岩石学报  2019, Vol. 35 Issue (10): 3189-3212, doi: 10.18654/1000-0569/2019.10.14   PDF    
东天山卡拉塔格地区镁铁质岩体年代学、岩石地球化学研究
周国超1, 王玉往2, 石煜2, 解洪晶2, 李德东2, 郭博然2     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 北京矿产地质研究院, 有色金属矿山深部资源勘查工程技术研究中心, 北京 100012
摘要: 东天山大南湖岛弧带北缘卡拉塔格地区发育一系列镁铁质岩体,出露面积 < 1km2。岩体岩相较为单一,主要岩性有辉长岩、橄榄辉长岩、橄长岩、淡色辉长岩和辉绿岩。本文利用LA-ICP-MS测得2个辉长岩的锆石U-Pb年龄分别为282.2±0.6Ma和278.3±0.6Ma;与吐哈盆地玄武岩及东天山地区铜镍硫化物矿床时代一致。岩石地球化学显示相对低Fe、高Al、Ca、碱、Ti,富集Rb、Ba、Sr、K,亏损Th、Nb、Ta的特征。岩石的(87Sr/86Sr)i=0.70313~0.70461,εNdt)=+6.22~+8.64,(206Pb/204Pb)i=17.68~18.103,(207Pb/204Pb)i=15.443~15.536,(208Pb/204Pb)i=37.423~37.801,表现出高Nd、低Sr、低Pb,且变化范围较窄的特征。综合研究表明,该地区镁铁质岩体的岩浆动力学背景为后碰撞伸展环境;岩浆源区为俯冲板片交代的岩石圈地幔,并被软流圈物质混染;同位素和微量元素模拟显示母岩浆在源区遭受了5%~15%的板片流体交代,在上升过程中遭受了 < 5%的上地壳物质混染。卡拉塔格地区镁铁质岩体与东天山二叠纪镁铁-超镁铁质岩体和吐哈盆地玄武岩形成于同一构造岩浆系统,在剥蚀较浅的大南湖岛弧带具有形成铜镍硫化物矿床的潜力。
关键词: 镁铁-超镁铁岩    二叠纪    地球化学    岩浆源区    卡拉塔格    东天山    
Geochronology and geochemistry of mafic intrusions in the Kalatag area, eastern Tianshan
ZHOU GuoChao1, WANG YuWang2, SHI Yu2, XIE HongJing2, LI DeDong2, GUO BoRan2     
1. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;
2. Beijing Institute of Geology for Mineral Resources, Deep Exploration Technic Center for Non-ferrous Mines, Beijing 100012, China
Abstract: A series of mafic intrusions are developed in the Kalatag area on the northern edge of the Dananhu arc in the eastern Tianshan, with an exposed area of < 1km2. The lithofacies are relatively simple, and the main rock types include gabbro, olive gabbro, troctolite, pale gabbro and diabase. The LA-ICP-MS U-Pb ages of zircons from two gabbro samples were 282.2±0.6Ma and 278.3±0.6Ma, respectively, which were consistent with the age of the Tuha basalt and Ni-Cu sulfide deposits in the eastern Tianshan. Geochemistry characteristic of the mafic intrusions shows relatively low of Fe and high of Al, Ca, alkali and Ti; enrichment of Rb, Ba, Sr, K and loss of Th, Nb, Ta. And the mafic intrusions are characterized by variable values of (87Sr/86Sr)i=0.70313~0.70461, εNd(t)=+6.22~+8.64, (206Pb/204Pb)i=17.68~18.103, (207Pb/204Pb)i=15.443~15.536, (208Pb/204Pb)i=37.423~37.801, indicating high of Nd, low of Sr and Pb, and a narrow range of variation. The comprehensive study shows that the magma dynamic background of the mafic intrusions in Kalatag is in the post-collision extension environment; the intrusions were the result of partial melting of a metasomatic mantle modified by the subducted slab-derived melt/fluid, as well contaminated by the asthenosphere material. Simulations with isotope and trace elements show that the primary magma suffered 5%~15% of the slab fluid in the mantle source, and assimilated to < 5% of the upper crust material during the emplacement process. The mafic intrusions in the Kalatag area are formed in the same tectonic-magmatic system as the Permian Tuha basalts and mafic-ultramafic intrusions in the eastern Tianshan, and Dannanhu arc has a good potential for Ni-Cu sulfide deposits because of its shallow denudation thickness.
Key words: Mafic-ultramafic intrusion    Permian    Geochemistry    Magma source    Kalatag    Eastern Tianshan    

新疆东天山地区发育有大量的二叠纪镁铁-超镁铁质岩体,形成了多个岩浆型铜镍硫化物矿床及钒钛磁铁矿矿床(秦克章, 2000; 毛景文等, 2002; Mao et al., 2008; Tang et al., 2012; Su et al., 2011, 2012; 王玉往等, 2009, 2010, 2013; 石煜等, 2017a, b; Shi et al., 2018),这些岩体和矿床沿区域断裂分布在多个构造单元内,是我国重要的正岩浆矿床集中产区(王京彬和徐新, 2006; 刘德权等, 2005; Qin et al., 2003)。前人研究在岩浆源区、岩浆演化、成矿作用及构造背景等方面取得了许多重要的成果,认为其成岩成矿时代集中在268~300Ma(韩宝福等, 2004; 三金柱等, 2010; 李锦轶等, 2006; 唐冬梅等, 2009; Qin et al., 2011; Sun et al., 2013a, b),母岩浆主要来自亏损地幔(邓宇峰等, 2011; Tang et al., 2012, 2013; 赵云等, 2016),在演化过程中发生了不同程度的岩石圈物质混染,混染作用导致了岩浆中硫达到饱和而成矿(钱壮志等, 2009; 孙涛等, 2010; Han et al., 2013; Mao et al., 2016)。对于该期岩浆活动的构造背景认识分歧较大,主要有:地幔柱成因(Zhou et al., 2004; Pirajno et al., 2008);俯冲作用所致(毛启贵等, 2006; Han et al., 2010, 2013);后碰撞阶段幔源岩浆底垫作用所导致的地壳伸展作用的结果(韩宝福等, 2004; 王京彬和徐新, 2006; Wang et al., 2008);后碰撞伸展作用和地幔柱叠加(Qin et al., 2011; Su et al., 2011)。

另一方面,关于区内铜镍硫化物矿床的成因,一些学者认为,东天山地区的铜镍硫化物矿床形成于岩浆通道成矿系统(Mao et al., 2014a; Zhao et al., 2016),该系统上部的同时期玄武岩和辉绿岩脉等可能由于大规模的剪切走滑作用而在随后的地质历史中被剥蚀掉,只保留了下部赋矿的岩浆通道,形成造山带背景下特殊的岩浆通道成矿系统(Qin et al., 2011; Mao et al., 2008),有别于保留了厚层玄武岩的Noril’sk矿床(Naldrett, 1992)。前人研究在大南湖岛弧带和吐哈盆地发现了~280Ma的辉长岩和玄武岩,且地球化学特征与东天山地区镁铁-超镁铁质岩相似(周鼎武等, 2006; 唐冬梅等, 2017; Mao et al., 2014b),暗示这可能是该区域岩浆通道成矿系统未被剥蚀的上部层位。卡拉塔格地区月牙湾铜镍硫化物矿床的发现(毛启贵等, 2018; 孙燕等, 2018)进一步说明东天山二叠纪铜镍硫化物成矿作用在大南湖岛弧带北缘也有响应。笔者及北京矿产地质研究院项目组在卡拉塔格地区发现了一系列镁铁质岩体,成岩时代为早二叠世,主要岩石类型为辉长岩、橄榄辉长岩、橄长岩、淡色辉长岩和辉绿岩,是研究东天山二叠纪岩浆演化与成矿作用新的切入点。本文对卡拉塔格地区镁铁质岩体进行岩石学、年代学、岩石地球化学及同位素等方面的研究,以探讨其构造背景、岩浆演化及其与东天山镁铁-超镁铁岩体和吐哈盆地玄武岩的关系。

1 区域地质背景 1.1 东天山区域地质特征

中亚造山带位于西伯利亚克拉通和塔里木-华北克拉通之间(图 1a),是显生宙以来最大的增生造山带之一(Jahn et al., 2000; Gao et al., 2009; Xiao et al., 2013)。东天山地区位于中亚造山带南缘,在长期的演化过程中经历了极其复杂的裂解与拼合,构造环境多样(秦克章等, 2012; Mao et al., 2008; Xiao et al., 2004, 2009),自北向南依次划分为博格达-哈尔里克构造带、吐哈盆地、觉罗塔格构造带和中天山地块(秦克章等, 2012; 王玉往等, 2006),其中觉罗塔格构造带由北向南划分为大南湖-头苏泉岛弧、康古尔剪切带和雅满苏岛弧(Xiao et al., 2004, 图 1b)。区域内出露的地层较全,以康古尔塔格深大断裂为界,以北出露大柳沟组、大南湖组、头苏泉组和企鹅山群,为一套钙碱性岛弧火山岩和内碎屑岩建造;以南出露梧桐窝子组、干墩组和雅满苏组,主要为滨浅海相火山-沉积岩系建造组合(刘德权等, 1992; 姬金生等, 1994; Zhang et al., 2017)。区域断裂构造主要呈EW向展布,沿康古尔塔格断裂和阿奇克库都克-沙泉子断裂及其次级断裂发育跨构造单元分布的众多时代一致的小型镁铁-超镁铁质岩体,并形成多个铜镍矿床集中区,如黄山-镜儿泉成矿区(三金柱等, 2010; 夏明哲等, 2008; 王玉往等, 2009; 秦克章等, 2012; Sun et al., 2013a)、白鑫滩-路北成矿区(赵冰冰等, 2018; Feng et al., 2018)和白石泉-天宇成矿区(唐冬梅等, 2009; Tang et al., 2011; 毛启贵等, 2006)。

