岩石学报  2019, Vol. 35 Issue (8): 2545-2572, doi: 10.18654/1000-0569/2019.08.14   PDF    
华北克拉通南缘中-新元古代沉积演化:以豫西地区黄连垛组和董家组为例
左鹏飞1,2, 李雨1, 刘思聪1, 郑德顺1     
1. 河南理工大学资源环境学院, 焦作 454000;
2. 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学, 青岛 266590
摘要:华北克拉通(华北)南缘中元古代早期熊耳群火山活动之后,在渑池-确山地区发育了一套中-新元古代沉积(汝阳群、洛峪群、黄连垛组、董家组以及罗圈组和东坡组),记录了该时期沉积-构造演化过程。通过该区碎屑锆石和洛峪群顶部凝灰岩年龄的约束,将汝阳群-洛峪群的沉积时代基本限定于约1750~1600Ma,导致洛峪群由中元古界上部或新元古界下划到中元古界长城系。因此,在现有的地层年代格架下,需要重新对该区中-新元古代沉积演化进行讨论。本文通过对洛峪口组上覆黄连垛组和董家组沉积环境和物源分析,同时借助古生界辛集组源区分析的约束,揭示华北南缘中-新元古代沉积-构造演化。沉积环境分析显示,黄连垛组沉积初期发育了河口湾沉积环境。伴随海侵扩大,在下汤地区沉积了潮上带长石石英砂岩与泥质粉砂岩,而叶县地区发育了潮间带泥晶白云岩。晚期下汤和叶县地区发育潮下带泥晶白云岩与含硅质条带白云岩。董家组与下伏黄连垛组为平行不整合接触,董家组沉积初期为陆源碎屑物质供给充分的滨海相,在下汤和叶县地区沉积底部细砾岩及长石石英砂岩。随后,两个地区发育潮坪相长石石英砂岩与泥质粉砂岩,在顶部沉积了局限台地钙质泥岩。黄连垛组在豫西下汤和叶县地区沉积于河口湾-潮坪沉积环境,整体表现为自南向北的海进序列,而董家组总体上沉积于局限海盆的滨浅海-潮坪环境。由于下伏汝阳群-洛峪群分别沉积在河流-滨海-潮坪和浅海-滨海-潮坪环境,黄连垛组和董家组指示其沉积时期盆地产生收缩。碎屑锆石定年结果显示,黄连垛组和董家组碎屑锆石年龄主要峰值为1800Ma、2250Ma、2350Ma、2650Ma,两者物源均为华北克拉通。但下汤地区早古生界辛集组碎屑锆石显示主要峰值年龄为1850Ma、2500Ma、2200Ma、2700Ma,其次为1200Ma。结合华北克拉通发育大量的中元古代末期到新元古代碎屑锆石以及南缘中元古界官道口群和新元古界栾川群沉积特征,黄连垛组和董家组代表的局限盆地(海盆)沉积可能构成了该时期盆地的边缘相,期间伴随的抬升和盆地中心迁移可能与同期大地构造演化密切相关。
关键词: 华北克拉通     构造演化     中-新元古代     沉积环境     物源    
Meso-Neoproterozoic sedimentary evolution of the southern margin of the North China Craton: Evidence from the Huanglianduo and Dongjia formations in the western Henan
ZUO PengFei1,2, LI Yu1, LIU SiCong1, ZHENG DeShun1     
1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China;
2. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, China
Abstract: The Meso-Neoproterozoic sequences (the Ruyang, Luoyu, Huanglianduo, Dongjia, Luoquan and Dongpo groups/formations) deposited in the Mianchi-Queshan area after the Xiong'er volcanic-sedimentary succession within the southern margin of the North China Craton (NCC) recorded the tectono-sedimentary histories of this region. Based on the new age constrains from detrital and magmatic zircon, the Ruyang and Luoyu groups belong to the Early Mesoproterozoic, i.e., the Changcheng Period (1750~1600Ma). As the Luoyu Group was thought to be deposited in the Late Mesoproterozoic to Neoproterozoic previously, it is necessary to study the Meso-Neoproterozoic sedimentary and tectonic evolution in the southern margin of NCC. The Huanglianduo Formation was deposited in a river estuary in the early stage. Following a transgression from the south to the north, feldspar-quartz sandstones and pelitic siltstones in a supratidal zone deposited in the Xiatang area, and dolomicrites in a intertidal zone occurred in the Yexian area. Siliceous banded dolomites and dolomicrites in a subtidal zone developed in the upper unit within the Xiatang and Yexian areas. The overlying Dongjia Formation consists of sediments in a coastal environment in the bottom unit. Fine-grained conglomerates and feldspar-quartz sandstones developed first in the Xiatang and Yexian areas. Then, feldspar-quartz sandstones and pelitic siltstones in the tidal flat facies, and the calcareous argillites of the restricted platform occurred in the upper unit of the Dongjia Formation. Therefore, the Huanglianduo Formation include the river estuary and tidal flat environments in the Xiatang area and tidal flat facies in the Yexian area, respectively. The Dongjia Formation was deposited in the littoral and tidal flat facies within a restricted marine basin as a whole. Comparing with the underlying sediments developed in the fluvial-coastal-tide flat facies (Ruyang Group) and littoral to tidal flat facies(Luoyu Group), both Huanglianduo and Dongjia formations show that restricted marine basin sequences occurred in the southern margin of NCC. Evident depositional breaks and strong depocenter migration (from Mianchi-Queshan and Songji area to Lushi-Luanchuan area) developed in the Late Mesoproterozoic. Detrital zircons were taken from the Huanglianduo, Dongjia and the Early Paleozoic Xinji formations within the NCC to track the changes in their provenances. The analyzed detrital zircon grains from the Huanglianduo and Dongjia formations display four dominant age peaks at ca. 1800Ma, 2250Ma, 2350Ma and 2650Ma, respectively, which suggest that their provenances were derived from the NCC. However, four major age peaks at ca. 1850Ma, 2200Ma, 2500Ma and 2700Ma, and one minor peak at ca. 1200Ma are found in detrital zircon ages of the Xinji Formation. In combination with the Mesoproterozoic Guandaokou and Neoproterozoic Luanchuan sequences and the widely occurred detrital zircon ages from the Late Mesoproterozoic to Neoproterozoic, the Huanglianduo and Dongjia formations could be deoposited in the basin margin. It is likely that the changes in the sedimentary environments and sources of the Huanglianduo, Dongjia formations and the overlying depositions, accompanied with the migration of the depocenter of the sedimentary basin and the uplifts of the basement, are related to the tectonic evolution during the Late Mesoproterozoic to Neoproterozoic.
Key words: North China Craton     Tectonic evolution     Meso-Neoproterozoic     Sedimentary environments     Provenances    

