岩石学报  2019, Vol. 35 Issue (10): 3097-3114, doi: 10.18654/1000-0569/2019.10.09   PDF    
西藏班公湖-怒江缝合带中段侏罗纪高镁安山质岩石对中特提斯洋演化的制约
唐跃, 翟庆国, 胡培远, 肖序常, 王海涛, 王伟, 朱志才, 吴昊     
自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037
摘要: 班公湖-怒江缝合带中段地区南北向分布了三条分支蛇绿岩亚带,它们记录了该地区中特提斯洋复杂的构造演化过程。目前对于该地区洋盆俯冲消减动力学过程一直缺乏有效制约。为探讨这一问题,本文对班公湖-怒江缝合带中段新近厘定的安山岩和闪长岩开展了系统的野外、岩石地球化学和锆石U-Pb年代学研究。安山岩主要呈不整合覆盖于晚三叠世沉积地层之上,或与侏罗纪俯冲增生杂岩和橄榄岩以断层接触,闪长岩主要呈岩脉体侵入于橄榄岩中。锆石U-Pb定年表明,安山岩和闪长岩均形成于中晚侏罗世(165~161Ma)。安山岩和闪长岩地球化学组成类似,它们大都具有高的MgO含量和Mg#值,这与高镁安山岩相类似。稀土和微量元素组成显示出典型的岛弧岩浆岩特征,富集轻稀土(LREE)和Rb、Th、U、Pb等元素,亏损Ba和高场强元素(HFSE;Nb,Ta和Ti)。同时,样品还显示出较低的Ba/Th和较高的(La/Sm)N比值,以及负的锆石εHft)值和古老的锆石Hf模式年龄。这些特征表明这些高镁安山岩和闪长岩是大洋板片俯冲沉积物部分熔融的熔体交代地幔楔的产物。结合区域地质和前人研究,认为这些岩石可能形成于靠近海沟的大陆边缘环境,是班公湖-怒江中特提斯洋中段北拉-拉弄分支洋盆初始俯冲消减的产物,该初始俯冲作用可能与安多微陆块和南羌塘地块碰撞导致的俯冲南向跃迁有关。
关键词: 班公湖-怒江缝合带    中特提斯洋    高镁安山岩    初始俯冲    俯冲跃迁    
Jurassic high-Mg andesitic rocks in the middle part of the Bangong-Nujiang suture zone, Tibet: New constraints for the tectonic evolution of the Meso-Tethys Ocean
TANG Yue, ZHAI QingGuo, HU PeiYuan, XIAO XuChang, WANG HaiTao, WANG Wei, ZHU ZhiCai, WU Hao     
MNR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Three ophiolite sub-belts occur in the middle part of the Bangong-Nujiang suture zone, north-central Tibet. These ophiolites recorded a complicated evolution process of the Meso-Tethys Ocean in the Tibetan Plateau. However, detailed subduction and closure processes of this ocean remain in dispute. In this study, we present new data about high-Mg andesite and diorite in the middle part of the Bangong-Nujiang suture zone. We performed detailed field, petrological and geochemical investigations, and zircon U-Pb dating on these rocks. Andesite commonly unconformable overlies on the Triassic sedimentary rocks or is in fault contact with Jurassic subduction-accretionary complex and peridotite. Diorite occurs as dykes intruded into peridotite. Zircon U-Pb dating indicates that these rocks were emplaced in the Middle-Late Jurassic (165~161Ma). Andesite and diorite have similar geochemical features with high MgO contents and high Mg# values, indicating a high-Mg andesitic rock affinity. REE and trace elemental compositions show that these rocks have typical arc magmatic signatures, with strong enrichment in LREE, Rb, Th, U and Pb, and depletion in Ba, Nb, Ta and Ti. They also have low Ba/Th and high (La/Sm)N ratios, negative zircon εHf(t) values, and ancient zircon Hf model ages. These features suggest that these rocks were derived from interaction between partial melting of subducted sediments and overlying mantle peridotite. Finally, we suggest that these rocks were probably formed in a continental margin near trench with the initial subduction of the Meso-Tethys Ocean. This subduction process may be induced by "subduction zone transference" with the collision between the Amdo and South Qiangtang terranes.
Key words: Bangong-Nujiang suture zone    Meso-Tethys Ocean    High-Mg andesite    Initial subduction    Subduction transference    

班公湖-怒江缝合带在构造上夹持于拉萨和南羌塘地块之间,是中特提斯洋(或新特提斯洋北支)消减闭合的遗迹,它对研究中特提斯洋构造演化和青藏高原中生代陆块聚合过程具有重要的地质意义(Metcalfe, 1996, 2013; Yin and Harrison, 2000; Pan et al., 2012; Zhu et al., 2013)。通常而言,班公湖-怒江缝合带可进一步划分为西段(班公湖-改则)、中段(班戈-那曲)和东段(丁青-怒江)。班公湖-怒江缝合带中段的构造演化最为复杂,由自北向南呈面状分布的三条分支缝合带组成(东巧-安多、北拉-拉弄和永珠-纳木错),分布范围南北宽度超过200km,是研究该缝合带最为关键的区域(图 1b)。

图 1 青藏高原大地构造简图(a, 据Zhai et al., 2016修改)、班公湖-怒江缝合带中段地质简图(b)和佳琼地区地质简图(c) KSZ-昆仑缝合带;JSZ-金沙江缝合带:LSSZ-龙木错-双湖缝合带;BNSZ-班公湖-怒江缝合带;IYZSZ-印度-雅鲁藏布江缝合带 Fig. 1 Tectonic framework of the Tibet Plateau (a, modified after Zhai et al., 2016), simplified geological map of the middle Bangong-Nujiang suture zone (b) and geological sketch map of the Jiaqiong area (c)

岛弧岩浆活动是大洋板块俯冲消减作用的最直接记录,对反演古大洋俯冲及其动力学过程具有至关重要的作用(Stern, 2002; Ducea et al., 2015)。已有研究显示,在班公湖-怒江缝合带西段的羌塘南缘地区发育一条侏罗-白垩纪的岛弧型岩浆岩带(170~110Ma),它是该地区中特提斯洋洋盆北向俯冲的结果(Kapp et al., 2005; Li et al., 2014, 2018a, b; Zhu et al., 2016; Hao et al., 2018)。然而在班公湖-怒江缝合带的其它地区,尤其是中段一带的侏罗纪岛弧岩浆作用仍缺乏系统研究(李小波等, 2015; Zeng et al., 2016b),对其起源和成因仍不清楚。此外,前人对班公湖-怒江缝合带侏罗纪岛弧型岩浆岩的研究多集中于西段地区,对于中段地区的侏罗纪岩浆岩及其与各分支缝合带之间的关系以及对应的俯冲消减动力学过程尚缺乏有效约束。

