晶碳酸盐分布于围岩中形成“斑马状构造”;(m-o)茶田汞锌矿床矿化特征:(m)角砾状闪锌矿-辰砂矿石,(n)辰砂呈浸染状产出于热液白云石中,(o)闪锌矿与辰砂紧密共生,与热液白云石胶结围岩角砾 Fig. 2 Characteristics of mineralization of lead-zinc deposits around the Yangtze Block (a-d): the high-grade massive ores (a, d), brecciated (b) and vein-type (c) mineralization in the Huize deposit; (e, f): the brecciated (e) and vein-type (c) ores in the Daliangzi deposit; (g-i): sphalerite-barite-fluorite bands (g) and disseminated sphalerite (h) in the Lower Cambrian Meishucun Formation, and the lead-zinc mineralization in the Sinian Dengying Formation (i) of the Jinshachang deposit; (j-l): the brecciated ores (j, k) and hydrothermal dolomitization in country rocks (l) of the Mayuan deposit; (m-o): the close intergrowth of sphalerite and cinnabar in brecciated ores of the Chatian deposit

扬子板块东南缘湘西-黔东铅锌成矿带的勘探和研究历史悠久,并在近年取得了重大找矿突破,仅湖南花垣铅锌矿床探明的Pb+Zn资源量已超过5.00Mt(李堃,2018)。湖南凤凰茶田锌(铅)汞矿床位于该矿带西南部,矿床矿石矿物以闪锌矿为主,方铅矿少见,Zn储量达0.31Mt(表 1)。同时该矿床还产出有辰砂、硫汞锑矿等汞硫化物和硫盐矿物,并与闪锌矿紧密共生(图 2m-o图 3gh),属较为少见的锌汞矿床。茶田锌汞矿床的矿体主要以层状、似层状、透镜状赋存在寒武系统熬溪组白云岩及下寒武统清虚洞组灰岩中的层间破碎带内,矿石以角砾状、脉状-网脉状、浸染状为主(图 2m-o)。矿床围岩蚀变弱,发育碳酸盐化与硅化,成矿流体为低温、中高盐度流体(表 1)。

图 3 LA-ICPMS测试样品显微结构特征 (a)会泽铅锌矿床:方铅矿呈细脉状穿插、交代早阶段闪锌矿、黄铁矿;(b)大梁子铅锌矿床:他形闪锌矿被晚阶段方铅矿包裹、交代;(c、d)金沙厂铅锌矿床:(c)他形闪锌矿呈浸染状分布于上部梅树村组地层中,偶见方铅矿、草莓状黄铁矿,(d)矿床上部矿体条带状矿石中,闪锌矿与方铅矿共生,偶见黄铁矿残余;(e、f)马元铅锌矿床:(e)自形-半自形闪锌矿与热液白云石胶结围岩白云岩角砾,(f)反射光下他形闪锌矿与热液白云石胶结围岩角砾;(g、h)茶田汞锌矿床:(g)闪锌矿与辰砂分布于热液白云石中,(h)反射光下闪锌矿与辰砂紧密共生. Gn-方铅矿;Sph-闪锌矿;Py-黄铁矿;Cin-辰砂;Dol-白云岩;HD-热液白云石 Fig. 3 Microstructural features of ores samples for LA-ICPMS analysis (a) early stage sphalerite (Sph) and pyrite (Py) are interspersed by galena (Gn) in the Huize deposit; (b) anhedral sphalerite is wrapped in galena in the Daliangzi deposit; (c) disseminated sphalerite in Meishucun Formation of the Jinshachang deposit; (d) sphalerite is associated with galena in the Jinshachang deposit; (e) euhedral and semi-euhedral sphalerite cemented country rock breccia; (f) sphalerite and hydrothermal dolomite (HD) cemented country rock, dolomite (Dol) breccia; (g) sphalerite and cinnabar (Cin) occur in hydrothermal dolomite in the Chatian deposit; (h) the close intergrowth of sphalerite and cinnabar in the Chatian deposit

综上所述,扬子板块周缘的铅锌矿床主要赋存在白云岩中,成矿以充填或交代等方式为主,后成特征明显。矿床的围岩蚀变和流体包裹体特征均与岩浆热液矿床不同,而属于中低温、中(高)盐度流体(表 1图 2)。此外,同位素研究表明:成矿金属物质具有壳源特征—主要来自于基底和(或)沉积盖层,硫化物中还原硫源于海水硫酸盐(Zhang et al., 2015高永宝等,2016; Bao et al., 2017李堃,2018)。这些特征均与密西西比河谷型铅锌矿床(MVT型铅锌矿床)十分类似。

2 样品特征与测试方法

本次测试的样品采集自上述矿床的主要矿体内,除金沙厂铅锌矿床上部梅树村组地层中浸染状闪锌矿(样品js-1;图 2h图 3c)可能形成于沉积-成岩期外,绝大部分样品均属铅锌主成矿期产物。镜下观察闪锌矿较纯净,内部少见其他矿物包裹体,闪锌矿主要有他形结构、自形-半自形结构、交代残余结构等,方铅矿与闪锌矿紧密共生或穿插、交代早阶段闪锌矿,在茶田锌汞矿床中还可见辰砂与闪锌矿共生(图 3)。

将样品制成激光片,在显微镜下观察并圈定测点后,在国家地质实验测试中心进行激光剥蚀-电感耦合等离子质谱(LA-ICPMS)微量元素测定实验。使用仪器为Thermo Element Ⅱ等离子质谱仪,激光剥蚀系统为New Wave UP-213。实验采用He作为剥蚀物质的载气,激光波长213nm、束斑40μm、脉冲频率10Hz、能量0.176mJ、密度23~25J/m2,测试过程中首先遮挡激光束进行空白背景采集15s,然后进行样品连续剥蚀采集45s,停止剥蚀后继续吹扫15s清洗进样系统,单点测试分析时间75s。等离子质谱测试参数为冷却气流速(Ar)15.55L/min;辅助气流速(Ar)0.67L/min;载气流速(He)0.58L/min;样品气流速0.819L/min,射频发生器功率1205W。测试采用标样为美国地调局标准样品(USGS-Standard MASS-1)。硫化物微量元素测试精度优于10%,检出限为10-9

3 测试结果

LA-ICPMS分析结果显示,闪锌矿中微量元素含量具有较大的变化范围,同一矿床的不同闪锌矿样品,其闪锌矿微量元素组成也可能具有一定差异(表 2图 4)。本次测试获得的铅锌矿床闪锌矿微量元素组成特征如下。

表 2 扬子板块周缘铅锌矿床闪锌矿微量元素组成(×10-6) Table 2 Trace elements in sphalerite form the lead-zinc deposits around the Yangtze Block(×10-6)

图 4 扬子板块周缘铅锌矿床闪锌矿微量元素组成分布直方图 Fig. 4 Histograms of trace elements composition in sphalerites of the lead-zinc deposits around the Yangtze Block