前人认为华北克拉通在中元古代到早古生代总体上处于伸展状态,未参与Rodinia超大陆的演化过程(Lu et al., 2002, 2008陆松年等,2004Zhai et al., 2015)。然而,大量古地磁及岩墙群的相关研究表明,华北在中元古代到新元古代早期与Laurentia、Siberia、Australia、India克拉通可能相邻(Halls et al., 2000Li and Powell, 2001Zhai et al., 2003Pei et al., 2006Zhang et al., 2006, 2009相振群,2014徐慧茹,2015彭澎等,2018)。最新研究认为华北克拉通最可能与Laurentia存在某种联结(Wang et al., 2016丁继凯,2017),而Laurentia处于Rodinia超大陆的核心部分,发育完整的Grenville造山带(Rainbird et al., 1992, 1997, 2012Li et al., 2008Mosher et al., 2008Pease et al., 2008Spencer et al., 2015)。华北克拉通在中元古代末期发育了“芹峪抬升”和“蔚县抬升”,之后在燕辽地区缺失中元古代晚期地层(1350Ma到1100Ma)(杜汝霖等,1979曲永强等, 2010, 2012潘建国等,2013),新元古代沉积作用也主要发育在徐淮、白云鄂博-渣尔泰-化德、熊耳地区(Hu et al., 2016潘桂棠等,2016张克信等,2018),最终形成了四个中-新元古代沉积盆地(图 1a)。最近又在以上三个地区的中-新元古代地层中报道了大量的Grenville时期的碎屑锆石(胡波等,2009高林志等,2010Gao et al., 2011Yang et al., 2012胡波,2013Hu et al., 2014aLiu et al., 2014, 2019Cao et al., 2016He et al., 2017杨敏,2017)。

图 1 华北克拉通和北秦岭前寒武纪地质简图(a,据Deng et al., 2014a, bDong et al., 2014, 2015Hu et al., 2014a, 2016Peng,2015修改)及豫西地区前寒武纪地质简图(b,据河南省地质调查院,2009;陕西省地质调查院,2009修改) Fig. 1 The location of the study area within the North China Craton(NCC) and North Qinling Terrane(NQT)(a, modified after Deng et al., 2014a, b; Dong et al., 2014, 2015; Hu et al., 2014a, 2016; Peng, 2015), and simplified geological map of the western Henan(b)

① 河南省地质调查院. 2009.河南省矿产资源潜力评价

② 陕西省地质调查院. 2009.陕西省矿产资源潜力评价

由于华北克拉通(华北)南缘熊耳盆地内熊耳群形成时代限定于约1800~1750Ma(Zhao et al., 2004He et al., 2009Cui et al., 2011),通过洛峪口组凝灰岩和下伏地层碎屑锆石年龄的约束,汝阳群-洛峪群的沉积时代基本限定于约1750~1600Ma,即熊耳群-汝阳群-洛峪群均形成于长城系(1800~1600Ma)(苏文博等,2012苏文博,2016李承东等,2017)。洛峪口组上覆黄连垛组和董家组为1980年河南地科所于鲁山下汤九女洞建立,在叶县、方城、陕县等地均有分布,时代为中元古代到新元古代早期(潘泽成,1980关保德等,1988河南省地质矿产局,1989)。因此,洛峪群-汝阳群被下压到长城系,导致传统上对华北南缘中-新元古代沉积和构造演化的认识需要重新调整,而上覆黄连垛组和董家组沉积环境和物源分析可为该区沉积-构造演化提供新的约束。

结合前人工作,本次通过对华北南缘黄连垛组和董家组岩石学和沉积学特征的研究,借助黄连垛组、董家组和早古生界辛集组碎屑锆石年代学分析,对比华北南缘中-新元古代沉积地层物源变化,揭示华北南缘中元古代到新元古代大地构造演化历史。

1 区域地质背景

华北南缘中元古代早期经历熊耳火山事件(1800~1750Ma)后,发育陆源碎屑岩-碳酸盐岩沉积体系(关保德等,1988河南省地质矿产局,1989)。根据该地区中-新元古代不同沉降作用将其自北向南分为三个地层分区:嵩箕、渑池-确山和卢氏-栾川(图 1b)(关保德等,1988河南省地质矿产局,1989;河南省地质调查院,2009)。

渑池-确山地区在发育熊耳群火山-沉积岩之后,发育了冲积扇-扇三角洲相沉积地层(兵马沟组或小沟背组),与上覆汝阳群呈平行不整合接触(图 2a)。汝阳群下部(云梦山组和白草坪组)由河流-滨海相石英砂岩过渡为潮间-潮上带的砂岩、粉砂岩和页岩,上部(北大尖组)发育了潮间带泥质粉砂岩,顶部为白云岩及白云质砂岩。上覆整合覆盖的洛峪群(崔庄组、三教堂组和洛峪口组)自下而上分别为外陆棚、滨海和潮坪沉积,其顶部发育叠层石白云岩。黄连垛组为三角洲-滨浅海-碳酸盐岩沉积或滨海-潮坪沉积,董家组为三角洲-滨浅海-海湾泻湖或滨浅海-潮坪沉积,二者均与上下地层呈平行不整合接触(潘泽成,1980周洪瑞等,1999)。上覆平行不整合覆盖的罗圈组和东坡组总体上属于冰湖相沉积(Guan et al., 1986Le Heron et al., 2018)。早古生界辛集组不整合上覆盖于东坡组或董家组之上,为滨海相含少量碳酸盐岩的硅质碎屑岩(刘印环,1986刘印环等,1991刘群等,1994)。