本文对班公湖-怒江缝合带中段新近厘定的中晚侏罗世高镁安山岩和闪长岩开展了系统的野外、岩石地球化学和锆石U-Pb年代学研究,在此基础上探讨其成因及其对班公湖-怒江中特提斯洋洋盆俯冲消减动力学过程的约束,为进一步厘清中特提斯洋洋盆的演化提供关键证据。

1 区域地质概况

班公湖-怒江缝合带横贯于青藏高原中部,东西向延伸近2000km(图 1a)。沿缝合带断续分布了侏罗纪蛇绿岩、俯冲增生杂岩、侏罗-白垩纪中酸性岩浆岩和洋岛型岩石,它们保留了较为完整的中特提斯洋从扩张到俯冲消减、直至闭合的地质记录。前人的研究结果表明,班公湖-怒江缝合带蛇绿岩主要形成于侏罗纪,且以中侏罗世为主(Wang et al., 2016)。这些蛇绿岩大都显示出SSZ型蛇绿岩的特征,形成于大洋俯冲过程(Wang et al., 2016),并在晚侏罗世到早白垩世构造侵位于大陆边缘之上。侏罗纪岩浆岩主要分布在班公湖-怒江缝合带内及以北的南羌塘地块南缘,又以缝合带西段最为发育。这些岩浆岩显示出典型岛弧岩浆岩特征,是班公湖-怒江洋北向俯冲的直接地质记录。白垩纪岩浆岩沿着缝合带及两侧地块边缘广泛发育,通常被认为与班公湖-怒江洋的消减闭合及伴随的板片断离、地壳拆沉作用有关(Zhu et al., 2011, 2016; Hu et al., 2017)。

班公湖-怒江缝合带中段,也称藏北湖区,是整条缝合带内最宽广,也是蛇绿岩出露范围最广的地区(王希斌等, 1987)。自北向南,中段地区的蛇绿岩可划分为三条亚带,分别为东巧-安多、北拉-拉弄和永珠-纳木错蛇绿岩亚带,它们代表了班公湖-怒江洋中段不同分支洋盆或小洋盆闭合的遗迹(图 1b)。已有研究资料显示,东巧和安多蛇绿岩形成于早侏罗世(188~181Ma)的弧前或弧后环境(Liu et al., 2016; Wang et al., 2016)。变质底板角闪石K-Ar和40Ar/39Ar年龄约为175~179Ma,暗示这些蛇绿岩形成不久即发生仰冲就位(王希斌等, 1987; Zhou et al., 1997)。北拉-拉弄和永珠-纳木错蛇绿岩主要形成于中-晚侏罗世(172~148Ma),是班公湖-怒江洋南侧分支洋盆演化的产物(Zhong et al., 2015, 2017; Tang et al., 2018a; Zeng et al., 2018)。安多微陆块位于班公湖-怒江缝合带内,夹持于东巧-安多和北拉-拉弄蛇绿岩亚带之间,是缝合带内部一独立的微陆块,主要由前寒武变质基底、侏罗-白垩纪花岗岩和中新生代沉积盖层组成(Guynn et al., 2006, 2013; Zhang et al., 2014)。在安多微陆块中北部发育一套高压麻粒岩,峰期变质时代大致为180~175Ma,折返冷却年龄大致为~165Ma,并在早白垩世完全剥露地表(Guynn et al., 2006; Zhang et al., 2014)。这套高压麻粒岩记录了东巧-安多北侧分支洋盆关闭后,安多微陆块向南羌塘地块发生大陆俯冲并折返的全过程(Guynn et al., 2006)。

本次研究区地处藏北班戈县佳琼镇(图 1c),大地构造位置位于东巧-安多和北拉-拉弄蛇绿岩亚带之间。区内出露地层主要包括中上泥盆统查果罗玛组(D2-3c)、下二叠统下拉组(P1x)、上三叠统确哈拉群(T3Q)、上三叠-下侏罗统木嘎岗日群(MQ)、中上侏罗统接奴群(J2-3j)和下白垩统去申拉组(K1q)。古生代地层主要由灰岩组成,并夹厚度不等的砂岩,它们与区内其他地层均呈断层接触。确哈拉群主要为一套浅变质岩系,以板岩、片岩为主,与中生代地层呈断层接触或被侏罗纪火山岩不整合覆盖。木嘎岗日群为一套复理石沉积,以硅质岩、砂岩、泥页岩为主,并夹有灰岩团块。接奴群主要由板岩、砂岩和泥页岩组成,并含有玄武质和安山质火山岩夹层。一般认为,木嘎岗日群和接奴群代表了一套弧前俯冲增生杂岩,与中特提斯洋北向俯冲消减有关,并在洋盆消减闭合过程中发生不同程度的剪切破碎(Zeng et al., 2016a; Ma et al., 2018)。蛇绿岩主要分布在达如错东部地区,以橄榄岩和堆晶杂岩为主,并见有少量玄武岩,它们主要构造就位于木嘎岗日群之中,并被后期早白垩世花岗岩侵入(唐跃等, 2015)。去申拉组主要为一套中酸性火山岩、火山角砾岩、砾岩和砂岩等,不整合覆盖于接奴群之上。

本项研究涉及的侏罗纪岩浆岩以安山岩为主,并有少量闪长岩呈脉体侵入于蛇绿岩的橄榄岩之中。安山岩主要出露于佳琼镇周边和达如错东岸,佳琼镇西侧安山岩呈角度不整合覆盖在确哈拉群之上,而南侧以断层与接奴群接触。达如错东地区安山岩主要与蛇绿岩和木嘎岗日群呈断层接触(图 1c),并在局部呈不规则脉体侵入到木嘎岗日群增生杂岩之中,或呈不规则构造岩块混杂产出于木嘎岗日岩群(图 2a)。闪长岩主要呈岩脉产出,脉宽一般在20~100cm,长5~8m。野外和镜下观察显示,安山岩和闪长岩均经历了不同程度的后期蚀变(绿泥石化和绢云母化)(图 2)。安山岩呈深灰色-灰绿色,斑状结构,斑晶主要为角闪石(2%~8%)、辉石(1%~5%)和斜长石(3%~10%),基质主要由斜长石微晶和隐晶质组成(图 2b, d)。闪长岩比安山岩经历了更强的蚀变,主要矿物组成为斜长石(50%~55%)、角闪石(30%~40%)和石英(2%~8%),并可见少量辉石、黑云母(<5%)(图 2f)。斜长石发生不同程度绢云母化,部分角闪石发生绿泥石化。