(1) Fe含量较高,Mn含量低。会泽铅锌矿床、大梁子铅锌矿床、马元铅锌矿床和茶田锌汞矿床中闪锌矿样品Fe平均含量介于2836×10-6~12968×10-6,而金沙厂铅锌矿床闪锌矿Fe平均含量偏低,在59.67×10-6~84.38×10-6之间。上述矿床闪锌矿Mn含量均较低,平均值介于0.35×10-6~75.47×10-6之间。

(2) 稀散元素中Cd最为富集,Ge、Ga次之,Se、In、Tl、Te含量低。所有矿床闪锌矿样品Cd平均含量为662.9×10-6~7818×10-6,Cd含量最高可达1.50%(图 4)。Ge平均含量介于16.97×10-6~619.5×10-6之间,均达到了伴生工业品位要求(10.00×10-6《矿产资源综合利用手册》编委会, 2000),其中马元铅锌矿床和茶田锌汞矿床中闪锌矿Ge含量(Ge平均196.9×10-6~619.5×10-6)要高于川滇黔地区的铅锌矿床(Ge平均16.97×10-6~102.0×10-6)(图 4)。样品中稀散元素Ga的富集程度有限,大部分测点Ga含量<50.00×10-6(图 4),平均值为2.40×10-6~63.96×10-6,部分达到伴生工业品位(10.00×10-6《矿产资源综合利用手册》编委会, 2000)。Se、In、Tl、Te等稀散元素含量均较低,其值介于10n×10-9~n×10-6之间,部分测点低于检出限。

(3) Cu、Hg、Pb的含量均较高,且变化范围宽,平均值分别介于55.86×10-6~2099×10-6、46.93×10-6~1142×10-6、5.82×10-6~2121×10-6之间。金沙厂铅锌矿床和茶田锌汞矿床的闪锌矿Hg含量要明显高于其他铅锌矿床(图 4)。Ag元素也较为富集,平均值在2.56×10-6~292.7×10-6之间,金沙厂铅锌矿床与大梁子铅锌矿床闪锌矿Ag含量较其他矿床高(图 4)。As、Sb在金沙厂矿床中富集程度最高,平均值分别介于46.02×10-6~1082×10-6、167.3×10-6~528.0×10-6之间;大梁子铅锌矿床中As、Sb含量也相对较高,平均值分别为4.01×10-6~129.3×10-6、17.38×10-6~238.3×10-6;其他矿床中As、Sb富集程度有限,多为0.n×10-6~n×10-6,部分低于检出限。此外,金沙厂铅锌矿床中不同产状闪锌矿中As、Sb、Cu的富集程度存在差异:条带状矿石中闪锌矿As、Sb、Cu的平均含量要高于浸染状闪锌矿n~10n倍(表 2图 4)。金沙厂铅锌矿床闪锌矿不同于其他矿床的微量元素富集特征暗示了该矿床可能具有独特的成矿环境与形成过程。

(4) Co、Ni、Mo、Sn、Au、Bi等元素含量均很低,多在10n×10-9~n×10-6,部分测点低于检出限。

4 讨论 4.1 闪锌矿微量元素组成对成矿温度的指示

研究表明,闪锌矿中微量元素的组成可有效地指示成矿温度。成矿温度较高时,闪锌矿多富集Fe、Mn、In等元素,例如:滇东南都龙矽卡岩型锡铅锌多金属矿床闪锌矿Fe、Mn、In含量达10.81%、1600×10-6、426.1×10-6,云南澜沧老厂铅锌矿床闪锌矿Fe平均值为13.10%,Mn、In平均值含量达3060×10-6、60.00×10-6;而中低温条件下形成的闪锌矿通常贫Fe、Mn、In,但富集Ge、Ga、Cd等元素(刘英俊等,1984Cook et al., 2009; Ye et al., 2011叶霖等,2016)。扬子板块周缘铅锌矿床闪锌矿Fe、Mn平均含量分别介于59.67×10-6~12968×10-6之间和0.35×10-6~75.47×10-6之间,远低于上述与岩浆或火山活动有关的中-高温热液成因闪锌矿的Fe、Mn含量。统计表明从高温→中温→低温成矿条件,闪锌矿的Ge含量依次增高,高温闪锌矿含Ge一般<5.00×10-6,中温闪锌矿Ge含量介于5.00×10-6~50.00×10-6之间,低温闪锌矿Ge含量>50.00×10-6(刘英俊等,1984韩照信,1994高永宝等,2016)。本次测试的闪锌矿富集Cd、Ge、Ga,贫In,平均Ge含量≥16.97×10-6,与中低温闪锌矿Ge含量一致,并与流体包裹体测温结果吻合(图 4表 1表 2)。如后文所示,绝大部分MVT型铅锌矿床闪锌矿(80.00%左右的样品)含Ge>10.00×10-6,所有样品平均Ge含量>100.0×10-6,In含量通常<1.00×10-6;而矽卡岩型和高温脉状铅锌矿床闪锌矿中Ge含量<2.00×10-6~3.00×10-6,In平均含量则可达10n×10-6~100n×10-6Belissont et al.(2014)Frenzel et al.(2016)的研究也表明闪锌矿中稀散元素的组成虽然和成矿地质背景关系密切,但通常与岩浆热液有关的铅锌矿床闪锌矿稀散元素In含量高;MVT型铅锌矿床则倾向于富集Ge,贫In。扬子板块周缘的铅锌矿床闪锌矿样品中稀散元素的富集特征(闪锌矿样品Ge平均含量介于16.97×10-6~619.5×10-6之间,而绝大部分测点中In<3.00×10-6)与MVT型铅锌矿床类似(表 2)。前已述及,湘西-黔东地区的茶田锌汞矿床与扬子板块北缘马元铅锌矿床闪锌矿的Ge平均含量到达了伴生工业品位的n~10n倍,并要高于川滇黔地区的铅锌矿床(图 4),Ge元素的超常富集现象可能与它们的成矿温度相对较低有关(表 1)。此外,流体包裹体测温显示湘西-黔东铅锌成矿带内的大部分铅锌矿床成矿温度普遍偏低(周云等,2014),暗示了带内铅锌矿床中Ge元素的富集程度或较高,具有较好的Ge成矿、找矿潜力,值得进一步关注。

综上所述,扬子板块周缘铅锌矿床闪锌矿微量元素组成与MVT型铅锌矿床一致,稀散元素的富集特征还指示了这些矿床形成温度以中低温为主。

4.2 闪锌矿中微量元素赋存状态

与单矿物溶样、电子探针等常规分析方法相比,LA-ICPMS具有更高的精度,结合元素的时间分辨率曲线特征,能更好地揭示微量元素在硫化物中的赋存状态(Cook et al., 2009Ye et al., 2011Murakami and Ishihara, 2013Belissont et al., 2016叶霖等,2016)。

