岩石学报  2019, Vol. 35 Issue (10): 3115-3129, doi: 10.18654/1000-0569/2019.10.10   PDF    
青藏高原纳木错西缘新元古代中期岩浆事件:对北拉萨地块起源的约束
胡培远1, 翟庆国1, 赵国春2,3, 唐跃1, 王海涛1, 朱志才1, 王伟1, 吴昊1     
1. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 香港大学地球科学系, 香港;
3. 大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069
摘要: 本文报道了青藏高原北拉萨地块纳木错西缘变质辉长岩和花岗片麻岩的锆石U-Pb定年、岩石地球化学和锆石Hf同位素分析结果。锆石LA-ICP-MS定年结果表明,变质辉长岩和花岗片麻岩的原岩形成时代分别为720±6Ma和732±7Ma,相当于新元古代中期。变质辉长岩为钙碱性系列,具有Nb、Ta和Ti负异常,与岛弧玄武岩类似。变质辉长岩中锆石具有较高的εHft)值(+5.2~+9.7),应当是源自俯冲环境下相对亏损的地幔楔。花岗片麻岩原岩为I型花岗质岩石,并且具有较为均一的锆石εHft)值(-3.3~+0.3),可能形成于地壳内古元古代变质火成岩的部分熔融作用。结合区域地质资料,变质辉长岩和花岗片麻岩的原岩应当形成于新元古代中期的洋壳俯冲消减过程。北拉萨地块上的前寒武纪岩浆和变质记录与东非造山带的活动时限较为一致,因而北拉萨地块可能与东非造山带具有亲缘性。
关键词: 青藏高原    北拉萨地块    念青唐古拉岩群    全岩地球化学    锆石U-Pb定年    
Middle Neoproterozoic magmatic event in the western Nam Tso area, Tibetan Plateau: Constraint on the origin of the North Lhasa terrane
HU PeiYuan1, ZHAI QingGuo1, ZHAO GuoChun2,3, TANG Yue1, WANG HaiTao1, ZHU ZhiCai1, WANG Wei1, WU Hao1     
1. MNR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Department of Earth Sciences, University of HongKong, Pokfulam Road, Hong Kong, China;
3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: The Lhasa terrane is located in the central Tibetan Plateau and is traditionally considered to originate from the northeastern India or northern Australia. However, a Paleo-Tethyan suture zone, named the North Gangdese suture zone, was recently identified in the middle of the Lhasa terrane, meaning that the Lhasa terrane should be subdivided into the South and North Lhasa terranes along this suture zone and the origins of these two newly identified terranes should be revisited. For this problem, this paper reports new zircon U-Pb age and Lu-Hf isotope, and whole-rock major and trace element data from the meta-gabbros and granitic gneisses located in the western Nam Tso area, North Lhasa terrane. The zircons from the meta-gabbros and granitic gneisses have relatively high Th/U ratios of 0.22 to 1.05 (>0.1), indicating an igneous origin. LA-ICP-MS zircon U-Pb dating reveals that the protoliths of the meta-gabbros and granitic gneisses were formed at 720±6Ma and 732±7Ma, respectively. The meta-gabbros are calc-alkaline, have elevated Th/Yb ratios, and display depletions of Nb, Ta, and Ti, geochemically similar to island arc basalts. They also have high zircon εHf(t) values (+5.2 to +9.7), and are probably derived from partial melting of a depleted mantle wedge in a subduction-related environment. The protoliths of granitic gneisses are I-type granite, with homogeneous zircon εHf(t) values (-3.3 to +0.3), and were probably generated by partial melting of Palaeoproterozoic meta-igneous rocks. Their depletions of Nb, Ta, and Ti also suggest an island arc affinity. The protoliths of these meta-gabbros and granitic gneisses were probably related to Middle Neoproterozoic oceanic subduction process. The Precambrian magmatic and metamorphic records in the North Lhasa terrane are comparable with those of the East African Orogen (EAO). Integrating previous studies with the data presented in this contribution, we suggest that the North Lhasa terrane was most likely separated with the South Lhasa terrane during the Precambrian and originated from the northern EAO.
Key words: Tibetan Plateau    North Lhasa terrane    Nyainqentanglha Group    Whole-rock geochemistry    Zircon U-Pb dating    

青藏高原是地球上最大最高的高原,其演化历史涉及到多个特提斯洋盆的打开、俯冲和消亡以及多个微陆块的裂离、漂移和拼贴过程(Yin and Harrison, 2000; Metcalfe, 2013; Zhu et al., 2013),并且至今仍然处于活动状态,因此在构造地质学研究中处于特殊的地位。拉萨地块位于青藏高原中部,大地构造位置上夹持于班公湖-怒江和雅鲁藏布江缝合带之间,是组成青藏高原的主体地块之一(Yin and Harrison, 2000; Zhang et al., 2012a; Yang et al., 2009; Chen et al., 2009)。传统观点认为,拉萨地块起源于印度大陆东北缘(Yin and Harrison, 2000; Gehrels et al., 2011; Guo et al., 2017)或者澳大利亚大陆北缘(Audley-Charles, 1983; Allegre, 1984; Zhu et al., 2011)。然而,新近在拉萨地块中部识别出了一条古特提斯板块缝合带——北冈底斯板块缝合带(图 1),其岩石组合包括蛇绿混杂岩、岛弧岩浆岩和榴辉岩等(Yang et al., 2009; Chen et al., 2009; Cheng et al., 2012; Cao et al., 2017)。因此,拉萨地块可以被进一步划分为北拉萨和南拉萨两个地块,它们的起源和早期构造演化历史有必要重新考虑。