图 1 东天山及临区构造位置图(a, 据Jahn et al., 2000)和构造单元划分(b, 据Xiao et al., 2004)及镁铁-超镁铁质岩体分布图(据Mao et al., 2016修改) ①沁城断裂;②康古尔塔格断裂;③苦水断裂;④阿齐克库都克-沙泉子断裂;⑤星星峡断裂;⑥卡瓦布拉克断裂 Fig. 1 The map of tectonic position (a, after Jahn et al., 2000) and tectonic units (b, after Xiao et al., 2004) and distribution of mafi-ultramafic intrusions (modified after Mao et al., 2016) in eastern Tianshan ① Qincheng fault; ② Kanggurtag fault; ③ Kushui fault; ④ Aqqikkuduk-Shaquanzi fault; ⑤ Xingxingxia fault; ⑥ Kawabulak fault
1.2 卡拉塔格地质特征

卡拉塔格地区位于大南湖-头苏泉古生代岛弧带北缘(图 1b),又被称为东天山晚古生代构造“天窗”(秦克章等, 2001; 李文铅等, 2006),整体为一个隆起带。卡拉塔格隆起带核部发育奥陶系-志留系火山碎屑岩,边部由内向外发育连续的泥盆系-二叠系的火山-沉积岩地层(秦克章等, 2001; 毛启贵等, 2010)。区内主要构造为NW向断裂,与区域构造线展布方向一致,早期为张性,晚期转变为压性,是控制卡拉塔格地区火山作用、岩浆侵入和成矿作用的主干断裂。卡拉塔格地区侵入岩十分发育,加里东期侵入岩以卡拉塔格岩基为代表,产出花岗闪长岩、二长花岗岩等;海西期侵入体以闪长岩、石英斑岩、二长斑岩岩枝或岩株产出(毛启贵等, 2010, 2018; Deng et al., 2016)。此外,在卡拉塔格地区发育多个镁铁质岩体(图 2),主要岩性为辉长岩、橄榄辉长岩、淡色辉长岩和辉绿岩等,部分镁铁质岩体发育铜镍硫化物矿化。

图 2 卡拉塔格地区地质构造及镁铁质岩体分布图(底图据毛启贵等, 2010; Deng et al., 2016修改) Fig. 2 Geological map and locations of mafic intrusions in Kalatag area (modified after Mao et al., 2010; Deng et al., 2016)
2 岩体地质 2.1 岩体特征

卡拉塔格地区镁铁质岩体分布广泛,由东向西分别为K2、K1、K3、K4、K5、K6、月牙湾和洪湖湾等8个岩体,其中洪湖湾、K4岩体见铜镍矿化,月牙湾岩体赋存有小型铜镍硫化物矿床(孙燕等, 2018)。笔者对上述岩体进行了详细调查(图 3表 1)。这些镁铁质岩体分布在卡拉塔格断裂和卡北断裂之间,受北西向断裂构造控制,侵位于大柳沟组、大南湖组和脐山组地层之中。岩体形态多为北西、北北西走向的椭圆形,岩体规模较小,长100~2000m,宽50~500m,出露面积 < 1km2,单个岩体岩性较为单一,以辉长岩、橄榄辉长岩、辉绿岩和淡色辉长岩为主。岩体的围岩主要为中基性火山岩,其中K2、K3、K4、K5和K6等岩体围岩为安山岩(图 4a),K1、月牙湾和洪湖湾岩体围岩为玄武岩(图 4b),。K1、K3和洪湖湾岩体显示中心粗边部细的单期岩浆冷凝结晶的特征;K2岩体为一条辉绿岩脉;K4岩体至少发育两期岩浆作用,橄榄辉长岩相侵位晚于辉长岩相;K5和K6岩体岩性单一,发育伟晶岩囊体;在K1、K3、K4和洪湖湾岩体辉长岩相中发育 < 10%的钛铁矿,偶见橄榄辉长岩中发育微量黄铁矿和黄铜矿(< 1%)。月牙湾岩体形态特殊,呈向北西拖尾的月牙状,岩体北倾,由北向南依次发育淡色辉长岩、橄榄辉长岩和橄长岩,在橄长岩与橄榄辉长岩接触部位发育铜镍矿化。

图 3 卡拉塔格地区镁铁质岩体地质简图 Fig. 3 Sketch geological maps of mafic intrusions in Kalatag area

表 1 卡拉塔格地区镁铁质岩体特征 Table 1 Charactersitics of mafic intrusions in Kalatag area

图 4 K4岩体(a)和月牙湾岩体(b)与围岩接触关系 Fig. 4 The contacting relation of wall rock and intrusion in K4 (a) and Yueyawan (b)
2.2 岩石特征

卡拉塔格地区镁铁质岩体的岩石类型有辉长岩、橄榄辉长岩、橄长岩、淡色辉长岩和辉绿岩。各岩类分布情况见图 3,辉长岩为K1、K4和洪湖湾岩体的主体相;橄榄辉长岩在K3和K6岩体主体、K4岩体边部及月牙湾岩体中部发育;橄长岩主要发育在K5岩体和月牙湾岩体南部;淡色辉长岩以局部囊体形式在K3、K4和洪湖湾岩体出露,在月牙湾岩体北部出露面积较大;辉绿岩主要发育在K1、K3和洪湖湾岩体边缘。各岩石类型具体特征如下:

辉长岩:浅灰绿色,普遍发生弱蚀变,粒状结构、变余辉长结构,块状构造。主要由斜长石和单斜辉石组成(图 5a),斜长石为中-拉长石,粒径0.5~2mm,含量40%~45%,发生高岭土化、钠黝帘石化蚀变;单斜辉石为普通辉石和透辉石,粒径0.5~2mm,含量20%~30%,部分发生阳起石化、透闪石化、绿泥石化等蚀变;一般含褐色普通角闪石,粒径0.5~1mm,含量约10%,不均匀分布于斜长石和单斜辉石颗粒之间;见钛铁矿,含量5%~10%,发育在蚀变的辉石颗粒中。

图 5 卡拉塔格地区镁铁质岩石显微照片 (a)辉长岩(单斜辉石阳起石、绿泥石化蚀变,正交偏光);(b)橄榄辉长岩(斜长石嵌晶结构,正交偏光);(c)伟晶橄榄辉长岩(伟晶交织状斜长石,正交偏光);(d)橄长岩(似斑状结构,正交偏光);(e)淡色辉长岩(斜长石净边结构,单偏光);(f)辉绿岩(斜长石交织结构,正交偏光). Cpx-单斜辉石;Pl-斜长石;Ol-橄榄石;Tre-透闪石;Act-阳起石;Chl-绿泥石;Di-透辉石;Ilm-钛铁矿 Fig. 5 Mircophotographs of mafic intrusions in Kalatag area (a) gabbro (actinolitization and chlorophyllization alterated clinopyroxene, crossed polar); (b) olivine gabbro (poikiloblastic texture of plagioclase, crossed polar); (c) olivine gabbro pegmatite (pegmatitic interlaced texture of plagioclase, crossed polar); (d) troctolite (porphyritic texture, crossed polar); (e) leucogabbro (metasomatic edulcoration border texture of plagioclase, plane polar); (f) diabase (interlaced texture of plagioclase, crossed polar). Cpx-clinopyroxene; Pl-plagioclase; Ol-olivine; Tre-tremolite; Act-actinolite; Chl-chlorite; Di-diopside; Ilm-ilmenite

橄榄辉长岩:灰绿色,岩石较新鲜,包橄结构、嵌晶结构、粒状结构等(图 5b),条带状构造、块状构造。斜长石为拉长石,自形长板状,粒径1~3mm,含量40%~60%;单斜辉石为普通辉石,半自形-他形粒状,粒径1~3mm,含量20%~30%,充填在长石间隙;橄榄石半自形-他形粒状,粒径0.5~1mm,含量10%~25%,发育在斜长石和单斜辉石晶粒之间或被单斜辉石包裹。发育少量(< 5%)黑云母和钛铁矿等副矿物和微量磁黄铁矿、黄铁矿、黄铜矿等硫化物。矿物颗粒粗大者呈伟晶橄榄辉长岩,斜长石颗粒达10mm,交织结构(图 5c),单斜辉石和橄榄石发育在斜长石晶粒间隙。

橄长岩:灰黑色,较新鲜,中-细粒似斑状结构(图 5d),块状构造。斑晶和基质均由斜长石和橄榄石组成,斑晶斜长石为中-拉长石,自形板状,含量60%~70%,斑晶粒度2~4mm,基质粒度 < 0.5mm;橄榄石他形粒状,含量25%~30%,斑晶颗粒1~2mm,基质颗粒 < 0.2mm。含5%~10%单斜辉石,他形粒状,粒径0.5~1mm,充填在斜长石颗粒的间隙或包裹橄榄石,也见微量钛铁矿和黄铜矿微小颗粒发育。橄长岩矿物颗粒粗大者可形成伟晶状橄长岩,交织结构,斜长石颗粒可达5~10mm,橄榄石2~4mm,局部皂石化、绿泥石化蚀变。