本次测试的闪锌矿Fe、Cd含量虽整体变化较大,但大多数单个样品中Fe、Cd含量变化范围有限(表 2),部分矿床(大梁子铅锌矿床、金沙厂铅锌矿床)闪锌矿Fe、Cd含量具有正态分布特征(图 4),在时间分辨率剖面图中Fe、Cd曲线较平直,并与Zn变化一致(图 5)。此外,一些样品中Fe和Cd含量还具负相关关系,相关系数R达0.53~0.74(图 6a)。上述特征均指示了闪锌矿中Fe、Cd主要以+2价的形式直接取代Zn2+:Zn2+↔(Fe2+, Cd2+)(Cook et al., 2009Murakami and Ishihara, 2013Belissont et al., 2016)。此外,Hg与Cd、Fe类似, 也主要以Zn2+↔Hg2+的方式进入闪锌矿(Radosavljevic′ et al., 2012;Lockington et al., 2014)。本次测定的茶田锌汞矿床闪锌矿Hg富集程度高,变化范围大,其含量介于8.15×10-6~9933×10-6之间,与前人提出的矿床中部分闪锌矿属于汞闪锌矿一致(Liu et al., 2017)。

图 5 闪锌矿LA-ICPMS时间分辨率剖面图 (a)大梁子闪锌矿DLZ-2;(b)大梁子闪锌矿DLZ-5 Fig. 5 Representative time-resolved LA-ICPMS depth profiles for sphalerite (a) Daliangzi Sample DLZ-2;(b) Daliangzi Sample DLZ-5

图 6 扬子板块周缘铅锌矿床闪锌矿中微量元素关系图 (a) Fe-Cd负相关;(b)Cu-Ge正相关,(Cu/Ge)mol≈2;(c)金沙厂铅锌矿床中(Cu+Ag)-Ge正相关;(d)金沙厂铅锌矿床(Cu+Ag)-(Ga+As+Sb)强正相关 Fig. 6 Binary plots of the Fe vs. Cd (a), Cu vs. Ge (b), (Cu+Ag) vs. Ge (c) and (Cu+Ag) vs. (Ga+As+Sb) (d) in sphalerite from the lead-zinc deposits around the Yangtze Block

前已述及,稀散元素Ge(Ga)在铅锌硫化物中的赋存机制仍然存在一定争议。部分学者认为Ge元素可能以+2价的形式取代Zn2+进入闪锌矿(Zn2+↔Ge2+)(Cook et al., 2009)。但最近的研究显示,很多矿床闪锌矿中Ge与Cu(Ag)等单价元素有强烈的相关性,指示了3Zn2+↔Ge4+ + 2(Cu+, Ag+)的替代机制(Belissont et al., 2016);而对于Ge与Cu(Ag)无相关关系的闪锌矿,则可能主要为2Zn2+↔Ge4+ +□(晶体空位)的替代方式(Cook et al., 2015Belissont et al., 2016)。还有学者依据Zn2+、Cu2+、和Ge2+离子具有相近的四面体共价半径,认为它们之间的置换方式为(n+1)Zn 2+↔Ge2++nCu2+(叶霖等,2016),但微束X射线近边吸收结构分析(μ-XANES)表明Ge和Cu在闪锌矿中主要以Ge4+和Cu+的氧化态出现,而并非+2价(Cook et al., 2012Belissont et al., 2016)。

此外,还有部分研究人员根据电子探针分析结果认为川滇黔地区和湘西-黔东铅锌矿床中Ge、Ga主要富集于方铅矿内(王乾等,2009曹亮等,2017)。本次LA-ICPMS测定的闪锌矿普遍富集Ge、Ga,即使是含有方铅矿显微包裹体的少数测点,时间分辨率剖面图中Ge、Ga曲线也较平直,并与Zn元素变化一致,而与Pb明显不同(图 5b),均表明Ge、Ga主要以类质同象的方式赋存在闪锌矿中。此外,本次研究的大部分铅锌矿床(除茶田锌汞矿床)闪锌矿中Cu、Ge之间具有较强的相关性(图 6bc),部分样品Cu/Ge值沿(Cu/Ge)mol=2的趋势线分布或近平行分布(图 6b),指示了这些矿床闪锌矿中Ge的替代方式可能主要为:3Zn2+↔Ge4+ + 2Cu+。茶田锌汞矿床闪锌矿Ge富集程度也较高,并高于Cu含量,矿床闪锌矿Ge与Cu及其它微量元素无明显的相关关系,说明该矿床中Ge可能主要通过2Zn2+↔Ge4+ +□(晶体空位)的方式进入闪锌矿。金沙厂铅锌矿床闪锌矿除Cu、Ge、Ga含量高外,还富集As、Sb、Ag等元素。叶霖等(2016)研究提出,川滇黔地区天宝山铅锌矿床As、Sb、Ag主要以类质同象的形式赋存在闪锌矿内的方铅矿显微包裹体中。然而,金沙厂铅锌矿床闪锌矿Pb含量较低,同一测点的As、Sb、Ag含量要高于Pb含量,As、Sb、Ag与Pb亦无明显的线性关系(R<0.30)。图 6d则揭示出金沙厂闪锌矿中(Cu+Ag)与(Ga+As+Sb)具强烈的相关性(R=0.90),结合这些元素在硫化物中的主要价态,我们认为该矿床闪锌矿中As、Sb和Ga的富集机制可能为2Zn2+↔(Cu,Ag)++(Ga,As,Sb)3+,而与天宝山铅锌矿床不同。

4.3 闪锌矿稀散元素组成特征对矿床成因类型的指示

本文系统收集了近十年以来所国内外发表的不同成因铅锌矿床闪锌矿LA-ICPMS微量元素测试数据,绘制了闪锌矿Ga、Ge、In统计特征图(图 7)。

图 7 全球范围内不同成因类型铅锌矿床闪锌矿Ga、Ge、In元素组成箱形图(LA-ICPMS) MVT型铅锌矿矿床数据来自本文; Cook et al., 2009; Ye et al., 2011; Pfaff et al., 2011; Bonnet et al., 2016; 叶霖等,2016; 张锋,2017; 王兆全,2017; Bonnet et al., 2017. SEDEX型铅锌矿床数据据Cook et al., 2009; George et al., 2016; Cugerone et al., 2018. VMS型铅锌矿床数据来自Cook et al., 2009; George et al., 2016; Wang et al., 2017. skarn型铅锌矿床数据来自Cook et al., 2009; Ye et al., 2011; Cook et al., 2011; Murakami and Ishihara, 2013; 邢波等,2016; Kołodziejczyk et al., 2016; George et al., 2016; 邢波等,2017.浅成脉状铅锌矿床数据来自Cook et al., 2009; Murakami et al., 2013; George et al., 2016. VMS+skarn?型矿床为广东大宝山、广西大厂、云南老厂和白牛厂铅锌多金属矿床,数据来自Ye et al., 2011; 叶霖等,2012Murakami and Ishihara, 2013.浅成脉状矿床成矿温度据Takenouchi and Imai, 1975; Cook et al., 2009; Shimizu and Morishita, 2012; Murakami and Ishihara, 2013 Fig. 7 Box diagrams of Ga, Ge and In compositions in sphalerite from the lead-zinc deposits of different genetic types worldwide(by LA-ICPMS) The trace elements data (LA-ICPMS) of different types of Pb-Zn deposit according to this study; Cook et al., 2009, 2011; Ye et al., 2011, 2016; Pfaff et al., 2011; Murakami and Ishihara, 2013; Kołodziejczyk et al., 2016; George et al., 2016; Bonnet et al., 2016; Xing et al., 2016; Zhang, 2017; Wang, 2017; Wang et al., 2017; Bonnet et al., 2017; Xing et al., 2017; Cugerone et al., 2018.Ore-forming temperature of epithermal and xenothermal deposits after Takenouchi and Imai, 1975; Cook et al., 2009; Shimizu and Morishita, 2012; Murakami and Ishihara, 2013