图 1 青藏高原中部构造划分简图 NGSZ-北冈底斯缝合带;BNSZ-班公湖-怒江缝合带;IYZSZ-雅鲁藏布江缝合带 Fig. 1 Simplified tectonic map of the central Tibetan Plateau

近年来,有学者对南拉萨地块的前寒武纪演化历史开展了较为系统的研究,结果表明该陆块起源于印度大陆东北缘(Lin et al., 2013; Xu et al., 2013; Guo et al., 2017)。然而,北拉萨地块的起源依然存有争议。目前主要有以下两种不同观点:(1)南、北拉萨地块具有类似的前寒武纪演化历史,均起源于印度大陆东北缘(Yin and Harrison, 2000; Gehrels et al., 2011; Guo et al., 2017);(2)南、北拉萨地块具有不同的前寒武纪演化历史,其中北拉萨地块可能起源于澳大利亚大陆北缘(Ferrari et al., 2008; Zhu et al., 2011)或者东非造山带北段(Zhang et al., 2012a; Hu et al., 2018a, b, c)。前寒武纪岩浆和变质事件的区域对比是解决这一分歧的有效方法之一。

念青唐古拉岩群自提出以来一直被认为是北拉萨地块古老变质基底的典型代表(李璞, 1955)。从东部的工布江达、到中部的纳木错西缘和念青唐古拉山,再到西部的日土地区,念青唐古拉岩群大致覆盖了整个北拉萨地块(图 1)。同时,念青唐古拉岩群中包含较多的基性岩(Hu et al., 2005; 胡培远等, 2016),这为探讨其形成的构造环境提供了较好的素材。本文试图通过对纳木错西缘地区念青唐古拉岩群中新元古代中期变质辉长岩和花岗片麻岩的全岩地球化学、同位素年代学以及锆石Hf同位素的研究,揭示其岩浆源区特征以及构造背景,从而为探索拉萨地块的起源提供新资料。

1 地质概况

前人研究表明,在青藏高原中部地区存在3个地块,分别为南羌塘、北拉萨和南拉萨地块(Yin and Harrison, 2000; Yang et al., 2009; Zhang et al., 2012a)。这些地块被班公湖-怒江和北冈底斯板块缝合带分隔。同时,在班公湖-怒江缝合带内部还有一个相对较小的陆块——安多微陆块,夹持于蛇绿岩带内(Zhang et al., 2012b; Xie et al., 2013; 解超明等, 2014; 王明等, 2012; 辜平阳等, 2012)。安多片麻岩(Guynn et al., 2012)、念青唐古拉岩群(胡培远等, 2016)和林芝岩群(Lin et al., 2013)分别代表了安多微陆块、北拉萨地块和南拉萨地块的前寒武纪基底(图 1)。

念青唐古拉岩群由李璞(1955)所称的念青唐古拉片麻岩和那更拉片岩系演变而来,主要由三部分岩石组成:(1)副片麻岩,以片岩为主,主要岩石类型为白云母石英片岩、白云母石英岩、长石石英岩、黑云母石英片岩等;(2)正片麻岩,原岩以基性岩和酸性岩为主,包含少量的中性岩,主要岩石类型为变质辉长岩(斜长角闪岩)和花岗片麻岩;(3)后期侵入脉体,广泛分布于副片麻岩和正片麻岩中,以花岗质岩石为主,也可见少量的辉长岩,变质变形程度较弱(胡道功等, 2003; Hu et al., 2005; 胡培远等, 2016)。

虽然念青唐古拉岩群广泛分布于工布江达、纳木错西缘、念青唐古拉山、日土等地区,但是不同地区的研究程度差别较大。在工布江达和日土地区,念青唐古拉岩群主要出露于高山峡谷区,开展研究工作十分困难,研究程度很低;同时,这两个地区位于拉萨地块的边缘位置,能否代表拉萨地块的基底性质尚未可知。在念青唐古拉山一带,虽然出露有较大规模的片麻岩系,但是曾有学者在这一地区的正片麻岩中获得了古新世的岩浆结晶年龄(64~59Ma)(胡道功等, 2003),从而对该地区念青唐古拉岩群的时代提出了质疑。目前,念青唐古拉岩群中确切的新元古代构造岩浆记录主要集中于纳木错西缘地区。Hu et al. (2005)曾在纳木错西缘念青唐古拉岩群中识别出了新元古代拉斑玄武岩和花岗岩,其中拉斑玄武岩的继承锆石给出1766~988Ma的中元古代年龄,而花岗岩则获得了748Ma和787Ma的谐和年龄;张修政等(2013)报道该地区的念青唐古拉岩群中存在E-MORB型斜长角闪岩(约758Ma)和近同时代的弧岩浆岩(约742~731Ma);Dong et al. (2011)报道念青唐古拉岩群中斜长角闪岩的原岩形成于850Ma左右;Hu et al.(2018b, c)在邻近地区报道了822~760Ma的弧后盆地岩浆岩;Zhang et al. (2012a)在纳木错西缘念青唐古拉岩群中发现了基性高压麻粒岩,认为其原岩形成时代在897~886Ma左右,并且具有类似于N-MORB的地球化学特征;最近,这一900Ma左右的N-MORB型基性岩浆事件得到了进一步的确认(胡培远等, 2016; Hu et al., 2018d; Zeng et al., 2018)。