淡色辉长岩:灰白色,蚀变中粗粒结构,交织结构,块状构造。主要由斜长石、单斜辉石、角闪石组成。斜长石为中-拉长石,部分更长石,粒径1~2mm,含量60%~70%,发生高岭土化、绢云母化、钠黝帘石化等蚀变,斜长石残余晶形完整,呈净边结构(图 5e)。单斜辉石多发生透闪石和绿泥石化蚀变,粒径1~2mm,含量10%~15%。含10%~20%的褐色普通角闪石,微量黑云母、钛铁矿、磁铁矿等,偶见石英。

辉绿岩:灰绿色,中细粒辉绿结构、交织结构(图 5f)、包橄结构,块状构造。主要由中基性斜长石、单斜辉石、橄榄石和普通角闪石等矿物组成。斜长石为针柱状、交织状,有时具有定向性,长轴 < 2mm,含量50%~60%;单斜辉石呈他形微粒状,粒径 < 1mm,含量10%~20%,充填在斜长石间隙,绿帘石化蚀变;橄榄石他形微粒状,粒径 < 1mm,含量0~10%,大多充填在斜长石和辉石矿物颗粒之间,少量被辉石和角闪石包裹;角闪石(约10%)发育在其它矿物间隙,多阳起石化和绿泥石化蚀变;含少量(5%~10%)钛铁矿和微量(< 1%)黄铜矿。

3 样品采集及分析方法 3.1 样品采集

本次研究挑选了新鲜、有代表性的样品进行锆石U-Pb定年、全岩主微量和Sr-Nd-Pb同位素分析测试。岩石样品均采自岩体地表露头,用于锆石U-Pb定年的样品分别来自洪湖湾辉长岩(H56-9)和K4辉长岩(K43-7),采样坐标分别为42°45′10.59″N、91°18′60.01″E和42°39′59.48″N、91°43′52.40″E,采样位置见图 3

3.2 分析方法

锆石U-Pb定年在北京科荟测试技术有限公司完成。将经重液和磁选选出的锆石放在双目镜下挑选,选出晶形和透明度较好的锆石置于环氧树脂中制靶,并进行透反射和阴极发光照相。测试仪器为德国耶拿公司研发的激光剥蚀-电感耦合等离子质谱仪(LA-ICP-MS),仪器型号为Jena Plasma Quant ®MS,束斑直径为25μm。普通Pb校正根据Andersen (2002)的方法,年龄计算和图谱采用ISOPLOT 3.0(Ludwig, 2003)。

全岩主微量分析在核工业北京地质研究院分析测试研究中心完成。主量元素测试方法为X射线荧光光谱法,采用AxiosmAX X射线荧光光谱仪,分析精度优于1%。微量元素分析采用酸溶法制备样品并在ELEMENT XR电感耦合等离子质谱仪上测试,分析精度优于3%。详细的分析方法见Gao et al. (2002)

Sr-Nd-Pb同位素分析在中国科学院地质与地球物理研究所完成。铅同位素测试采用美国Thermofisher公司Triton Plus型热电离质谱仪。将纯化好的样品用微量盐酸溶解,并加1微升硅胶和磷酸混合发射剂于铼灯丝表面,质谱测量温度为1250±50℃。国际标样NIST981被用于监控质谱仪状态,铅同位素质量分馏校正系数为每质量单位1.2‰。Sr-Nd同位素测试采用Thermofisher Triton Plus多接收热电离质谱仪,全流程本底Sr和Nd分别小于250pg和100pg,用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219对Sr和Nd同位素比值进行校正,用国际标样NBS-987和JNdi-1对仪器稳定性进行监测,详细的分析方法见Li et al.(2012, 2015)。

4 分析结果 4.1 锆石U-Pb年龄

洪湖湾岩体辉长岩中的锆石均呈透明的长柱-短柱状,自形-半自形晶体;锆石长100~200μm,长宽比1.5~3;锆石阴极发光图像较暗,岩浆结晶环带一般不明显,部分可见环带状结构。锆石U、Th、Pb含量分别为90×10-6~376×10-6、100×10-6~491×10-6和28×10-6~145×10-6;,Th/U为1.1~1.96(表 2),表明所测样品均为岩浆锆石(Rubatto, 2002)。LA-ICP-MS测试结果显示23个有效数据点206Pb/238U加权平均年龄为281.8±1.2Ma (MSWD=1.05),所有数据点均分布在谐和曲线上或附近,谐和年龄为282.2±0.6Ma (MSWD=1.05)(图 6a)。

表 2 洪湖湾岩体和K4岩体辉长岩LA-ICP-MS锆石U-Pb测试结果 Table 2 LA-ICP-MS U-Pb age of zircons from gabbros of Honghuwan and K4 intrusions

图 6 洪湖湾岩体辉长岩(a)和K4岩体辉长岩(b)锆石U-Pb谐和年龄图 Fig. 6 U-Pb concrodia diagrams for zirons from gabbros in Hoghuwan (a) and K4 (b) intrusions

K4岩体辉长岩中的锆石呈透明的长柱状或短柱状,少量不规则状,呈自形-半自形晶体;锆石长50~200μm,长宽比1~3;锆石阴极发光图像较暗,岩浆结晶环带一般不明显,部分可见环带状结构。锆石U、Th、Pb含量分别为73×10-6~220×10-6、60×10-6~491×10-6和18×10-6~131×10-6,Th/U为0.73~2.23(表 2),表明所测样品均为岩浆锆石(Rubatto, 2002)。LA-ICP-MS测试结果显示25个有效数据点206Pb/238U加权平均年龄为278.2±1.2Ma (MSWD=0.95),所有数据点均分布在谐和曲线上或附近,谐和年龄为278.3±0.6Ma (MSWD=0.9)(图 6b)。

4.2 主量元素

卡拉塔格地区8个镁铁质岩体主要岩石类型的主、微量分析数据见表 3。其中淡色辉长岩SiO2含量介于53.25%~64.43%之间,属中性岩类;其它岩石类型SiO2含量介于45.08%~51.36%之间,属于基性岩类;各岩石类型Mg#介于42.4~72.7之间。与东天山二叠纪镁铁-超镁铁质岩(黄山岩体SiO2=36.9%~53.9%,Mg#介于60.7~84.2,Deng et al., 2015;葫芦岩体SiO2=29.67%~56.14%,Mg#介于42.2~87.4,Han et al., 2013)相比,卡拉塔格地区岩体基性程度普遍较低(或酸度较高),岩浆演化程度较高。主量元素图解显示卡拉塔格地区镁铁质岩体与东天山镁铁质岩地球化学特征相似,且向同时期吐哈玄武岩过渡(图 7)。在SiO2-(Na2O+K2O)图解上,只有1个淡色辉长岩样品落在亚碱性区域,其余样品均落在碱性和亚碱性分界线上(图 8)。

表 3 卡拉塔格地区镁铁质岩石主量元素(wt%)和微量元素(×10-6)分析结果 Table 3 Major (wt%) and trace (×10-6) elements composition of mafic intrusions in Kalatag district

图 7 卡拉塔格地区镁铁质岩体主要氧化物与SiO2相关性图解 东天山镁铁质岩石数据来源:①据Deng et al. (2014)赵冰冰等(2018);②据赵冰冰等(2018)毛启贵等(2006);③据Chai et al. (2008);④据Han et al. (2013)夏明哲等(2008);⑤据唐冬梅等(2017)图 9数据来源同此图 Fig. 7 Diagrams of oxides versus SiO2 of mafic intrusions in Kalatag area Data of mafic rocks in eastern Tianshan are from follows: ① after Deng et al. (2014) and Zhao et al. (2018); ② after Zhao et al. (2018) and Mao et al. (2006); ③ after Chai et al. (2008); ④ after Han et al. (2013) and Xia et al. (2008); ⑤ after Tang et al. (2017); data sources in Fig. 9 are same as thig figure

图 8 卡拉塔格镁铁质岩体SiO2-(Na2O+K2O)图解(底图据Irvine and Baragaer, 1971) Fig. 8 Diagram of SiO2 vs. (Na2O+K2O) (base map after Irvine and Baragaer, 1971) for mafic intrusions in Kalatag area
4.3 微量元素

卡拉塔格地区各岩石类型稀土元素总体特征相似,显示轻稀土轻微富集的缓右倾型稀土配分曲线(图 9a),∑REE变化范围为11.62×10-6~198.9×10-6,LREE为8.80×10-6~164.6×10-6,HREE为2.82×10-6~34.26×10-6,轻重稀土元素分馏不明显,∑LREE/∑HREE=2.54~4.80,(La/Yb)N为1.27~3.73,无铕异常或较弱的铕正异常(δEu=0.80~1.87)。稀土配分型式与东天山镁铁岩相似并向同时期玄武岩过渡,并显示与OIB相似的特征(图 9c)。

图 9 卡拉塔格地区镁铁质岩体及区域镁铁质岩石球粒陨石标准化稀土元素分布型式图(a、c)和原始地幔标准化微量元素蛛网图(b、d) (MORB、OIB及标准化值引自Sun and McDonough, 1989) Fig. 9 Chondrite-normalized REE patterns (a, c) and PM-normalized trace elements spider diagram (b, d) of mafic rocks in Kalatag and adjacent region (data for MORB, OIB and normalizing values after Sun and McDonough, 1989)

样品微量元素普遍高于原始地幔值,总体表现为Rb、Ba、Sr、K正异常,Th、Nb、Ta负异常(图 9b)。区域内同时期镁铁质岩石显示Sr正异常,玄武岩显示Sr负异常,卡拉塔格地区镁铁质岩石主体为Sr正异常,也有一些样品显示Sr负异常(图 9d),说明卡拉塔格镁铁质岩石具有过渡性质。