图 2 华北南缘熊耳地区中-新元古代盆地岩性柱状对比(据关保德,1996;河南省地质调查院,2009) MC-渑池;YC-伊川;LS-鲁山;LB-灵宝.渑池兵马沟组和云梦山组古流向数据依据李文超(2013); 黄连垛组和董家组古流向据张玲华(1994); 高山河组古流向据河南省地质调查院(2009) Fig. 2 General stratigraphic sequences and correlation of the Meso-Neoproterozoic strata of the Xiong'er Basin (after Guan, 1996) MC-Mianchi area; YC-Yichuan area; LS-Lushan area; LB-Lingbao area. Paleocurrents data of Yunmenshan and Bingmagou formations in MC from Li(2013); Huoliangudo and Dongjia formations from Zhang(1994)

嵩箕地区主要地层自下而上为兵马沟组、五佛山群、罗圈组及东坡组(图 2b)。兵马沟组为一套扇三角洲相的砾岩、含砾砂岩、粗-细砂岩和粉砂岩沉积组合(张元国等,2011赵太平等,2015郑德顺等,2016aMeng et al., 2018)。五佛山群(马鞍山组、葡峪组和何家寨组)自下而上沉积于河流-滨浅海-碳酸盐岩台地环境(河南省地质矿产局,1989席文祥和裴放,1997)。最南部的卢氏-栾川地区自下而上发育了中元古界高山河组(群)和官道口群,以及新元古界栾川群(图 2c)(河南省地质矿产局,1989高林志等,2002Gao et al., 2009)。高山河组(群)不整合于熊耳群之上,主要为河流-滨海相的含砾石英砂岩。官道口群(龙家园组、巡检司组、杜关组、冯家湾组和白术沟组)主要为一套潮坪-内陆棚-潮间带-浅海相的碳酸盐岩(Li et al., 2019;河南省地质调查院,2009)。栾川群沉积于潮下带-浅海环境(河南省地质矿产局,1989蒋干清,1993蒋干清等,1994关保德,1996席文祥和裴放,1997王跃峰,2000)。古生界陶湾群不整合上覆于栾川群,岩性为变质砾岩、碎屑岩及条带状不纯大理岩,原岩可能沉积于深水斜坡相(张维吉和李育敬,1989王宗起等, 2007, 2009)。

华北南缘古-中元古代(1850~1500Ma)岩浆事件,包括熊耳群火山岩、镁铁质岩墙群和A型花岗岩,记录了华北南缘在最终克拉通化之后的构造演化历史(陆松年等,2003Peng et al., 2008Bao et al., 2011Peng,2015邓小芹等,2015Deng and Wang, 2016Deng et al., 2016Zhao and Deng, 2016师江朋,2017)。新元古代碱性粗面岩(860Ma)、辉长岩(830Ma)和正长岩(844Ma),代表了伸展背景下的岩浆活动(柳永清等,2005Bao et al., 2008阎国翰等,2010Wang et al., 2011)。

2 黄连垛组和董家组沉积特征

黄连垛组岩性自下而上主要为砾岩-砂砾岩-硅质条带白云岩,顶部为条带状硅质层,与上下地层均为平行不整合接触(席文祥和裴放,1997)。董家组岩性自下而上主要为砾岩-含砾粗砂岩-长石石英砂岩-粉晶白云岩夹泥晶灰岩,与上覆罗圈组或辛集组呈平行不整合接触(席文祥和裴放,1997)。黄连垛组总体上为一套海进序列的三角洲、滨海、浅海相的陆源碎屑及碳酸盐岩沉积建造,海侵方向为自西向东;董家组是另一套海进序列的三角洲、滨海、浅海相陆源碎屑和海湾泻湖相碳酸盐岩建造,海侵方向为自南向北或自西南向北,后期沉积的碳酸盐岩形成于蒸发大于补给的沉积环境(潘泽成,1980郑伟和刘顺喜,2012)。

本次研究主要选取鲁山下汤地区和叶县地区两条剖面。下汤地区黄连垛组下段岩性为土黄色含砾石英砂岩和长石砂岩,砾石粒径0.2~8cm,平均粒径约2cm,分选磨圆较差,砾石沿轴向存在定向排列,砾石成分主要为燧石、石英岩等(图 3a),基底-孔隙式胶结,杂基支撑为主(图 3b);中段岩性为具楔状交错层理的土黄色长石石英砂岩,接触式胶结,分选差,长石风化严重;上段岩性为成层性较好的含硅质条带白云岩。下汤东南叶县地区黄连垛组主要岩性为灰白色厚层泥晶白云岩与浅黄色厚层具纹层状含硅质条带白云岩,二者具多期次旋回性(图 3c, d)。叶县地区黄连垛组泥晶白云岩强烈变形(图 3d),内部发育棱角状硅质碎屑,偶见石膏假晶(图 3e);含硅质条带白云岩内多发育软沉积物变形(图 3f)。下汤地区黄连垛组底部砾岩多为棱角状,少数为滚圆状,分选差,磨圆较差,沿长轴方向具定向排列特征(图 3a),沉积于河口湾环境,缺乏冲积扇-河流相沉积。因此,下汤地区黄连垛组沉积于河口湾-潮坪沉积环境,南部叶县地区沉积于潮坪沉积环境,整体表现为自南向北的海进序列。

图 3 黄连垛组野外特征及微观特征 (a)黄连垛组底部含燧石条带石英砾岩(下汤);(b)黄连垛组底部石英砾岩微观特征(正交偏光)(下汤);(c)黄连垛组含硅质条带白云岩与泥晶白云岩(叶县);(d)黄连垛组泥晶白云岩与含硅质条带白云岩(叶县);(e)黄连垛组泥晶白云岩微观特征(正交偏光)(叶县);(f)黄连垛组含硅质条带白云岩中存在的软沉积物变形(叶县). Q-石英 Fig. 3 Outcrop photographs and micrographs of the Huanglainduo Formation (a) pebbly quartz sandstones in the bottom of the Huanglianduo Formation(Xiatang); (b)micrographs of pebbly quartz sandstones of the Huanglianduo Formation(crossed polars)(Xiatang); (c) siliceous banded dolomites and dolomicrites of Huanglianduo Formation(Yexian); (d) dolomicrites and siliceous banded dolomites of the Huanglianduo Formation(Yexian); (e)micrographs of dolomicrite of the Huanglianduo Formation(crossed polars)(Yexian); (f)siliceous banded dolomites of the Huanglianduo Formation, interbeded with soft-sediment deformation(Yexian). Q-quartz