图 2 西藏班戈佳琼地区高镁安山岩和闪长岩野外和显微照片 Amp-角闪石; Pl-斜长石; Qz-石英 Fig. 2 Field photographs and microphotographs of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
2 分析方法 2.1 锆石U-Pb分析

锆石分选在河北省区域地质调查研究所完成,采用传统的重液和磁选方法分选。锆石透、反射光照片和阴极发光图像拍摄在中国地质科学院地质研究所完成,基于此进一步观察锆石内部结构。锆石U-Pb定年在北京科荟测试技术有限公司完成,利用LA-ICP-MS系统对锆石开展U-Th-Pb同位素分析。激光剥蚀系统为ESI NWR 193nm,ICP-MS为Analytikjena PlasmaQuantmS Elite ICP-MS。具体的分析过程参见侯可军等(2009)。分析过程中采用氦气作载气,氩气为补偿气以调节灵敏度,分析束斑为25μm,激光的能量为6.25J/cm2,脉冲频率为8Hz。U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正,每分析5~10个样品点,分析2次GJ-1。对于与分析时间有关的U-Th-Pb同位素比值漂移、元素含量校正及U-Th-Pb同位素比值和年龄计算,均采用软件ICPMSDataCal 8.0(Liu et al., 2010)完成。锆石样品的U-Pb年龄谐和图绘制和加权平均年龄计算采用Isoplot 3.0完成(Ludwig, 2003)。

2.2 锆石Lu-Hf同位素分析

锆石Lu-Hf同位素测试在中国科学院地质与地球物理研究所多接收等离子体质谱实验室完成,测试仪器为Thermo Fisher公司生产的Neptune Plus多接收电感耦合等离子体质谱仪与193nm ArF准分子激光剥蚀系统联用构成的LA-MC-ICP-MS。锆石Lu-Hf同位素分析点位与U-Pb测年点位重合。详细的分析过程见Wu et al. (2006)Xie et al. (2008)。实验过程中采用的束斑直径约为44μm,剥蚀能量为10J/cm2,剥蚀时间为26s,脉冲频率为8Hz。标准锆石Mud Tank和GJ-1作为双重外标,监测仪器稳定程度。本次分析过程中获得的Mud Tank和GJ-1标样测试值分别为0.282501±5(2SD, n=10)和0.281997±8(2SD, n=19),这与推荐值在误差范围内一致(Morel et al., 2008; Woodhead and Hergt, 2005)。

2.3 全岩主量和微量元素分析

全岩主量和微量元素分析在中国地质科学院国家地质实验测试中心完成。主量元素测定采用熔片X荧光光谱法(XRF),使用的仪器为日本岛津(SHIMADZU)公司生产的MXF-2100型X射线荧光光谱仪。样品烧失量(LOI)的测定采用马弗炉加热烧失法。称取0.5g预先干燥的粉末样品置于坩埚中,然后放入马弗炉加热至1000℃并恒温90min,最后将样品冷却,称取烧失后的重量。烧失前后质量差与样品重量百分比即为烧失量。主量元素的分析精度优于5%。

全岩微量元素分析利用PE300D等离子体质谱仪(ICP-MS)完成,执行标准为DZ/T0223-2001。分析过程首先将样品粉末烘干,准确称取约50mg加入HF和HNO3溶解,然后再密封到高压釜中,转移至烘箱内加热48h,然后开盖蒸干。蒸干后的样品加入6N HNO3再次密封到高压釜中,转移至烘箱内加热烘干。冷却后,用3N HNO3充分溶解样品,再用MQ水将样品稀释2000倍,摇匀后送至ICP-MS测定微量元素。分析检测下限为(0.n~n)×10-9,分析误差一般小于5%。

3 测试结果 3.1 锆石U-Pb年龄

本次研究对4件样品(3件安山岩和1件闪长岩)进行了锆石U-Pb定年,分析测试结果见图 3表 1。透反射和阴极发光图像表明,所有锆石均具有相似的晶体形态和内部结构,未见继承核与增生边。锆石为短柱状至长柱状、自形-半自形晶体,长约150~300μm,长宽比1:1到3:1,并具有密集的岩浆振荡环带(图 3)。安山岩和闪长岩锆石具有相似的Th和U含量,其变化范围分别为152×10-6~2655×10-6和160×10-6~2043×10-6,Th/U比值为0.26~1.94。这些特征表明这些锆石均为典型的岩浆成因锆石(Hoskin and Schaltegger, 2003)。

图 3 西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb年龄谐和图和代表性锆石阴极发光(CL)图像 Fig. 3 Zircon U-Pb concordia diagrams and representative CL images of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet

表 1 西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb定年结果 Table 1 Zircon U-Pb age data of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet

3件安山岩样品获得了相似的206Pb/238U加权平均年龄,分别为161.0±1.7Ma (17T046; n=8, MSWD=0.09)、164.9±1.1Ma (17T056; n=18, MSWD=0.10)和161.0±1.1Ma (17T081; n=18, MSWD=0.16)(图 3)。样品17T046中4颗锆石具有较老的206Pb/238U年龄,分别为263Ma、441Ma、457Ma和643Ma(表 1),可能代表了继承或捕获锆石的年龄。闪长岩样品(17T063)采自侵入到橄榄岩中的岩脉,获得锆石206Pb/238U加权平均年龄为162.5±1.0Ma (n=22, MSWD=0.07),这与安山岩样品测年结果基本一致,表明安山岩和闪长岩是同期岩浆作用的产物。