4.4 Sr、Nd、Pb同位素

Nd、Sr、Pb同位素分析数据见表 4。卡拉塔格地区镁铁质岩体(87Sr/86Sr)i=0.70313~0.70461,εNd(t)=+6.22~+8.64,(206Pb/204Pb)i=17.68~18.103,(207Pb/204Pb)i=15.443~15.536,(208Pb/204Pb)i=37.423~37.801,具有高Nd、低Sr、低Pb,且变化范围较窄的特征。Sr-Nd同位素组成与二叠纪塔里木地区玄武岩和镁铁-超镁铁质岩明显不同,样品点投影在洋岛玄武岩(OIB)、岛弧玄武岩(GVAB)和活动大陆边缘(ACM)区域内(图 10a),(206Pb/204Pb)i-(87Sr/86Sr)i图解中样品点投影在MORB和OIB范围内(图 10b)。Pb同位素组成位于地球等时线右侧并落在MORB范围内(图 10c, d)。总体来看,卡拉塔格地区镁铁质岩同位素特征与黄山、黄山东等东天山镁铁-超镁铁质岩及吐哈盆地玄武岩相似,显示亏损型地幔源区特征。

表 4 卡拉塔格地区镁铁质岩石Sr、Nd、Pb同位素分析数据 Table 4 Sr, Nd, Pb isotopic data of mafic intrusion in Kalatag district

图 10 卡拉塔格地区镁铁质岩体Sr-Nd-Pb同位素图解 数据来源:吐哈盆地玄武岩夏林圻等(2006);黄山东引自Sun et al. (2013a);黄山夏明哲(2009);亏损地幔(DM)引自Zindler and Hart (1986);活动大陆边缘(ACM)引自Hawkesworth (1982);全球岛弧玄武岩(GVAB)引自http://www.petdb.Org;塔里木镁铁-超镁铁质岩引自Zhou et al. (2009);塔里木玄武岩引自Yuan et al. (2012) Fig. 10 Plots of Sr-Nd-Pb isotopes for the mafic intrusion in Kalatag area Data sources: the Tuha basalts from Xia et al. (2006); the Huagnshandong intrusion from Sun et al. (2013); the Huagnshan intrusion from Xia (2009); a depleted mantle-derived melt (DM) from Zindler and Hart (1986); active continental margin (ACM) from Hawkesworth (1982); global volcanic arc basalts (GVAB) from a public database (http://www.petdb.org); Permian Tarim mafic-ultramafic rocks from Zhou et al. (2009); Permian Tarim basalts from Yuan et al. (2012)
5 讨论 5.1 时代及构造背景

本文厘定卡拉塔格地区洪湖湾岩体和K4岩体辉长岩年龄分别为282.2±0.6Ma和278.3±0.6Ma,本文讨论的该区其它岩体年龄为275~285Ma(毛启贵等, 2018)。孙燕等(2018)报道了月牙湾岩体橄榄辉长岩成岩年龄为281.3±2Ma,Mao et al. (2014b)测定沙尔湖岩体辉长岩成岩年龄为286.5±2.1Ma,显示成岩时代均为早二叠世,与东天山地区广泛发育的铜镍矿化镁铁-超镁铁质岩石形成时代一致(韩宝福等, 2004; 三金柱等, 2010; 李锦轶等, 2006; 唐冬梅等, 2009; Qin et al., 2011; Sun et al., 2013b)。

关于新疆东部二叠纪幔源岩浆活动构造背景的争论主要在于其是否与塔里木地幔柱有关(夏林圻等, 2006; Qin et al., 2011; Mao et al., 2008; Pirajno et al., 2008),或者为碰撞后伸展环境(Zhou et al., 2004; 王玉往等, 2009; Wang et al., 2008; 邓宇峰等, 2012)。Qin et al. (2011)认为地幔柱叠加作用为东天山和北山镁铁-超镁铁质岩的侵位及形成铜镍矿床提供了的热源。Xie et al. (2014)研究认为俯冲板片撕裂导致的软流圈上涌也可以形成与岩浆硫化物成矿有关的玄武质岩浆,并不需要地幔柱提供热源;而且地幔柱能量的影响范围可能有限(宋谢炎等, 2018)。前文研究表明卡拉塔格地区镁铁质岩石主量元素(图 7)、稀土元素和微量元素特征(图 9)与二叠纪塔里木玄武岩明显不同,且Sr、Nd、Pb同位素具有显著区别(图 10a, b),说明卡拉塔格地区镁铁质岩的形成可能与塔里木地幔柱活动无关。石煜(2018)总结了东天山地区εNd(t)随时间变化规律,认为随着时间变化亏损软流圈物质稳定上涌,其过程中并未出现地幔柱物质的剧烈加入过程,因此可能也不存在地幔柱叠加的过程。

汪传胜等(2009)陈希节和舒良树(2010)陈希节等(2016)研究认为哈尔里克地区早二叠世(297~285Ma)的基性岩墙群、钾长花岗岩和碱性花岗岩及双峰式火山岩组合是碰撞后拉张阶段的典型标志;康古尔-黄山构造带铜镍硫化物矿区的A型花岗岩可能侵位于造山晚期的伸展环境(孙赫等, 2010);吐哈盆地早二叠世玄武岩微量元素特征显示与区域性伸展作用密切相关(周鼎武等, 2006; 唐冬梅等, 2017);白建科等(2018)研究认为吐哈盆地南缘的企鹅山群玄武岩(314±3.5Ma)形成于伸展环境下,且捕获有中天山地块的碎屑锆石。以上研究从多个方面说明北天山洋已于晚石炭世早期之前闭合消失,东天山地区早二叠世为后碰撞伸展环境(韩宝福等, 2004; 王京彬和徐新, 2006; 顾连兴等, 2006)。

综上所述,本文认为在早二叠世时期,北天山洋已经闭合,增生造山主碰撞过程已经结束,包括卡拉塔格在内的东天山地区镁铁质-超镁铁质岩体形成于早二叠世后碰撞伸展环境,而与塔里木地幔柱活动无关,因此,可能不存在地幔柱叠加俯冲碰撞阶段或者叠加后碰撞伸展阶段的作用过程。

5.2 岩浆源区

一般来说,岩浆源区、同化混染和结晶分异是影响岩石地球化学特征的重要因素,在讨论岩浆源区性质时,首先要排除岩浆上升过程中同化混染和结晶分异作用的影响(李全忠等, 2008)。分别以亏损地幔(DMM)、上地壳(UC)和下地壳(LC)为端元进行的模拟表明母岩浆经历了 < 5%的上地壳混染(图 11a),加入同时期A型花岗岩端元的模拟结果表明上地壳混染程度约5%(图 11b)。对同化混染作用很敏感的Sr同位素和207Pb/204Pb比值没有明显升高(表 4),在锆石的CL图像上没有发现核幔结构,也没有发现古老的年龄(图 5),卡拉塔格地区各岩石的全岩εNd(t)值和(87Sr/86Sr)i值与SiO2含量之间没有相关性(图 11c, d)。以上证据说明卡拉塔格镁铁质岩体的初始岩浆上升过程中没有发生明显的同化混染作用。结晶分异作用可以影响岩石中元素的含量,但同位素组成和不相容微量元素比值不因结晶分异而变化(Deng et al., 2015; Tang et al., 2012)。因此,卡拉塔格地区岩石同位素组成和不相容微量元素比值可以指示其岩浆源区。

图 11 卡拉塔格地区镁铁质岩体εNd(t)对(87Sr/86Sr)i (a)、(Th/Nb)N图解(b)和SiO2εNd(t) (c)、(87Sr/86Sr)i图解(d) 亏损地幔(DMM)和原始地幔标准化数据引自Sun and McDonough (1989);上地壳(UC)和下地壳(LC)数据引自Rudnick and Gao (2003);早二叠世A型花岗岩数据汪传胜等(2009) Fig. 11 Diagrams of εNd(t) vs. (87Sr/86Sr)i (a), εNd(t) vs. (Th/Nb)N (b), SiO2 vs. εNd(t) (c) and SiO2 vs. (87Sr/86Sr)i (d) for mafic intrusions in Kalatag area Data for the depleted mantle-derived melt (DMM) and normalizing values from Sun and McDonough (1989). Data for the upper crust (UC) and Lower crust from Rudnick and Gao (2003). Data for the coeval A-type granite in the region from Wang et al. (2009)

卡拉塔格地区镁铁质岩体各类岩石具有与MORB和OIB相似的Sr-Nd-Pb同位素特征(图 10),微量元素Zr/Nb=6.29~51.04,Sm/Nd=0.23~0.29,分别与MORB对应比值一致(Anderson, 1994),表明其岩浆源区为亏损地幔(Saunders et al., 1992)。Sr-Nd同位素组成具有与弧火山岩相似的特征(图 10a),相对较低的Th/U(平均2.08)和较高的La/Nb(平均2.84)、Ba/Nb(61.87)比值与俯冲成因的岩浆岩(如阿拉斯加型岩体)相似(邓宇峰等, 2011),表明岩浆源区遭受了俯冲事件的改造。岩石微量元素显示Nb、Ta的强亏损和Ti弱亏损(图 9),表明岩浆源区混合了富集地幔组分。La/Nb-La/Ba图解显示卡拉塔格地区镁铁质岩体母岩浆主要来自俯冲交代的岩石圈地幔并有软流圈地幔的加入(图 12a)。利用亏损型地幔端元(N-MORB)和富集型岩石圈地幔(EMⅡ, EMⅠ, Deckart et al., 2005)两端元模拟Sr、Nd同位素组成,表明卡拉塔格地区镁铁质岩石母岩浆主要来自亏损地幔源区,并有大约10%的EMⅡ型富集地幔组分加入(图 12b)。前人研究表明,EMⅡ型地幔端元可能是由古板块俯冲带入的陆源沉积物通过壳-幔交代作用形成(Hart, 1988),或者是有俯冲洋壳析出流体交代地幔楔形成(李曙光, 1994)。

