岩石学报  2019, Vol. 35 Issue (10): 3141-3160, doi: 10.18654/1000-0569/2019.10.12   PDF    
秦祁结合部清水-张家川基性岩形成时代和构造归属探讨
付长垒1,2, 闫臻1, 王秉璋2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 青海省地质调查院, 青藏高原北部地质过程与矿产资源重点实验室, 西宁 810012
摘要: 中央造山系北缘发育完整的早古生代"弧-盆"体系,而其洋内弧盆体系还是陆缘弧盆体系属性的确定,可为原特提斯域古板块构造格局和中央造山系早期造山过程的恢复提供依据。秦岭-祁连结合部清水-张家川地区出露的与原特提斯洋俯冲作用相关的基性岩形成时代和构造归属的探究,是解决中央造山系早古生代洋-陆转换过程以及东西链接等科学问题的重要内容之一。清水-张家川地区主要出露块状、枕状玄武岩以及少量辉绿岩墙和硅质岩夹层,玄武岩和辉绿岩明显富集Th、LREE,亏损Nb、Ta、Zr、Hf和Ti元素,而Th/Nb比值则分为1.09~2.04和0.18~0.73两组,分别与岛弧和弧后裂谷熔岩相一致。另外,这些基性岩具较高的Th/Yb和εNdt)(+4.4~+4.8)值,显示岩浆来自受洋壳沉积物混染的亏损地幔源区。最新LA-ICP-MS锆石U-Pb测年结果显示辉绿岩墙形成于500±3Ma。结合区域岩石地层资料,综合分析表明清水-张家川地区基性岩形成于寒武纪,早于晚奥陶世酸性火山岩和侵入岩。它们与其东、西侧北秦岭和北祁连构造带内的寒武纪-早奥陶世洋内弧和弧后盆地岩浆岩共同构成了原特提斯洋北缘早古生代洋内弧-盆体系。
关键词: 早古生代    洋内弧-盆体系    秦祁结合部    中央造山系    原特提斯洋    
Discussion on the age and tectonic affinity of the mafic rocks in Qingshui-Zhangjiachuan of the conjunction area between the Qinling and Qilian orogenic belts
FU ChangLei1,2, YAN Zhen1, WANG BingZhang2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key Laboratory of the Northern Qinghai-Tibet Plateau Geological Processes and Mineral Resources, Qinghai Geological Survey Institute, Xining 810012, China
Abstract: The tectonic affinity of Early Paleozoic arc-basin system in the northern margin of the Chinese Central Orogenic Belts is vital to reconstruct their tectonic framework and orogen. Mafic rocks are well exposed in Qingshui-Zhangjiachuan of the conjunction area between the Qinling and Qilian orogenic belts, which are closely related to subduction of the Proto-Tethyan ocean. Their ages and tectonic affinities are important to reveal the Early Paleozoic ocean-continent transitional processes and the interconnection relationship between the east and west belts within the Chinese Central Orogenic Belts. Voluminous massive and pillow basalts and minor dolerite dykes and chert interlayers occur in the Qingshui-Zhangjiachuan area. Geochemical data demonstrate that basalts and dolerites display strong enrichment in Th and LREE, and apparent depletion in Nb, Ta, Zr, Hf and Ti. Their Th/Nb ratios are 1.09~2.04 and 0.18~0.73, respectively, which are consistent with those of island arc tholeiite and backarc rift-related lavas. These mafic rocks have relatively high Th/Yb and εNd(t) values (+4.4~+4.8), suggesting a depleted mantle source contaminated by subducted sediment. New LA-ICP-MS zircon U-Pb dating of dolerite dyke yields a weighted mean 206Pb/238U age of 500±3Ma. Combined with regional lithostratigraphy data, it is concluded that mafic rocks in the Qingshui-Zhangjiachuan area mainly formed in Cambrian, prior to Late Ordovician felsic volcanic and intrusive rocks. These rocks, together with Cambrian-Early Ordovician intra-oceanic arc and back-arc basin igneous rocks in the eastern North Qinling belt and western North Qilian belt, further constitute an Early Paleozoic intra-oceanic arc-basin system within the northern margin of the Proto-Tethyan ocean.
Key words: Early Paleozoic    Intra-oceanic arc-basin system    Conjunction area between the Qinling and Qilian orogenic belts    Chinese Central Orogenic Belts    Proto-Tethyan ocean    

“中央造山系”是夹持于中国塔里木、华北和华南地块之间的近东西展布长达5000km的巨型显生宙造山系统(图 1a),它西起昆仑山、阿尔金山和祁连山,向东经秦岭和大别山延伸至苏鲁地区,被认为是原特提斯洋和古特提斯洋分别经历早古生代和早中生代多期次俯冲-碰撞造山作用、并叠加白垩纪以来的陆内造山作用而构筑成的“复合造山带”(姜春发,1993殷鸿福和张克信,1998姜春发等,2000张国伟等,2001陆松年等,2006许志琴等,2006王宗起等,2009杨经绥等,2010),以发育诸多前寒武纪微陆块(包括西昆仑北地块、西昆仑南地块、中阿尔金地块、东昆仑北地块、东昆仑南地块、中祁连地块、欧龙布鲁克地块、北祁连地块等;李怀坤等,2003万渝生等,2003Wan et al., 2006陆松年等,2006许志琴等,2006Tung et al., 2012Yan et al., 2015Wu et al., 2017Li et al., 2018Liu et al., 2018Lu et al., 2018Fu et al., 2019aYu et al., 2019)以及夹持于其间的多条包含蛇绿岩带、高压-超高压变质带、岛弧、弧后岩浆岩的早古生代和早中生代缝合带(包括库地-喀拉塔什、昆中、北阿尔金、南阿尔金、北祁连、南祁连、北秦岭、柴北缘、阿尼玛卿和勉略等;肖序常等,1978宋志高等,1991许志琴等,1994张维吉等,1994冯益民,1997Zhang et al., 2001, 2017Xiao et al., 2002, 2009杨经绥等,2003张旗等,2003Bian et al., 2004索书田等,2004陆松年等,2006Tseng et al., 2007裴先治等,2009王宗起等,2009张建新等,2009Pan et al., 2012闫臻等,2012Bader et al., 2013Meng et al., 2013Song et al., 2013祁生胜等,2014曹玉亭等,2015Dong and Santosh, 2016Xia et al., 2016Cao et al., 2017Yan et al., 2017, 2019Dong et al., 2018; Fu et al., 2018, 2019b)为典型特征(图 1a, b)。它记录了原特提斯和古特提斯洋盆扩张、俯冲消减和闭合全过程以及微陆块离散、聚合历史,是开展古板块构造格局、造山带结构和造山作用研究的天然实验室。

图 1 中央造山系大地构造格架(a, 据杨经绥等,2010修改)及秦岭-祁连-阿尔金-东昆仑造山带构造分区和早古生代蛇绿岩、岛弧和弧后岩浆岩分布图(b) 图 1b中边界断层据张二朋等,1992张国伟等,2001徐学义等,2008b王宗起等,2009Bader et al., 2013Dong and Santosh, 2016李三忠等,2016Fu et al., 2019b修改.岛弧和弧后盆地相关岩石年龄数据见表 5 Fig. 1 Tectonic framework of the Chinese Central Orogenic Belts (a, modified after Yang et al., 2010) and tectonic framework of the Qinling-Qilian-Altun-East Kunlun orogenic belts showing the spatial distribution of the early Paleozoic ophiolite, island-arc and back-arc igneous rocks (b) Boundary lines in Fig. 1b are modified after Zhang et al., 1992, 2001; Xu et al., 2008b; Wang et al., 2009; Bader et al., 2013; Dong and Santosh, 2016; Li et al., 2016; Fu et al., 2019b. Age data of the back-arc basin and island-arc rocks are listed in Table 5

近几十年来,不同学者先后对秦岭、祁连和昆仑造山带开展了地质学、地球物理和地球化学等方面的研究,在造山带结构组成、基础地质理论和区域地质找矿等方面取得了一系列重要成果(姜春发,1993殷鸿福和张克信,1998姜春发等,2000张国伟等,2001冯益民等,2003陆松年等,2006许志琴等,2006杨经绥等,2010李三忠等,2016Dong and Santosh, 2016Li et al., 2018)。已有的地质资料显示,中央造山系北部(北秦岭-祁连-柴北缘-阿尔金-东西昆仑北部)和南部(大别-南秦岭-南昆仑)总体上分别为原特提斯洋和古特提斯洋演化的产物(图 1a);中央造山系东段北秦岭二郎坪群、秦岭杂岩和商丹缝合带可能分别与西段北祁连构造带、中祁连地块以及南祁连北缘拉脊山缝合带相链接(图 1b图 2a宋志高等,1991张维吉等,1994赵生贵,1996张国伟等,2001许志琴等,2006李王晔,2008徐学义等,2008a裴先治等,2009Dong and Santosh, 2016李三忠等,2016Li et al., 2018)。然而,由于中央造山系的结构复杂性、造山类型多样性和活动长期性,人们对其构造演化历史始终无法达成相对统一的共识。例如,中央造山系北缘发育完整的早古生代弧-盆体系,而该弧-盆体系形成时代和构造归属在不同构造带存在认识上的差异:如北祁连弧-盆体系被认为形成于寒武纪-早奥陶世,属于洋内弧-盆体系(张旗等, 1997, 1998韩松等,2000Xiao et al., 2009Xia et al., 2012);二郎坪弧-盆体系的形成时代则存在寒武纪-早奥陶世、寒武纪-中奥陶世、早奥陶世以及晚奥陶世等不同观点,有关其构造属性则存在洋内弧盆体系和陆缘弧盆体系两种认识(Xue et al., 1996Zhai et al., 1998Ratschbacher et al., 2003, 2006Hacker et al., 2004胡波,2005何世平等, 2007a, b裴先治等, 2007a, 2009丁仨平,2008李王晔,2008徐学义等,2008a王涛等,2009王宗起等,2009Dong et al., 2011a, b; Wang et al., 2011, 2013Bader et al., 2013魏方辉,2013; Dong and Santosh, 2016Yan et al., 2016a, 2017李三忠等, 2016, 2017孟祥舒等,2017Li et al., 2018)。这些认识分歧以及由此产生的东西方向差异性严重制约了人们对东亚原特提斯域古板块构造格局和中央造山系区域衔接关系的认识。

秦岭-祁连结合部(简称秦祁结合部)位于中央造山系东西链接的枢纽处,其北侧清水-张家川地区出露大量与原特提斯洋俯冲作用相关的基性岩,对这些岩石的系统研究为解决上述科学问题提供了最佳窗口。本文在对秦祁结合部红土堡基性岩开展锆石U-Pb年龄、地球化学和Sr-Nd同位素分析基础上,结合前人对北祁连、秦祁结合部和二郎坪群的研究成果,综合分析北秦岭-北祁连“弧-盆”体系活动时限和构造归属,并探讨了东亚原特提斯洋北缘早古生代板块构造格局。