叶县地区董家组底部岩性主要为灰白色中细粒石英砂岩和含长石石英砂岩;下段为土黄色中细粒石英砂岩,分选较好,磨圆较好;中段为灰白色粗-中粒石英砂岩或含长石石英砂岩,岩屑及云母含量较少,颗粒支撑,分选较好,磨圆一般;上段为青灰色或暗红色薄层状泥质灰岩及薄板状泥页岩。该区辛集组为紫红色含砾砂岩-土黄色薄板状石英砂岩,夹极薄层粉砂质泥岩,石英颗粒分选较好磨圆中等,呈轻微定向排列。叶县董家组底部岩性为黄褐色块状中-细砾砂砾岩,砾径2~5mm,平均粒径3mm,矿物成分主要为石英、燧石和长石,硅质胶结,磨圆好,分选中等(图 4a);下段岩性为黄褐色或暗红色中厚层粗-中粒含石英长石砂岩(图 4b),石英颗粒偶见溶蚀边(图 4c);中段岩性为中-细粒长石石英砂岩与土黄色粉砂质泥岩互层(图 4d),砂岩具楔状交错层理和浪成层理,泥岩具水平层理(图 4e);上段岩性为厚层紫红色薄板状钙质泥岩(图 4f)。因此,叶县地区董家组底部砾岩可能为滨海沉积砾岩,董家组总体上应沉积于局限海盆的滨浅海环境。

图 4 董家组野外沉积特征与镜下特征 (a)董家组底部砂砾岩(叶县);(b)董家组下段长石石英砂岩(叶县),向上变细;(c)董家组下段长石石英粗砂岩微观特征(正交偏光)(叶县);(d)董家组中段长石石英砂岩与泥质粉砂岩互层(叶县);(e)董家组中段长石石英砂岩,夹泥质粉砂岩(叶县);(f)董家组上段紫红色钙质泥岩(叶县). F-长石;L-岩屑 Fig. 4 Outcrop photographs and micrographs of the Dongjia Formation (a)glutenites in the bottom of the Dongjia Formation(Yexian); (b)fining-upward feldspar-quartz sandstones in the lower unit of the Dongjia Formation(Yexian); (c)micrographs of feldspar-quartz sandstone from the lower unit of the Dongjia Formation(crossed polars)(Yexian); (d)feldspar-quartz sandstones with interbedding pelitic siltstone in the middle unit of the Dongjia Formation(Yexian); (e)feldspar-quartz sandstones of the Dongjia Formation interlayered with pelitic siltstone in the middle unit(Yexian); (f)purple-red calcareous marls in the upmost of the Dongjia Formation(Yexian). F-feldspar; L-fragment
3 测年样品和分析 3.1 样品采集与处理

黄连垛组下部样品(17HLD-04)采集自鲁山县下汤镇(图 1c图 5a)。该样品为黄色中细粒长石石英砂岩,主要矿物为石英(63%~65%)、长石(31%~35%),具少量岩屑,颗粒支撑,接触式胶结,次棱角状-次圆状,石英具次生加大边,可见条纹长石、微斜长石及斜长石;岩屑多呈次棱角状(图 5b)。

图 5 黄连垛组、董家组和辛集组样品野外和微观特征 (a)黄连垛组下段英砂岩,具不明显楔状交错层理(下汤);(b)黄连垛组下段长石石英砂岩微观特征(正交偏光)(下汤);(c)董家组下段长石石英砂岩(下汤);(d)董家组下段长石石英砂岩微观特征(正交偏光)(下汤);(e)辛集组底部薄板状石英砂岩,夹薄层粉砂质泥岩(下汤);(f)辛集组底部石英砂岩微观特征(正交偏光)(下汤) Fig. 5 Outcrop photographs and micrographs of the Huanglianduo Formation, the Dongjia Formation and the Xinji Formation (a)feldspar-quartz sandstones in the lower unit of the Huanglianduo Formation(Xiatang); (b)micrographs of feldspar-quartz sandstone in the lower unit of the Huanglianduo Formation (crossed polars)(Xiatang); (c)feldspar-quartz sandstones in the lower unit of the Dongjia Formation(Xiatang); (d)micrographs of feldspar-quartz sandstone in the lower unit of the Dongjia Formation (crossed polars)(Xiatang); (e)quartz sandstones in the lower part of Xinji Formation, interbeded with mudstone(Xiatang); (f)micrographs of quartz sandstone in the lower part of the Xinji Formation (crossed polars)(Xiatang)

董家组底部样品(17DJ-02)采集自鲁山县下汤镇(图 1c),中下部样品(MLA-04-2)采集自叶县常村镇(图 1c)。董家组样品(17DJ-02)为黄色长石石英砂岩(图 5c),主要矿物为石英(51%~55%)、长石(40%~43%)、岩屑(4%~6%),偶见云母,分选较好,磨圆一般,颗粒支撑,接触式胶结;石英为次棱角状-圆状,部分石英具次生加大边;长石为次棱角状-次圆状,偶见圆状,可见具格子双晶微斜长石,表面风化严重(图 5d)。另一样品(MLA-04-2)为黄褐色粗-中粒长石石英砂岩(图 4b),主要矿物为石英(61%~65%)、长石(19%~23%)、岩屑(6%~8%),少见燧石,部分石英具溶蚀边,长石具格子双晶和条纹结构(图 4c)。辛集组样品(LTXJ-1-1)采集自鲁山县下汤镇(图 5e),为薄板状石英砂岩,分选好,磨圆中等(图 5f)。

锆石首先由南京宏创地质勘探技术服务有限公司选取,采用场发射扫描电子显微镜(TESCAN,Mira 3 LMH)对其进行高分辨率阴极发光(CL)成像; 通过CL和透反射图像识别锆石内部结构并选择合适位置进行碎屑锆石U-Pb年代学分析。锆石U-Pb定年由武汉上谱分析技术有限公司采用激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)完成。激光剥蚀系统为Geolas 2005,激光脉冲频率为5Hz,剥蚀点直径为32μm。黄连垛组样品(17HLD-04)和董家组样品(17DJ-02)采用Agilent 7500a;董家组样品(MLA-04-2)和辛集组样品(LTXJ-1-1)采用Agilent 7900。锆石标样91500作为本次试验标样每6次进行两次分析。利用ICP-MS Datacal软件对锆石数据进行离线选择、背景分析及信号整合,以及时间漂移校正、定量校准(Liu et al., 2010Spencer et al., 2016)。锆石的U-Pb年龄结果使用Isoplot 3.0软件(Ludwig,2003)计算。对锆石206Pb/238U年龄小于1500 Ma,使用206Pb/238U年龄做频率直方图,207Pb/206Pb年龄用于年龄比较老的样品(206Pb/238U>1500Ma)(Spencer et al., 2016)。选择谐和度(206Pb/238U-207Pb/235U或206Pb/238U-207Pb/206Pb)大于90%的测值进行年龄分布统计。