图 12 卡拉塔格地区镁铁质岩体La/Nb-La/Ba图解(a, 据Fitton et al., 1991)和(206Pb/204Pb)i-(143Nd/144Nd)i图解(b, 据Deckart et al., 2005) Fig. 12 Diagrams of La/Nb vs. La/Ba (a, after Fitton et al., 1991) and (206Pb/204Pb)i vs. (143Nd/144Nd)i (b, after Deckart et al., 2005) for mafic intrusions in Kalatag area

卡拉塔格地区镁铁质岩石(Th/Yb)N和(Th/Nb)N分别为0.33~2.54和0.49~5.75,远高于MORB的相应值(平均值分别为0.17和0.43, Sun and McDonough, 1989),可能是地幔源区俯冲板片流体的交代作用影响所致(Song et al., 2011; Sun et al., 2013b),Th/Yb-Ba/La图解也表明岩浆源区存在流体交代改造作用(图 13a)。以亏损地幔(DMM)、全球俯冲沉积物(GLOSS)、蚀变洋壳流体(AOCF)和板片流体(SF)进行模拟投图,模拟方法见Tang et al. (2013),结果表明,母岩浆在地幔源区遭受了5%~15%的板片流体交代(图 13b),结果与遭受10%左右的富集地幔组分交代的模拟一致(图 12b),表明前文所述的富集地幔组分可能是通过板片流体交代作用加入到亏损地幔之中。综上所述,卡拉塔格地区镁铁质岩体源区主要为亏损地幔,并有遭受了5%~15%俯冲流体交代而形成的富集地幔的加入。

图 13 卡拉塔格地区镁铁质岩体Th/Yb-Ba/La (a)和εNd(t)-(Nd/Hf)N (b)图解 亏损地幔(DMM)和原始地幔标准化数据引自Sun and McDonough (1989);蚀变洋壳流体(AOCF)数据引自Hauff et al. (2003)Kelley et al. (2003);全球俯冲沉积物(GLOSS)数据引自Chauvel et al. (2009)Plank and Langmuir (1998);俯冲沉积物流体(SSF)数据引自Chauvel et al. (2009)Johnson and Plank (2000);板片流体(SF)相应值为90% AOCF和10% SSF混合 Fig. 13 Plots of Th/Yb vs. Ba/La (a) and εNd(t) vs. (Nd/Hf)N (b) for the mafic intrusion in Kalatag area Data for the depleted mantle-derived melt (DMM) and normalizing values from Sun and McDonough (1989). Data for the altered oceanic crust fluid (AOCF) from Hauff et al. (2003) and Kelley et al. (2003). Data for the global subducting sediment (GLOSS) from Chauvel et al. (2009) and Plank and Langmuir (1998). Data for the subducted sediment fluid (SSF) from Chauvel et al. (2009), Johnson and Plank (2000). Data for the slab fluid (SF) are the mixture of 90% AOCF and 10% SSF
5.3 侵位模式

前文讨论表明,卡拉塔格地区镁铁质岩石形成于早二叠世后碰撞伸展环境之下,岩浆源区为亏损地幔,并受到俯冲板片流体的交代,与东天山地区镁铁-超镁铁质岩体和吐哈玄武岩的构造环境和岩浆源区相似(夏明哲等, 2008; Tang et al., 2011, 2012, 2013; 唐冬梅等, 2017),说明它们形成于同一构造岩浆系统。在地球化学特征方面,卡拉塔格地区镁铁质岩体的主量元素和微量元素具有吐哈盆地玄武岩和东天山镁铁-超镁铁质岩体中镁铁质岩相过渡的特征(图 6图 8),Sr、Nd、Pb同位素特征一致(图 9)。前人对东天山地区含铜镍矿的镁铁-超镁铁质岩体母岩浆成分进行了研究,结果表明黄山南和天宇镁铁-超镁铁质岩石的母岩浆MgO含量分别为12.4%(Mao et al., 2016)和12.61%(Chai et al., 2008),而卡拉塔格地区月牙湾岩体母岩浆MgO含量为6.5%(本人未发表数据),吐哈盆地二叠纪玄武岩母岩浆MgO含量可能更低(唐冬梅等, 2017)。因此,卡拉塔格地区镁铁质岩体与吐哈玄武岩和东天山镁铁-超镁铁质岩体具有相同的岩浆源区,原始岩浆在上升过程中发生分异形成了各自的母岩浆,并经历不同的地质过程侵位或喷出地表(图 14)。在早二叠世,构造岩浆活动进入碰撞后伸展阶段,被俯冲板片流体交代改造过的岩石圈地幔被上涌的软流圈物质加热而部分熔融,形成东天山二叠纪构造-岩浆-成矿系统的岩浆源区,原始岩浆在上升到地壳中的阶段性岩浆房中后发生了分异:吐哈盆地玄武岩可能是整个构造-岩浆-成矿系统的前导性喷发岩流,其母岩浆来自阶段性岩浆房分异的上部位置;东天山镁铁-超镁铁质岩体是岩浆成矿的终端岩浆房,母岩浆来自阶段性岩浆房的下部位置,MgO含量较高,母岩浆侵位速度较慢,遭受了较高程度的地壳物质混染而使硫化物发生熔离成矿;卡拉塔格地区镁铁质岩体具有过渡性质,可能是前导性侵入岩体,母岩浆侵位速度较快,地壳混染程度较低(月牙湾岩体含矿,地壳混染程度较高)。因此,由岩体侵位模式和现今保存特征可以推测,从吐哈盆地到康古尔剪切带,剥蚀厚度可能逐渐加大,在剥蚀较浅的区域存在形成铜镍硫化物矿床的潜力。近年来在大南湖岛弧带北缘发现了月牙湾铜镍矿床,其南缘发现了白鑫滩和路北铜镍矿床(图 1),其成矿特征与东天山黄山、香山等典型铜镍矿相似。综上所述,卡拉塔格镁铁质岩体、吐哈玄武岩和东天山镁铁-超镁铁质岩体形成于同一构造岩浆系统,在剥蚀较浅的大南湖岛弧带具有形成铜镍硫化物矿床的潜力。

图 14 东天山地区二叠纪幔源岩浆侵位模式图 Fig. 14 A brief model for Permian mantle-derived magma emplacement in eastern Tianshan
6 结论

(1) 东天山卡拉塔格地区出露多个镁铁质岩体,面积出露面积 < 1km2。主要岩石类型有辉长岩、橄榄辉长岩、橄长岩、淡色辉长岩和辉绿岩,2个辉长岩LA-ICP-MS锆石U-Pb年龄为分别为282.2±0.6Ma和278.3±0.6Ma。

(2) 卡拉塔格地区镁铁质岩石SiO2含量介于45.08%~64.43%之间,Mg#介于42.4~72.7之间;轻稀土轻微富集,轻重稀土元素分馏不明显,无铕异常或较弱的铕正异常;富集Rb、Ba、Sr、K,亏损Th、Nb、Ta;Nd、Sr、Pb同位素组成显示岩浆源区为俯冲交代的岩石圈地幔,并被软流圈物质混染。母岩浆在源区经历了俯冲板片流体的交代(5%~15%),上地壳混染较弱(< 5%)。

(3) 卡拉塔格地区镁铁质岩体的形成可能与塔里木地幔柱作用无关,而是形成于后碰撞伸展的构造环境,其与东天山二叠纪铜镍矿化镁铁-超镁铁质岩体和吐哈盆地玄武岩形成于同一构造岩浆系统,在剥蚀较浅的大南湖岛弧带具有形成铜镍硫化物矿床的潜力。

致谢      本文野外工作得到哈密红石矿业公司张锐总经理的支持与协助;同位素分析得到了中国科学院地质与地球物理研究所李潮峰和李友连老师的指导;全岩主、微量分析得到了核工业北京地质研究院刘牧老师的帮助;审稿人对本文提出了建设性的修改意见;作者在此致以诚挚的谢意。

在肖序常院士90华诞之际,谨以此文表示衷心的祝福!