1 地质背景

区域地质资料表明,中央造山系北部的北秦岭和祁连造山带具有相似的岩石组成单元和构造格架,均以发育两条分布于中间前寒武地块两侧的早古生代缝合带为典型特征(图 1b)。其中,北秦岭二郎坪群可与北祁连构造带相对应,秦岭杂岩与中祁连地块相连接,而商丹缝合带向西可与南祁连北缘拉脊山缝合带相连(宋志高等,1991张维吉等,1994张国伟等,2001徐学义等,2008a裴先治等,2009Li et al., 2018)。秦祁结合部位于北秦岭和北祁连接触部位,是北秦岭和祁连原特提斯洋东西链接的关键地区。在综合前人研究资料基础上,Mao et al.(2017)将秦祁结合部自南向北划分为三个构造单元:李子园俯冲杂岩带、秦岭弧变质-岩浆杂岩带和清水-张家川弧后杂岩带。

李子园俯冲杂岩带主要由早古生代蛇绿岩和浅变质的火山-沉积岩系组成,天水-武山蛇绿岩中发育N-MORB、E-MORB型玄武岩和大洋斜长花岗岩,形成于534~489Ma,代表了寒武纪原特提斯洋壳残片(裴先治等, 2004, 2009李王晔等,2007丁仨平等,2008),它向东与商丹缝合带相连(图 2a)。

图 2 秦岭造山带地质图及研究区位置(a,据Yan et al., 2016b)和秦岭-祁连结合部地质图(b,据裴先治等,2009修改) 秦岭-祁连结合部早古生代岩浆岩年龄数据见表 4 Fig. 2 Geological sketch map of the Qinling Orogen and location of the study area (a, modified after Yan et al., 2016b) and geological map of the conjunction area between the Qinling and Qilian orogenic belts (b, modified after Pei et al., 2009) Data of the Early Paleozoic igneous rocks in the conjunction area between Qinling and Qilian orogenic belts are listed in Table 4

秦岭弧变质-岩浆杂岩带与南侧的俯冲杂岩带呈断层接触,而与北侧的弧后杂岩带以韧性剪切带接触,主要由深变质的秦岭杂岩、新元古代花岗片麻岩、早古生代花岗岩侵入体以及早古生代草滩沟群火山-沉积岩组成。其中,秦岭杂岩包括花岗片麻岩、石榴夕线黑云片麻岩、石榴黑云变粒岩以及少量角闪二辉麻粒岩、大理岩、钙硅酸盐岩、石英岩和斜长角闪岩,麻粒岩相的变质时代为430~402Ma(Mao et al., 2017);早古生代花岗岩具有C型埃达克岩(Zhang et al., 2006王婧等,2008)和弧岩浆岩特征(裴先治等,2007b);草滩沟群火山-沉积岩包括玄武岩、流纹岩、火山碎屑岩和少量安山岩,地球化学分析结果显示这些火山岩形成于岛弧环境(闫全人等,2007Yan et al., 2017)。

清水-张家川弧后杂岩带主要发育陇山杂岩、葫芦河群碎屑岩、陈家河群火山-沉积岩和红土堡基性岩,同时可见大量前寒武纪、早古生代、晚古生代、中生代花岗岩和少量超基性岩(图 2b裴先治等,2009)。陇山杂岩主要由副片麻岩、花岗片麻岩、斜长角闪岩和大理岩组成,向东与宽坪群相对应,它与秦岭杂岩的时代均为古元古代,共同代表了北秦岭古老变质基底(何艳红等,2005王银川等,2012)。葫芦河群为一套低角闪岩相-绿片岩相变质碎屑岩,发育不完整鲍马序列,碎屑锆石定年显示其主体可能形成于志留纪,锆石年龄峰值有479Ma、887Ma、1499Ma和448Ma,总体表现出陆缘复理石沉积特征(裴先治等,2012)。陈家河群为一套低绿片岩相中酸性火山岩和陆缘碎屑岩组合,中酸性火山岩以英安岩、流纹岩和流纹斑岩为主夹英安质、流纹质熔结角砾岩和凝灰岩,局部有少量玄武岩和安山岩,这些中酸性火山岩被认为形成于448~447Ma大陆边缘弧(胡波,2005何世平等,2007b)或弧后盆地初始拉张环境(李王晔,2008)。红土堡基性岩组是长安大学地质调查研究院(2004)从原葫芦河群解体出的一套低绿片岩相基性火山岩、辉绿岩夹少量硅质岩组合,主要沿秦安县北杨家寺-清水县红土堡-南头河一带断续分布,基性岩具有拉斑玄武岩特征,被认为形成于商丹洋向北俯冲形成的陆缘弧后盆地环境(张二朋等,1992胡波,2005何世平等,2007b李王晔,2008魏方辉,2013),与北秦岭造山带二郎坪群形成环境一致(Dong et al., 2011aYan et al., 2017),前人对该基性岩进行全岩Rb-Sr、Sm-Nd和锆石LA-ICP-MS分析获得了484~386Ma年龄(胡波,2005何世平等, 2007a, b),认为其与陈家河群酸性火山岩时代相近。侵入于弧后杂岩带中的早古生代、晚古生代花岗岩分别被认为形成于原特提斯洋俯冲和碰撞造山阶段(Zhang et al., 2006陈隽璐等,2007裴先治等,2007a魏方辉等,2012孟祥舒等,2017),而中生代花岗岩则被认为是古特提斯洋俯冲-闭合过程的产物(Zhang et al., 2006)。这些研究结果共同表明,秦祁结合部与北秦岭和北祁连构造带均保存相对较完整的沟-弧-盆体系,共同记录了原特提斯洋演化历史(宋志高等,1991张二朋等,1992徐学义等,2008aBader et al., 2013李三忠等,2016Li et al., 2018)。

① 长安大学地质调查研究院. 2004.天水市幅1:25万区域地质调查(修测)报告

2 红土堡基性岩地质特征

在秦祁结合部清水-张家川一带,基性岩主要为红土堡基性岩组和陈家河群玄武岩。红土堡基性岩组与其南、北两侧志留纪葫芦河群和奥陶纪陈家河群呈断层接触(图 2b),被早古生代和中生代花岗岩侵入,且多被第四系覆盖,仅在清水县红土堡一带发育良好。这些基性岩主要为灰绿色玄武岩,通常有少量灰白色-灰黑色薄层或透镜状硅质岩夹层。由于遭受后期构造作用改造,普遍发育NWW向片理,仅在局部露头可见保留相对良好的枕状构造(图 3a);岩枕多为椭球状,长轴约50~60cm。同时,野外可见少量辉绿岩墙(图 3c)侵入玄武岩。

图 3 红土堡基性岩野外露头和显微结构照片 (a)枕状玄武岩(36°44′37″N、106°3′13″E);(b)斑状结构玄武岩(正交偏光);(c)辉绿岩墙;(d)辉绿岩显微结构(正交偏光). Pl-斜长石;Act-阳起石;Ep-绿帘石;Chl-绿泥石 Fig. 3 Outcrops and photomicrographs of mafic rocks in Hongtubao area (a) pillow basalts (36°44′37″N, 106°3′13″E); (b) pillow basalt with a porphyritic texture (crossed polars); (c) dolerite dykes; (d) dolerite (crossed polars). Pl-plagioclase; Act-actinolite; Ep-epidote; Chl-chlorite

红土堡基性岩普遍发生绿片岩相变质,显微镜下可见绿帘石、阳起石和绿泥石等变质矿物。玄武岩具变余斑状结构和间粒-间隐结构(图 3b);斑晶主要为斜长石,呈他形-半自形板状,发育简单双晶和聚片双晶,粒径变化于0.5~1mm,含量约5%。基质主要由斜长石微晶、绿帘石和绿泥石共同组成。

辉绿岩具辉绿结构,主要矿物为斜长石(55%)、阳起石(40%)以及少量绿泥石(图 3d)。斜长石呈板状自形-半自形晶,发育卡钠复合双晶,粒度为0.5~1mm;阳起石呈纤维状,充填于斜长石围成的三角格架内,未见残余辉石。

3 辉绿岩锆石U-Pb年龄

为确定红土堡基性岩形成构造环境,野外采集1件辉绿岩大样(样品16CJH9;~15kg)供LA-ICP-MS锆石U-Pb测年。锆石分选在河北省区域地质矿产调查研究所实验室完成,共分离出143粒锆石。LA-ICP-MS锆石U-Pb同位素测试在北京科荟测试技术有限公司使用ESI NWR 193nm激光剥蚀系统和Analytikjena PlasmaQuant MS Elite电感耦合等离子体质谱仪完成,详细实验测试流程可参见侯可军等(2009),数据处理采用软件ICPMSDataCal(Liu et al., 2010)完成,并使用Isoplot(ver3.0)程序绘制谐和图和计算加权平均年龄(Ludwig,2003),分析测试结果见表 1图 4

表 1 红土堡辉绿岩墙锆石LA-ICP-MS U-Pb测年数据 Table 1 LA-ICP-MS zircon U-Pb data of dolerite dyke in Hongtubao area

图 4 红土堡辉绿岩墙锆石阴极发光图像(a)和LA-ICP-MS U-Pb年龄谐和图(b) Fig. 4 Cathodoluminescence (CL) images (a) and LA-ICP-MS U-Pb concordia diagram (b) of zircons from dolerite dykes in Hongtubao area

锆石为无色透明、半自形-自形粒状或柱状,粒度较小,长度为40~120μm,长宽比率为1~3。阴极发光(CL)图像显示,锆石呈灰白色-灰黑色,发育清晰的岩浆震荡环带,部分锆石同时具有扇状和板状分带特征(图 4a),显示出基性岩锆石特征。分析结果显示,16粒锆石Th和U含量变化较大,分别为46×10-6~858×10-6和96×10-6~820×10-6,Th/U比值介于0.46~1.94之间,这些锆石U-Pb年龄谐和度较好,在207Pb/235U-206Pb/238U谐和图中均落在谐和线上,且206Pb/238U年龄较集中,变化于491~510Ma之间,获得206Pb/238U加权平均年龄为500±3Ma(N=16;MSWD=0.75)(图 4b),该年龄代表了辉绿岩的岩浆结晶年龄。

4 地球化学特征

为确定红土堡基性岩形成构造环境,在室内显微结构观察基础上,选择5件玄武岩和3件辉绿岩样品进行地球化学分析。主量、微量和稀土元素含量测试工作均在中国地质科学院国家地质实验测试中心完成,分析结果见表 2。主量元素利用Phillips 4400 X-荧光光谱仪测试,检测限<0.01%,分析精度优于1%且误差小于5%;FeO含量利用重铬酸钾滴定法测定;微量元素和稀土元素利用VG Elemental PQⅡPlus电感耦合等离子体质谱仪(ICP-MS)来测定,检测限为(1~0.05)×10-6,分析误差为5~10%。