本文研究的变质辉长岩和花岗片麻岩侵入于念青唐古拉岩群副片麻岩中,出露于仁错东南约20km,纳木错以西约45km(图 2)。岩相学观察发现,辉长岩发生了较为明显的角闪岩相变质作用,辉石部分已经变质成为角闪石,但是仍可见残余的辉长结构(图 3a);岩石矿物组合以斜长石(40%~45%)、角闪石(30%~35%)和辉石(25%~30%)为主(图 3b),此外还有少量绿帘石、钛铁矿、榍石、磁铁矿等,未见石榴石;矿物粒度为0.1~0.6mm。花岗片麻岩总体呈灰白色(图 3c),具细粒花岗结构,片麻状构造。经镜下鉴定,主要矿物组成为石英(40%~50%)和斜长石(35%~55%),钾长石含量较少(<5%);斜长石主要为钠长石,普遍发育聚片双晶;副矿物有锆石、磷灰石、褐帘石和榍石等(图 3d)。

图 2 纳木错西缘地区区域地质简图 前人年龄(单位:Ma)资料张修政等(2013); Hu et al.(2005, 2018b, c); Dong et al. (2011); Zhang et al. (2012a) Fig. 2 Geological map of the western Nam Tso area

图 3 纳木错西缘地区变质辉长岩和花岗片麻岩的野外露头照片和显微镜下特征 Q-石英;Pl-斜长石;Px-辉石;Hbl-角闪石 Fig. 3 Field characteristics and photomicrographs of the meta-gabbro and granitic gneisse from the western Nam Tso area
2 样品测试方法

锆石U-Pb测年样品中锆石的分选在河北省区域地质调查院完成,采用常规的重液和磁选方法进行分选,最后在双目显微镜下挑纯。样品靶的制备在中国地质科学院地质研究所完成,制成的样品靶直径为25mm。锆石的阴极荧光图像分析在中国地质科学院地质研究所的阴极荧光分析系统(HITACH S-3000N型场发射环境扫描电镜和Gatan公司Chroma阴极荧光谱仪)上完成。样品的锆石U-Th-Pb分析在北京科荟测试技术有限公司完成,分析仪器为美国ESI公司生产的NWR 193nm激光剥蚀进样系统和德国AnlyitikJena公司生产的PQMS Elite型四级杆等离子体质谱仪联合构成的激光等离子体质谱仪(LA-ICP-MS)。本次分析193nm激光器工作频率为10Hz;测试点束斑直径为25μm,剥蚀采样时间为45s,具体分析流程见侯可军等(2009)。锆石GJ-1(Jackson et al., 2004)作为外部标准来校正分析过程中的同位素分馏;NIST610作为外部标准来获得分析点的Th和U的含量。锆石U-Pb年龄用ICPMSDataCal数据处理软件(Liu et al., 2010)计算获得,加权平均年龄的计算和谐和图的绘制采用ISOPLOT 3.0程序(Ludwig, 2003)。锆石Hf同位素分析在中国科学院地质与地球物理研究所Neptune多接收电感耦合等离子质谱仪(MC-ICPMS)和193nm激光取样系统上进行,仪器的运行条件及详细的分析过程参见Wu et al.(2006)。采用单点剥蚀模式,斑束固定为44μm。实验测定过程中,MUD标准锆石的176Hf/177Hf的测定结果是0.282505±21,与前人获得的结果一致(Wu et al., 2006)。地球化学样品的主量元素、微量元素和稀土元素的分析均在国家地质实验测试中心。主量元素采用X-射线荧光光谱仪(PW4400)分析。微量元素和稀土元素的分析仪器为X-series等离子质谱仪,实验室分析详细方法见相关参考文献(Zhai et al., 2016)。

3 分析结果 3.1 锆石LA-ICP-MS U-Pb年代学

阴极荧光照片显示,变质辉长岩样品(16T160)中锆石粒度为60~120μm,多具有弱环带或补丁状结构(图 4a)。21个LA-ICP-MS U-Pb分析点的Th含量为59×10-6~140×10-6,U含量为118×10-6~270×10-6,Th/U比值为0.22~0.76 (表 1),与典型岩浆成因锆石相似(吴元保和郑永飞, 2004)。所有分析点的U-Pb同位素年龄在误差范围内谐和,206Pb/238U年龄的变化范围为707~727Ma(表 1),206Pb/238U年龄加权平均值为720±6Ma(2σ;MSWD=0.10)(图 5a),相当于新元古代中期,代表了变质辉长岩的岩浆结晶年龄。

图 4 纳木错西缘地区变质辉长岩(a)和花岗片麻岩(b)中典型锆石的阴极荧光图像(年龄单位:Ma) Fig. 4 CL images of typical zircons of the dated meta-gabbro (a) and granitic gneiss (b) samples from the western Nam Tso area (age unit: Ma)

表 1 纳木错西缘新元古代中期岩浆岩的锆石LA-ICP-MS U-Pb-Th分析结果 Table 1 LA-ICP-MS U-Pb-Th data for zircons from the Middle Neoproterozoic magmatic rocks in the western Nam Tso area

图 5 纳木错西缘地区变质辉长岩(a)和花岗片麻岩(b)的锆石的U-Pb谐和图 Fig. 5 U-Pb zircon concordia diagrams of the dated meta-gabbro (a) and granitic gneiss (b) samples from the western Nam Tso area
3.2 锆石Hf同位素

样品的锆石Lu-Hf同位素是在锆石U-Pb定年的同一颗锆石的相同部位或相同结构的临近部位测定的,测试结果见表 2。变质辉长岩样品的所有分析点均具有较高的εHf(t)值(+5.2~+9.7)。花岗片麻岩中锆石的εHf(t)值介于-3.3~+0.3之间;二阶段Hf模式年龄(tDMC)变化范围为1624~1856Ma,平均值为1707Ma。

表 2 纳木错西缘新元古代中期岩浆岩的锆石Hf同位素组成 Table 2 Hf isotopic compositions for zircons of the Middle Neoproterozoic magmatic rocks in the western Nam Tso area
3.3 全岩地球化学