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Anderson DL. 1994. Komatiites and picrites:Evidence that the 'plume' source is depleted. Earth and Planetary Science Letters, 128(3-4): 303-311 DOI:10.1016/0012-821X(94)90152-X
Bai JK, Liu CY, Zhang SH, Lu JC and Sun JM. 2018. Zircon U-Pb geochronology and geochemistry of basalts from the Qi'eshan Group in the southern Turpan-Hami Basin, East Tianshan:Constraints on closure time of the North Tianshan Ocean. Acta Petrologica Sinica, 34(10): 2995-3010 (in Chinese with English abstract)
Chai FM, Zhang ZC, Mao JW, Dong LH, Zhang ZH and Wu H. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China:Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32(2-4): 218-235 DOI:10.1016/j.jseaes.2007.10.014
Chauvel C, Marini JC, Plank T and Ludden JN. 2009. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1): Q01001
Chen XJ and Shu LS. 2010. Features of the post-colisional tectono-magmatism and geochronological evidence in the Harlik Mt., Xinjiang. Acta Petrologica Sinica, 26(10): 3057-3064 (in Chinese with English abstract)
Chen XJ, Zhang KH, Zhang GL and Zhou J. 2016. Characteristics, petrogenesis and tectonic implications of the Permian Omoertage alkaline granites in Harlik area, Xinjiang. Acta Petrologica et Mineralogica, 35(6): 929-946 (in Chinese with English abstract)
Deckart K, Bertrand H and Liégeois JP. 2005. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos, 82(3-4): 289-314 DOI:10.1016/j.lithos.2004.09.023
Deng XH, Wang JB, Pirajno F, Wang YW, Li YC, Li C, Zhou LM and Chen YJ. 2016. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan orogen, China. Ore Geology Reviews, 77: 72-81 DOI:10.1016/j.oregeorev.2016.01.014
Deng YF, Song XY, Chen LM, Cheng SL, Zhang XL and Li J. 2011. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan. Acta Petrologica Sinica, 27(12): 3640-3652 (in Chinese with English abstract)
Deng YF, Song XY, Zhou TF, Yuan F, Chen LM and Zheng WQ. 2012. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances. Acta Petrologica Sinica, 28(7): 2224-2234 (in Chinese with English abstract)
Deng YF, Song XY, Chen LM, Zhou TF, Pirajno F, Yuan F, Xie W and Zhang DY. 2014. Geochemistry of the Huangshandong Ni-Cu deposit in northwestern China:Implications for the formation of magmatic sulfide mineralization in orogenic belts. Ore Geology Reviews, 56: 181-198 DOI:10.1016/j.oregeorev.2013.08.012
Deng YF, Song XY, Hollings P, Zhou TF, Yuan F, Chen LM and Zhang DY. 2015. Role of asthenosphere and lithosphere in the genesis of the Early Permian Huangshan mafic-ultramafic intrusion in the Northern Tianshan, NW China. Lithos, 277: 241-254
Feng YQ, Qian ZZ, Duan J, Xu G, Ren M and Jiang C. 2018. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit:New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China). Ore Geology Reviews, 95: 366-381 DOI:10.1016/j.oregeorev.2018.02.023
Fitton JG, James D and Leeman WP. 1991. Basic magmatism associated with late Cenozoic extension in the Western United States:Compositional variations in space and time. Journal of Geophysical Research, 96(B8): 13693-13711 DOI:10.1029/91JB00372
Gao J, Long LL, Klemd R, Qian Q, Liu DY, Xiong XM, Su W, Liu W, Wang YT and Yang FQ. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China:Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98(6): 1221-1238 DOI:10.1007/s00531-008-0370-8
Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 26(2): 181-196 DOI:10.1111/j.1751-908X.2002.tb00886.x
Gu LX, Zhang ZZ, Wu CZ, Wang YX, Tang JH, Wang CS, Xi AH and Zheng YC. 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103-1120 (in Chinese with English abstract)
Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429
Han CM, Xiao WJ, Zhao GC, Ao SJ, Zhang JE, Qu WJ and Du AD. 2010. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in eastern Tianshan (Xinjiang), Central Asia Orogenic Belt:Constraints on the timing and genesis of the mineralization. Lithos, 120(3-4): 547-562 DOI:10.1016/j.lithos.2010.09.019
Han CM, Xiao WJ, Zhao GC, Su BX, Sakyi PA, Ao SJ, Wan B, Zhang JE and Zhang ZY. 2013. SIMS U-Pb zircon dating and Re-Os isotopic analysis of the Hulu Cu-Ni deposit, eastern Tianshan, Central Asian Orogenic Belt, and its geological significance. Journal of Geosciences, 58(3): 251-270
Hart SR. 1988. Heterogeneous mantle domains:Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273-296 DOI:10.1016/0012-821X(88)90131-8
Hauff F, Hoernle K and Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185):Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8): 8913
Hawkesworth CJ. 1982. Isotope characteristics of magmas erupted along destructive plate margins. In: Thorpe RS (ed.). Andesites. Chichester: Wiley, 549-570
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367
Ji JS, Tao HX and Yang XK. 1994. Geochemical characteristics of volcanic rocks within different tectonic settings in the central part of East Tianshan Mountains. Acta Petrologica et Mineralogica, 13(4): 297-304 (in Chinese with English abstract)
Johnson MC and Plank T. 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12): 1007
Kelley KA, Plank T, Ludden J and Staudigel H. 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 4(6): 8910
Li CF, Li XH, Li QL, Guo JH, Li XH and Yang YH. 2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Acta, 727: 54-60 DOI:10.1016/j.aca.2012.03.040
Li CF, Chu ZY, Guo JH, Li YL, Yang YH and Li XH. 2015. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Analytical Methods, 7(11): 4793-4802 DOI:10.1039/C4AY02896A
Li JY, Song B, Wang KZ, Li YP, Sun GH and Qi DY. 2006. Permian mafic-ultramafic complexes on the southern margin of the Tu-Ha basin, East Tianshan Mountains:Geological records of vertical crustal growth in central Asia. Acta Geoscientica Sinica, 27(5): 424-446 (in Chinese with English abstract)
Li QZ, Xie Z, Xu XS, Chen JF and Gao TS. 2008. The isotopic characteristics of the Early-Cretaceous mafic rocks from Dabie Orogenic Belt and the contribution of the lower crust to the magma source. Acta Petrologica Sinica, 24(8): 1771-1781 (in Chinese with English abstract)
Li SG. 1994. Implications of εNd-La/Nb, Ba/Nb, Nb/Th diagrams to mantle heterogeneity:Classification of island arc basalts and decomposition of EMⅡcomponent. Geochimica, 23(2): 105-114 (in Chinese with English abstract)
Li WQ, Wang R, Wang H and Xia B. 2006. Geochemistry and petrogenesis of the Kalatag intrusion in the "Tuha window". Geology in China, 33(3): 559-565 (in Chinese with English abstract)
Liu DQ, Tang YL and Zhou RH. 1992. Evolution of Paleozoic crust and metallogenic series in northern Xinjiang. Mineral Deposits, 11(4): 307-314 (in Chinese with English abstract)
Liu DQ, Tang YL and Zhou RH. 2005. Copper Deposits and Nickel Deposits in Xinjiang, China. Beijing: Geological Publishing House, 1-306 (in Chinese)
Ludwig KR. 2003. User's Manual for Isoplot/Ex, Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70
Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)
Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China):Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203 DOI:10.1016/j.jseaes.2007.10.006
Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Yan Z, Li JL, Yong Y and Zhang JE. 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang Province:Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract)
Mao QG, Fang TH, Wang JB, Wang SL and Wang N. 2010. Geochronology studies of the Early Paleozoic Honghai massive sulfide deposits and its geological significance in Kalatage area, eastern Tianshan Mountain. Acta Petrologica Sinica, 26(10): 3017-3026 (in Chinese with English abstract)
Mao QG, Xiao WJ, Fang TH, Windley BF, Sun M, Ao SJ, Zhang JE and Huang XK. 2014b. Geochronology, geochemistry and petrogenesis of Early Permian alkaline magmatism in the Eastern Tianshan:Implications for tectonics of the Southern Altaids. Lithos, 190-191: 37-51 DOI:10.1016/j.lithos.2013.11.011