表 2 红土堡玄武岩和辉绿岩主量(wt%)和微量(×10-6)元素分析结果 Table 2 Major (wt%) and trace (×10-6) element data for the basalts and dolerites in Hongtubao area

红土堡基性岩普遍发生绿泥石化作用,Cs、Ba、K等大离子亲石元素含量易于受蚀变作用影响。为此,本文主要选取相对稳定元素来分析基性岩岩石类型和形成构造环境。

清水县红土堡组和陈家河群中基性岩在Nb/Y-Zr/Ti图解中均投在玄武岩范围内(图 5a);在SiO2-FeOT/MgO图解中(图 5b),除望家坡2个样品落入钙碱性系列范围,其它均落入拉斑玄武岩系列区域内。

图 5 秦祁结合部清水-张家川基性岩Zr/TiO2×0.0001-Nb/Y(a,据Winchester and Floyd, 1977)和SiO2-FeOT/MgO(b,据Miyashiro,1974)图解 红土堡和望家坡基性岩属于红土堡基性岩组;新城和后川玄武岩属于陈家河群;后文数据来源及图例同此图 Fig. 5 Zr/TiO2×0.0001 vs. Nb/Y (a, after Winchester and Floyd, 1977) and SiO2 vs. FeOT/MgO diagrams (b, after Miyashiro, 1974) of mafic rocks from Qingshui-Zhangjiachuan within the conjunction area between the Qinling and Qilian orogenic belts Mafic rocks in Hongtubao and Wangjiapo areas belong to Hongtubao Formation; Basalts in Xincheng and Houchuan areas belong to Chenjiahe Group; Data sources and legends are same as in this figure

主量元素测试结果(表 2)显示,红土堡玄武岩样品SiO2含量为46.99%~50.83%,MgO含量为3.81%~6.12%,FeOT为11.38%~13.05%,TiO2含量较高且为1.55%~1.93%,Mg#值为36~49;辉绿岩样品SiO2含量为49.59%~53.17%,MgO含量为3.5%~4.27%,FeOT为11.30%~13.39%,TiO2含量较高且为1.83%~2.29%,Mg#值为36~37。

红土堡基性岩稀土元素含量较高,玄武岩ΣREE为87.02×10-6~112.4×10-6,LREE/HREE=2.92~3.03,(La/Yb)N=2.11~2.27,δEu=0.98~1.03;辉绿岩ΣREE为126.8×10-6~130.3×10-6,LREE/HREE=2.96~3.04,(La/Yb)N=2.12~2.26,δEu=0.95~0.98。玄武岩和辉绿岩具有一致的稀土和微量元素配分模式,球粒陨石标准化稀土元素配分曲线为弱的右倾型(图 6a),轻、重稀土分馏较弱,位于岛弧和弧后扩张脊熔岩之间;N-MORB标准化微量元素蛛网图中基性岩明显富集Th和轻稀土元素而亏损Nb、Ta、Zr、Hf和Ti(图 6b),与马里亚纳岛弧熔岩更具相似性(Pearce et al., 2005Ishizuka et al., 2010)。

图 6 清水-张家川基性岩球粒陨石标准化稀土元素配分曲线(a、c、e)和N-MORB标准化微量元素蛛网图(b、d、f)(标准化值据Sun and McDonough, 1989) 马里亚纳弧后扩张脊和岛弧熔岩数据引自Pearce et al.(2005)Ishizuka et al.(2010) Fig. 6 Chondrite-normalized REE diagrams (a, c, e) and N-MORB-normalized spider diagrams (b, d, f) of mafic rocks from Qingshui-Zhangjiachuan (normalization values after Sun and McDonough, 1989) Data of the Mariana Trough lavas are from Pearce et al. (2005) and Ishizuka et al. (2010)
5 Sr-Nd同位素特征

红土堡基性岩Sr-Nd同位素组成分析在北京科荟测试技术有限公司完成,Sr和Nd同位素经分离和提纯后,使用Neptune plus型多接收电感耦合等离子体质谱仪进行Sr、Nd同位素组成测试,Sr、Nd同位素比值分别采用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219进行质量分馏校正,实验过程中同时测得标样NBS-987的87Sr/86Sr值为0.710247±0.000013(2σ;N=6),标样GSB的143Nd/144Nd值为0.512187±0.000013(2σ;N=7),标样数据结果与推荐值十分吻合。红土堡辉绿岩呈岩墙侵入玄武岩中,相似的全岩和Sr-Nd同位素组成特征表明,辉绿岩和玄武岩近同期形成。因此,基性岩同位素初始比值根据辉绿岩墙年龄(500Ma)计算,Sr-Nd同位素测试数据和计算结果见表 3图 7

表 3 红土堡基性岩Sr-Nd同位素分析结果 Table 3 Sr-Nd isotopic composition of the mafic rocks in Hongtubao area

图 7 清水-张家川基性岩εNd(t)-(87Sr/86Sr)t图解 地幔演化线据DePaolo and Wasserburg(1977);MORB和OIB据DePaolo and Wasserburg(1977)Zindler and Hart(1986);弧后扩张脊和洋内弧熔岩据Gamble and Wright(1995)Stern et al.(2004)Ishizuka et al.(2007, 2009, 2010);基性岩同位素初始比值根据红土堡辉绿岩墙年龄(500Ma)计算(数据来源见表 4);晚奥陶世酸性火山岩Sr-Nd同位素数据胡波(2005)李王晔(2008) Fig. 7 εNd(t) vs. (87Sr/86Sr)t diagram for mafic rocks from Qingshui-Zhangjiachuan Mantle array after DePaolo and Wasserburg (1977); MORB and OIB fields after DePaolo and Wasserburg (1977), Zindler and Hart (1986); Back-arc spreading center and intra-oceanic arc lavas fields are compiled from Gamble and Wright (1995), Stern et al. (2004), Ishizuka et al.(2007, 2009, 2010); Initial isotopic ratios of the mafic rocks are calculated based on the age of dolerite dyke (500Ma) (data from literatures listed in Table 4); Sr-Nd isotopic composition of the late Ordovician felsic rocks are from Hu (2005), Li (2008)

玄武岩初始87Sr/86Sr比值为0.70411~0.70440,可能与海水蚀变有关(Nohda et al., 1992),初始143Nd/144Nd介于0.512217~0.512220之间,εNd(t)值为+4.4;辉绿岩初始87Sr/86Sr比值为0.70379~0.70382,初始143Nd/144Nd介于0.512226~0.512237之间,εNd(t)值介于+4.5~+4.8之间,基性岩与洋内岛弧玄武岩同位素组成一致,显示具有相似的地幔源区特征(图 7Stern et al., 2004Ishizuka et al., 2010)。

6 讨论 6.1 基性岩形成时代

秦祁结合部清水-张家川地区基性岩最早于1963年被甘肃西秦岭地质队划归为“牛头河群”,并根据岩性对比认为其属于前寒武纪;宋志高等(1991)将基性岩划归为葫芦河群浅变质岩系,虽然未获得相关年龄数据,根据区域对比认为其形成于早古生代;裴先治等(2009, 2012)在开展天水市幅1:25万区域地质调查基础上将葫芦河群解体为三部分:(1)志留纪葫芦河群深变质陆缘碎屑岩系;(2)早古生代红土堡基性岩组;(3)早古生代陈家河群火山-沉积岩系。本文讨论的基性岩样品赋存于陈家河群(新城和后川)和红土堡基性岩组中(图 2表 4)。

表 4 清水-张家川地区早古生代岩浆岩特征对比 Table 4 Comparison of the Early Paleozoic igneous rocks in Qingshui-Zhangjiachuan area

前人已对陈家河群和红土堡组中的酸性火山岩和基性岩进行了年代学分析测试。其中胡波(2005)李王晔(2008)根据新城酸性火山岩SHRIMP锆石U-Pb和全岩Rb-Sr等时线分析结果,认为酸性火山岩成岩年龄和变质年龄分别为447~448Ma和413Ma(表 4)。然而,该地区基性岩已有的年龄数据则相对分散(表 4),如484±38Ma(基性岩全岩Rb-Sr等时线年龄;胡波,2005)、463±380Ma(基性岩全岩Rb-Sr等时线年龄;胡波,2005)、386±8Ma(辉绿岩LA-ICP-MS锆石U-Pb年龄;何世平等,2007b)和443±2Ma(玄武岩LA-ICP-MS锆石U-Pb年龄;何世平等,2007b),由于上述基性岩同位素等时线年龄和辉绿岩锆石年龄误差较大,仅有玄武岩的锆石U-Pb年龄(443Ma)与陈家河群酸性火山岩年龄(447~448Ma)一致,被认为大体反映了该地区基性岩的形成时代(何世平等,2007b)。同时,清水-张家川地区发育大量与陈家河酸性火山岩同时期的早古生代(434~455Ma)花岗岩(图 2b表 4),而且这些花岗岩也侵入于红土堡组基性岩中,表明红土堡组基性岩为早期岩浆作用产物。显然,这一基本地质事实与玄武岩锆石U-Pb年龄相矛盾。同位素分析结果显示,清水-张家川地区基性岩εNd(t)值(+2.0~+4.7;图 7表 4)明显高于晚奥陶世陈家河群酸性火山岩(-4.0~+0.8)和晚奥陶-早志留世花岗岩(-8.4~-5.7),这些资料说明基性岩与后期酸性岩岩浆源区存在差异,它们是否为同期岩浆作用产物有待进一步确定。本文最新获得红土堡辉绿岩墙中的锆石206Pb/238U加权平均年龄500±3Ma(N=16;MSWD=0.75)(图 4b)明显早于晚奥陶-早志留世酸性岩浆岩,与区域岩石地层格架分析结果相吻合。这进一步表明,清水-张家川一带红土堡组和陈家河群基性岩形成时代较早,以寒武纪为主,酸性火山岩主要形成于晚奥陶世,而该地区是否发育寒武纪酸性火山岩或晚奥陶世基性岩仍有待进一步研究。

6.2 岩石成因

综合前人资料,秦祁结合部红土堡、望家坡、新城和后川地区红土堡组和陈家河群基性岩,均表现出一致的主量元素、微量元素和Sr-Nd同位素组成特征(图 4图 5图 7),而且其TiO2、FeOT和CaO含量随MgO含量的增加而增加并呈现正相关性特征,显示基性岩形成过程中岩浆发生了一定程度的结晶分异作用(图 8a-c)。MgO和Al2O3表现出弱正相关性特征(图 8d),说明斜长石结晶分异较弱。MgO和Ni、Cr含量具有良好的正相关性(图 8e, f),表明形成这些基性岩的岩浆曾经历了橄榄石或单斜辉石的分离结晶作用。