变质辉长岩和花岗片麻岩样品的主量和微量元素的分析结果见表 3。镜下和野外观察结果表明变质辉长岩受到了后期变质作用的影响,样品中大离子亲石元素(例如K、Rb、Sr和Ba等)的含量可能会发生迁移。因此,本次研究主要依据高场强元素(例如Ti、Nb、Ta、Zr和Hf等)、稀土元素和过渡元素(例如V、Fe和Mn等)的含量来对样品进行岩石学分类和成因讨论。

表 3 纳木错西缘新元古代中期岩浆岩的全岩地球化学分析结果(主量元素:wt%;稀土和微量元素:×10-6) Table 3 Concentrations of major elements (wt%) and trace elements (×10-6) of the Middle Neoproterozoic magmatic rocks in the western Nam Tso area

变质辉长岩样品具有较均一的SiO2含量,变化范围集中在50.38%~53.15%之间(去烧失量归一化处理之后,下同)。在SiO2-Zr/Ti(图 6a)和FeOT/MgO-SiO2(图 6c)岩石分类图上,样品投点落入亚碱性钙碱性玄武岩区域。样品的稀土元素(REE)总体含量在14.5×10-6~25.8×10-6之间。样品具有变化的Mg#值(62~79);Fe2O3T(图 7b)、TiO2(图 7c)和V(图 7f)与Mg#呈现负相关关系,而Ni(图 7d)和Cr(图 7e)与Mg#具有正相关关系。在粒陨石标准化稀土元素球配分图(图 8a)和原始地幔标准化微量元素蛛网图(图 8b)上,所有样品的曲线一致性较好,均表现为平坦的曲线,兼具Nb、Ta和Ti负异常,未见明显的Eu异常(Eu/Eu*=1.06~1.16)。

图 6 纳木错西缘地区变质辉长岩和花岗片麻岩的SiO2-Zr/Ti (a)、Th-Co (b)、FeOT/MgO-SiO2 (c)和Nb/Th-Nb/La (d)图解(底图据Winchester and Floyd, 1977; Hastie et al., 2007; Miyashiro, 1974; Li et al., 2006) 塞浦路斯斜长花岗岩的数据引自Freund et al. (2014) Fig. 6 SiO2 vs. Zr/Ti (a), Th vs. Co (b), FeOT/MgO vs. SiO2 (c) and Nb/Th vs. Nb/La (d) diagrams of the meta-gabbro and granitic gneiss samples from the western Nam Tso area (base map after Winchester and Floyd, 1977; Hastie et al., 2007; Miyashiro, 1974; Li et al., 2006)

图 7 纳木错西缘地区变质辉长岩和花岗片麻岩的哈克图解 Fig. 7 Harker diagrams of the meta-gabbro and granitic gneiss samples from the western Nam Tso area

图 8 纳木错西缘地区变质辉长岩(a、b)和花岗片麻岩(c、d)的球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图 N-MORB=正常洋中脊型玄武岩;E-MORB=富集型洋中脊玄武岩;IAB=岛弧玄武岩.标准化值、N-MORB和E-MORB数据引自Sun and McDonough (1989);IAB数据引自Pearce and Peate (1995) Fig. 8 Chondrite-normalized rare-earth element patterns and primitive mantle-normalized spider diagrams for the meta-gabbro (a, b) and granitic gneiss (c, d) samples from the western Nam Tso area

花岗片麻岩样品中锆石具有较典型的岩浆振荡环带结构(图 4b),且晶形比较完整,呈自形晶-半自形晶,长约50~150μm,长宽比为1:2~1:3,显示出岩浆锆石的特点。锆石测点的Th含量为73×10-6~684×10-6,U为147×10-6~1121×10-6,Th、U含量呈现出较好的正相关关系,Th/U比值介于0.31~0.93之间(表 1),为典型的岩浆锆石(吴元保和郑永飞, 2004)。所有测点在U-Pb谐和图(图 5b)上集中落在谐和线上或其附近,获得732±7Ma(2σ;MSWD=0.06)的206Pb/238U加权平均年龄,代表花岗片麻岩的原岩形成年龄,即新元古代中期。

所有花岗片麻岩样品均表现出高硅的特征(SiO2含量为75.67%~77.26%)。在Th-Co图解上,样品投点落在高钾钙碱性系列区(图 6b)。样品的ΣREE总体含量较低,在223×10-6~283×10-6之间,轻稀土元素(LREE)相对重稀土元素(HREE)富集,LREE/HREE比值为1.73~2.66。在球粒陨石标准化稀土元素配分图(图 8c)上,所有样品的曲线一致性较好,均表现为右倾的海鸥型,(La/Yb)N比值为13.4~32.1,同时具有明显负Eu异常,Eu/Eu*比值为0.50~0.88。在原始地幔标准化微量元素蛛网图(图 8d)上,样品亏损Nb、Ta和Ti元素,富集Zr、Hf和Th元素。

4 讨论 4.1 岩石成因 4.1.1 变质辉长岩

变质辉长岩样品的成分类似于亚碱性钙碱性玄武岩(图 6c),并且亏损Nb、Ta和Ti元素(图 8b),表现出了岛弧亲缘性(Pearce and Peate, 1995)。在洋壳消减过程中,Th表现出活动性,而Nb表现出不活动性,因此,Th/Nb比值可以用来验证俯冲消减事件是否存在(Pearce, 2014)。在Th/Yb-Nb/Yb图解上(图 9c),变质辉长岩具有相对较高的Th/Nb比值,高于MORB-OIB地幔演化线;这一地球化学特征与岛弧玄武岩类似(Pearce, 2014)。虽然地壳混染过程也可以形成类似的地球化学特征,但是这些样品并没有在Nb/Th-Nb/La图解(图 6d)上表现出相关的特征。在V-Ti(图 9a)和Hf-Th-Ta(图 9b)构造环境判别图解上,变质辉长岩样品投点均落在岛弧玄武岩上,进一步确定了这一岛弧亲缘性。考虑到变质辉长岩中锆石具有较高的εHf(t)值(+5.2~+9.7),这些岩石应当是源自俯冲环境下相对亏损的地幔楔(Wu et al., 2006; Pearce and Peate, 1995)。