3.2 分析结果

黄连垛组样品(17HLD-04)中碎屑锆石多为半自形或圆形,粒径为40~250μm(图 6),绝大多数锆石具有环带结构,表明其为岩浆锆石,对其随机挑选96个点位进行测试。碎屑锆石中,1颗碎屑锆石偏离U-Pb演化曲线(图 7a),谐和度低于90%(表 1)。统计95颗锆石年龄主峰值为1800Ma和2350Ma,次要峰值为2650Ma和2900Ma(图 7b)。

图 6 华北南缘黄连垛组、董家组和辛集组碎屑岩代表性碎屑锆石CL图像 Fig. 6 Cathodoluminescence (CL) images of representative detrital zircon grains from the Huanglianduo, Dongjia and Xinji formations clastic rocks in the southern margin of North China Craton

图 7 华北南缘黄连垛组、董家组和辛集组碎屑锆石U-Pb谐和曲线图和年龄分布柱状图 Fig. 7 U-Pb concordia diagrams and age probability histograms for detrital zircons from the Huanglianduo, Dongjia and Xinji formations clastic rocks in the southern margin of North China Craton showing their age distributions

表 1 华北克拉通南缘下汤地区黄连垛组碎屑锆石U-Pb同位素年龄 Table 1 Zircon U-Pb isotopic data of sedimentary rocks from the Huanglianduo Formation in the Xiatang

下汤地区董家组长石石英砂岩样品(17DJ-02)中碎屑锆石多为半自形或圆形,粒径50~200μm(图 6),该样品锆石具有明显环带结构,应为岩浆成因,少量锆石具变质环带,对其随机选取96个点位。其中4颗锆石207Pb/206Pb年龄误差较大,分别为2965±1046Ma(-38)、2875±1033Ma(-43)、2209±472Ma(-59)、2707±498Ma(-80)(表 2图 7c),尽管编号为-59和-80的206Pb/238-207Pb/206Pb年龄的谐和度大于90%,但由于207Pb/206Pb年龄误差较大,也未在年龄频率分布图中使用。因此,董家组样品(17DJ-02)92颗碎屑锆石主峰值年龄为1800Ma,其次为2250Ma、2400Ma、2650Ma(图 7d)。

表 2 华北克拉通南缘下汤地区董家组碎屑锆石U-Pb同位素年龄 Table 2 Zircon U-Pb isotopic data of sedimentary rocks from the Dongjia Formation in the Xiatang

董家组长石石英砂岩样品(MLA-04-2)中碎屑锆石多为半自形或圆形,粒径100~300μm(图 6),锆石具明显环带构造,部分锆石具一定磨圆,对其随机选取95个点位。分析结果显示碎屑锆石U-Pb年龄谐和度均大于90%(表 3),均落在年龄演化曲线上(图 7e),峰值年龄主要为2450Ma,次要峰值为1900Ma、2250Ma、2900Ma和3100Ma(图 7f)。

表 3 华北克拉通南缘叶县地区董家组碎屑锆石U-Pb同位素年龄 Table 3 Zircon U-Pb isotopic data of sedimentary rocks from the Dongjia Formation in the Yexian

辛集组石英砂岩样品(LTXJ-1-1)中碎屑锆石多为自形、半自形或圆形,粒径50~150μm(图 6),锆石具明显环带结构,部分锆石磨圆较好,部分具溶蚀边,对其随机选取98个点位。结果显示其中有7颗锆石协和度比较低,年龄分别为1223±24Ma(-09)、931±47Ma(-12)、1582±50Ma(-13)、665±46Ma(-17)、1591±33Ma(-41)、4433±58Ma(-59)、1186±36Ma(-96)(表 4图 7g),未在频率分布图中使用(图 7h)。91颗碎屑锆石主峰年龄为1850Ma和2500Ma,次要峰值为1200 Ma、2200 Ma、2700 Ma和3300 Ma(图 7h)。

表 4 华北克拉通南缘下汤地区辛集组碎屑锆石U-Pb同位素年龄 Table 4 Zircon U-Pb isotopic data of sedimentary rocks from the Xinji Formation in the Xiatang
4 讨论 4.1 碎屑锆石物源分析

华北克拉通在若干太古代陆核的花岗质片麻岩和变质沉积砂岩中发现3800~3000Ma的古老锆石(Liu et al., 1992, 2007万渝生等, 2001, 2009翟明国,2006Wu et al., 2008)。华北克拉通整体存在~2500Ma的构造-岩浆事件的证据,2350~1950Ma发育有多个古元古代构造活动带,如晋-豫活动带等(Zhai et al., 2003翟明国和彭澎,2007翟明国,2011),在华北南缘发育有2350~1960Ma的嵩山群轻微变质碎屑岩夹碳酸盐岩(Liu et al., 2012)。小秦岭地区和熊耳山地区太华群碎屑锆石U-Pb年龄主要为2300~2000Ma(Huang et al., 2012Yu et al., 2013第五五春荣等,2018)。1900~1850Ma期间,华北克拉通变质岩大部分经历混合岩化作用或钾化交代作用(Zhai et al., 2003, 2015Zhao et al., 2010)。华北克拉通在1850~1500Ma期间,经历了伸展作用(Lu et al., 2002, 2008Zhai et al., 2003Zhao et al., 2003Zhang et al., 2009翟明国,2013),发育了非造山岩浆岩以及与裂谷有关的岩浆/火山活动和退变质作用(赵太平等,2001Zhao et al., 2004, 2009),其中包括熊耳群和基性岩墙群(赵太平等,2002Zhao et al., 2004, 2009Peng et al., 2007, 2008翟明国,2010)以及豫西南和陕东南部近年来发现的中元古代花岗岩带(Wang et al., 2003邓小芹等,2015Deng et al., 2016)。同时黄连垛组和董家组与下伏地层兵马沟组、云梦山组、白草坪组、三教堂组碎屑锆石年龄峰值分布类似(图 8),因此推断华北克拉通为黄连垛组和董家组的物源区。