图 8 清水-张家川基性岩不同元素相关性图解 Fig. 8 Correlation diagrams of different elements for mafic rocks from Qingshui-Zhangjiachuan

所分析的基性岩样品的稀土和微量元素配分曲线表现出岛弧火山岩特有的地球化学特征(LREE、Th富集,Nb、Ta、Zr、Hf和Ti亏损;Pearce,2014);同时,具有较高的εNd(t)(+2.0~+4.7),也表明其岩浆来自亏损地幔源区(Stern et al., 2004Ishizuka et al., 2010)。地幔楔容易受到洋壳沉积物的混染,使基性岩浆具有较高的Th和LREE含量(Pearce,1982Pearce et al., 2005)。此外,秦祁结合部基性岩较高的Th(0.74×10-6~8.32×10-6;数据来源见图 4表 1)和LREE(51.69×10-6~146.0×10-6)含量以及Th/Yb和Th/Nb比值,这些数据均显示基性岩源区存在不同程度俯冲沉积物的加入(图 9a-cPearce and Peate, 1995Woodhead et al., 1998Aldanmaz et al., 2008)。

图 9 清水-张家川基性岩Th/Yb-Sr/Nd(a, 据Woodhead et al., 1998)、Th/Nb-Ta/Nd(b, 据Aldanmaz et al., 2008)、Th/Yb-Nb/Yb(c, 据Pearce,2008)和Th-Ta-Hf/3(d, 据Wood,1980)图解 弧后扩张脊和弧后裂谷熔岩数据引自Pearce et al.(2005)Ishizuka et al.(2010) Fig. 9 Th/Yb vs. Sr/Nd (a, after Woodhead et al., 1998), Th/Nb vs. Ta/Nd (b, after Aldanmaz et al., 2008), Th/Yb-Nb/Yb (c, after Pearce, 2008) and Th-Ta-Hf/3 (d, after Wood, 1980) diagrams for mafic rocks from Qingshui-Zhangjiachuan Data of lavas in the back-arc spreading center and back-arc rift are from Pearce et al. (2005), Ishizuka et al. (2010)
6.3 基性岩形成构造环境

前人根据地球地球化学分析结果认为红土堡基性岩形成于弧后盆地或弧后裂陷-小洋盆环境(胡波,2005何世平等,2007bDong et al., 2011a魏方辉,2013),由于陈家河群中存在类似陆缘弧岩浆岩特征的酸性火山岩,红土堡基性岩和陈家河酸性火山岩被认为是晚奥陶世商丹洋向北俯冲时弧后盆地初始拉张阶段形成的“双峰式”火山岩(李王晔,2008)。本文新获得年龄和地球化学数据显示,清水-张家川地区基性岩和酸性火山岩具有不同的年龄和Sr-Nd同位素组成,它们的形成构造环境需要进一步分析。

本次研究及前人地球化学数据显示,红土堡组和陈家河群基性岩属于拉斑玄武岩系列,具有右倾的球粒陨石标准化稀土元素配分曲线(图 6),明显区别于弧后扩张脊熔岩近水平或左倾的稀土配分曲线(Pearce et al., 2005)。在N-MORB标准化微量元素蛛网图中,基性岩具有明显富集Th、LREE而亏损Nb、Ta、Zr、Hf和Ti元素(图 6b),与马里亚纳岛弧熔岩微量元素地球化学特征相似。在Th/Yb-Nb/Yb和Th-Ta-Hf/3构造判别图中(图 9c, d),2个样品落在弧后扩张脊范围内,一部分较富集Th的红土堡基性岩样品(图 6d胡波,2005)落在岛弧区域,而其他大部分样品则位于岛弧和弧后盆地重叠区域(弧后裂谷)。

成熟弧后盆地的形成经历了弧后裂谷和弧后扩张过程,并伴随着俯冲沉积物熔融所产生富Th流体影响的减弱,从而导致演化过程中形成的岛弧、弧后裂谷和弧后扩张脊熔岩Th/Nb比值逐渐降低(Pearce et al., 2005)。清水-张家川基性岩Th/Nb比值可分为1.09~2.04和0.18~0.73两组(表 2),分别与马里亚纳岛弧(0.53~1.87)和弧后裂谷熔岩(0.24~0.68)相一致(Pearce et al., 2005Ishizuka et al., 2010)。大部分基性岩Th/Nb比值较低,位于岛弧拉斑玄武岩(IAT)和弧后扩张脊玄武岩(BABB)之间,呈现出岛弧和弧后岩浆混合趋势(图 9b)。此外,清水-张家川基性岩初始同位素比值较高,总体位于洋内弧范围内(图 7),显示其地幔源区尚未发生较大变化。综合野外岩石组合和地球化学特征,清水-张家川基性岩具有岛弧和弧后裂谷玄武岩特征,形成于洋内弧弧后盆地初始裂解阶段。

6.4 北秦岭-北祁连原特提斯洋内寒武纪板块构造格局

北秦岭二郎坪-北祁连构造带夹持于华北地块和中祁连-秦岭地块之间,是中央造山系和原特提斯洋北缘的重要组成部分(图 1a, bLi et al., 2018),该构造带保存有原特提斯洋最初俯冲消减过程中形成的高压-超高压变质岩、蛇绿岩、岛弧和弧后岩浆岩。

北祁连构造带发育宽阔的俯冲-增生杂岩和蛇绿岩,自南向北可将其划分为四个构造单元:(1)玉石沟-川刺沟MOR型蛇绿岩带(左国朝等,1996张旗等,1997史仁灯等,2004Tseng et al., 2007Song et al., 2013),表现为放射虫硅质岩、N-MORB型玄武岩、辉长辉绿岩和地幔橄榄岩组合,形成于550~497Ma;(2)走廊南山弧前俯冲-增生杂岩带(许志琴等,1994张建新和许志琴,1995),发育高压低温变质岩、滑塌堆积和基性-超基性岩块等;(3)大岔大坂岛弧带(张旗等,1998韩松等,2000孟繁聪等,2010Xia et al., 2012),以具玻安岩地球化学特征的枕状熔岩和侵入其中的辉长辉绿岩为主,形成于517~487Ma(表 5);(4)九个泉弧后盆地蛇绿岩带(张旗等,1997夏林圻等,1998钱青等, 2001a, b),为大陆边缘硅质岩、E-MORB和N-MORB型玄武岩、堆晶辉长岩和地幔橄榄岩组合,形成于490~479Ma(表 5)。增生杂岩、岛弧和弧后蛇绿岩共同构成了寒武纪-早奥陶世原特提斯洋向北俯冲形成的类似马里亚纳的完整“沟-弧-盆”体系(左国朝等,1996冯益民,1997Xiao et al., 2009张建新等,2015)。

表 5 北秦岭-北祁连岛弧和弧后岩石年龄数据 Table 5 The age data of back-arc and island-arc rocks within the North Qinling and North Qilian orogenic belts

北秦岭-北祁连结合部清水-张家川一带发育辉绿岩墙、玄武岩和硅质岩组合,被认为是二郎坪群西部延伸(Dong et al., 2011a)。这些基性岩明显富集LREE、Th,亏损Nb、Ta、Zr、Hf和Ti元素,Th/Nb比值介于岛弧和弧后扩张脊玄武岩之间,呈现岛弧和弧后裂谷玄武岩地球化学特征(图 6图 7图 9)。本文新获得的年龄数据和区域岩石地层格架分析结果显示清水-张家川一带基性岩主体可能形成于晚寒武世(图 4表 4),基性岩与晚奥陶世酸性火山岩和侵入岩为不同期次岩浆作用产物,而是形成于寒武纪原特提斯洋洋内弧-盆体系早期演化过程。

原特提斯洋北缘东段的北秦岭二郎坪群为一套硅质岩、安山岩、玄武岩、辉长辉绿岩和超基性岩组合,沿秦岭群北侧草凉驿、鹦鸽咀和湾潭连续出露,玄武岩和安山岩富集大离子亲石元素Cs、K、Ba、Sr,亏损高场强元素Nb、Ta、Zr和Ti,呈现出与俯冲作用相关的岛弧火山岩地球化学特征,并被认为形成于岛弧或弧后盆地环境(Xue et al., 1996Zhai et al., 1998Ratschbacher et al., 2003陆松年等,2003闫全人等,2007Dong et al., 2011aDong and Santosh, 2016Yan et al., 2017)。前人对二郎坪群形成时代进行了研究,陆松年等(2003)闫全人等(2007)分别获得湾潭枕状熔岩和斜峪关玄武岩锆石SHRIMP U-Pb年龄467±7Ma和472±11Ma,与王学仁等(1995)报道的二郎坪群中硅质岩和泥岩中微体古生物时代(早寒武-中奥陶世)相一致(图 1b表 5);Sun et al.(1996)雷敏(2010)分别获得侵入二郎坪群中的花岗岩U-Pb年龄为480±7Ma和486±7Ma,这些年龄限定了二郎坪群形成时代下限;另外,秦岭群北侧含金刚石片麻岩和榴辉岩中变质锆石年龄为507±37Ma(杨经绥等,2002)、505±12Ma(刘良等,2003)和485.9±3.8Ma(Wang et al., 2011),指示秦岭群经历了早古生代深俯冲超高压变质作用。这些年龄数据表明,二郎坪古洋盆形成时代早于510Ma,洋壳俯冲时限约为510~490Ma,岛弧或弧后岩浆作用可能持续至早奥陶世。

虽然前人认为二郎坪群基性岩具有弧后盆地火山岩地球化学特征,但是这些基性岩究竟是形成于商丹洋向北俯冲而形成的陆缘弧后盆地还是洋内弧后盆地仍存在争议。商丹洋向北俯冲形成早古生代陆缘弧岩浆作用叠加于新元古代秦岭群,早古生代岩浆作用以晚寒武世和晚奥陶世-志留纪为主(王涛等,2009王宗起等,2009闫全人等,2009Dong and Santosh, 2016)。目前报道的晚寒武世岩浆岩仅出露于富水岩体附近,而晚奥陶世-志留纪岩浆岩在秦岭群中广泛发育。若秦岭群北侧发育因商丹洋向北俯冲形成的陆缘弧后盆地,其时代应以晚奥陶世-志留纪为主,这与二郎坪群主体形成时代(寒武纪-早奥陶世)相矛盾。结合二郎坪群岩石组合类型、地球化学特征以及形成时代,它们更可能代表寒武纪-早奥陶世古洋盆、洋内岛弧和弧后盆地残片(Xue et al., 1996Ratschbacher et al., 2003Hacker et al., 2004Dong et al., 2011aWang et al., 2011, 2013Bader et al., 2013Yan et al., 2017)。根据秦岭群北侧发育陆壳深俯冲形成的高压-超高压变质岩,Hacker et al.(2004)Wang et al.(2011)Bader et al.(2013)认为二郎坪洋内弧-盆体系与原特提斯洋向北俯冲有关,高压-超高压变质岩形成于随后的弧陆碰撞过程。

综上所述,北秦岭二郎坪、秦祁结合部清水-张家川和北祁连构造带均发育寒武纪-早奥陶世洋内弧和弧后盆地相关岩浆岩,这些岩石构造单元共同构成了原特提斯洋北缘类似马里亚纳的弧-盆体系,表明中央造山系北部北秦岭-北祁连构造带早古生代具有相似的构造演化。

7 结论

(1) 秦祁结合部清水-张家川块状和枕状玄武岩、辉绿岩墙具有岛弧和弧后裂谷熔岩地球化学特征,形成于洋内弧弧后盆地初始裂解阶段,岩浆来自受到洋壳沉积物混染的亏损地幔源区。

(2) 最新LA-ICP-MS锆石U-Pb测年结果显示辉绿岩墙形成于500±3Ma,结合区域岩石地层格架资料,综合分析表明清水-张家川一带基性岩主体形成于寒武纪。

(3) 北祁连、北秦岭以及秦祁结合部早古生代洋内弧-盆体系是原特提斯洋演化的产物。

致谢     审稿专家和本刊编辑对本文提出了建设性修改意见,在此表示感谢!