图 9 纳木错西缘地区变质辉长岩和花岗片麻岩的V-Ti (a)、Hf-Th-Ta (b)、Th/Yb-Nb/Yb (c)和Nb-Y (d)构造环境判别图解(底图据Li et al., 2015; Pearce and Peate, 1995) Fig. 9 V vs. Ti (a), Hf-Th-Ta (b), Th/Yb vs. Nb/Yb (c) and Nb vs. Y (d) diagrams of the meta-gabbro and granitic gneiss samples from the western Nam Tso area (base map after Li et al., 2015; Pearce and Peate, 1995)

变质辉长岩样品具有变化的Mg#值(62~79),表明它们可能经历一定程度的结晶分异作用。Fe2O3T(图 7b)、TiO2(图 7c)和V(图 7f)与Mg#呈现负相关关系,指示岩浆演化晚期存在含Fe、Ti矿物的结晶分异。Ni(图 7d)和Cr(图 7e)与Mg#具有正相关关系,与橄榄石和/或辉石的分异一致。值得注意的是,Al2O3与Mg#没有表现出线性关系,表明长石的结晶分异作用不明显。

4.1.2 花岗片麻岩

花岗质岩石通常被分为I型、S型、M型和A型,前三种主要根据其源岩性质划分,A型花岗岩则是一类具有特殊的地球化学特征以及特定构造背景的花岗岩。M型花岗岩是洋壳的组成部分,一般具有低Th的特点,例如塞浦路斯蛇绿岩中的斜长花岗岩(Freund et al., 2014),与本文研究的花岗片麻岩明显不同(图 6b)。A型花岗岩普遍具有较高的10000Ga/Al比值(>2.7)和高场强元素含量(Zr+Nb+Ce+Y>250×10-6),也与本文研究的花岗片麻岩(10000Ga/Al=1.53~1.95;Zr+Nb+Ce+Y=187×10-6~224×10-6)具有明显差别。实验研究表明,在准铝质到弱过铝质的I型花岗岩浆中,磷灰石的溶解度很低,磷灰石容易达到过饱和而结晶分离,在岩浆分异过程中随SiO2的增加而降低;而在强过铝质S型花岗岩浆中,磷灰石溶解度变化趋势与此相反,常具有高的P2O5含量(>0.26%),并且随铝饱和指数的增加而增大(Wolf and London, 1994)。本文的数据显示,花岗片麻岩具有较低的P2O5含量(0.03×10-6~0.06×10-6),并且P2O5含量随着SiO2的增加而降低(图 7i),所以应当属于I型花岗质岩石。

早期研究认为I型花岗岩形成于地壳内变质火成岩的部分熔融作用(Chappell and White, 1974)。后来同位素地球化学研究显示I型花岗岩也可以起源于地幔岩浆对沉积物质的改造,即混染结晶分异过程(Kemp et al., 2007)。本文研究的花岗片麻岩具有较为均一的锆石εHf(t)值(-3.3~+0.3),与壳-幔混合作用不符。结合其古元古代二阶段Hf模式年龄(tDMC=1624~1856Ma),这些花岗质岩石应当是形成于地壳内古元古代变质火成岩的部分熔融作用。虽然它们具有较为一致的SiO2含量(75.67%~77.26%),但是其成分变化仍表现出少量与结晶分异相关的演化趋势。例如,TiO2(图 7g)和Eu/Eu*(图 7h)与SiO2呈现负相关趋势,分别可能是含Ti矿物和长石结晶分异的结果。

4.2 对北拉萨地块起源的约束

前人工作已在北拉萨地块上识别出了新元古代弧岩浆记录。张修政等(2013)报道北拉萨地块永珠地区的念青唐古拉岩群中存在近同时代的弧岩浆岩(约742 Ma);Hu et al.(2018b, c)在邻近地区报道了822~760Ma的弧后盆地岩浆岩。本文研究的变质辉长岩形成于新元古代中期(约720Ma)洋壳俯冲消减过程。同时,花岗片麻岩的原岩形成于732Ma左右,为I型花岗质岩石,并且在Nb-Y构造环境判别图解中投点落入同碰撞和火山弧花岗岩区(图 9d),与变质辉长岩的形成时代和构造环境相似。这些变质辉长岩和花岗片麻岩代表了北拉萨地块上最年轻的新元古代弧岩浆记录,从而为探索北拉萨地块的起源提供了新的约束。