3.2 锆石Lu-Hf同位素

对4件锆石样品开展Lu-Hf同位素分析,结果见表 2。3件安山岩样品锆石具有相似的(176Hf/177Hf)i比值(0.282399~0.282569)和相对一致的εHf(t)值(-9.6~-3.5),对应的一阶段(tDM)和二阶段(tDM2)锆石Hf同位素模式年龄分别为1000~1213Ma和1436~1819Ma(图 4)。闪长岩样品锆石表现出相对均一的(176Hf/177Hf)i比值(0.282374~0.282449)和εHf(t)值(-10.5~-7.9),对应的一阶段(tDM)和二阶段(tDM2)锆石Hf同位素模式年龄分别为1132~1237Ma和1708~1876Ma(图 4)。因此,安山岩和闪长岩具有相似的锆石Hf同位素组成,这与相邻地区以及安多微陆块内已报道的近同期中酸性岩浆岩具有相似的锆石Hf同位素组成(图 4; 刘敏等, 2011; 李小波等, 2015; Zeng et al., 2016b)。

表 2 西藏班戈佳琼高镁安山岩和闪长岩锆石Hf同位素分析结果 Table 2 Zircon Hf isotopic compositions of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet

图 4 西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb年龄-εHf(t)值图解 达如错安山岩数据据李小波等(2015), Zeng et al. (2016b);安多花岗岩数据据刘敏等(2011) Fig. 4 Plots of U-Pb ages vs. εHf(t) values for Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
3.3 全岩主量和微量元素

安山岩和闪长岩全岩地球化学测试结果见表 3。测试样品具有相对高的烧失量(1.00%~6.68%),表明样品均受到不同程度的蚀变,这与野外和镜下观察到岩石经历不同程度的绿泥石化和绢云母化相一致。通常而言,SiO2、MgO、FeO、TiO2、Al2O3 等主量元素和稀土(REE)、高场强元素(HFSE),以及Ba、Th、U等元素在蚀变过程中相对不活动(Pearce, 2014)。因此,本文主要基于这些相对不活动元素进行岩石的类型和成因讨论。在Mg#-元素图解上(图 5),除K2O和Na2O外,Mg#与其他元素基本呈现较好的线性关系。

表 3 西藏班戈佳琼高镁安山岩和闪长岩全岩主量(wt%)和微量(×10-6)元素组成 Table 3 Whole-rock major (wt%) and trace (×10-6) element compositions of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet

图 5 西藏班戈佳琼高镁安山岩和闪长岩SiO2、Al2O3、K2O+Na2O、Fe2O3T、Cr、Sr、Y、La、Yb对Mg#关系图解 达如错安山岩数据据李小波等(2015)Zeng et al. (2016b),后同 Fig. 5 Elements of SiO2, Al2O3, K2O+Na2O, Fe2O3T, Cr, Sr, Y, La and Yb plotted against Mg# of the high-Mg Jiaqiong andesite and diorite in the Bange County, Tibet

安山岩SiO2含量为52.03%~55.90%,Al2O3为15.74%~17.35%,MgO为4.14%~5.68%、FeOT为6.71% ~7.81%,对应的Mg#值介于50.9~58.0之间(表 3)。在Zr/TiO2-SiO2图解中,所有样品均落入安山岩的区域内(图 6a)。在Th-Co图解上(图 6b),它们均呈现出高钾钙碱性岩浆岩的特征(Hastie et al., 2007)。在给定的SiO2条件下,安山岩样品具有相对高的MgO含量,大部分样品均落入高镁安山岩的范畴(Kelemen, 1995; Kelemen et al., 2007; 图 6c)。同时,在SiO2-FeOT/MgO图解上,安山岩相对于赞岐岩具有相对低的SiO2含量和高的FeOT/MgO比值,暗示其可能并非由赞岐岩直接分异而来(Tatsumi, 2006)(图 6d)。微量元素组成上,安山岩相对富集轻稀土元素(LREE; (La/Yb)N>8),同时显示出Eu的负异常(Eu/Eu*=0.70~0.87)(图 7a)。原始地幔标准化蛛网图上,所有样品均显示出了一致的配分曲线,富集Rb、Th、U、Pb等元素,亏损Ba、Nb、Ta和Ti等元素(图 7b)。这些特征与前人报道的达如错高镁安山岩相一致(李小波等, 2015; Zeng et al., 2016b)。

图 6 西藏班戈佳琼高镁安山岩和闪长岩SiO2-Zr/TiO2 (a, 据Winchester and Floyd, 1977)、Th-Co (b, 据Hastie et al., 2007)、SiO2-MgO (c, 据McCarron and Smellie, 1998)和FeOT/MgO-SiO2 (d, 据Tatsumi, 2006)图解 Fig. 6 SiO2 vs. Zr/TiO2 (a, after Winchester and Floyd, 1977), Th vs. Co (b, after Hastie et al., 2007), SiO2 vs. MgO (c, after McCarron and Smellie, 1998) and FeOT/MgO vs. SiO2 (d, after Tatsumi, 2006) diagrams of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet

图 7 西藏班戈佳琼高镁安山岩和闪长岩球粒陨石标准化稀土元素配分图(a、c)和原始地幔标准化微量元素蛛网图(b、d)(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE diagrams (a, c) and primitive-normalized multi-element spider diagrams (b, d) of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet (normalization values are from Sun and McDonough, 1989)

闪长岩相对于安山岩具有高的SiO2(57.21%~61.37%)含量和相对低的Al2O3(15.36%~15.65%)、FeOT(4.66%~6.70%)含量。同时,与安山岩类似,也具有较高的MgO(3.94%~5.28%)含量和Mg#值(58.2~62.3)(表 3)。在Th-Co图解上(图 6b),所有样品均显示出高钾钙碱性岩浆岩的特征。在SiO2-MgO(图 6c, d),闪长岩显示出与安山岩类似的地球化学特征,暗示二者可能为同源岩浆的产物。而在SiO2-FeOT/MgO图解上,闪长岩显示出与分异的赞岐岩类似的地球化学组成。闪长岩与安山岩的稀土和微量元素配分曲线基本一致,富集LREE,具负Eu异常(Eu/Eu*=0.74~0.89)(图 7c)。在原始地幔标准化蛛网图上,所有样品也显示出富集Rb、Th、U、Pb,亏损HFSE(Nb、Ta和Ti)的特征(图 7d)。