肖序常院士长期从事大地构造学方面的研究,建立了祁连造山带蛇绿岩剖面,为国家找矿和青藏高原构造演化研究作出了重要贡献,作者有幸受其“蛇绿岩学”的指引。谨以此文恭祝肖先生九十华诞!

参考文献
Aldanmaz E, Yaliniz MK, Güctekin A and Göncüo ǧ lu MC. 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey:Implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1): 37-54 DOI:10.1017/S0016756807003986
Bader T, Franz L, Ratschbacher L, De Capitani C, Webb AAG, Yang Z, Pfänder JA, Hofmann M and Linnemann U. 2013. The heart of China revisited:Ⅱ Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage. Tectonics, 32(4): 922-947
Bian QT, Li DH, Pospelov I, Yin LM, Li HS, Zhao DS, Chang CF, Luo XQ, Gao SL, Astrakhantsev O and Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4): 577-596 DOI:10.1016/j.jseaes.2003.09.003
Cao YT, Liu L, Wang C, Kang L, Yang WQ, Liang S, Liao XY and Wang YW. 2015. Implication of geochronological data for the para-metamorphic rocks from Bashekurgan Group of Changcheng System in Munabulake area, South Altyn Tagh. Geological Bulletin of China, 34(8): 1447-1459 (in Chinese with English abstract)
Cao YT, Liu L, Chen DL, Wang C, Yang WQ, Kang L and Zhu XH. 2017. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China. Journal of Asian Earth Sciences, 148: 223-240 DOI:10.1016/j.jseaes.2017.09.009
Chen JL, Li HB, Wang HL, He SP, Zeng ZX, Xu XY and Li XM. 2007. LA-ICPMS zircon U-Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian Orogenic belts and its tectonic significance. Journal of Jilin University (Earth Science Edition), 37(3): 423-431 (in Chinese with English abstract)
DePaolo DJ and Wasserburg GJ. 1977. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophysical Research Letters, 4(10): 465-468 DOI:10.1029/GL004i010p00465
Ding SP, Pei XZ, Li ZC, Liu SF, Li RB, Li GY and Liu ZQ. 2008. Tectonic affinity of the Wusushan Group in the central segment of the Qilian orogen. Geology in China, 35(4): 577-589 (in Chinese with English abstract)
Dong YP, Zhang GW, Hauzenberger C, Neubauer F, Yang Z and Liu XM. 2011a. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1-2): 39-56 DOI:10.1016/j.lithos.2010.11.011
Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011b. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237 DOI:10.1016/j.jseaes.2011.03.002
Dong YP and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40 DOI:10.1016/j.gr.2015.06.009
Dong YP, He DF, Sun SS, Liu XM, Zhou XH, Zhang FF, Yang Z, Cheng B, Zhao GC and Li JH. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261 DOI:10.1016/j.earscirev.2017.12.006
Feng YM. 1997. Investigatory summary of the Qilian Orogenic Belt, China:History, presence and prospect. Advance in Earth Sciences, 12(4): 307-314 (in Chinese with English abstract)
Feng YM, Cao XD, Zhang EP, Hu YX, Pan XP, Yang JL, Jia QZ and Li WM. 2003. Tectonic evolution framework and nature of the West Qinling Orogenic Belt. Northwestern Geology, 36(1): 1-10 (in Chinese with English abstract)
Fu CL, Yan Z, Wang ZQ, Buckman S, Aitchison JC, Niu ML, Cao B, Guo XQ, Li XC, Li YS and Li JL. 2018. Lajishankou ophiolite complex:Implications for Paleozoic multiple accretionary and collisional events in the South Qilian Belt. Tectonics, 37(5): 1321-1346 DOI:10.1029/2017TC004740
Fu CL, Yan Z, Guo XQ, Niu ML, Cao B, Wu Q, Li XC and Wang ZQ. 2019a. Assembly and dispersal history of continental blocks within the Altun-Qilian-North Qaidam mountain belt, NW China. International Geology Review, 61(4): 424-447 DOI:10.1080/00206814.2018.1428831
Fu CL, Yan Z, Aitchison JC, Guo XQ and Xia WJ. 2019b. Abyssal and suprasubduction peridotites in the Lajishan ophiolite belt:Implication for initial subduction of the Proto-Tethyan Ocean. The Journal of Geology, 127(4): 393-401 DOI:10.1086/703488
Gamble JA and Wright IC. 1995. The Southern Havre Trough geological structure and magma petrogenesis of an active backarc rift complex. In: Taylor B (ed.). Back Arc Basins: Tectonics and Magmatism. Boston, MA: Springer, 29-62
Hacker BR, Ratschbacher L and Liou JG. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. In: Malpas J, Fletcher CJN, Ali JR and Aitchison J (eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226: 157-175
Han S, Jia XQ, Qian Q, Zhang Q and Wang Y. 2000. Geological and geochemical characteristics of two types of gabbro in Dachadaban, North Qilian and its tectonic environment. Acta Petrologica et Mineralogica, 19(2): 106-112 (in Chinese with English abstract)
He SP, Wang HL, Xu XY, Zhang HF and Ren GM. 2007a. Geochemical characteristics and tectonic environment of Hongtubu basalts and Chenjiahe intermediate-acid volcanic rocks in the eastern segment of North Qilian orogenic belt. Acta Petrologica et Mineralogica, 26(4): 295-309 (in Chinese with English abstract)
He SP, Wang HL, Xu XY, Zhang HF and Ren GM. 2007b. A LA-ICP-MS U-Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of North Qilian Orogenic Belt. Advances in Earth Science, 22(2): 143-151 (in Chinese with English abstract)
He YH, Sun Y, Chen L, Li HP, Yuan HL and Liu XM. 2005. Zircon U-Pb chronology of Longshan complex by LA-ICP-MS and its geological significance. Acta Petrologica Sinica, 21(1): 125-134 (in Chinese with English abstract)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu B. 2005. Geochemical characteristics of the Early Palaeozoic meta-volcanic rocks from Qingshui-Zhangjiachuan in the Tianshui area, Gansu, and their tectonic significance. Master Degree Thesis. Xi'an: Chang'an University, 1-77(in Chinese with English summary)
Ishizuka O, Taylor RN, Yuasa M, Milton JA, Nesbitt RW, Uto K and Sakamoto I. 2007. Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc. Geochemistry, Geophysics, Geosystems, 8(6): Q06008
Ishizuka O, Yuasa M, Taylor RN and Sakamoto I. 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chemical Geology, 266(3-4): 274-296 DOI:10.1016/j.chemgeo.2009.06.014
Ishizuka O, Yuasa M, Tamura Y, Shukuno H, Stern RJ, Naka J, Joshima M and Taylor RN. 2010. Migrating shoshonitic magmatism tracks Izu-Bonin-Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters, 294(1-2): 111-122 DOI:10.1016/j.epsl.2010.03.016
Jiang CF. 1993. Gological and structural characteristics of Certral Orogenic Belt. Geology Research, (27): 107-108 (in Chinese)
Jiang CF, Wang ZQ and Li JY. 2000. Opening-closing Tectonics of Central Orogenic Belt. Beijing: Geological Publishing House, 1-154 (in Chinese)
Lei M. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the eastern part of Qinling orogenic belt. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-162(in Chinese with English summary)
Li HK, Lu SN, Wang HC, Xiang ZQ and Zheng JK. 2003. Quanji Group:The geological record of the Rodinia supercontinent break-up in the Early Neoproterozoic preserved in the northern Qaidam margin, Qinghai, Northwest China. Geological Survey and Research, 26(1): 27-37 (in Chinese with English abstract)
Li SZ, Zhao SJ, Li XY, Cao HH, Liu X, Guo XY, Xiao WJ, Lai SC, Yan Z, Li ZH, Yu SY and Lan HY. 2016. Proto-Tethys Ocean in East Asia (Ⅰ):Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609-2627 (in Chinese with English abstract)
Li SZ, Li T, Zhao SJ, Li XY, Liu X, Guo LL, Yu SY and Li SJ. 2017. Proto-Tethys Ocean in East Asia (Ⅴ):Attribute of contientnal margin and microcontinental assembly in the west segment of the northern Proto-Tethys tectonic domain. Acta Petrologica Sinica, 33(6): 1633-1652 (in Chinese with English abstract)
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li WY, Li SG, Pei XZ and Zhang GW. 2007. Geochemistry and zircon SHRIMP U-Pb ages of the Guanzizhen ophiolite complex, the western Qinling orogen, China. Acta Petrologica Sinica, 23(11): 2836-2844 (in Chinese with English abstract)
Li WY. 2008. Geochronology and geochemistry of the ophiolites and island-arc-type igneous rocks in the western Qinling orogen and the eastern Kunlun orogen: Implication for the evolution of the Tethyan Ocean. Ph. D. Dissertation. Hefei: University of Science and Technology of China, 1-154(in Chinese with English summary)
Liu CF, Wu C, Zhou ZG, Yan Z, Jiang T, Song ZJ, Liu WC, Yang X and Zhang HY. 2018. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane:Implications for tectonic evolution of northeastern Tibetan Plateau. International Journal of Earth Sciences, 107(2): 673-686 DOI:10.1007/s00531-017-1522-5