近年来,大量碎屑锆石数据表明,南拉萨地块起源于印度大陆东北缘(Guo et al., 2017)。虽然有学者认为南、北拉萨地块在前寒武纪是连接在一起的(Yin and Harrison, 2000; Gehrels et al., 2011; Guo et al., 2017),但是南拉萨地块的前寒武纪林芝岩群与北拉萨地块的念青唐古拉岩群具有完全不一致的物质组成(图 10)。林芝岩群中包含1780Ma、1343~1276Ma和1250Ma的花岗质岩石,分别与哥伦比亚超大陆边缘岩浆弧、哥伦比亚超大陆裂解和罗迪尼亚超大陆聚合相关(Xu et al., 2013; Lin et al., 2013)。这些花岗质岩石在1117Ma和618Ma左右发生了变质,可能与印度-澳大利亚格林威尔期造山事件和新元古代晚期Kuunga造山带相关(Lin et al., 2013)。与此形成鲜明对比的是,念青唐古拉岩群中没有中元古代的岩浆或者变质记录。念青唐古拉岩群主要包含新元古代早期N-MORB型基性岩(925~850Ma; 胡培远等, 2016; Zhang et al., 2012a; Dong et al., 2011)、新元古代中期岛弧岩浆岩和变质岩(822~660Ma; 张修政等, 2013; Dong et al., 2011; Hu et al., 2018b, c)和新元古代中期碰撞型高压麻粒岩(650 Ma; Zhang et al., 2012a)。此外,北拉萨地块上存在大规模的埃迪卡拉纪-早古生代安第斯型岩浆弧(Zhu et al., 2012; Hu et al., 2013, 2018a; Ding et al., 2015),而南拉萨地块上并没有可以与之对比的岩浆记录。因此,南、北拉萨地块应该具有不同的前寒武纪演化历史。

图 10 北拉萨地块及其邻区的元古代-早古生代主要构造岩浆-变质事件的时空分布(据Hu et al., 2018c) Fig. 10 Condensed timetable of major Proterozoic-Early Paleozoic geological events in the North Lhasa terrane and its adjacent regions in the Gondwana (after Hu et al., 2018c)

如果北拉萨地块不是起源于印度大陆东北缘,目前有另外两个假说:(1)澳大利亚大陆北缘(Ferrari et al., 2008; Zhu et al., 2011)和(2)东非造山带北段(Zhang et al., 2012a; Hu et al., 2018a)。东非造山带记录了莫桑比克洋的漫长演化历史(从1080Ma以前到600Ma左右; Merdith et al., 2017; Mole et al., 2018)。北拉萨地块上的新元古代早期N-MORB型基性岩与莫桑比克洋的洋壳时代一致(Fritz et al., 2013; Hu et al., 2018d)。新元古代中期岛弧岩浆岩和变质岩(张修政等, 2013; Dong et al., 2011; Hu et al., 2018b, c, 2019;本文报道)也与东非造山带中的岩石可以对比(图 10)。然而,澳大利亚大陆缺少这些岩浆和变质记录,所以北拉萨地块应当起源于东非造山带北段。

虽然安多微陆块位于班公湖-怒江缝合带内部,但是传统观点仍然将其视作北拉萨地块的一部分(Xu et al., 1985)。近年来,有学者对这一观点提出了质疑。Guynn et al. (2013)指出安多微陆块可能与南羌塘地块更具有亲缘性。解超明等(2014)提出安多微陆块可能来源于扬子地块。安多片麻岩的主要组成岩石为新元古代早-中期(920~800Ma; Guynn et al., 2012; Zhang et al., 2012b; 解超明等, 2014; 辜平阳等, 2012)和早古生代(532~488Ma; Guynn et al., 2012; Xie et al., 2013)的岩浆岩。这些早古生代岩浆岩的成因争议较小,通常认为其与冈瓦纳大陆北缘的早古生代安第斯型岩浆弧相关(Guynn et al., 2012; Xie et al., 2013)。新元古代早-中期岩浆岩的成因争议较大。解超明等(2014)辜平阳等(2012)认为安多微陆块上的新元古代早-中期玄武质岩石和A型花岗岩形成于大陆裂谷环境,与罗迪尼亚超大陆的裂解相关。然而,Zhang et al. (2012b)在安多微陆块上识别出了同时代的弧岩浆岩。Hu et al. (2018b)指出弧后盆地环境可以解释同时代岛弧型和裂解型岩浆岩的共存现象。如图 10所示,安多微陆块的前寒武纪-早古生代岩浆记录与南羌塘和扬子地块区别明显,但是与北拉萨地块可以对比。因此,本文倾向于认为安多微陆块与北拉萨地块具有类似的前寒武纪演化历史。

5 结论

综合上述分析讨论,得出以下初步结论:

(1) 北拉萨地块念青唐古拉岩群中变质辉长岩和花岗片麻岩的原岩形成时代分别为720±6 Ma和732±7Ma,相当于新元古代中期。

(2) 变质辉长岩为亚碱性钙碱性系列,具有Nb、Ta和Ti负异常,与岛弧玄武岩类似。变质辉长岩中锆石具有较高的εHf(t)值(+5.2~+9.7),应当是源自俯冲环境下相对亏损的地幔楔。花岗片麻岩为I型花岗质岩石,并且具有较为均一的锆石εHf(t)值(-3.3~+0.3),可能形成于地壳内古元古代变质火成岩的部分熔融作用。