图 8 华北南缘中-新元古界碎屑锆石年龄组成对比 Fig. 8 Comparison of age distribution patterns of detrital zircon from Meso- to Neoproterozoic sediments in the southern margin of North China Craton

早古生界辛集组年龄分布与黄连垛组和董家组存在区别,与何家寨组碎屑锆石相比存在少量中元古代晚期到新元古代早期碎屑锆石(图 8),同时近年来在华北南缘卢氏-栾川地区中元古代晚期地层以及在华北克拉通新元古-早古生代地层中也报道了大量同时期的碎屑锆石(初航等,2011Hu et al., 2012Yang et al., 2012胡波等, 2013, 2015张文龙等,2016Liu et al., 2019Zuo et al., 2019)(图 9),辛集组发育的少量该时期碎屑锆石可能源于沉积物的再循环。

图 9 华北克拉通中-新元古界碎屑锆石年龄对比图 (a)华北克拉通(Zhou et al., 2008胡波等,2009Gao et al., 2011Wan et al., 2011Ying et al., 2011Zhu et al., 2011胡国辉等,2012Hu et al., 2012, 2014a, bYang et al., 2012李猛等,2013Lan et al., 2014Liu et al., 2014, 2017a, 2019马铭株等,2014Zhong et al., 2015Zhang et al., 2016aDong et al., 2018王振涛等,2017贾超,2018Li et al., 2019Meng et al., 2018Zuo et al., 2019);(b)徐淮盆地(Zhou et al., 2008Gao et al., 2011Hu et al., 2012Yang et al., 2012He et al., 2017);(c)渣尔泰-白云鄂博-化德盆地(胡波等,2009Hu et al., 2014a马铭株等,2014Liu et al., 2014, 2019Zhong et al., 2015Li et al., 2019);(d)燕辽盆地(Gao et al., 2011Wan et al., 2011Ying et al., 2011王振涛等,2017);(e)熊耳盆地(Zhu et al., 2011胡国辉等,2012李猛等,2013Hu et al., 2014bLan et al., 2014Zhang et al., 2016aLiu et al., 2019贾超,2018Meng et al., 2018Zuo et al., 2019) Fig. 9 Comparison of age distribution patterns of detrital zircon from Meso- to Neoproterozoic sediments in the North China Craton (a)the North China Craton(Zhou et al., 2008; Hu et al., 2009, 2012, 2014a, b; Gao et al., 2011; Wan et al., 2011; Ying et al., 2011; Zhu et al., 2011; Yang et al., 2012; Li et al., 2013; Lan et al., 2014; Liu et al., 2014, 2017a, 2019; Ma et al., 2014; Zhong et al., 2015; Zhang et al., 2016a; Dong et al., 2018; Jia, 2018; Li et al., 2019; Meng et al., 2018; Zuo et al., 2019); (b)the Xuhuai Basin(Zhou et al., 2008; Gao et al., 2011; Hu et al., 2012; Yang et al., 2012; He et al., 2017); (c)the Zhaertai-Bayan Obo-Huade Basin(Hu et al., 2009, 2014a; Liu et al., 2014, 2017a; Ma et al., 2014; Zhong et al., 2015; Li et al., 2019); (d)the Yanliao Basin(Gao et al., 2011; Wan et al., 2011; Ying et al., 2011; Wang et al., 2017); (e)the Xiong'er Basin(Zhu et al., 2011; Hu et al., 2012, 2014b; Li et al., 2013; Lan et al., 2014; Zhang et al., 2016a; Liu et al., 2019; Dong et al., 2017; Jia, 2018; Meng et al., 2018; Zuo et al., 2019)
4.2 渑池-确山地区中-新元古代沉积演化分析

华北南缘中元古代早期约1800~1750Ma发育熊耳火山-沉积作用之后(赵太平等,2002崔敏利等,2010Cui et al., 2011翟明国等,2014),局部地区快速沉积兵马沟组(小沟背组)冲积扇-(扇)三角洲-滨海沉积(郑德顺等,2016b岳亮和刘自亮,2017Meng et al., 2018Yue et al., 2018),兵马沟组沉积结束后,渑池-确山地区发生短暂地壳抬升,形成兵马沟组与上覆汝阳群的区域平行不整合。汝阳群总体上由一套河流-滨海-潮坪相沉积组成,其顶部的北大尖组和洛峪群的崔庄组共同构成了潮间带到外陆棚带沉积,洛峪群的三教堂组和洛峪口组组成了滨海-潮坪沉积。通过洛峪群顶部洛峪口组斑脱岩夹层获得U-Pb谐和年龄约为1611Ma和1634Ma(苏文博等,2012李承东等,2017),其应划为中元古界长城系。因此,中元古代早期(1750~1600Ma)华北南缘渑池-确山地区发育的汝阳群-洛峪群可能为一套陆相过渡到海相的被动大陆边缘沉积。

之后,华北克拉通南缘发生区域构造抬升,黄连垛组沉积初期发育了河口湾沉积环境。伴随海侵扩大,在下汤地区沉积了潮上带长石石英砂岩与泥质粉砂岩,而叶县地区发育了潮间带泥晶白云岩。晚期下汤和叶县地区发育潮下带泥晶白云岩与含硅质条带白云岩。董家组与下伏黄连垛组为平行不整合接触,董家组沉积初期为陆源碎屑物质供给充分的滨海相,在下汤和叶县地区沉积底部细砾岩及长石石英砂岩。随后,下汤地区沉积滨海相长石石英砂岩,在叶县地区沉积潮坪相具交错层理长石石英砂岩与泥质粉砂岩。最后在下汤和叶县地区沉积局限台地钙质泥岩。尽管古流向显示黄连垛组和董家组存在多个方向的物源区(张玲华,1994崔新省等,1996董文明等,1999),而碎屑锆石显示其物源均为华北克拉通,没有明显的变化,符合该套地层发育在局限盆地(海盆)的沉积环境。