4 讨论 4.1 侏罗纪岩浆岩

班公湖-怒江缝合带中段佳琼地区高镁安山岩和闪长岩的锆石均具有典型的岩浆成因特征,如岩浆振荡环带和高的Th/U比值,因此,它们的年龄代表了岩浆冷凝结晶的时代。本项研究共获得了4件较好的锆石U-Pb谐和年龄,主要集中于165~161Ma(图 3),指示安山岩和闪长岩形成于侏罗纪中晚期,这与前人在达如错东部所报道的高镁安山岩的时代一致(李小波等, 2015; Zeng et al., 2016b)。此外,近同期的中酸性岩浆岩在东北部的安多微陆块中也有报道(~170Ma)(刘敏等, 2011; Yan et al., 2016; 李小波等, 2017)。因此,在班公湖-怒江缝合带中段北缘的侏罗纪中酸性岩浆作用主要发育在夹持于东巧-安多和北拉-拉弄蛇绿岩亚带之间的区域内,而在缝合带中段紧邻的南羌塘地块内部(东巧-安多以北地区)基本不发育(Guynn et al., 2006)(图 1b)。近年来,在班公湖-怒江缝合带西段以及南羌塘地块西南缘也已报道了多处侏罗纪岛弧型岩浆岩,并认为它们与中特提斯洋北向俯冲有关(Kapp et al., 2005; Li et al., 2014, 2018a, b; Hao et al., 2018)。总体而言,这些侏罗纪的岩浆岩沿班公湖-怒江缝合带呈近东西向带状分布,它们形成时代一致,并具有相似的岩石组合和地球化学特征。因此,它们的形成可能具有相似的地球动力学背景。

4.2 岩石成因

佳琼地区高镁安山岩和闪长岩的形成时代一致,并且具有相似的地球化学特征和锆石Hf同位素组成。所有样品均具有钾钙碱性火山岩的特征,轻重稀土分异明显,富集LREE和LILE,亏损HFSE(图 6图 7),这与典型岛弧岩浆岩的特征相一致,是大洋俯冲消减背景下的产物(Kelemen et al., 2007)。此外,安山岩和闪长岩均显示出高镁安山质岩石的特征,在Mg#-元素图解上表现出成分的连续变化(图 5)。这些特征表明安山岩和闪长岩可能源自相似的源区,具有相同的成因机制,且均与班公湖-怒江中特提斯洋的俯冲消减作用有关。

一般而言,与俯冲相关的(高镁)安山质岩石有以下几种形成机制:(1)基性岩浆与壳源岩浆混合(Streck et al., 2007);(2)含水地幔橄榄岩部分熔融(Wood and Turner, 2009);(3)俯冲板片熔体与地幔楔相互反应(Tatsumi, 2001; Wang et al., 2011)。岩浆混合过程中壳源长英质岩浆的注入,会显著降低岩浆的MgO含量和Mg#,同时导致变化较大的锆石Hf同位素组成(通常εHf(t)变化范围>10; Griffin et al., 2002; Shaw and Flood, 2009),这与佳琼高镁安山岩和闪长岩的特征相矛盾。此外,野外也未见安山岩和闪长岩中具有岩浆混合的现象(如基性包体)。因此,岩浆混合模式可以排除。就第二种模式而言,含水地幔楔的部分熔融,产生的岩浆主要为基性和少量中性岩浆,这与研究区附近同期主要出露安山质和长英质岩石的地质事实不符(李小波等, 2015)。另外,含水地幔橄榄岩部分熔融产生的安山岩应继承源区亏损的同位素特征,这与佳琼安山质岩石具有明显负的锆石εHf(t)值的特征不符(图 4)。因此,含水地幔橄榄岩的部分熔融模式也不足以形成研究区内的高镁安山质岩石。

俯冲板片熔体与地幔楔相互反应可能是形成佳琼高镁安山岩和闪长岩的主要机制。高镁安山岩和闪长岩样品均显示出高Y和低Sr的特征,明显区别于埃达克质岩石,与单纯俯冲洋壳熔融产生的熔体特征相矛盾(Defant and Drummond, 1990; Castillo, 2012)。安山岩和闪长岩样品具有较高的(La/Sm)N和Th含量,显示出明显俯冲沉积物组分加入的趋势(图 8; Plank and Langmuir, 1998; Kelemen et al., 2007)。此外,明显富集的锆石Hf同位素组成,也进一步支持其岩浆源区加入了壳源组分(俯冲沉积物)。以上这些特征表明佳琼地区高镁安山岩和闪长岩的岩浆可能主要源于一个俯冲沉积物为主的源区,这与部分安山质岩石出露在俯冲增生杂岩之中的地质事实相吻合。在板片俯冲过程中,俯冲沉积物发生部分熔融,产生的熔体和地幔相互作用可能是产生这套安山质岩石的主要过程。但是,这套岩浆岩地球化学特征又有别于典型的赞岐岩,区内还同时发育更高SiO2含量的酸性火山岩(李小波等, 2015),暗示俯冲沉积物熔体可能与地幔楔并未达到平衡(Tatsumi, 2001, 2006)。

图 8 西藏班戈佳琼高镁安山岩和闪长岩Ba/Th-(La/Sm)N (a, 据Labanieh et al., 2012)和Th/La-Th (b, 据Plank and Langmuir, 1998)图解 深海和全球俯冲沉积物(GLOSS)数据据Plank and Langmuir (1998) Fig. 8 Ba/Th vs. (La/Sm)N (a, after Labanieh et al., 2012) and Th/La vs. Th (b, after Plank and Langmuir, 1998) diagrams of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
4.3 构造环境

岛弧岩浆作用是大洋板片俯冲最直接的记录,对于深入理解大洋俯冲消减过程具有重要的科学意义(Stern, 2002)。佳琼地区中晚侏罗世高镁安山岩和闪长岩具有典型的岛弧岩浆岩特征,它们的形成与大洋板片俯冲消减作用有关。安山岩和闪长岩与蛇绿岩和弧前增生杂岩(木嘎岗日群、接奴群)共生,并且局部见闪长岩侵入于蛇绿岩及木嘎岗日群之中,暗示它们产出于靠近海沟的大陆边缘环境(Tatsumi, 2006)。本项研究高镁安山岩和闪长岩具有高Y和低Sr/Y的特征,且研究区内也未有同期埃达克质岩石的报道,指示岩浆应源自浅部源区,并未达到石榴石相,即熔融发生在俯冲带浅部异常高热的环境(Tatsumi, 2001, 2006; 唐功建和王强, 2010),这与达如错东部高镁安山岩的研究结果相一致(Zeng et al., 2016b)。海沟边缘浅部高热的岩浆形成,一般对应两种构造模式:洋脊俯冲或者初始俯冲(DeLong et al., 1979; Sun et al., 2010; Hall, 2012)。洋脊俯冲一般发生于大洋演化的末期,常伴随着埃达克岩、MORB-OIB类岩石和其他高温长英质岩石的产出(Sun et al., 2010; Windley and Xiao, 2018)。此外,洋脊俯冲过程中常伴随着软流圈物质的上涌,而形成具有亏损同位素特征的岩石(Li et al., 2016)。这些特征与佳琼地区的高镁安山岩和闪长岩的特征不符,也与安多微陆块及邻区已报道的近同时代岩浆岩的类型和特征不一致(刘敏等, 2011; Zeng et al., 2016b; 李小波等, 2017)。另外,研究区以南的北拉-拉弄和永珠-纳木错蛇绿岩主要形成于中晚侏罗世(170~150Ma)(Zhong et al., 2015; Tang et al., 2018a; Zeng et al., 2018),也从侧面表明大洋中脊在~165Ma的时候尚在扩张。因此,佳琼地区165~161Ma的高镁安山质岩石很可能是大洋板块初始俯冲的产物(Zeng et al., 2016b)。