Liu L, Chen DL, Zhang AD, Zhang, CL, Yuan HL and Liu XM. 2003. The peak metamorphic age and its geological significance of high-pressure to ultrahigh pressure rocks in northern Qinling Mountains. In: Abstract for Structural Geological Development Strategic Symposium at the Begin of 21 Century. 93-96(in Chinese)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Lu SN, Li HK, Chen ZH, Hao GJ, Zhou HY, Guo JJ, Niu GH and Xiang ZQ. 2003. Meso-Neoptroterozoic Geological Evolution of the Qinling and Its Respondence to Rodinia Event. Beijing: Geological Publishing House, 1-194 (in Chinese)
Lu SN, Yu HF, Li HK, Chen ZH, Wang HC, Zhang CL and Xiang ZQ. 2006. Early Paleozoic suture zones and tectonic divisions in the "Central China Orogen". Geological Bulletin of China, 25(12): 1368-1380 (in Chinese with English abstract)
Lu ZL, Zhang JX and Mattinson C. 2018. Tectonic erosion related to continental subduction:An example from the eastern North Qaidam Mountains, NW China. Journal of Metamorphic Geology, 36(5): 653-666 DOI:10.1111/jmg.12305
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70
Mao XH, Zhang JX, Yu SY, Li YS, Yu XX and Lu ZL. 2017. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen:Monazite and zircon U-Pb geochronological constraints. Science China (Earth Sciences), 60(5): 943-957 DOI:10.1007/s11430-016-9029-7
Meng FC, Zhang JX, Guo CM and Li JP. 2010. Constraints on the evolution of the North Qilian ocean basin:MOR-type and SSZ-type ophiolites from Dachadaban. Acta Petrologica et Mineralogica, 29(5): 453-466 (in Chinese with English abstract)
Meng FC, Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Research, 23(2): 825-836 DOI:10.1016/j.gr.2012.06.007
Meng XS, He YH, Chen L and Wu L. 2017. The discovery of the early Paleozoic adakitic rocks in the conjunction of the Qinling and Qilian Orogenic belts and its implications on the orogenic processes. Acta Geologica Sinica, 91(12): 2679-2696 (in Chinese with English abstract)
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355 DOI:10.2475/ajs.274.4.321
Nohda S, Tatsumi Y, Yamashita S and Fujii T. 1992. Nd and Sr isotopic study of Leg 127 Basalts: Implications for the evolution of the Japan Sea backarc basin. In: Tamaki K, Suyehiro K, Allan J and McWilliams S (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 899-904
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. Chichester: John Willey and Sons, 525-548
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285 DOI:10.1146/annurev.ea.23.050195.001343
Pearce JA, Stern RJ, Bloomer SH and Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system:Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101
Pei XZ, Ding SP, Hu B, Li Y, Zhang GW and Guo JF. 2004. Definition of the Guanzizhen ophiolite in Tianshui area, western Qinling, and its geological significance. Geological Bulletin of China, 23(12): 1202-1208 (in Chinese with English abstract)
Pei XZ, Sun RQ, Ding SP, Liu HB, Li ZC, Liu ZQ and Meng Y. 2007a. LA-ICP-MS zircon U-Pb dating of the Yanjiadian diorite in the eastern Qilian Mountains and its geological significance. Geology in China, 34(1): 8-16 (in Chinese with English abstract)
Pei XZ, Liu ZQ, Ding SP, Li ZC, Li GY, Li RB, Wang F and Li FJ. 2007b. Zircon LA-ICP-MS U-Pb dating of the gabbro from the Baihua igneous complex in Tianshui area, eastern Gansu, and its geological significance. Advances in Earth Science, 22(8): 818-827 (in Chinese with English abstract)
Pei XZ, Ding SP, Li ZC, Liu ZQ, Li RB, Feng JY, Sun Y, Zhang YF, Liu ZG, Zhang XF, Chen GC and Chen YX. 2009. Early Paleozoic Tianshui-Wushan tectonic zone of the northern margin of West Qinling and its tectonic evolution. Acta Geologica Sinica, 83(11): 1547-1564 (in Chinese with English abstract)
Pei XZ, Li ZC, Li RB, Pei L, Liu CJ, Gao JM, Wei FH, Wu SK, Wang YC and Chen YX. 2012. LA-ICP-MS U-Pb ages of detrital zircons from the meta-detrital rocks of the Early Palaeozoic Huluhe Group in eastern part of Qilian orogenic belt:Constraints of material source and sedimentary age. Earth Science Frontiers, 19(5): 205-224 (in Chinese with English abstract)
Qi SS, Song SG, Shi LC, Cai HJ and Hu JC. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun. Acta Petrologica Sinica, 30(11): 3345-3356 (in Chinese with English abstract)
Qian Q, Zhang Q, Sun XM and Wang YM. 2001a. Geochemical features and tectonic setting for basalts and cherts from Laohushan, North Qilian. Chinese Journal of Geology, 36(4): 444-453 (in Chinese with English abstract)
Qian Q, Zhang Q and Sun XM. 2001b. Tectonic setting and mantle source characteristics of Jiugequan basalts, North Qilian:Contraints from trace elements and Nd-isotopes. Acta Petrologica Sinica, 17(3): 385-394 (in Chinese with English abstract)
Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China):Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53 DOI:10.1016/S0040-1951(03)00053-2
Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Pörschke A, Hacker BR, Dong SW and Zhang YQ. 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. In: Hacker BR, McClelland WC and Liou JG (eds.). Ultrahigh-pressure Metamorphism: Deep Continental Subduction. Geological Society of America, 403: 45-75
Shi RD, Yang JS, Wu CL and Wooden J. 2004. First SHRIMP dating for the formation of the Late Sinian Yushigou ophiolite, North Qilian Mountains. Acta Geologica Sinica, 78(5): 649-657 (in Chinese with English abstract)
Song SG, Niu YL, Su L and Xia XH. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23(4): 1378-1401 DOI:10.1016/j.gr.2012.02.004
Song ZG, Jia QZ, Zhang ZT and Zhang M. 1991. The early Palaeozoic volcanic rock series and its interconnection relationship between the North Qinling and the North Qilian orogens. Bulletin of Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (34): 1-82 (in Chinese with English abstract)
Stern RJ, Fouch MJ and Klemperer SL. 2004. An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J (ed.). Inside the Subduction Factory. Washington: Geophysical Monograph, 175-222
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun Y, Lu XX, Han S and Zhang GW. 1996. Composition and formation of Palaeozoic Erlangping ophiolitic slab, North Qinling:Evidence from geology and geochemistry. Science in China (Earth Sciences), 39(S1): 50-59
Suo ST, Zhong ZQ, Zhou HW and You ZD. 2004. On the relationship between the two UHP metamorphic belts in the Central Orogenic Belt, China. Acta Geologica Sinica, 78(2): 156-162 (in Chinese with English abstract)
Tseng CY, Yang HJ, Yang HY, Liu DY, Tsai CL, Wu HQ and Zuo GC. 2007. The Dongcaohe ophiolite from the North Qilian Mountains:A fossil oceanic crust of the Paleo-Qilian Ocean. Chinese Science Bulletin, 52(7): 2390-2401
Tung KA, Yang HY, Liu DY, Zhang JX, Yang HJ, Shau YH and Tseng CY. 2012. The amphibolite-facies metamorphosed mafic rocks from the Maxianshan area, Qilian block, NW China:A record of Early Neoproterozoic arc magmatism. Journal of Asian Earth Sciences, 46: 177-189 DOI:10.1016/j.jseaes.2011.12.006
Wan YS, Xu ZQ, Yang JS and Zhang JX. 2003. The Precambrian high-grade basement of the Qilian terrane and neighboring areas:Its ages and compositions. Acta Geoscientia Sinica, 24(4): 319-324 (in Chinese with English abstract)
Wan YS, Zhang JX, Yang JS and Xu ZQ. 2006. Geochemistry of high-grade metamorphic rocks of the North Qaidam Mountains and their geological significance. Journal of Asian Earth Sciences, 28(2-3): 174-184 DOI:10.1016/j.jseaes.2005.09.018
Wang H, Wu YB, Gao S, Liu XC, Gong HJ, Li QL, Li XH and Yuan HL. 2011. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019-1031 DOI:10.1111/j.1525-1314.2011.00955.x
Wang H, Wu YB, Gao S, Liu XC, Liu Q, Qin ZW, Xie SW, Zhou L and Yang SH. 2013. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 230: 13-30 DOI:10.1016/j.precamres.2012.12.010
Wang J, Zhang HF, Xu WC and Cai HM. 2008. Petrogenesis of granites from Dangchuan area in West Qinling Orogenic Belt and its tectonic implication. Earth Science (Journal of China University of Geosciences), 33(4): 474-486 (in Chinese with English abstract) DOI:10.3799/dqkx.2008.062
Wang T, Wang XX, Tian W, Zhang CL, Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52(9): 1359-1384 DOI:10.1007/s11430-009-0129-5
Wang XR, Hua H and Sun Y. 1995. A study on microfossils of the Erlangping Group in Wantan area, Xixia County, Henan Province. Journal of Northwest University (Natural Science Edition), 25(4): 353-358 (in Chinese with English abstract)
Wang YC, Pei XZ, Li ZC, Li RB, Pei L, Wei FH, Liu CJ, Gao JM, Wu SK and Chen YX. 2012. LA-ICP-MS zircon U-Pb dating of the Mesoproterozoic granitic gneisses at Changningyi of Zhangjiachuan area on the eastern edge of the Qilian Orogenic belt. Geological Bulletin of China, 31(10): 1576-1587 (in Chinese with English abstract)