Mao QG, Lü XQ and Yu MJ. 2018. Early Permian mantle derived magma and the Cu-Ni mineralization potentiality of the mafic complex in eastern Tianshan, Xinjiang. Mineral Exploration, 9(12): 2270-2281 (in Chinese with English abstract)
Mao YJ, Qin KZ, Li CS, Xue SC and Ripley EM. 2014a. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China. Lithos, 200-201: 111-125 DOI:10.1016/j.lithos.2014.04.008
Mao YJ, Qin KZ, Tang DM, Feng HY and Xue SC. 2016. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37 DOI:10.1016/j.jseaes.2016.07.028
Naldrett AJ. 1992. A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt. Economic Geology, 87(8): 1945-1962 DOI:10.2113/gsecongeo.87.8.1945
Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183 DOI:10.1016/j.jseaes.2007.10.012
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394 DOI:10.1016/S0009-2541(97)00150-2
Qian ZZ, Sun T, Tang ZL, Jiang CY, He K, Xia MZ and Wang JZ. 2009. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit, East Tianshan, China. Geological Review, 55(6): 873-884 (in Chinese with English abstract)
Qin KZ. 2000. Metellogeneses in relation to Central-Asia style orogeny of Northern Xinjiang. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-194
Qin KZ, Fang TH, Wang SL and Wang XD. 2001. Discovery of the Kalatage Cu-Au mineralized district and its prospecting potentiality, Paleozoic window at the south margin of the Tu-Ha basin. Chinese Geology, 28(3): 16-23 (in Chinese with English abstract)
Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb RJ, Seltmann R, Wang DW, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: Museum of Natural History, 227-248
Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China):Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260 DOI:10.2475/03.2011.03
Qin KZ, Tang DM, Su BX, Mao YJ, Xue SC, Tian Y, Sun H, San JZ, Xiao QH and Deng G. 2012. The Tectonic setting, style, basic feature, relative erosion deee, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, northern Xinjiang. Northwestern Geology, 45(4): 83-116 (in Chinese with English abstract)
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138 DOI:10.1016/S0009-2541(01)00355-2
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Amsterdam: Elsevier, 1266-1329
San JZ, Qin KZ, Tang ZL, Tang DM, Su BX, Sun H, Xiao QH and Liu PP. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract)
Saunders AD, Storey M, Kent RW and Norry MJ. 1992. Consequences of plume-lithosphere interactions. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publications, 68(1): 41-60
Shi Y, Wang YW and Wang JB. 2017a. Relationship between amphibole-porphyric gabbroic rocks and Fe-Ti oxide ore deposits of the East Tianshan. Earth Science Frontiers, 24(6): 80-97 (in Chinese with English abstract)
Shi Y, Wang YW, Wang JB, Wang LJ, Li DD and Long LL. 2017b. Olivine composition of Erhongwa complex, East Tianshan, and its implications to CuNi-VTiFe composite mineralizaion. Earth Science, 42(3): 325-338 (in Chinese with English abstract)
Shi Y. 2018. Petrogenesis and metallogenesis of post-collisional mantle-derived orthomagmatic deposits in East Tianshan, Xinjiang. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-190(in Chinese with English summary)
Shi Y, Wang YW, Wang JB, Zhao LT, Xie HJ, Long LL, Zou T, Li DD and Zhou GC. 2018. Physicochemical control of the early Permian Xiangshan Fe-Ti oxide deposit in eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 29(3): 520-536 DOI:10.1007/s12583-017-0969-4
Song XY, Xie W, Deng YF, Crawford AJ, Zheng WQ, Zhou GF, Deng G, Cheng SL and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143 DOI:10.1016/j.lithos.2011.08.011
Song XY, Deng YF, Xie W, Chen LM, Yu SY and Liang QL. 2018. Magmatism of Huangshan-Jing'erquan Ni-Cu ore deposit belt and relationship with regional strike-slip structure in Xinjiang, China. Journal of Earth Sciences and Environment, 40(5): 505-519 (in Chinese with English abstract)
Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531 DOI:10.1016/j.gr.2010.11.015
Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP and Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134-135: 41-51 DOI:10.1016/j.lithos.2011.12.011
Sun H, Qin KZ, Tang DM and Xiao QH. 2010. Geochemical characteristics of A-type granites in Cu-Ni deposits area and its regional tectonic implications, eastern Tianshan, Xinjiang. Mineral Deposits, 29(Suppl.1): 1127-1128 (in Chinese)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun T, Qian ZZ, Tang ZL, Jiang CY, He K, Sun YL, Wang JZ and Xia MZ. 2010. Zircon U-Pb chronology, platinum group element geochemistry characteristics of Hulu Cu-Ni deposit, East Xinjiang, and its geological significance. Acta Petrologica Sinica, 26(11): 3339-3349 (in Chinese with English abstract)
Sun T, Qian ZZ, Deng YF, Li CS, Song XY and Tang QY. 2013a. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China. Economic Geology, 108(8): 1849-1864 DOI:10.2113/econgeo.108.8.1849
Sun T, Qian ZZ, Li CS, Xia MZ and Yang SH. 2013b. Petrogenesis and economic potential of the Erhongwa mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China:Constraints from olivine chemistry, U-Pb age and Hf isotopes of zircons, and whole-rock Sr-Nd-Pb isotopes. Lithos, 182-183: 185-199 DOI:10.1016/j.lithos.2013.10.004
Sun Y, Wang JB, Lv XQ, Ke GQ and Yu MJ. 2018. The discovery of Yueyawan Cu-Ni deposit in Kalatag, eastern Tianshan, and its significance. Corpus of 14th National Deposit Conference, 749-750(in Chinese)
Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu-Ni deposit:Constraints on source and genesis of mafic-ultramafic intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract)
Tang DM, Qin KZ, Li CS, Qi L, Su BX and Qu WJ. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1-2): 84-98 DOI:10.1016/j.lithos.2011.06.007
Tang DM, Qin KZ, Sun H, Su BX and Xiao QH. 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China:Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes. Journal of Asian Earth Sciences, 49: 145-160 DOI:10.1016/j.jseaes.2011.11.014
Tang DM, Qin KZ, Su BX, Sakyi PA, Liu YS, Mao Q, Santosh M and Ma YG. 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures. Lithos, 170-171: 144-163 DOI:10.1016/j.lithos.2013.02.013
Tang DM, Qin KZ, Xue SC, Mao YJ, Tian Y, Liu YS and Mao Q. 2017. Nature of primitive magmas of Early Permian basalts in Tuha basin, Xinjiang:Constraints from melt inclusions. Acta Petrologica Sinica, 33(2): 339-353 (in Chinese with English abstract)
Wang CS, Gu LX, Zhang ZZ, Wu CZ, Tang JH and Tang XQ. 2009. Petrogenesis and geological implications of the Permian high-K calc-alkaline granites in Harlik Mountains of eastern Tianshan, NW China. Acta Petrologica Sinica, 25(6): 1499-1511 (in Chinese with English abstract)
Wang JB and Xu X. 2006. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31 (in Chinese with English abstract)
Wang YW, Wang JB and Wang LJ. 2006. Comparison of host rocks between two vanadic titanomagnetite deposit types from the eastern Tianshan Mountains. Acta Petrologica Sinica, 22(5): 1425-1436 (in Chinese with English abstract)
Wang YW, Wang JB, Wang LJ and Long LL. 2008. Metallogenic series related to Permian mafic complex in North Xinjiang:Post-collisional stage or mantle plume result?. Acta Geologica Sinica, 82(4): 788-795
Wang YW, Wang JB, Wang LJ and Long LL. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(Ⅴ) Ti-Fe ore district, Xinjiang. Acta Petrologica Sinica, 25(4): 888-900 (in Chinese with English abstract)
Wang YW, Wang JB, Wang LJ, Long LL, Tang PZ, Liao Z and Zhang HQ. 2010. Petrographical and lithogeochemical characteristics of the mafic-ultramafic complex related to CuNi-VTiFe composite mineralization:Taking the North Xinjiang as an example. Acta Petrologica Sinica, 26(2): 401-412 (in Chinese with English abstract)
Wang YW, Wang JB, Li DD, Long LL, Tang PZ, Shi Y and Gao YH. 2013. Types, temporal-spatial distribution and metallogenic lineage of ore deposits related to mantle-derived magma in northern Xinjiang. Mineral Deposits, 32(2): 223-243 (in Chinese with English abstract)