图 9 西藏班戈佳琼地区侏罗纪岛弧岩浆形成的构造模式简图 Fig. 9 Tectonic model for the formation of Jurassic arc magmatic rocks in Jiaqiong area in the Bange County, Tibet

已有研究资料显示,东巧-安多蛇绿岩具有SSZ型蛇绿岩的特征,时代为190~180Ma,它们的形成与班公湖-怒江中特提斯洋洋盆的北侧分支北向俯冲消减有关(Liu et al., 2016; Wang et al., 2016)。一般认为它们在180~170Ma伴随着安多微陆块拼贴到羌塘南缘而就位(Zhou et al., 1997; Guynn et al., 2006, 2013; Zhang et al., 2014)。北拉-拉弄蛇绿岩发育一套MORB-IAT-玻安质岩石组合,表现出弧前蛇绿岩的特征(Dilek and Furnes, 2014),主要形成于172~148Ma的弧前环境(徐力峰等, 2010; Zhong et al., 2017; Tang et al., 2018a)。这与佳琼地区以及安多微陆块中的侏罗纪岛弧型岩浆作用的时代和构造背景基本吻合。据此我们认为佳琼地区165~161Ma高镁安山岩和闪长岩可能形成于北拉-拉弄分支洋盆北向初始俯冲背景。这一初始俯冲作用可能与同时期(或稍早)安多微陆块拼贴到羌塘南缘所导致的俯冲跃迁有关(图 9; Stern, 2004; Stern and Gerya, 2018)。此外,佳琼地区和安多微陆块内部的侏罗纪到早白垩世岩浆作用总体表现出相似的同位素特征,它们均具有较老的锆石Hf模式年龄(1.4~1.8Ga),反应了其岩浆来源于相似的古老地壳基底物质(刘敏等, 2011; 唐跃等, 2015; Zeng et al., 2016b; Hu et al., 2017; Yan et al., 2016)。因此,尽管佳琼地区及其邻区主要被中晚侏罗-早白垩世沉积地层所覆盖,它可能也属于安多微陆块西延部分。

4.4 班公湖-怒江中特提斯洋的演化

佳琼地区高镁安山质岩石为进一步约束班公湖-怒江中特提斯洋的演化提供了新的证据。已有研究显示,中特提斯洋在晚三叠世之前就已经打开(Yin and Harrison, 2000; Zhu et al., 2013; Zeng et al., 2016a; Fan et al., 2018),安多微陆块则作为独立的块体位于该大洋之中(Guynn et al., 2006; Zhang et al., 2014)。东巧-安多蛇绿岩亚带早侏罗世(190~180Ma)SSZ蛇绿岩的存在,指示中特提斯洋北侧分支洋盆此时已开始向北俯冲消减(Liu et al., 2016; Wang et al., 2016),而南侧的北拉-拉弄分支洋盆仍在持续扩张(图 9)。早侏罗世晚期,进一步的俯冲消减以及安多微陆块和南羌塘地块的拼合,导致东巧-安多分支洋盆关闭,从而形成安多微陆块内高压变质岩(Guynn et al., 2006; Zhang et al., 2014)。与此同时,北侧分支洋盆的闭合以及陆陆碰撞导致的俯冲跃迁,在南侧的北拉-拉弄形成新的北向俯冲,并在此基础上逐步形成了安多微陆块内广泛分布的中晚侏罗世岛弧岩浆岩(图 9)。值得注意的是,班公湖-怒江缝合带西段羌塘南缘地区所报道的岛弧岩浆岩时代也主要起始于中侏罗世(~170Ma)(Li et al., 2016, 2018b)。同时,班公湖-怒江缝合带自班公湖-改则,向东到北拉-拉弄,再到丁青地区的蛇绿岩,主体形成于一个非常窄的时间范围,主要集中于175~160Ma(史仁灯等, 2007; Wang et al., 2016; Huang et al., 2017; Zhong et al., 2017; Tang et al., 2018a, b)。这些蛇绿岩均显示出明显的SSZ亲缘性,指示了与俯冲相关的构造环境。因此,岛弧岩浆岩和蛇绿岩共同指示整个中特提斯洋的北向俯冲时间可能起始于中侏罗世,并随着晚侏罗-早白垩世拉萨和南羌塘地块逐步碰撞而结束(Zhu et al., 2016; Fan et al., 2018)。

5 结论

(1) 佳琼地区安山岩和闪长岩形成于中晚侏罗世(165~161Ma);

(2) 安山岩和闪长岩均显示出高镁安山质岩石的特征,是俯冲过程中俯冲板片上覆沉积物部分熔融的熔体与地幔楔交代的产物;

(3) 佳琼及邻区中晚侏罗世高镁安山质岩石是中特提斯洋北拉-拉弄分支洋盆北向初始俯冲的产物,这一俯冲过程可能与安多微陆块与南羌塘地块碰撞导致的俯冲南向跃迁有关。

致谢      锆石阴极发光图片拍摄得到了中国地质科学院地质研究所施斌的帮助;锆石U-Pb定年得到了中国地质科学院矿产资源研究所侯可军老师以及北京科荟测试技术有限公司肇创的协助;中国科学院地质与地球物理研究所杨岳衡研究员、张维麒博士等在锆石Hf同位素分析实验中提供了帮助。中国地质科学院地质研究所刘建峰研究员和李舢副研究员详细审阅了本文并提出宝贵修改意见。在此一并表示感谢。