统计表明,全球范围内的不同类型铅锌矿床(除矽卡岩型铅锌矿床——skarn)闪锌矿Ga平均含量接近,其含量变化范围类似且均较大(图 7a)。此外,高温与中低温脉状铅锌矿床闪锌矿Ga富集程度也无明显差异(图 7d)。上述特征与前人提出的岩浆与火山热液成因的铅锌矿床闪锌矿Ga的富集程度要低于热水沉积和沉积改-造型铅锌矿床(即SEDEX与MVT),以及低温热液成因的闪锌矿可能更为富Ga的认识存在一定差异(刘英俊等,1984涂光炽等,2003)。矽卡岩型铅锌矿床闪锌矿较其他类型铅锌矿床明显贫Ga (80.00%以上样品含Ga≤3.00×10-6,95.00%以上含Ga≤10.00×10-6)(图 7a)。Ga3+离子半径与Al3+接近,具有强烈的亲石性(涂光炽等,2003)。在矽卡岩型矿床形成过程中从进化交代到退化蚀变阶段,均会形成大量的含铝硅酸盐矿物,成矿流体中的Ga则可能因进入硅酸盐而贫化,进而导致晚期硫化物阶段沉淀的闪锌矿贫Ga。这种现象在矽卡岩型铅锌矿床中可能是普遍存在的,例如山东香夼矽卡岩型铅锌矿床闪锌矿Ga平均含量仅为3.00×10-6,而矽卡岩中绿泥石、绿帘石含Ga在50.00×10-6~77.00×10-6之间(涂光炽等,2003);湖南黄沙坪铅锌矿床闪锌矿平均含Ga 6.00×10-6(涂光炽等,2003),而LA-ICPMS测得矽卡岩矿物石榴石(13HSP05-25)Ga含量介于12.50×10-6~54.90×10-6之间(Ding et al., 2018)。这也从另一个侧面说明了,除与MVT(SEDEX)型铅锌矿床有关的中低温盆地流体外,温度较高的岩浆热液也可能是富Ga的。

尽管稀散元素Ge在闪锌矿中富集成矿的详细过程尚不明确,但很多研究显示Ge的富集与中低温成矿流体关系密切(Belissont et al., 2014Cugerone et al., 2018)。最近,Belissont(2016)提出岩浆演化和沉积-成岩过程均可使Ge预富集,演化程度高、富挥发份的晚期岩浆-热液体系和富含有机质的沉积岩系Ge元素含量都较高,并可能是相关铅锌矿床Ge的主要来源。图 7b显示无论是成矿物质主要来自于沉积地层并与中低温盆地卤水有关的MVT型铅锌矿床,还是岩浆热液脉状铅锌多金属矿床中的闪锌矿均可能富Ge。MVT型铅锌矿床绝大部分闪锌矿(80.00 %左右)含Ge>10.00×10-6,但尚有少部分闪锌矿Ge<n×10-6,同时Ge的含量范围变化较大(图 7b),这可能是由于成矿流体(盆地流体)长距离迁移所流经、萃取的矿源层中Ge含量存在差异所致(叶霖等,2016)。SEDEX与MVT型铅锌矿床具有类似的成矿物质来源与流体特征,但图 7b显示该类型矿床闪锌矿中Ge的富集程度要低于MVT型铅锌矿床(80.00%的样品≤ 20.00×10-6),这可能是因为形成时代普遍较早的SEDEX型矿床经受过不同程度的变质作用,进而导致闪锌矿晶格中的Ge被排出(Cugerone et al., 2018);或是由于SEDEX型矿床成矿流体主要通过局部的循环对流萃取成矿物质,而未经类似于MVT成矿流体的长距离迁移,造成成矿流体中Ge的富集程度有限。但迄今国内外发表的SEDEX型铅锌矿床闪锌矿LA-ICPMS微量元素数据较少,上述认识还需更多的研究支持。与岩浆热液有关的铅锌矿床富Ge闪锌矿主要产出于中低温脉状矿床中(如欧洲Magura Mag、Sacaramb Sac等矿床),高温脉状矿床(如日本Toyoha等矿床)则贫Ge(80.00%以上样品Ge<2.00×10-6)(图 7d),进一步证明了Ge主要富集于中低温闪锌矿内。矽卡岩型矿床闪锌矿中Ge与Ga的含量特征类似,普遍很低(90.00%以上样品Ge<3.00×10-6)(图 7b),即便是硫化物形成温度偏低的远程矽卡岩型矿床,其闪锌矿Ge含量也要明显低于中低温热液脉状矿床(图 7b, d),如云南保山核桃坪和镇康芦子园矽卡岩矿床闪锌矿形成温度分别为190.0~220.0℃和186.0~210.0℃(韩艳伟,2010邓明国等,2018),LA-ICPMS测得两个矿床闪锌矿Ge含量介于2.51×10-6~3.73×10-6之间(48个测点)(Ye et al., 2011),这种现象似乎与Ge可在中低温岩浆热液中富集存在矛盾。Ge元素除有亲S性外,由于其原子半径与化学性质与Si相似,也易于进入硅酸盐矿物晶格(涂光炽等,2003)。与Ga元素类似,矽卡岩形成时流体中的Ge亦可能因优先进入矽卡岩矿物,而导致闪锌矿贫Ge。虽然现阶段还缺少矽卡岩型铅锌矿床成矿流体、硅酸盐矿物及硫化物中Ge元素富集规律的系统研究,但上述认识可从最近的一些矽卡岩矿床硅酸盐矿物LA-ICMS微量元素研究中得到支持,如Ding et al.(2018)报导的湖南黄沙坪矽卡岩型铅锌多金属矿床中石榴石(11HSP-05)、透闪石(11HSP-28)中Ge含量分别达10.40 ×10-6~39.00×10-6和16.70×10-6~30.90×10-6。此外,部分VMS型铅锌矿床闪锌矿Ge含量也较高(图 7b),印度洋Wocan热区现代洋底黑烟囱内中温闪锌矿Ge含量可达70.00×10-6~404.0×10-6(Wang et al., 2017)。综上可见,与笔者等早期提出的与岩浆或火山热液活动有关的铅锌矿床闪锌矿贫Ge的认识不同(吴越,2013胡鹏等,2014),除MVT(SEDEX)型铅锌矿床闪锌矿中Ge易于富集成矿外,岩浆热液与洋底火山热液体系及其形成的闪锌矿均可能富Ge,而Ge富集与否和富集程度受物质来源、成矿流体性质以及流体演化过程综合控制。