(3) 念青唐古拉岩群中的前寒武纪岩浆和变质记录与东非造山带的活动时限较为一致,因而北拉萨地块可能与东非造山带具有亲缘性。

致谢      感谢张拴宏研究员和另外一位审稿人对本文提出的中肯的、建设性的修改意见。

参考文献
Allègre CJ. 1984. Cold Gondwana, warm Tethys and the Tibetan Lhasa block. Nature, 310(5973): 165-166 DOI:10.1038/310165b0
Audley-Charles MG. 1983. Reconstruction of eastern Gondwanaland. Nature, 306(5938): 48-50 DOI:10.1038/306048a0
Cao DD, Cheng H, Zhang LM and Wang K. 2017. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet. Journal of Asian Earth Sciences, 143: 156-170 DOI:10.1016/j.jseaes.2017.04.020
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chen SY, Yang JS, Li Y and Xu XZ. 2009. Ultramafic blocks in Sumdo Region, Lhasa Block, eastern Tibet Plateau:An ophiolite unit. Journal of Earth Science, 20(2): 332-347 DOI:10.1007/s12583-009-0028-x
Cheng H, Zhang C, Vervoort JD, Lu HH, Wang C and Cao DD. 2012. Zircon U-Pb and garnet Lu-Hf geochronology of eclogites from the Lhasa Block, Tibet. Lithos, 155: 341-359 DOI:10.1016/j.lithos.2012.09.011
Ding HX, Zhang ZM, Dong X, Yan R, Lin YH and Jiang HY. 2015. Cambrian ultrapotassic rhyolites from the Lhasa terrane, South Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana. Gondwana Research, 27(4): 1616-1629 DOI:10.1016/j.gr.2014.02.003
Dong X, Zhang ZM, Santosh M, Wang W, Yu F and Liu F. 2011. Late Neoproterozoic thermal events in the northern Lhasa terrane, South Tibet:Zircon chronology and tectonic implications. Journal of Geodynamics, 52(5): 389-405 DOI:10.1016/j.jog.2011.05.002
Ferrari OM, Hochard C and Stampfli GM. 2008. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1-4): 346-365 DOI:10.1016/j.tecto.2007.11.065
Freund S, Haase KM, Keith M, Beier C and Garbe-Schönberg D. 2014. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contributions to Mineralogy and Petrology, 167: 978 DOI:10.1007/s00410-014-0978-6
Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ and Viola G. 2013. Orogen styles in the East African Orogen:A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86: 65-106 DOI:10.1016/j.jafrearsci.2013.06.004
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30: TC5016
Gu PY, Li RS, He SP, Cha XF, Yu PS, Shi C, Pan SJ and Wang Y. 2012. The amphibolite from Nyainrong Rock Group in northern Nagqu:Geological records of break-up of the supercontinent Rodinia. Acta Petrologica et Mineralogica, 31(2): 145-154 (in Chinese with English abstract)
Guo L, Zhang HF, Harris N, Xu WC and Pan FB. 2017. Detrital zircon U-Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis:Tectonic and paleogeographic implications. Gondwana Research, 41: 207-221 DOI:10.1016/j.gr.2015.07.013
Guynn J, Kapp P, Gehrels GE and Ding L. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. Journal of Asian Earth Sciences, 43(1): 23-50 DOI:10.1016/j.jseaes.2011.09.003
Guynn J, Tropper P, Kapp P and Gehrels GE. 2013. Metamorphism of the Amdo metamorphic complex, Tibet:Implications for the Jurassic tectonic evolution of the Bangong suture zone. Journal of Metamorphic Geology, 31(7): 705-727 DOI:10.1111/jmg.12041
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357 DOI:10.1093/petrology/egm062
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu DG, Wu ZH, Ye PS and Jiang W. 2003. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainqentanglha Mountains, Tibet. Geological Bulletin of China, 22(1): 936-940 (in Chinese with English abstract)
Hu DG, Wu ZH, Jiang W, Shi YR, Ye PS and Liu YS. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377-1386 DOI:10.1360/04yd0183
Hu PY, Li C, Wang M, Xie CM and Wu YW. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin. Journal of Asian Earth Sciences, 77: 91-107 DOI:10.1016/j.jseaes.2013.08.015
Hu PY, Zhai QG, Tang Y, Wang J and Wang HT. 2016. Early Neoproterozoic meta-gabbro (~925Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance. Science Bulletin, 61(19): 2176-2186 (in Chinese)
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT and Hou KJ. 2018a. Ediacaran magmatism in the North Lhasa terrane, Tibet and its tectonic implications. Precambrian Research, 307: 137-154 DOI:10.1016/j.precamres.2018.01.012
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT and Hou KJ. 2018b. Precambrian origin of the North Lhasa terrane, Tibetan Plateau:Constraint from early Cryogenian back-arc magmatism. Precambrian Research, 313: 51-67 DOI:10.1016/j.precamres.2018.05.014
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT, Zhu ZC and Wu H. 2018c. Middle Neoproterozoic (ca. 760Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB-and arc-type gabbros. Precambrian Research, 316: 275-290 DOI:10.1016/j.precamres.2018.08.022
Hu PY, Zhai QG, Zhao GC, Wang J, Tang Y, Wang HT, Zhu ZC, Wang W and Wu H. 2018d. Early Neoproterozoic (ca. 900Ma) rift sedimentation and mafic magmatism in the North Lhasa Terrane, Tibet:Paleogeographic and tectonic implications. Lithos, 320-321: 403-415 DOI:10.1016/j.lithos.2018.09.036
Hu PY, Zhai QG, Zhao GC, Wang J, Tang Y, Wang HT, Zhu ZC, Wu H, Wang W and Huang ZQ. 2019. Late Cryogenian magmatic activity in the North Lhasa terrane, Tibet:Implication of slab break-off process. Gondwana Research, 71: 129-149 DOI:10.1016/j.gr.2019.02.005
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69 DOI:10.1016/j.chemgeo.2004.06.017
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983 DOI:10.1126/science.1136154
Li P. 1955. Novice understanding of the geology of eastern Tibet. Chinese Science Bulletin, (7): 62-71, 52 (in Chinese)