4.3 对华北南缘中-新元古代沉积演化的启示

黄连垛组在豫西陕县、山西永济地区仍有分布,依据不同地区该套地层的岩性组合、叠层石、碳同位素负偏等特征以及区域内存在的不整合接触关系认为黄连垛组可能与官道口群龙家园组或巡检司组为同期沉积物(武铁山, 1982, 2002Xiao et al., 1997高维等,2011徐文超等,2015苏文博,2016)。而董家组一般认为沉积于新元古代早期(武铁山, 1982, 2002Guan et al., 1986Yin and Guan, 1999胡国辉等,2013苏文博,2016),碎屑锆石显示两套地层物源区没有明显的变化,均为华北克拉通。黄连垛组和董家组发育在局限盆地(海盆)的沉积环境一致,分布范围大体一致。通过区域地层对比,中元古代早期华北南缘沉积首先发育在嵩箕地区和渑池-确山地区,主要为五佛山群中下部和汝阳群-洛峪群滨浅海-潮坪沉积。之后沉积中心向卢氏-栾川地区迁移,沉积了中元古界官道口群和新元古界栾川群,而董家组和黄连垛组可能为该段时期盆地的边缘相沉积。

新元古界栾川群以及罗圈组和东坡组显示其沉积和构造环境发生了明显的变化(Zuo et al., 2019)。栾川群中发育的新元古代岩浆岩地化特征显示其处于伸展背景(孙枢等, 1981, 1982蒋干清,1993石铨曾等,1996)或碰撞后的伸展(阎国翰等,2010)。此外,华北南缘白术沟组和何家寨组中发现了大量中元古代末期到新元古代早期碎屑锆石,峰值年龄集中在1800~1000Ma(贾超,2018Liu et al., 2019)。徐淮和渣尔泰-白云鄂博-化德地区中-新元古代地层中也发现了大量中元古代到新元古代的碎屑锆石(图 9b, c)。尽管华北克拉通发育中元古代末期到新元古代早期(1300~900Ma)的镁铁质岩浆岩(Zhang et al., 2009, 2016b, 2017, 2018Yang et al., 2011Peng et al., 2011; Peng,2015; Wang et al., 2016Cope,2017),但缺乏该时期的长英质岩浆活动。裂解模式认为,华北在中元古代(~1300Ma)和新元古代(~900Ma),分别与Australian和West Congo-São Francisco裂开(Peng et al., 2011Zhang et al., 2017, 2018彭澎等,2018)。此外,也有认为华北与Laurentia、Australia、Baltica、Siberia共同参与了Grenville-Sveconorwegian-Sunsas造山带作用(乔秀夫等,2007曲永强等, 2010, 2012苏文博等,2010潘建国等,2013Liu et al., 2019),或者华北南缘中元古代末期到新元古代可能发生增生或者拼贴事件(Wang et al., 2011Shi et al., 2013Dong et al., 2014, 2015Dong and Santosh, 2016Liu et al., 2019)。无论哪一种观点都认为,沉积物源的变化和区域抬升可能与该期构造事件有关。

5 结论

华北南缘中元古代早期发育熊耳期火山-沉积作用之后,局部地区快速沉积兵马沟组,随后发生大规模海侵,发育了一套河流-滨海-潮坪相沉积(汝阳群)和浅海-滨海-潮坪相沉积(洛峪群)。中元古代末期到新元古代早期发生了沉积盆地中心的转移,洛峪群上覆黄连垛组和董家组为局限海湾体系下滨浅海-潮坪沉积,可能构成了该时期盆地的边缘相沉积。黄连垛组和董家组碎屑锆石年龄主要峰值为1800Ma、2250Ma、2350Ma、2650Ma,两者物源均为华北克拉通。但早古生界辛集组碎屑锆石除1850Ma、2500Ma、2200Ma、2700Ma的主要峰值年龄外,还包括1200Ma的峰值。结合本次渑池-确山地区黄连垛组、董家组、辛集组以及嵩箕和卢氏-栾川地区的中-新元古代地层碎屑锆石年龄分布变化,指示了华北南缘在中元古代晚期到新元古代沉积物源变化以及沉积间断可能与华北克拉通该时期的构造演化有关。

致谢      本论文在野外工作中得到翟明国院士、赵太平研究员、苏文博教授和彭澎研究员的有益指导;在成文过程得到团队成员张碧云、孙江涛、祁帅帅、谷华昱以及杨东亮等研究生的帮助;审稿人王世炎教授级高工、柳永清研究员、胡国辉博士提出了建设性的修改意见。在此对他们一并表示衷心感谢!