In元素与Ga、Ge元素在铅锌矿床闪锌矿中的富集规律不同,富In闪锌矿几乎全部产出在与岩浆或火山活动有关的铅锌矿床中,而MVT和SEDEX型铅锌矿床则普遍贫In(80.00%以上的样品含In<1.00×10-6~2.00×10-6),且含量变化范围较小(图 7c),即便是成矿温度相对较高的会泽超大型MVT铅锌矿床(部分闪锌矿形成温度可达300℃以上)闪锌矿含In也仅在<0.02×10-6~5.60×10-6之间(Ye et al., 2011)。上述特征与欧美学者认为的铅锌矿床中In主要为岩浆来源的观点吻合(李晓峰等, 2007, 2010; 徐净和李晓峰,2018)。In在地壳中的丰度很低,约为0.05×10-6(Schwarz-Schampera, 2014),这可能是In难于在壳源MVT和SEDEX型铅锌矿床闪锌矿中富集成矿的一个重要原因;但由于In为不相容元素,在岩浆演化晚期可在残余岩浆热液中富集(皮桥辉等,2015),In离子属铜型离子,具有较强的亲S性(刘英俊等,1984),在矽卡岩型铅锌矿床形成过程中也不易进入矽卡岩矿物(与Ge、Ga不同),上述In的地球化学性质决定了它在不同类型铅锌矿床中的富集特征。此外,岩浆热液铅锌矿床中,高温脉状矿床闪锌矿In的富集程度较中低温脉状矿床高(图 7d),印证了较高的温度有利于In富集的观点(张乾等,2003)。同时,富In的铅锌矿床通常也富Sn(如滇东南都龙铅锌矿床、日本Toyoha铅锌矿床等),这可能与中高温岩浆热液中In、Sn共同迁移有关(张乾等,2003朱笑青等,2006Shimizu and Morishita, 2012)。

我国华南地区的一些铅锌多金属矿床(如广东大宝山、广西大厂、云南蒙自白牛厂、云南澜沧老厂等矿床)的成因一直存在较大的争议,主要的成因观点有:①VMS型矿床;②岩浆热液矽卡岩型矿床;③叠生矿床:火山喷流沉积+后期岩浆热液叠加成因(VMS+skarn)(叶霖等,2012)。从这些铅锌矿床闪锌矿的稀散元素组成特征来看(图 7中VMS+skarn?型),Ga、Ge、In含量的平均值与分布范围介于VMS和矽卡岩型铅锌矿床之间,同时闪锌矿中Ga和Ge的含量要明显高于矽卡岩型矿床(图 7a, b)。叶霖等(2012)通过云南澜沧老厂铅锌矿床闪锌矿微量元素(LA-ICPMS)组成具有一定的独特性——与VMS和矽卡岩型矿床均有一定差异,进而认为该矿床属于与岩浆热液叠加改造作用有关的火山喷流矿床;皮桥辉等(2015)还提出广西大厂矿田闪锌矿中铟是通过岩浆晚期富In流体交代早期形成的闪锌矿的形式而富集成矿。总而言之,这些铅锌多金属矿床可能经历了相对复杂的形成过程,而高精度的硫化物原位微区微量元素研究(如不同阶段、不同产状闪锌矿微量元素对比研究等)则可能为恢复其成矿过程提供更为可靠的信息。而在利用闪锌矿微量元素(如稀散元素等)特征来判定铅锌矿床的成因类型时不能单纯地依靠图解法,需在矿床地质特征基础上,综合考虑成矿物质来源、成矿流体性质与演化过程、微量元素的行为特征以及可能的多期成矿作用等多种因素。

5 结论

通过对扬子板块周缘主要的铅锌成矿带内铅锌矿床闪锌矿以及全球范围内不同类型铅锌矿床闪锌矿LA-ICPMS微量元素研究,获得认识如下:

(1) 扬子板块周缘铅锌矿床中闪锌矿以富集稀散元素Ge、Ga(Cd),贫In(Se、Tl、Te)为特征;Cu、Hg在各矿床闪锌矿中含量均较高,Ag、As、Sb在不同矿床中富集程度不同。

(2) 稀散元素Ge可能主要通过3Zn2+↔Ge4+ + 2(Cu+, Ag+)(四川大梁子铅锌矿、云南会泽铅锌矿、云南金沙厂铅锌矿、马元铅锌矿)和2Zn2+↔Ge4+ +□(晶体空位)(湖南茶田锌汞矿)的替代方式进入闪锌矿;Ga元素在闪锌矿中富集机制则可能为:2Zn2+↔(Cu,Ag)++(Ga,As,Sb)3+

(3) 铅锌矿床闪锌矿中Ga和Ge元素的可能来源为岩浆或沉积地层;Ga元素可在不同类型的铅锌矿床(除skarn型外)闪锌矿中富集成矿,富集程度受温度控制不明显;Ge元素倾向于富集在中低温闪锌矿中,MVT、SEDEX、VMS及低温脉状铅锌矿床中Ge均可富集成矿;矽卡岩型铅锌矿床闪锌矿具有贫Ga、Ge的特征,与矽卡岩化过程中成矿流体Ga、Ge的贫化关系密切。铅锌矿矿床闪锌矿中In主要来自于岩浆,成矿温度相对较高的岩浆热液铅锌矿床闪锌矿富集In,而与中低温盆地卤水有关的MVT(SEDEX)型铅锌矿床闪锌矿贫In。