Wang ZQ, Yan Z, Wang T, Gao LD, Yan QR, Chen JL, Li QG, Jiang CF, Liu P, Zhang YL, Xie CL and Xiang ZJ. 2009. New advances in the study on ages of metamorphic strata in the Qinling Orogenic Belt. Acta Geoscientica Sinica, 30(5): 561-570 (in Chinese with English abstract)
Wei FH, Pei XZ, Li RB, Li ZC, Pei L, Gao JM, Wang YC, Liu CJ, Wu SK and Chen YX. 2012. LA-ICP-MS zircon U-Pb dating of Early Paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu Province and its tectonic significance. Geological Bulletin of China, 31(9): 1496-1509 (in Chinese with English abstract)
Wei FH. 2013. Composition, structural characteristics and geological evolution of North Qilian Orogen (the eastern) in Early Paleozoic. Master Degree Thesis. Xi'an: Chang'an University, 1-130(in Chinese with English abstract)
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343 DOI:10.1016/0009-2541(77)90057-2
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30 DOI:10.1016/0012-821X(80)90116-8
Woodhead JD, Eggins SM and Johnson RW. 1998. Magma genesis in the New Britain Island Arc:Further insights into melting and mass transfer processes. Journal of Petrology, 39(9): 1641-1668 DOI:10.1093/petroj/39.9.1641
Wu C, Zuza AV, Yin A, Liu CF, Reith RC, Zhang JY, Liu WC and Zhou ZG. 2017. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet:Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere, 9(4): 609-636
Xia LQ, Xia ZC and Xu XY. 1998. Early Palaeozoic mid-ocean ridge-ocean island and back-arc basin volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract)
Xia LQ, Li XM, Yu JY and Wang GQ. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilianshan, NW China. GeoResJ, 9-12: 1-41 DOI:10.1016/j.grj.2016.06.001
Xia XH and Song SG. 2010. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulletin, 55(18): 1899-1907 DOI:10.1007/s11434-010-3207-3
Xia XH, Song SG and Niu YL. 2012. Tholeiite-Boninite terrane in the North Qilian suture zone:Implications for subduction initiation and back-arc basin development. Chemical Geology, 328: 259-277 DOI:10.1016/j.chemgeo.2011.12.001
Xiao WJ, Windley BF, Hao J and Li JL. 2002. Arc-ophiolite obduction in the Western Kunlun Range (China):Implications for the Palaeozoic evolution of Central Asia. Journal of the Geological Society, 159(5): 517-528 DOI:10.1144/0016-764901-093
Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ and Li JL. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323-333 DOI:10.1016/j.jseaes.2008.10.001
Xiao XC, Chen GM and Zhu ZZ. 1978. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China. Acta Geologica Sinica, 52(4): 281-295 (in Chinese with English abstract)
Xu XY, He SP, Wang HL, Zhang EP, Chen JL and Sun JM. 2008a. Tectonic framework of North Qinling Mountain and North Qilian Mountain conjunction area in Early Paleozoic:A study of the evidences from strata and tectonic-magmatic events. Northwestern Geology, 41(1): 1-21 (in Chinese with English abstract)
Xu XY, Li XM, Wang HL and Chen JL. 2008b. Geologic and Metallogenic Map of the Qilian Mountain and Adjacent Areas. Beijing: Geological Publishing House, 1-30 (in Chinese)
Xu ZQ, Xu HF, Zhang JX, Li HB, Zhu ZZ, Qu JC, Chen DZ, Chen JL and Yang KC. 1994. The Zoulangnanshan Caledonian subductive complex in the Northern Qilian Mountains and its dynamics. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract)
Xu ZQ, Yang JS, Li HB and Yao JX. 2006. The early Palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract)
Xue F, Kröner A, Reischmann T and Lerch F. 1996. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. Journal of the Geological Society, 153(3): 409-417 DOI:10.1144/gsjgs.153.3.0409
Yan QR, Wang ZQ, Chen JL, Yan Z, Wang T, Li QG, Jiang CF and Zhang ZQ. 2007. Tectonic setting and SHRIMP age of volcanic rocks in the Xieyuguan and Caotangou groups:Implications for the North Qinling Orogenic Belt. Acta Geologica Sinica, 81(4): 488-500 (in Chinese with English abstract)
Yan QR, Wang ZQ, Yan Z, Wang T, Zhang HY, Xiang ZJ, Jiang CF and Gao LD. 2009. Timing of the transformation from seafloor spreading on the southern margin of the North China Block to subduction within the North Qinling Orogenic Belt. Acta Geologica Sinica, 83(11): 1565-1583 (in Chinese with English abstract)
Yan Z, Wang ZQ, Li JL, Xu ZQ and Deng JF. 2012. Tectonic settings and accretionary orogenesis of the West Qinling Terrane, northeastern margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6): 1808-1828 (in Chinese with English abstract)
Yan Z, Aitchison J, Fu CL, Guo XQ, Niu ML, Xia WJ and Li JL. 2015. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Research, 266: 65-85 DOI:10.1016/j.precamres.2015.05.001
Yan Z, Fu CL, Wang ZQ, Yan QR, Chen L and Chen JL. 2016a. Late Paleozoic subduction-accretion along the southern margin of the North Qinling terrane, central China:Evidence from zircon U-Pb dating and geochemistry of the Wuguan Complex. Gondwana Research, 30: 97-111 DOI:10.1016/j.gr.2015.05.005
Yan Z, Aitchison JC, Fu CL, Guo XQ, Xia WJ and Niu ML. 2016b. Devonian sedimentation in the Xiqingshan Mountains:Implications for paleogeographic reconstructions of the SW Qinling Orogen. Sedimentary Geology, 343: 1-17 DOI:10.1016/j.sedgeo.2016.07.009
Yan Z, Chen L, Buckman S, Fu CL and Guo XQ. 2017. Stratigraphy and tectonic setting of Laochang massive sulfide deposit in the North Qinling Belt, central China. Ore Geology Reviews, 81: 96-111 DOI:10.1016/j.oregeorev.2016.09.019
Yan Z, Fu CL, Aitchison JC, Niu ML, Buckman S and Cao B. 2019. Early Cambrian Muli arc-ophiolite complex:A relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China. International Journal of Earth Sciences, 108(4): 1147-1164 DOI:10.1007/s00531-019-01699-6
Yang JS, Xu ZQ, Pei XZ, Shi RD, Wu CL, Zhang JX, Li HB, Meng FC and Rong H. 2002. Discovery of diamond in North Qinling:Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica, 76(4): 484-495 (in Chinese with English abstract)
Yang JS, Zhang JX, Meng FC, Shi RD, Wu CL, Xu XQ, Li HB and Chen SY. 2003. Ultrahigh pressure eclogites of the North Qaidam and Altun mountains, NW China and their protoliths. Earth Science Frontiers, 10(3): 291-314 (in Chinese with English abstract)
Yang JS, Xu ZQ, Ma CQ, Wu CL, Zhang JX, Wang ZQ, Wang GC, Zhang HF, Dong YP and Lai SC. 2010. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11 (in Chinese with English abstract)
Yin HF and Zhang KX. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science (Journal of China University of Geosciences), 23(5): 438-442 (in Chinese with English abstract)
Yu SY, Li SZ, Zhang JX, Liu YJ, Peng YB, Sun DY and Li YS. 2019. Grenvillian orogeny in the Oulongbuluke Block, NW China:Constraints from an~1.1Ga Andean-type arc magmatism and metamorphism. Precambrian Research, 320: 424-437
Zhai XM, Day HW, Hacker BR and You ZD. 1998. Paleozoic metamorphism in the Qinling Orogen, Tongbai Mountains, central China. Geology, 26(4): 371-374 DOI:10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2
Zhang EP, Niu DY, Huo YG, Li YG and Zhang LF. 1992. Geological Map of Qinling-Daba Mountains and Adjacent Region of the People's Republic of China. Beijing: Geological Publishing House, 1-291 (in Chinese)
Zhang GW, Zhang BR and Yuan XC, et al. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese)
Zhang HF, Zhang BR, Harris N, Zhang L, Chen YL, Chen NS and Zhao ZD. 2006. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China:Constraints on petrogenesis and tectonic affinity. Journal of Asian Earth Sciences, 27(6): 751-764 DOI:10.1016/j.jseaes.2005.07.008
Zhang JX and Xu ZQ. 1995. Caledonian subduction-accretionary complex/volcanic arc zone and its deformation features in the middle sector of North Qilian Mountains. Acta Geoscientia Sinica, 16(2): 153-163 (in Chinese with English abstract)
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(2-3): 187-206 DOI:10.1016/S0024-4937(00)00052-9
Zhang JX, Meng FC, Li JP and Mattinson CG. 2009. Coesite in eclogite from the North Qaidam Mountains and its implications. Chinese Science Bulletin, 54(6): 1105-1110
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH and Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean:Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554 (in Chinese with English abstract)
Zhang JX, Yu SY and Mattinson CG. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267-289 DOI:10.1016/j.gr.2015.11.009