Li XH, Li ZX, Sinclair JA, Li WX and Garter G. 2006. Revisiting the "Yanbian Terrane":Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151(1-2): 14-30 DOI:10.1016/j.precamres.2006.07.009
Li CS, Arndt NT, Tang QY and Ripley EM. 2015. Trace element in discrimination diagrams. Lithos 232, 232: 76-83 DOI:10.1016/j.lithos.2015.06.022
Lin YH, Zhang ZM, Dong X, Shen K and Lu X. 2013. Precambrian evolution of the Lhasa terrane, Tibet:Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237: 64-77 DOI:10.1016/j.precamres.2013.09.006
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KJ. 2003. ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication
Merdith AS, Collins AS, Williams SE, Pisarevsky S, Foden JD, Archibald DB, Blades ML, Alessio BL, Armistead S, Plavsa D, Clark C and Müller RD. 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 50: 84-134 DOI:10.1016/j.gr.2017.04.001
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 DOI:10.1016/j.jseaes.2012.12.020
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355 DOI:10.2475/ajs.274.4.321
Mole DR, Barnes SJ, Taylor RJM, Kinny PD and Fritz H. 2018. A relic of the Mozambique Ocean in south-east Tanzania. Precambrian Research, 305: 386-426 DOI:10.1016/j.precamres.2017.10.009
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic ARC magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285 DOI:10.1146/annurev.ea.23.050195.001343
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Wang M, Li C, Xie CM, Wu YW, Su L and Hu PY. 2012. LA-ICP-MS U-Pb dating of zircon from granitic gneiss of the Nierong microcontinent:The discovery of the Neoproterozoic basement rock and its significance. Acta Petrologica Sinica, 28(12): 4101-4108 (in Chinese with English abstract)
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343 DOI:10.1016/0009-2541(77)90057-2
Wolf MB and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145 DOI:10.1016/0016-7037(94)90269-0
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1544-1569
Xie CM, Li C, Su L, Wu YW and Xie YW. 2013. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent:Constraints from geochronology and geochemistry. Science China (Earth Sciences), 56(12): 2066-2079 DOI:10.1007/s11430-013-4724-0
Xie CM, Li C, Wang M, Wu YW and Hu ZC. 2014. Tectonic affinity of the Nyainrong microcontinent:Constraints from zircon U-Pb age and Hf isotopes compositions. Geological Bulletin of China, 33(11): 1778-1792 (in Chinese with English abstract)
Xu RH, Schärer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study. Journal of Geology, 93(1): 41-57
Xu WC, Zhang HF, Harris N, Guo L, Pan FB and Wang SA. 2013. Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet:Implications for the early evolution of Lhasa terrane. Precambrian Research, 236: 46-58 DOI:10.1016/j.precamres.2013.07.016
Yang JS, Xu ZQ, Li ZL, Xua XZ, Li TF, Ren YF, Li HQ and Chen SY. 2009. Robinson PT. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76-89 DOI:10.1016/j.jseaes.2008.04.001
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280 DOI:10.1146/annurev.earth.28.1.211
Zeng YC, Chen Q, Xu JF, Chen JL, Huang F, Yu HX and Zhao PP. 2018. Petrogenesis and geodynamic significance of Neoproterozoic (~925Ma) high-Fe-Ti gabbros of the RenTso ophiolite, Lhasa Terrane, central Tibet. Precambrian Research, 314: 160-169 DOI:10.1016/j.precamres.2018.06.005
Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH and Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bulletin, 128(3-4): 355-373 DOI:10.1130/B31296.1
Zhang XZ, Dong YS, Li C, Xie CM, Yang HT and Wang M. 2013. Delineation of Middle Neoproterozoic ophiolite mélange in the northern Lhasa terrane, South Tibet and its significance. Acta Petrologica Sinica, 29(2): 698-722 (in Chinese with English abstract)
Zhang ZM, Dong X, Liu F, Lin YH, Yan R, He ZY and Santosh M. 2012a. The making of Gondwana:Discovery of 650Ma HP granulites from the North Lhasa, Tibet. Precambrian Research, 212-213: 107-116 DOI:10.1016/j.precamres.2012.04.018
Zhang ZM, Dong X, Liu F, Lin YH, Yan R and Santosh M. 2012b. Tectonic evolution of the Amdo Terrane, Central Tibet:Petrochemistry and zircon U-Pb geochronology. The Journal of Geology, 120(4): 431-451 DOI:10.1086/665799
Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730 DOI:10.1130/G31895.1
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL and Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290-308 DOI:10.1016/j.chemgeo.2011.12.024
Zhu DC, Zhai ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
辜平阳, 李荣社, 何世平, 查显锋, 于浦生, 时超, 潘术娟, 王轶. 2012. 西藏那曲县北聂荣微地块聂荣岩群中斜长角闪岩——Rodinia超大陆裂解的地质纪录. 岩石矿物学杂志, 31(2): 145-154. DOI:10.3969/j.issn.1000-6524.2012.02.003
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
胡道功, 吴珍汉, 叶培盛, 江万. 2003. 西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄. 地质通报, 22(1): 936-940.
胡培远, 翟庆国, 唐跃, 王军, 王海涛. 2016. 青藏高原拉萨地块新元古代(~925 Ma)变质辉长岩的确立及其地质意义. 科学通报, 61(19): 2176-2186.
李璞. 1955. 西藏东部地质的初步认识. 科学通报, (7): 62-71, 52.
王明, 李才, 解超明, 吴彦旺, 苏犁, 胡培远. 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年——新元古代基底岩石的发现及其意义. 岩石学报, 28(12): 4101-4108.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
解超明, 李才, 王明, 吴彦旺, 胡兆初. 2014. 藏北聂荣微陆块的构造亲缘性——来自LA-ICP-MS锆石U-Pb年龄及Hf同位素的制约. 地质通报, 33(11): 1778-1792. DOI:10.3969/j.issn.1671-2552.2014.11.014
张修政, 董永胜, 李才, 解超明, 杨韩涛, 王明. 2013. 青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义. 岩石学报, 29(2): 698-722.