参考文献
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316 DOI:10.1016/j.lithos.2011.09.013
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
DeLong SE, Schwarz WM and Anderson RN. 1979. Thermal effects of ridge subduction. Earth and Planetary Science Letters, 44(2): 239-246 DOI:10.1016/0012-821X(79)90172-9
Dilek Y and Furnes H. 2014. Ophiolites and their origins. Elements, 10(2): 93-100 DOI:10.2113/gselements.10.2.93
Ducea MN, Saleeby JB and Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331 DOI:10.1146/annurev-earth-060614-105049
Fan JJ, Li C, Wang M and Xie CM. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249 DOI:10.1007/s00531-017-1487-4
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels GE and Ding L. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508 DOI:10.1130/G22453.1
Guynn JH, Tropper P, Kapp P and Gehrels GE. 2013. Metamorphism of the Amdo metamorphic complex, Tibet:Implications for the Jurassic tectonic evolution of the Bangong suture zone. Journal of Metamorphic Geology, 31(7): 705-727 DOI:10.1111/jmg.12041
Hall PS. 2012. On the thermal evolution of the mantle wedge at subduction zones. Physics of the Earth and Planetary Interiors, 198-199: 9-27 DOI:10.1016/j.pepi.2012.03.004
Hao LL, Wang Q, Zhang CF, Ou Q, Yang JH, Dan W and Jiang ZQ. 2018. Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean:Insights from central Tibetan volcanic rocks. Geological Society of America Bulletin, 131(5-6): 864-880
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357 DOI:10.1093/petrology/egm062
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Hou KJ, Li YH and Tian YY. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu PY, Zhai QG, Jahn BM, Wang J, Li C, Chung SL, Lee HY and Tang SH. 2017. Late Early Cretaceous magmatic rocks (118~113Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau:Evidence of lithospheric delamination. Gondwana Research, 44: 116-138 DOI:10.1016/j.gr.2016.12.005
Huang QT, Liu WL, Xia B, Cai ZR, Chen WY, Li JF and Yin ZX. 2017. Petrogenesis of the Majiari ophiolite (western Tibet, China):Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys. Journal of Asian Earth Sciences, 146: 337-351 DOI:10.1016/j.jseaes.2017.06.008
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8): 865-878
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19 DOI:10.1007/BF00311004
Kelemen PB, Hanghøj K and Greene AR. 2007. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 3: 1-70
Labanieh S, Chauvel C, Germa A and Quidelleur X. 2012. Martinique:A clear case for sediment melting and slab dehydration as a function of distance to the trench. Journal of Petrology, 53(12): 2441-2464 DOI:10.1093/petrology/egs055
Li SM, Zhu DC, Wang Q, Zhao ZD, Sui QL, Liu SA, Liu D and Mo XX. 2014. Northward subduction of Bangong-Nujiang Tethys:Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284-297 DOI:10.1016/j.lithos.2014.07.010
Li SM, Zhu DC, Wang Q, Zhao ZD, Zhang LL, Liu SA, Chang QS, Lu YH, Dai JG and Zheng YC. 2016. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156±2Ma from the north of Gerze, central Tibet:Records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic. Lithos, 262: 456-469 DOI:10.1016/j.lithos.2016.07.029
Li SM, Wang Q, Zhu DC, Stern RJ, Cawood PA, Sui QL and Zhao ZD. 2018a. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. Journal of Geophysical Research:Solid Earth, 123(5): 3391-3413 DOI:10.1002/2018JB015582
Li XB, Wang BD, Liu H, Wang LQ and Chen L. 2015. The Late Jurassic high-Mg andesites in the Daru Tso area, Tibet:Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere. Geological Bulletin of China, 34(2-3): 251-261 (in Chinese with English abstract)
Li XB, Wang BD, Liu H, Wang LQ, Chen L, Yan GC and Zhou F. 2017. Petrogenesis of Early Jurassic volcanic rocks in the Amdo area, Tibet:Evidences for the subduction of the Bangong-Nujiang Tethys Ocean. Acta Petrologica Sinica, 33(7): 2073-2084 (in Chinese with English abstract)
Li XK, Chen J, Wang RC and Li C. 2018b. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet:Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization. Earth-Science Reviews, 185: 374-396 DOI:10.1016/j.earscirev.2018.04.005
Liu M, Zhao ZD, Guan Q, Dong GC, Mo XX, Liu YS and Hu ZC. 2011. Tracing magma mixing genesis of the middle Early-Jurassic host granites and enclaves in Nyainrong microcontinent, Tibet from zircon LA-ICP-MS U-Pb dating and Hf isotopes. Acta Petrologica Sinica, 27(7): 1931-1937 (in Chinese with English abstract)
Liu T, Zhai QG, Wang J, Bao PS, Qiangba ZX, Tang SH and Tang Y. 2016. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan Plateau:Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116: 139-154 DOI:10.1016/j.jseaes.2015.11.014
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center
Ma AL, Hu XM, Kapp P, Han Z, Lai W and BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area):Implications for the tectonic uplift of central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30-47 DOI:10.1016/j.palaeo.2018.06.005
McCarron JJ and Smellie JL. 1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites:Alexander Island, Antarctica. Journal of the Geological Society, 155(2): 269-280 DOI:10.1144/gsjgs.155.2.0269
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605-623 DOI:10.1080/08120099608728282
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 DOI:10.1016/j.jseaes.2012.12.020
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS and Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235 DOI:10.1016/j.chemgeo.2008.06.040
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394 DOI:10.1016/S0009-2541(97)00150-2
Shaw SE and Flood RH. 2009. Zircon Hf isotopic evidence for mixing of crustal and silicic mantle-derived magmas in a zoned granite pluton, eastern Australia. Journal of Petrology, 50(1): 147-168 DOI:10.1093/petrology/egn078
Shi RD. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite:Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin, 52(7): 936-941 DOI:10.1007/s11434-007-0134-z
Stern RJ. 2002. Subduction zones. Reviews of Geophysics, 40(4): 3-1