Zhang Q, Sun XM, Zhou DJ, Qian Q, Chen Y, Wang YM, Jia XQ and Han S. 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advance in Earth Sciences, 12(4): 366-393 (in Chinese with English abstract)
Zhang Q, Chen Y, Zhou DJ, Qian Q, Jia XQ and Han S. 1998. Geochemical characteristics and genesis of Dachadaban ophiolite in North Qilian area. Science in China (Series D), 41(3): 277-281 DOI:10.1007/BF02973116
Zhang Q, Zhou GQ and Wang Y. 2003. The distribution of time and space of Chinese ophiolites, and their tectonic settings. Acta Petrologica Sinica, 19(1): 1-8 (in Chinese with English abstract)
Zhang SG. 1996. The features and tectonic evolution of the Qilian Orogenic Belt. Acta Geologica Gansu, 5(1): 16-29, 44 (in Chinese)
Zhang WJ, Meng XX and Hu JM. 1994. Tectonic Characteristics and Orogenic Processes in the Joint of the Qilian-North Qinling Orogenic Belts. Xi'an: Northwest University Press, 1-283 (in Chinese)
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 DOI:10.1146/annurev.ea.14.050186.002425
Zuo GC, Zhang SL, Cheng JS, Gong YX, Wang YB and Wu HQ. 1996. Division of ophiolite zones and their tectonic significance in Qilian area. In: Zhang Q (ed.). Study on Ophiolites and Geodynamics. Beijing: Geological Publishing House, 129-134(in Chinese)
曹玉亭, 刘良, 王超, 康磊, 杨文强, 梁莎, 廖小莹, 王亚伟. 2015. 南阿尔金木纳布拉克地区长城系巴什库尔干岩群LA-ICP-MS锆石U-Pb定年及其地质意义. 地质通报, 34(8): 1447-1459. DOI:10.3969/j.issn.1671-2552.2015.08.005
陈隽璐, 李好斌, 王洪亮, 何世平, 曾佐勋, 徐学义, 李向民. 2007. 秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义. 吉林大学学报(地球科学版), 37(3): 423-431.
丁仨平, 裴先治, 李佐臣, 刘少锋, 李瑞保, 李高阳, 刘战庆. 2008. 祁连造山带中段雾宿山群的构造属性探讨. 中国地质, 35(4): 577-589. DOI:10.3969/j.issn.1000-3657.2008.04.002
冯益民. 1997. 祁连造山带研究概况——历史、现状及展望. 地球科学进展, 12(4): 307-314. DOI:10.3321/j.issn:1001-8166.1997.04.001
冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003. 西秦岭造山带的演化、构造格局和性质. 西北地质, 36(1): 1-10. DOI:10.3969/j.issn.1009-6248.2003.01.001
韩松, 贾秀琴, 钱青, 张旗, 王焰. 2000. 北祁连大岔大坂两类辉长岩的地质地球化学特征及其构造环境. 岩石矿物学杂志, 19(2): 106-112. DOI:10.3969/j.issn.1000-6524.2000.02.002
何世平, 王洪亮, 徐学义, 张宏飞, 任光明. 2007a. 北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境. 岩石矿物学杂志, 26(4): 295-309.
何世平, 王洪亮, 徐学义, 张宏飞, 任光明. 2007b. 北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义. 地球科学进展, 22(2): 143-151.
何艳红, 孙勇, 陈亮, 李海平, 袁洪林, 柳小明. 2005. 陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义. 岩石学报, 21(1): 125-134.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
胡波. 2005.甘肃天水地区清水-张家川早古生代变质火山岩岩石地球化学特征及其构造意义.硕士学位论文.西安: 长安大学, 1-77 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y826707
姜春发. 1993. 中央造山带主要地质构造特征. 地学研究, (27): 107-108.
姜春发, 王宗起, 李锦轶. 2000. 中央造山带开合构造. 北京: 地质出版社, 1-154.
雷敏. 2010.秦岭造山带东部花岗岩成因及其与造山带构造演化的关系.博士学位论文.北京: 中国地质科学院, 1-162 http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012326.htm
李怀坤, 陆松年, 王惠初, 相振群, 郑建康. 2003. 青海柴北缘新元古代超大陆裂解的地质记录——全吉群. 地质调查与研究, 26(1): 27-37. DOI:10.3969/j.issn.1672-4135.2003.01.006
李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋(Ⅰ):南北边界和俯冲极性. 岩石学报, 32(9): 2609-2627.
李三忠, 李涛, 赵淑娟, 李玺瑶, 刘鑫, 郭玲莉, 于胜尧, 李少俊. 2017. 东亚原特提斯洋(Ⅴ):北界西段陆缘属性及微陆块拼合. 岩石学报, 33(6): 1633-1652.
李王晔, 李曙光, 裴先治, 张国伟. 2007. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄. 岩石学报, 23(11): 2836-2844.
李王晔. 2008.西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究——对特提斯洋演化的制约.博士学位论文.合肥: 中国科学技术大学, 1-154
刘良, 陈丹玲, 张安达, 张成立, 袁洪林, 柳小明. 2003.北秦岭高压-超高压变质岩的峰期变质时代及其地质意义.见: 二十一世纪初构造地质学发展战略学术研讨会论文摘要. 93-96
陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社, 1-194.
陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林, 相振群. 2006. "中央造山带"早古生代缝合带及构造分区概述. 地质通报, 25(12): 1368-1380. DOI:10.3969/j.issn.1671-2552.2006.12.004
孟繁聪, 张建新, 郭春满, 李金平. 2010. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约. 岩石矿物学杂志, 29(5): 453-466. DOI:10.3969/j.issn.1000-6524.2010.05.001
孟祥舒, 何艳红, 陈亮, 务磊. 2017. 秦岭-祁连结合部位早古生代埃达克岩的发现及其造山作用意义及其造山作用意义. 地质学报, 91(12): 2679-2696. DOI:10.3969/j.issn.0001-5717.2017.12.007
裴先治, 丁仨平, 胡波, 李勇, 张国伟, 郭军锋. 2004. 西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义. 地质通报, 23(12): 1202-1208. DOI:10.3969/j.issn.1671-2552.2004.12.006
裴先治, 孙仁奇, 丁仨平, 刘会彬, 李佐臣, 刘战庆, 孟勇. 2007a. 陇东地区阎家店闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 中国地质, 34(1): 8-16.
裴先治, 刘战庆, 丁仨平, 李佐臣, 李高阳, 李瑞保, 王飞, 李夫杰. 2007b. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义. 地球科学进展, 22(8): 818-827.
裴先治, 丁仨平, 李佐臣, 刘战庆, 李瑞保, 冯建赟, 孙雨, 张亚峰, 刘智刚, 张晓飞, 陈国超, 陈有炘. 2009. 西秦岭北缘早古生代天水-武山构造带及其构造演化. 地质学报, 83(11): 1547-1564. DOI:10.3321/j.issn:0001-5717.2009.11.002
裴先治, 李佐臣, 李瑞保, 裴磊, 刘成军, 高景民, 魏方辉, 吴树宽, 王银川, 陈有炘. 2012. 祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MS U-Pb年龄——源区特征和沉积时代的限定. 地学前缘, 19(5): 205-224.
祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345-3356.
钱青, 张旗, 孙晓猛, 王岳明. 2001a. 北祁连老虎山玄武岩和硅岩的地球化学特征及形成环境. 地质科学, 36(4): 444-453.
钱青, 张旗, 孙晓猛. 2001b. 北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约. 岩石学报, 17(3): 385-394.
史仁灯, 杨经绥, 吴才来, Wooden J. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据. 地质学报, 78(5): 649-657. DOI:10.3321/j.issn:0001-5717.2004.05.009
宋志高, 贾群子, 张治洮, 张苺. 1991. 北秦岭-北祁连(天水-宝鸡)间早生古代火山岩系及其构造连接关系的研究. 中国地质科学院西安地质矿产研究所所刊, (34): 1-82.
索书田, 钟增球, 周汉文, 游振东. 2004. 中国中央造山带内两个超高压变质带关系. 地质学报, 78(2): 156-165. DOI:10.3321/j.issn:0001-5717.2004.02.003
万渝生, 许志琴, 杨经绥, 张建新. 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319-324. DOI:10.3321/j.issn:1006-3021.2003.04.005
王婧, 张宏飞, 徐旺春, 蔡宏明. 2008. 西秦岭党川地区花岗岩的成因及其构造意义. 地球科学—中国地质大学学报, 33(4): 474-486.
王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑), 39(7): 949-971.
王学仁, 华洪, 孙勇. 1995. 河南西峡湾潭地区二郎坪群微体化石研究. 西北大学学报(自然科学版), 25(4): 353-358. DOI:10.3321/j.issn:1000-274X.1995.04.003
王银川, 裴先治, 李佐臣, 李瑞保, 裴磊, 魏方辉, 刘成军, 高景民, 吴树宽, 陈有炘. 2012. 祁连造山带东端张家川地区长宁驿中元古代花岗质片麻岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 地质通报, 31(10): 1576-1587. DOI:10.3969/j.issn.1671-2552.2012.10.004
王宗起, 闫臻, 王涛, 高联达, 闫全人, 陈隽璐, 李秋根, 姜春发, 刘平, 张英利, 谢春林, 向忠金. 2009. 秦岭造山带主要疑难地层时代研究的新进展. 地球学报, 30(5): 561-570. DOI:10.3321/j.issn:1006-3021.2009.05.001
魏方辉, 裴先治, 李瑞保, 李佐臣, 裴磊, 高景民, 王银川, 刘成军, 吴树宽, 陈有炘. 2012. 甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石U-Pb定年及构造意义. 地质通报, 31(9): 1496-1509. DOI:10.3969/j.issn.1671-2552.2012.09.013
魏方辉. 2013.北祁连造山带东端早古生代物质组成、变形特征及其构造演化过程.硕士学位论文.西安: 长安大学, 1-130 http://cdmd.cnki.com.cn/Article/CDMD-10710-1014022227.htm
夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用. 地质学报, 72(4): 301-312. DOI:10.3321/j.issn:0001-5717.1998.04.002
夏小洪, 宋述光. 2010. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境. 科学通报, 55(15): 1465-1473.
肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩带的地质构造意义. 地质学报, 52(4): 281-295.
徐学义, 何世平, 王洪亮, 张二朋, 陈隽璐, 孙吉明. 2008a. 早古生代北秦岭-北祁连结合部构造格局的地层及构造岩浆事件约束. 西北地质, 41(1): 1-21.
徐学义, 李向民, 王洪亮, 陈隽璐. 2008b. 祁连山及邻区成矿地质背景图及说明书. 北京: 地质出版社, 1-30.
许志琴, 徐慧芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-14.
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. DOI:10.3321/j.issn:0001-5717.2006.12.002
闫全人, 王宗起, 陈隽璐, 闫臻, 王涛, 李秋根, 姜春发, 张宗清. 2007. 北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义. 地质学报, 81(4): 488-500. DOI:10.3321/j.issn:0001-5717.2007.04.007
闫全人, 王宗起, 闫臻, 王涛, 张宏远, 向忠金, 姜春发, 高联达. 2009. 从华北陆块南缘大洋扩张到北秦岭造山带板块俯冲的转换时限. 地质学报, 83(11): 1565-1583. DOI:10.3321/j.issn:0001-5717.2009.11.003
闫臻, 王宗起, 李继亮, 许志琴, 邓晋福. 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828.
杨经绥, 许志琴, 裴先治, 史仁灯, 吴才来, 张建新, 李海兵, 孟繁聪, 戎合. 2002. 秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报, 76(4): 484-495. DOI:10.3321/j.issn:0001-5717.2002.04.007
杨经绥, 张建新, 孟繁聪, 史仁灯, 吴才来, 许志琴, 李海兵, 陈松永. 2003. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨. 地学前缘, 10(3): 291-314. DOI:10.3321/j.issn:1005-2321.2003.03.026
杨经绥, 许志琴, 马昌前, 吴才来, 张建新, 王宗起, 王国灿, 张宏飞, 董云鹏, 赖绍聪. 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11.
殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学—中国地质大学学报, 23(5): 438-442.
张二朋, 牛道韫, 霍有光, 李益桂, 张兰芳. 1992. 中华人民共和国秦岭-大巴山及邻区地质图(1:1000000). 北京: 地质出版社, 1-291.
张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855.
张建新, 许志琴. 1995. 北祁连中段加里东俯冲-增生杂岩/火山弧带及其变形特征. 地球学报, 16(2): 153-163.
张建新, 孟繁聪, 李金平, Mattinson CG. 2009. 柴达木北缘榴辉岩中的柯石英及其意义. 科学通报, 54(5): 618-623.
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
张旗, 孙晓猛, 周德进, 钱青, 陈雨, 王岳明, 贾秀琴, 韩松. 1997. 北祁连蛇绿岩的特征、形成环境及其构造意义. 地球科学进展, 12(4): 366-393. DOI:10.3321/j.issn:1001-8166.1997.04.007
张旗, Chen Y, 周德进, 钱青, 贾秀琴, 韩松. 1998. 北祁连大岔大坂蛇绿岩的地球化学特征及其成因. 中国科学(D辑), 28(1): 30-34.
张旗, 周国庆, 王焰. 2003. 中国蛇绿岩的分布、时代及其形成环境. 岩石学报, 19(1): 1-8.
张维吉, 孟宪恂, 胡健民. 1994. 祁连-北秦岭造山带接合部位构造特征与造山过程. 西安: 西北大学出版社, 1-283.
赵生贵. 1996. 祁连造山带特征及其构造演化. 甘肃地质学报, 5(1): 16-29, 44.
左国朝, 张淑玲, 程建生, 巩彦学, 王彦斌, 吴汉泉. 1996.祁连地区蛇绿岩带划分及其构造意义.见: 张旗编.蛇绿岩与地球动力学研究.北京: 地质出版社, 129-134