Xia LQ, Li XM, Xia ZC, Xu XY, Ma ZP and Wang LS. 2006. Carboniferous-Permian rift-related volcanism and mantle plume in the Tianshan, northwestern China. Northwestern Geology, 39(1): 1-49 (in Chinese with English abstract)
Xia MZ, Jiang CY, Qian ZZ, Sun T, Xia ZD and Lu RH. 2008. Geochemistry and petrogenesis for Hulu intrusion in East Tianshan, Xinjiang. Acta Petrologica Sinica, 24(12): 2749-2760 (in Chinese with English abstract)
Xia MZ. 2009. The mafic-ultramafic intrusions in the Huangshan region eastern Tianshan, Xinjiang: Petrogenesis and mineralization implication. Ph. D. Dissertation. Xi'an: Chang'an University, 1-157(in Chinese with English summary)
Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395 DOI:10.2475/ajs.304.4.370
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217 DOI:10.1007/s00531-008-0407-z
Xiao WJ, Windley BF, Allen MB and Han CM. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4): 1316-1341 DOI:10.1016/j.gr.2012.01.012
Xie W, Song XY, Chen LM, Deng YF, Zheng WQ, Wang SY, Ba DH, Yin MH and Luan Y. 2014. Geochemistry insights on the genesis of the dubduction-related Heishan magmatic Ni-Cu-(PGE) deposit, Gansu, northwestern China, at the southern margin of the Central Asian Orogenic Belt. Economic Geology, 109(6): 1563-1583 DOI:10.2113/econgeo.109.6.1563
Yu X, Chen HL, Yang SF, Wang QH, Lin XB, Xu Y and Luo JC. 2009. Geochemical features of Permian basalts in Tarim Basin and compared with Emeishan LIP. Acta Petrologica Sinca, 25(6): 1492-1498 (in Chinese with English abstract)
Yuan F, Zhou TF, Zhang DY, Jowitt SM, Keays RR, Liu S and Fan Y. 2012. Siderophile and chalcophile metal variations in basalts:Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews, 45: 5-15 DOI:10.1016/j.oregeorev.2011.04.003
Zhang XR, Zhao GC, Sun M, Han YG and Liu Q. 2017. Triassic magmatic reactivation in Eastern Tianshan, NW China:Evidence from geochemistry and zircon U-Pb-Hf isotopes of granites. Journal of Asian Earth Sciences, 145: 446-459 DOI:10.1016/j.jseaes.2017.06.022
Zhao BB, Deng YF, Zhou TF, Yuan F, Zhang DY, Deng G, Li WD and Li Y. 2018. Petrogenesis of the Baixintan Ni-Cu sulfide-bearing mafic-ultramafic intrusion, East Tianshan:Evidence from geochronology, petrogeochemistry and Sr-Nd isotope. Acta Petrologica Sinica, 34(9): 2733-2753 (in Chinese with English abstract)
Zhao Y, Xue CJ, Zhao XB, Yang YQ, Ke JJ and Zu B. 2016. Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, northwestern China. Journal of Asian Earth Sciences, 126: 1-13 DOI:10.1016/j.jseaes.2016.04.021
Zhao Y, Yang YQ and Ke JJ. 2016. Origin of Cu-and Ni-bearing magma and sulfide saturation mechanism:A case study of Sr-Nd-Pb-S isotopic composition and element geochemistry on the Huangshannan magmatic Ni-Cu sulfide deposit, Xinjiang. Acta Petrologica Sinica, 32(7): 2086-2098 (in Chinese with English abstract)
Zhou DW, Liu YQ, Xing XJ, Hao JR, Dong YP and Ouyang ZJ. 2006. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang. Science in China (Series D), 49(6): 584-596 DOI:10.1007/s11430-006-0584-1
Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China:Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257 DOI:10.1016/j.chemgeo.2004.05.005
Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W and Yang SH. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China:Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583-594 DOI:10.1016/j.lithos.2009.06.027
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 DOI:10.1146/annurev.ea.14.050186.002425
白建科, 刘池阳, 张少华, 卢进才, 孙吉明. 2018. 东天山吐哈盆地南缘企鹅山群玄武岩锆石U-Pb年代学、地球化学及其对北天山洋闭合时限的约束. 岩石学报, 34(10): 2995-3010.
陈希节, 舒良树. 2010. 新疆哈尔里克山后碰撞期构造-岩浆活动特征及年代学证据. 岩石学报, 26(10): 3057-3064.
陈希节, 张奎华, 张关龙, 周健. 2016. 新疆东天山哈尔里克二叠纪奥莫尔塔格碱性花岗岩特征、成因及构造意义. 岩石矿物学杂志, 35(6): 929-946. DOI:10.3969/j.issn.1000-6524.2016.06.002
邓宇峰, 宋谢炎, 陈列锰, 程松林, 张新利, 李军. 2011. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究. 岩石学报, 27(12): 3640-3652.
邓宇峰, 宋谢炎, 周涛发, 袁峰, 陈列锰, 郑文勤. 2012. 新疆东天山黄山东岩体橄榄石成因意义探讨. 岩石学报, 28(7): 2224-2234.
顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103-1120.
韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328. DOI:10.3321/j.issn:0023-074X.2004.22.012
姬金生, 陶洪祥, 杨兴科. 1994. 东天山中段不同构造环境火山岩地球化学特征. 岩石矿物学杂志, 13(4): 297-304.
李锦轶, 宋彪, 王克卓, 李亚萍, 孙桂华, 齐得义. 2006. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录. 地球学报, 27(5): 424-446. DOI:10.3321/j.issn:1006-3021.2006.05.006
李全忠, 谢智, 徐夕生, 陈江峰, 高天山. 2008. 大别造山带早白垩世基性岩的同位素特征及下地壳物质对岩浆源区的贡献. 岩石学报, 24(8): 1771-1781.
李曙光. 1994. εNd-La/Nb、Ba/Nb、Nb/Th图对地幔不均一性研究的意义——岛弧火山岩分类及EMⅡ端元的分解. 地球化学, 23(2): 105-114.
李文铅, 王冉, 王核, 夏斌. 2006. "吐哈天窗"卡拉塔格岩体的地球化学和岩石成因. 中国地质, 33(3): 559-565. DOI:10.3969/j.issn.1000-3657.2006.03.012
刘德权, 唐延龄, 周汝洪. 1992. 新疆北部古生代地壳演化及成矿系列. 矿床地质, 11(4): 307-314.
刘德权, 唐延龄, 周汝洪. 2005. 中国新疆铜矿床和镍矿床. 北京: 地质出版社, 1-306.
毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义. 矿床地质, 21(4): 323-330. DOI:10.3969/j.issn.0258-7106.2002.04.002
毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 闫臻, 李继亮, 雍拥, 张继恩. 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162.
毛启贵, 方同辉, 王京彬, 王书来, 王宁. 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义. 岩石学报, 26(10): 3017-3026.
毛启贵, 吕晓强, 于明杰. 2018. 东天山早二叠世幔源岩浆活动及镁铁质杂岩体铜镍成矿潜力分析. 矿产勘查, 9(12): 2270-2281.
钱壮志, 孙涛, 汤中立, 姜常义, 何克, 夏明哲, 王建中. 2009. 东天山黄山东铜镍矿床铂族元素地球化学特征及其意义. 地质论评, 55(6): 873-884. DOI:10.3321/j.issn:0371-5736.2009.06.011
秦克章. 2000.新疆北部中亚型造山与成矿作用.博士后科研报告.北京: 中国科学院地质与地球物理研究所, 1-194 http://cdmd.cnki.com.cn/Article/CDMD-80075-2006045793.htm
秦克章, 方同辉, 王书来, 王旭东. 2001. 吐哈盆地南缘古生代"天窗"卡拉塔格铜金矿化区的发现及其成矿潜力. 中国地质, 28(3): 16-23.
秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析. 西北地质, 45(4): 83-116. DOI:10.3969/j.issn.1009-6248.2012.04.009
三金柱, 秦克章, 汤中立, 唐冬梅, 苏本勋, 孙赫, 肖庆华, 刘平平. 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义. 岩石学报, 26(10): 3027-3035.
石煜, 王玉往, 王京彬. 2017a. 东天山似斑状角闪辉长岩类与铁钛氧化物矿床的关系. 地学前缘, 24(6): 80-97.
石煜, 王玉往, 王京彬, 王莉娟, 李德东, 龙灵利. 2017b. 东天山二红洼岩体橄榄石成分对CuNi-VTiFe复合矿化的启示. 地球科学, 42(3): 325-338.
石煜. 2018.新疆东天山后碰撞幔源岩浆矿床成岩-成矿作用.博士学位论文.北京: 中国地质大学, 1-190 http://cdmd.cnki.com.cn/Article/CDMD-11415-1019015151.htm
宋谢炎, 邓宇峰, 颉炜, 陈列锰, 于宋月, 梁庆林. 2018. 新疆黄山-镜儿泉铜镍成矿带岩浆作用与区域走滑构造的关系. 地球科学与环境学报, 40(5): 505-519. DOI:10.3969/j.issn.1672-6561.2018.05.002
孙赫, 秦克章, 唐冬梅, 肖庆华. 2010. 新疆东天山铜镍矿区A型花岗岩地球化学特征及对区域构造演化的意义. 矿床地质, 29(增1): 1127-1128.
孙涛, 钱壮志, 汤中立, 姜常义, 何克, 孙亚莉, 王建中, 夏明哲. 2010. 新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义. 岩石学报, 26(11): 3339-3349.
孙燕, 王京彬, 吕晓强, 柯国秋, 于明杰. 2018.东天山西北部卡拉塔格隆起区月牙湾铜镍矿的发现及其意义.第十四届矿床会议论文集, 749-750
唐冬梅, 秦克章, 孙赫, 苏本勋, 肖庆华, 程松林, 李军. 2009. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, 25(4): 817-831.
唐冬梅, 秦克章, 薛胜超, 毛亚晶, 田野, 刘勇胜, 毛骞. 2017. 吐哈盆地早二叠世玄武岩原始岩浆性质:来自熔融包裹体成分的制约. 岩石学报, 33(2): 339-353.
汪传胜, 顾连兴, 张遵忠, 吴昌志, 唐俊华, 汤晓茜. 2009. 东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义. 岩石学报, 25(6): 1499-1511.
王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31.
王玉往, 王京彬, 王莉娟. 2006. 东天山两类钒钛磁铁矿型矿床含矿岩石对比. 岩石学报, 22(5): 1425-1436.
王玉往, 王京彬, 王莉娟, 龙灵利. 2009. 新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征. 岩石学报, 25(4): 888-900.
王玉往, 王京彬, 王莉娟, 龙灵利, 唐萍芝, 廖震, 张会琼. 2010. CuNi-VTiFe复合型矿化镁铁-超镁铁杂岩体岩相学及岩石地球化学特征:以新疆北部为例. 岩石学报, 26(2): 401-412.
王玉往, 王京彬, 李德东, 龙灵利, 唐萍芝, 石煜, 高一菡. 2013. 新疆北部幔源岩浆矿床的类型、时空分布及成矿谱系. 矿床地质, 32(2): 223-243. DOI:10.3969/j.issn.0258-7106.2013.02.001
夏林圻, 李向民, 夏祖春, 徐学义, 马中平, 王立社. 2006. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱. 西北地质, 39(1): 1-49. DOI:10.3969/j.issn.1009-6248.2006.01.001
夏明哲, 姜常义, 钱壮志, 孙涛, 夏昭德, 卢荣辉. 2008. 新疆东天山葫芦岩体岩石学与地球化学研究. 岩石学报, 24(12): 2749-2760.
夏明哲. 2009.新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用.博士学位论文.西安: 长安大学, 1-157 http://cdmd.cnki.com.cn/Article/CDMD-11941-2009176690.htm
余星, 陈汉林, 杨树锋, 厉子龙, 王清华, 林秀斌, 徐岩, 罗俊成. 2009. 塔里木盆地二叠纪玄武岩的地球化学特征及其与峨眉山大火成岩省的对比. 岩石学报, 25(6): 1492-1498.
赵冰冰, 邓宇峰, 周涛发, 袁峰, 张达玉, 邓刚, 李卫东, 李跃. 2018. 东天山白鑫滩含铜镍矿镁铁-超镁铁岩体的岩石成因:年代学、岩石地球化学和Sr-Nd同位素证据. 岩石学报, 34(9): 2733-2753.
赵云, 杨永强, 柯君君. 2016. 含铜镍岩浆起源及硫饱和机制:以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例. 岩石学报, 32(7): 2086-2098.
周鼎武, 柳益群, 邢秀娟, 郝建荣, 董云鹏, 欧阳征健. 2006. 新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143-153.