Stern RJ. 2004. Subduction initiation:Spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275-292 DOI:10.1016/S0012-821X(04)00498-4
Stern RJ and Gerya T. 2018. Subduction initiation in nature and models:A review. Tectonophysics, 746: 173-198 DOI:10.1016/j.tecto.2017.10.014
Streck MJ, Leeman WP and Chesley J. 2007. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35(4): 351-354
Sun SS, and McDonough WS. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview. Science China Earth Sciences, 53(4): 475-484
Tang GJ and Wang Q. 2010. High-Mg andesites and their geodynamic implications. Acta Petrologica Sinica, 26(8): 2495-2512 (in Chinese with English abstract)
Tang Y, Zhai QG, Liu T, Wang J, Hu PY, Qiangba ZX and Suolang CL. 2015. LA-ICP-MS zircon U-Pb dating, geochemical features and geological significance of the Daru Co granite porphyry in Baingoin County, Tibet. Geological Bulletin of China, 34(10): 1802-1811 (in Chinese with English abstract)
Tang Y, Zhai QG, Hu PY, Wang J, Xiao XC, Wang HT, Tang SH and Lei M. 2018a. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet:New insights into the formation of ophiolite-related rodingite. Lithos, 316-317: 33-47 DOI:10.1016/j.lithos.2018.07.006
Tang Y, Zhai QG, Hu PY, Xiao XC and Wang HT. 2018b. Petrology, geochemistry and geochronology of the Zhongcang ophiolite, northern Tibet:Implications for the evolution of the Bangong-Nujiang Ocean. Geoscience Frontiers, 9(5): 1369-1381 DOI:10.1016/j.gsf.2018.05.007
Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction:Generation of high-Mg andesites in the Setouchi volcanic belt, Southwest Japan. Geology, 29(4): 323-326
Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan:Analogy to Archean magmatism and continental crust formation?. Annual Review of Earth and Planetary Sciences, 34: 467-499 DOI:10.1146/annurev.earth.34.031405.125014
Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB and Chen LK. 2016. Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18-33 DOI:10.1016/j.lithos.2015.07.016
Wang Q, Li ZX, Chung SL, Wyman DA, Sun YL, Zhao ZH, Zhu TY and Qiu HN. 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet:Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos, 126(1-2): 54-67 DOI:10.1016/j.lithos.2011.06.002
Wang XB, Bao PS, Deng WM and Wang FG. 1987. Tectonic Evolution of the Himalayan Lithosphere:Ophiolites of Xizang Area. Beijing: Geological Publishing House, 138-214 (in Chinese)
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343 DOI:10.1016/0009-2541(77)90057-2
Windley BF and Xiao WJ. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt:Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73-87 DOI:10.1016/j.gr.2018.05.003
Wood BJ and Turner SP. 2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-2): 59-66
Woodhead JD and Hergt JM. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2): 183-195 DOI:10.1111/j.1751-908X.2005.tb00891.x
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Xie LW, Zhang YB, Zhang HH, Sun JF and Wu FY. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin, 53(10): 1565-1573
Xu LF, Xia B, Li JF and Zhong LF. 2010. Geochemical characteristics and genesis of pillow basalts from the Lanong ophiolite in Tibet, China. Geotectonica et Metallogenia, 34(1): 105-113 (in Chinese with English abstract)
Yan HY, Long XP, Wang XC, Li J, Wang Q, Yuan C and Sun M. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet:Evidence for a slab roll-back of the Bangong-Nujiang Ocean. Lithos, 264: 315-328 DOI:10.1016/j.lithos.2016.09.002
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
Zeng M, Zhang X, Cao H, Ettensohn FR, Cheng WB and Lang XH. 2016a. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed:Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147-157 DOI:10.1111/bre.12105
Zeng YC, Chen JL, Xu JF, Wang BD and Huang F. 2016b. Sediment melting during subduction initiation:Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite mélange, central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859-4877 DOI:10.1002/2016GC006456
Zeng YC, Xu JF, Chen JL, Wang BD, Kang ZQ and Huang F. 2018. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301: 250-260 DOI:10.1016/j.lithos.2017.11.025
Zhai QG, Ja hn, B M, Wang J, Hu PY, Chung SL, Lee HY, Tang SH and Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4): 355-373 DOI:10.1130/B31296.1
Zhang XR, Shi RD, Huang QT, Liu DL, Gong XH, Chen SS, Wu K, Yi GD, Sun YL and Ding L. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet:Constraints from zircon U-Pb geochronology of mafic granulites. Gondwana Research, 26(3-4): 975-985 DOI:10.1016/j.gr.2013.08.003
Zhong Y, Xia B, Liu WL, Yin ZX, Hu XC and Huang W. 2015. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites, Tibet. International Geology Review, 57(4): 508-528 DOI:10.1080/00206814.2015.1017776
Zhong Y, Liu WL, Xia B, Liu JN, Guan Y, Yin ZX and Huang QT. 2017. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet:Implications for petrogenesis and tectonic evolution. Lithos, 292-293: 111-131 DOI:10.1016/j.lithos.2017.09.003
Zhou MF, Malpas J, Robinson PT and Reynolds PH. 1997. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Canadian Journal of Earth Sciences, 34(1): 59-65 DOI:10.1139/e17-005
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
李小波, 王保弟, 刘函, 王立全, 陈莉. 2015. 西藏达如错地区晚侏罗世高镁安山岩——班公湖-怒江洋壳俯冲消减的证据. 地质通报, 34(2-3): 251-261.
李小波, 王保弟, 刘函, 王立全, 陈莉, 闫国川, 周放. 2017. 西藏安多早侏罗世火山岩岩石成因及对班公湖-怒江特提斯洋俯冲消减的制约. 岩石学报, 33(7): 2073-2084.
刘敏, 赵志丹, 管旗, 董国臣, 莫宣学, 刘永胜, 胡兆初. 2011. 西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA-ICP-MS U-Pb定年和Hf同位素证据. 岩石学报, 27(7): 1931-1937.
史仁灯. 2007. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约. 科学通报, 52(2): 223-227. DOI:10.3321/j.issn:0023-074X.2007.02.016
唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495-2512.
唐跃, 翟庆国, 刘通, 王军, 胡培远, 强巴扎西, 索朗赤列. 2015. 西藏班戈县达如错花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 34(10): 1802-1811. DOI:10.3969/j.issn.1671-2552.2015.10.004
王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化:西藏蛇绿岩. 北京: 地质出版社, 138-214.
徐力峰, 夏斌, 李建峰, 钟立峰. 2010. 藏北湖区拉弄蛇绿岩枕状玄武岩地球化学特征及其成因. 大地构造与成矿, 34(1): 105-113. DOI:10.3969/j.issn.1001-1552.2010.01.012