致谢      闪锌矿LA-ICPMS微量元素测试获得了国家地质实验中心胡明月博士的帮助;两位审稿人对论文提出了宝贵的修改意见;在此一并致谢。

参考文献
Bai JH, Huang ZL, Zhu D, Yan ZF and Zhou JX. 2013. Isotopic compositions of sulfur in the Jinshachang lead-zinc deposit, Yunnan, China, and its implication on the formation of sulfur-bearing minerals. Acta Geologica Sinica, 87(5): 1355-1369 DOI:10.1111/1755-6724.12134
Bao ZW, Li Q and Wang CY. 2017. Metal source of giant Huize Zn-Pb deposit in SW China:New constraints from in situ Pb isotopic compositions of galena. Ore Geology Reviews, 91: 824-836 DOI:10.1016/j.oregeorev.2017.08.019
Belissont R, Boiron MC, Luais B and Cathelineau M. 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France):Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126: 518-540 DOI:10.1016/j.gca.2013.10.052
Belissont R. 2016. Germanium and related elements in sulphide minerals: Crystal chemistry, incorporation and isotope fractionation. Ph. D. Dissertation. Lorraine: Université de Lorraine, 1-240
Belissont R, Muñoz M, Boiron MC, Luais B and Mathon O. 2016. Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-xrf and K-edge μ-xanes:Insights into Ge incorporation, partitioning and isotopic fractionation. Geochimica et Cosmochimica Acta, 177: 298-314 DOI:10.1016/j.gca.2016.01.001
Bonnet J, Mosser-Ruck R, Caumon MC, Rouer O, Andre-Mayer AS, Cauzid J and Peiffert C. 2016. Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography. The Canadian Mineralogist, 54(5): 1261-1284 DOI:10.3749/canmin.1500104
Bonnet J, Cauzid J, Testemale D, Kieffer I, Proux O, Lecomte A and Bailly L. 2017. Characterization of germanium speciation in sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray absorption spectroscopy. Minerals, 7(5): 79 DOI:10.3390/min7050079
Cao L, Duan QF, Hu SJ, Zhou Y, Li K and Gan JM. 2017. Geological characteristics and enrichment law of the dispersed elements of the sphalerite in the Huayuan ore fields of Limei Pb-Zn deposit, western Hunan Province. Geology and Mineral Resources of South China, 33(4): 354-364 (in Chinese with English abstract)
Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B and Melcher F. 2009. Trace and minor elements in sphalerite:A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791 DOI:10.1016/j.gca.2009.05.045
Cook NJ, Sundblad K, Valkama M, Nygård R, Ciobanu CL and Danyushevsky L. 2011. Indium mineralisation in A-type granites in southeastern Finland:Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284(1-2): 62-73 DOI:10.1016/j.chemgeo.2011.02.006
Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, de Jonge MD, Ryan C and Paterson D. 2012. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. American Mineralogist, 97(2-3): 476-479 DOI:10.2138/am.2012.4042
Cook NJ, Etschmann B, Ciobanu CL, Geraki K, Howard DL, Williams T, Rae N, Pring A, Chen GR, Johannessen B and Brugger J. 2015. Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5(2): 117-132 DOI:10.3390/min5020117
Cugerone A, Cenki-Tok B, Chauvet A, Le Goff E, Bailly L, Alard O and Allard M. 2018. Relationships between the occurrence of accessory Ge-minerals and sphalerite in Variscan Pb-Zn deposits of the Bossost anticlinorium, French Pyrenean Axial Zone:Chemistry, microstructures and ore-deposit setting. Ore Geology Reviews, 95: 1-19 DOI:10.1016/j.oregeorev.2018.02.016
Deng MG, Chen W, Wang XW, Liu FX, Guan SJ, Lu YX, Yu HJ and Zhao F. 2018. Fluid inclusion and ore genesis of the Luziyuan distal skarn Pb-Zn-Fe(-Cu) poly-metallic deposit, West Yunnan, SW China. Acta Petrologica Sinica, 34(5): 1239-1257 (in Chinese with English abstract)
Ding T, Ma DS, Lu JJ, Zhang RQ and Zhang ST. 2018. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China. Ore Geology Reviews, 94: 193-211 DOI:10.1016/j.oregeorev.2018.01.029
Editorial Committee of Handbook about Byproduct Utilization of Underground Resources. 2000. Handbook about Byproduct Utilization of Underground Resources. Beijing: Science Press: 1-824 (in Chinese)
Frenzel M, Hirsch T and Gutzmer J. 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type:A meta-analysis. Ore Geology Reviews, 76: 52-78 DOI:10.1016/j.oregeorev.2015.12.017
Gao YB, Li K, Qian B, Li WY, Zheng MC and Zhang CG. 2016. Trace elements, S, Pb He, Ar and C isotopes of sphalerite in the Mayuan Pb-Zn deposit, at the northern margin of the Yangtze plate, China. Acta Petrologica Sinica, 32(1): 251-263 (in Chinese with English abstract)
George LL, Cook NJ and Ciobanu CL. 2016. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores. Ore Geology Reviews, 77: 97-116 DOI:10.1016/j.oregeorev.2016.02.009
Han RS, Hu YZ, Wang XK, Huang ZL, Chen J, Wang F, Wu P, Li B, Wang HJ, Dong Y and Lei L. 2012. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China. Acta Geologica Sinica, 86(2): 280-294 (in Chinese with English abstract)
Han RS, Li B, Ni P, Qiu WL, Wang XD and Wang TG. 2016. Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of Huize super-large Zn-Pb-(Ge-Ag) deposit, Yunnan Province. Journal of Jilin University (Earth Science Edition), 46(1): 91-104 (in Chinese with English abstract)
Han YW. 2010. Historical analysis of ore-forming fluid evolution of V1 orebody in Hetaoping Pb Zn deposit, Baoshan, western Yunnan. Master Degree Thesis. Kunming: Kunming University of Science and Technology, 1-114 (in Chinese with English summary)
Han ZX. 1994. The typomorphic characteristic of the sphalerite in the Qinling Devonian system lead-zinc metallogenic belt. Journal of Xi'an College of Geology, 16(1): 12-17 (in Chinese with English abstract)
Hou MT, Wang DG, Yang ZR and Gao J. 2007. Geological characteristics of lead-zinc mineralized zones in the Mayuan area, Shaanxi and their ore prospects. Geology in China, 34(1): 101-109 (in Chinese with English abstract)
Hu P, Wu Y, Zhang CQ and Hu MY. 2014. Trace and minor elements in sphalerite from the Mayuan lead-zinc deposit, northern margin of the Yangtze Plate:Implications from LA-ICP-MS analysis. Acta Mineralogica Sinica, 34(4): 461-468 (in Chinese with English abstract)
Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita, 47(6): 579-588 DOI:10.1007/s00126-012-0431-6
Hu RZ, Chen WT, Xu DR and Zhou MF. 2017a. Reviews and new metallogenic models of mineral deposits in South China:An introduction. Journal of Asian Earth Sciences, 137: 1-8 DOI:10.1016/j.jseaes.2017.02.035
Hu RZ, Fu SL, Huang Y, Zhou MF, Fu SH, Zhao CH, Wang YJ, Bi XW and Xiao JF. 2017b. The giant South China mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9-34 DOI:10.1016/j.jseaes.2016.10.016
Huang ZL, Chen J, Han RS, Li WB, Liu CQ, Zhang ZL, Ma DY, Gao DR and Yang HL. 2004. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China:Discussion on the Relationship between Pb-Zn Mineralization and Emeishan Basalt. Beijing: Geological Publishing House: 1-187 (in Chinese)
Kołodziejczyk J, Pršek J, Voudouris P, Melfos V and Asllani B. 2016. Sn-bearing minerals and associated sphalerite from lead-zinc deposits, Kosovo:An electron microprobe and LA-ICP-MS study. Minerals, 6(2): 42 DOI:10.3390/min6020042
Li K. 2018. Metallogenic model and prediction of the carbonate-hosted Pb-Zn deposits in western Hunan and Eastern Guizhou Province, South China. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-175 (in Chinese with English summary)
Li XF, Watanabe Y and Mao JW. 2007. Research situation and economic value of indium deposits. Mineral Deposits, 26(4): 475-480 (in Chinese with English abstract)
Li XF, Yang F, Chen ZY, Bu GJ and Wang YT. 2010. A tentative discussion on geochemistry and genesis of indium in Dachang tin ore district, Guangxi. Mineral Deposits, 29(5): 903-914 (in Chinese with English abstract)
Liu JP, Rong YN and Zhang SG. 2017. Mineralogy of Zn-Hg-S and Hg-Se-S series minerals in carbonate-hosted mercury deposits in western Hunan, South China. Minerals, 7(6): 101 DOI:10.3390/min7060101
Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Element Geochemistry. Beijing: Science Press: 1-548 (in Chinese)
Lockington JA, Cook NJ and Ciobanu CL. 2014. Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 108(6): 873-890 DOI:10.1007/s00710-014-0346-2
Murakami H and Ishihara S. 2013. Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan:A femto-second LA-ICPMS study. Ore Geology Reviews, 53: 223-243 DOI:10.1016/j.oregeorev.2013.01.010
Pfaff K, Koenig A, Wenzel T, Ridley I, Hildebrandt LH, Leach DL and Markl G. 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS:Incorporation mechanisms and implications for their genesis. Chemical Geology, 286(3-4): 118-134
Pi QH, Hu RZ, Wang DH, Miao BK, Qin XF and Chen HY. 2015. Enrichment of indium in west ore belt of Dachang orefield:Evidence from ore textures and sphalerite geochemistry. Mineral Deposits, 34(2): 379-396 (in Chinese with English abstract)
Radosavljević SA, Stojanović JN and Pačevski AM. 2012. Hg-bearing sphalerite from the Rujevac polymetallic ore deposit, Podrinje Metallogenic District, Serbia:Compositional variations and zoning. Chemie der Erde-Geochemistry, 72(3): 237-244 DOI:10.1016/j.chemer.2011.12.003
Schwarz-Schampera U. 2014. Indium. In: Gunn G (ed.). Critical Metals Handbook. Chichester: John Wiley & Sons, 204-229
Shimizu T and Morishita Y. 2012. Petrography, chemistry, and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Economic Geology, 107(4): 723-735 DOI:10.2113/econgeo.107.4.723
Takenouchi S and Imai H. 1975. Glass and fluid inclusions in acidic igneous rocks from some mining areas in Japan. Economic Geology, 70(4): 750-769 DOI:10.2113/gsecongeo.70.4.750
Tu GC, Gao ZM and Hu RZ. 2003. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Beijing: Geological Publishing House: 1-424 (in Chinese)
Wang Q, An YL, Gu XX, Fu SH and Li FY. 2009. Enrichment law of the dispersed elements Cd, Ge and Ga in the Tianbaoshan Pb-Zn deposit, Sichuan, China. Journal of Chengdu University of Technology (Science and Technology Edition), 36(4): 395-401 (in Chinese with English abstract)
Wang XH, Xue CJ, Li ZM, Li Q and Yang RJ. 2008. Geological and geochemical characteristics of Mayuan Pb-Zn ore deposit on northern margin of Yangtze landmass. Mineral Deposits, 27(1): 37-48 (in Chinese with English abstract)
Wang YJ, Han XQ, Petersen S, Frische M, Qiu ZY, Li HM, Li HL, Wu ZC and Cui RY. 2017. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84: 1-19 DOI:10.1016/j.oregeorev.2016.12.020
Wang ZQ. 2017. Enrichment regularity of dispersed elements in Huize super-large Pb-Zn deposit. Master Degree Thesis. Beijing: China University of Geosciences, 1-65 (in Chinese)
Wu Y, Zhang CQ, Mao JW, Ouyang HG and Sun J. 2013. The genetic relationship between hydrocarbon systems and Mississippi Valley-type Zn-Pb deposits along the SW margin of Sichuan Basin, China. International Geology Review, 55(8): 941-957 DOI:10.1080/00206814.2012.753177
Wu Y. 2013. The age and ore-forming process of MVT deposits in the boundary area of Sichuan-Yunnan-Guizhou provinces, Southwest China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-167 (in Chinese with English summary)
Xing B, Zheng W, Ouyang ZX, Wu XD, Lin WP and Tian Y. 2016. Sulfide microanalysis and S isotope of the Miaoshan Cu polymetallic deposit in western Guangdong Province, and its constraints on the ore genesis. Acta Geologica Sinica, 90(5): 971-986 (in Chinese with English abstract)
Xing B, Xiang JF, Ye HS, Chen XD, Zhang GS, Yang CY, Jin X and Hu ZZ. 2017. Genesis of Luotuoshan sulfur polymetallic deposit in western Henan Province:Evidence from trace elements of sulfide revealed by using LA-ICP-MS in lamellar ores. Mineral Deposits, 36(1): 83-106 (in Chinese with English abstract)
Xu J and Li XF. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrologica Sinica, 34(12): 3611-3626 (in Chinese with English abstract)
Xue BG. 2004. The approach of the geologic characteristic and the origin of the associated (coexisted) Ge ore in the northeastward in Yunnan Province. Geology of Chemical Minerals, 26(4): 210-219 (in Chinese with English abstract)
Yang T, Duan QF and Tian W. 2014. Geological characteristics and prospecting potential of Chatian Pb-Zn-Hg deposit, western Hunan Province. Geology and Mineral Resources of South China, 30(2): 109-117 (in Chinese with English abstract)
Ye L, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL and Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study. Ore Geology Reviews, 39(4): 188-217 DOI:10.1016/j.oregeorev.2011.03.001
Ye L, Gao W, Yang YL, Liu TG and Peng SS. 2012. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province. Acta Petrologica Sinica, 28(5): 1362-1372 (in Chinese with English abstract)
Ye L, Li ZL, Hu YS, Huang ZL, Zhou JX, Fan HF and Danyushevskiy L. 2016. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China:A LA-ICPMS study. Acta Petrologica Sinica, 32(11): 3377-3393 (in Chinese with English abstract)
Zhang CQ, Mao JW, Wu SP, Li HM, Liu F, Guo BJ and Gao DR. 2005. Distribution, characteristics and genesis of Mississippi Valley-type lead-zinc deposits in Sichuan-Yunnan-Guizhou area. Mineral Deposits, 24(3): 336-348 (in Chinese with English abstract)
Zhang CQ, Wu Y, Hou L and Mao JW. 2015. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, Southwest China:Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit. Journal of Asian Earth Sciences, 103: 103-114 DOI:10.1016/j.jseaes.2014.08.013
Zhang F. 2017. Study on ore genesis of the Tianbaoshan Pb-Zn deposit and the regional metallogenetic geodynamical setting. Master Degree Thesis. Beijing: China University of Geosciences, 1-82 (in Chinese with English summary)
Zhang Q. 1987. Application of diagram of trace elements in the sphalerite and galena to the genetic type of lead and zinc deposit. Geology Geochemistry, (9): 66-68 (in Chinese)
Zhang Q, Liu ZH, Zhan ZX and Shao SX. 2003. Specialization of ore deposit types and minerals for enrichment of indium. Mineral Deposits, 22(3): 309-316 (in Chinese with English abstract)
Zhou JX, Xiang ZZ, Zhou MF, Feng YX, Luo K, Huang ZL and Wu T. 2018. The giant Upper Yangtze Pb-Zn province in SW China:Reviews, new advances and a new genetic model. Journal of Asian Earth Sciences, 154: 280-315 DOI:10.1016/j.jseaes.2017.12.032
Zhou Y, Duan QF, Cao L, Li F and Huang HL. 2014. Large-scale low-temperature mineralizations in western Hunan-western Hubei lead-zinc deposits. Geological Journal of China Universities, 20(2): 198-212 (in Chinese with English abstract)
Zhu XQ, Zhang Q, He YL and Zhu CH. 2006. Relationships between indium and tin, zinc and lead in ore-forming fluid from the indium-rich and -poor deposits in China. Geochimica, 35(1): 6-12 (in Chinese with English abstract)
《矿产资源综合利用手册》编委会. 2000. 矿产资源综合利用手册. 北京: 科学出版社: 1-824.
曹亮, 段其发, 胡尚军, 周云, 李堃, 甘金木. 2017. 湘西花垣铅锌矿田李梅矿区地质特征及闪锌矿中分散元素的富集规律. 华南地质与矿产, 33(4): 354-364.
邓明国, 陈伟, 王学武, 刘凤祥, 管申进, 卢映祥, 余海军, 赵发. 2018. 滇西芦子园远程矽卡岩Pb-Zn-Fe(Cu)多金属矿床流体包裹体初探及矿床成因探讨. 岩石学报, 34(5): 1239-125.
高永宝, 李侃, 钱兵, 李文渊, 郑敏昌, Zhang CG. 2016. 扬子北缘马元铅锌矿床闪锌矿微量元素及S-Pb-He-Ar-C同位素地球化学研究. 岩石学报, 32(1): 251-263.
韩润生, 胡煜昭, 王学琨, 黄智龙, 陈进, 王峰, 吴鹏, 李波, 王洪江, 董英, 雷丽. 2012. 滇东北富锗银铅锌多金属矿集区矿床模型. 地质学报, 86(2): 280-294.
韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 2016. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例. 吉林大学学报(地球科学版), 46(1): 91-104.
韩艳伟. 2010.滇西保山核桃坪铅锌矿V1矿体成矿流体演化的历史分析.硕士学位论文.昆明: 昆明理工大学, 1-114 http://cdmd.cnki.com.cn/Article/CDMD-10674-1011053410.htm
韩照信. 1994. 秦岭泥盆系铅锌成矿带中闪锌矿的标型特征. 西安地质学院学报, 16(1): 12-17.
侯满堂, 王党国, 杨宗让, 高杰. 2007. 陕西马元地区铅锌矿地质特征及找矿远景. 中国地质, 34(1): 101-109.
胡鹏, 吴越, 张长青, 胡明月. 2014. 扬子板块北缘马元铅锌矿床闪锌矿LA-ICP-MS微量元素特征与指示意义. 矿物学报, 34(4): 461-468.
黄智龙, 陈进, 韩润生, 李文博, 刘丛强, 张振亮, 马德云, 高德荣, 杨海林. 2004. 云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿的关系. 北京: 地质出版社: 1-187.
李堃. 2018.湘西-黔东地区铅锌矿床成矿模式与成矿预测.博士学位论文.武汉: 中国地质大学, 1-175 http://cdmd.cnki.com.cn/Article/CDMD-10491-1018817081.htm
李晓峰, Watanabe Y, 毛景文. 2007. 铟矿床研究现状及其展望. 矿床地质, 26(4): 475-480.
李晓峰, 杨锋, 陈振宇, 卜国基, 王义天. 2010. 广西大厂锡矿铟的地球化学特征及成因机制初探. 矿床地质, 29(5): 903-914.
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社: 1-548.
皮桥辉, 胡瑞忠, 王登红, 缪秉魁, 覃小峰, 陈宏毅. 2015. 广西大厂锡多金属矿田西矿带稀散元素铟的富集规律研究——来自矿石组构和闪锌矿地球化学的证据. 矿床地质, 34(2): 379-396.
涂光炽, 高振敏, 胡瑞忠. 2003. 分散元素地球化学及成矿机制. 北京: 地质出版社: 1-424.
王乾, 安匀玲, 顾雪祥, 付绍洪, 李发源. 2009. 四川天宝山铅锌矿床分散元素镉锗镓富集规律. 成都理工大学学报(自然科学版), 36(4): 395-401.
王晓虎, 薛春纪, 李智明, 李强, 杨荣进. 2008. 扬子陆块北缘马元铅锌矿床地质和地球化学特征. 矿床地质, 27(1): 37-48.
王兆全. 2017.云南会泽超大型铅锌矿床分散元素富集规律.硕士学位论文.北京: 中国地质大学, 1-65 http://cdmd.cnki.com.cn/Article/CDMD-11415-1017055944.htm
吴越. 2013.川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制.博士学位论文.北京: 中国地质大学, 1-167 http://cdmd.cnki.com.cn/Article/CDMD-11415-1013261806.htm
邢波, 郑伟, 欧阳志侠, 吴晓东, 林玮鹏, 田云. 2016. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约. 地质学报, 90(5): 971-986.
邢波, 向君峰, 叶会寿, 陈小丹, 张国苏, 杨晨英, 金雪, 胡志中. 2017. 豫西骆驼山硫多金属矿床的成因——来自纹层状矿石中硫化物LA-ICP-MS微量元素证据. 矿床地质, 36(1): 83-106.
徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程. 岩石学报, 34(12): 3611-3626.
薛步高. 2004. 滇东北伴(共)生锗矿地质特征及成因探讨. 化工矿产地质, 26(4): 210-219.
杨霆, 段其发, 田文. 2014. 湘西茶田铅锌汞矿床地质特征及找矿前景. 华南地质与矿产, 30(2): 109-117.
叶霖, 高伟, 杨玉龙, 刘铁庚, 彭绍松. 2012. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成. 岩石学报, 28(5): 1362-1372.
叶霖, 李珍立, 胡宇思, 黄智龙, 周家喜, 樊海峰, Danyushevskiy L. 2016. 四川天宝山铅锌矿床硫化物微量元素组成:LA-ICPMS研究. 岩石学报, 32(11): 3377-3393.
张长青, 毛景文, 吴锁平, 李厚民, 刘峰, 郭保健, 高德荣. 2005. 川滇黔地区MVT铅锌矿床分布、特征及成因. 矿床地质, 24(3): 336-348.
张锋. 2017.四川天宝山铅锌矿床成因研究及区域成矿动力学背景探讨.硕士学位论文.北京: 中国地质大学, 1-82 http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136365.htm
张乾. 1987. 利用方铅矿、闪锌矿的微量元素图解法区分铅锌矿床的成因类型. 地质地球化学, (9): 66-68.
张乾, 刘志浩, 战新志, 邵树勋. 2003. 分散元素铟富集的矿床类型和矿物专属性. 矿床地质, 22(3): 309-316.
周云, 段其发, 曹亮, 李芳, 黄惠兰. 2014. 湘西-鄂西地区铅锌矿的大范围低温流体成矿作用研究. 高校地质学报, 20(2): 198-212.
朱笑青, 张乾, 何玉良, 祝朝辉. 2006. 富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究. 地球化学, 35(1): 6-12.