参考文献
Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW and Liu XM. 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling Orogen and its geodynamic implications. Chinese Science Bulletin, 53(13): 2050-2061
Bao ZW, Wang Q and Du FJ. 2011. Geochemistry and geodynamic significance of the rare-earth mineralized Paleoproterozoic Longwangzhuang granite on the southern margin of the North China Craton. Chinese Journal of Geochemistry, 30(2): 270-279 DOI:10.1007/s11631-011-0509-3
Bureau of Geology and Mineral Resources of Henan Province. 1989. Regional Geology of Henan Province. Beijing: Geological Publishing House: 1-772 (in Chinese)
Cao HH, Li SZ, Zhao SJ, Yu S, Li XY and Somerville ID. 2016. Detrital zircon geochronology of Neoproterozoic to Early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt:Implications for the tectonic evolution of the Kuanping Ocean. Precambrian Research, 279: 1-16 DOI:10.1016/j.precamres.2016.04.001
Chu H, Lu SN, Wang HC, Xiang ZQ and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrologica Sinica, 27(4): 1017-1028 (in Chinese with English abstract)
Cope T. 2017. Phanerozoic magmatic tempos of North China. Earth and Planetary Science Letters, 468: 1-10 DOI:10.1016/j.epsl.2017.03.022
Cui ML, Zhang BL, Peng P, Zhang LC, Shen XL, Guo ZH and Huang XF. 2010. Zircon/baddeleyite U-Pb dating for the Paleo-Proterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province. Acta Petrologica Sinica, 26(5): 1541-1549 (in Chinese with English abstract)
Cui ML, Zhang BL and Zhang LC. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton:Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184-193 DOI:10.1016/j.gr.2011.01.010
Cui XS, Dong WM and Zhou HR. 1996. Preliminary research of the outcrop sequence stratigraphy in Sinian and its significance in western Henan Province, China. Earth Science (Journal of China University of Geosciences), 21(3): 17-21 (in Chinese with English abstract)
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang CM and Santosh M. 2014b. Orogenesis and metallogenesis in the Sanjiang Tethyan domain, China:Preface. Gondwana Research, 26(2): 415-418 DOI:10.1016/j.gr.2013.12.003
Deng J and Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219-274 DOI:10.1016/j.gr.2015.10.003
Deng XQ, Zhao TP, Peng TP, Gao XY and Bao ZW. 2015. Petrogenesis of 1600Ma Maping A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 31(6): 1621-1635 (in Chinese with English abstract)
Deng XQ, Zhao TP and Peng TP. 2016. Age and geochemistry of the Early Mesoproterozoic A-type granites in the southern margin of the North China Craton:Constraints on their petrogenesis and tectonic implications. Precambrian Research, 283: 68-88 DOI:10.1016/j.precamres.2016.07.018
Ding JK. 2017. A combined geochronological and paleomagnetic study on~1220Ma mafic dykes in the North China Craton and its implications for the transition from Nuna to Rodinia. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese)
Diwu CR, Liu X and Sun Y. 2018. The composition and evolution of the Taihua Complex in the southern North China Craton. Acta Petrologica Sinica, 34(4): 999-1018 (in Chinese with English abstract)
Dong WM, Shen Y, Zhou HR and Cui XS. 1999. Application of sequence stratigraphy to Precambian strata:A case study on the Sinian in western Henan Province. Acta Sedimentologica Sinica, 17(Suppl.): 742-746 (in Chinese with English abstract)
Dong XP, Li ZH, Hu JM, Gong WB, Yang Y and Zhao Y. 2018. Provenance and tectonic significance of Late Mesoproterozoic detrital zircons from the Tonian System, northern margin of the North China Craton. International Geology Review, 60(15): 1773-1791 DOI:10.1080/00206814.2017.1386129
Dong YP, Yang Z, Liu XM, Zhang XN, He DF, Li W, Zhang FF, Sun SS, Zhang HF and Zhang GW. 2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton:Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255: 77-95 DOI:10.1016/j.precamres.2014.09.008
Dong YP, Zhang XN, Liu XM, Li W, Chen Q, Zhang GW, Zhang HF, Yang Z, Sun SS and Zhang FF. 2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84-98 DOI:10.1016/j.jseaes.2014.10.007
Dong YP and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40 DOI:10.1016/j.gr.2015.06.009
Du RL, Li PJ and Wu ZS. 1979. The Sinian Suberathem in the western Yanshan region. Journal of Hebei Geology University, (4): 1-17 (in Chinese with English abstract)
Fu XM, Zhang SH, Li HY, Ding JK, Li HK, Yang TS, Wu HC, Yuan HF and Lv J. 2015. New paleomagnetic results from the Huaibei Group and Neoproterozoic mafic sills in the North China Craton and their paleogeographic implications. Precambrian Research, 269: 90-106 DOI:10.1016/j.precamres.2015.08.013
Gao LZ, Yi CY and Wang ZQ. 2002. New view of the Neoproterozoic strata on the southern margin of the North China Platform. Geological Bulletin of China, 21(3): 130-135 (in Chinese with English abstract)
Gao LZ, Zhang CH, Liu PJ, Tang F, Song B and Ding XZ. 2009. Reclassification of the Meso-and Neoproterozoic chronostratigraphy of North China by SHRIMP zircon ages. Acta Geologica Sinica, 83(6): 1074-1084 DOI:10.1111/j.1755-6724.2009.00135.x
Gao LZ, Zhang CH, Chen SM, Liu PJ, Ding XZ, Liu YX, Dong CY and Song B. 2010. Detrital zircon SHRIMP U-Pb age from the Diaoyutai Formation, Xihe Group in Liaodong Peninsula, China and its geological significance. Geological Bulletin of China, 29(8): 1113-1122 (in Chinese with English abstract)
Gao LZ, Liu PJ, Yin CY, Zhang CH, Ding XZ, Liu YX and Song B. 2011. Detrital zircon dating of Meso-and Neoproterozoic rocks in North China and its implications. Acta Geologica Sinica, 85(2): 271-282 DOI:10.1111/j.1755-6724.2011.00397.x
Gao W, Zhang CH and Wang ZQ. 2011. The discovery of large-scale Acanthomorphic Acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment. Geology in China, 38(5): 1232-1243 (in Chinese with English abstract)
Guan BD, Wu RT, Hambrey MJ and Geng WC. 1986. Glacial sediments and erosional pavements near the Cambrian-Precambrian boundary in western Henan Province, China. Journal of the Geological Society, 143(2): 311-323 DOI:10.1144/gsjgs.143.2.0311
Guan BD, Geng WC and Rong ZQ. 1988. The Middle and Upper Proterozoic in the Northern Slope of the Eastern Qinling, Henan, China. Zhengzhou: Henan Science and Technology Press: 1-210 (in Chinese)
Guan BD. 1996. The Precambrian-Lower Cambrian Geology and Metallogensis in the North China Platform in Henan Province. Wuhan: China University of Geosciences Press: 1-330 (in Chinese)
Halls HC, Li JH, Davis D, Hou GT, Zhang BX and Qian XL. 2000. A precisely dated Proterozoic palaeomagnetic pole from the North China Craton, and its relevance to palaeocontinental reconstruction. Geophysical Journal International, 143(1): 185-203 DOI:10.1046/j.1365-246x.2000.00231.x
He TC, Zhou Y, Vermeesch P, Rittner M, Miao L, Zhu MY, Carter A, von Strandmann PAEP and Shields GA. 2017. Measuring the 'great unconformity' on the North China Craton using new detrital zircon age data. In: Brasier AT, McIlroy D and McLoughlin N (eds.). Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier. Geological Society, London, Special Publications, 448(1): 145-159
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3-4): 213-222 DOI:10.1016/j.precamres.2008.09.011
Hu B, Zhai MG, Guo JH, Peng P, Liu F and Liu S. 2009. LA-ICP-MS U-Pb geochronology of detrital zircons from the Huade Group in the northern margin of the North China Craton and its tectonic significance. Acta Petrologica Sinica, 25(1): 193-211 (in Chinese with English abstract)
Hu B, Zhai MG, Li TS, Li Z, Peng P, Guo JH and Kusky TM. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications:Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3-4): 828-842 DOI:10.1016/j.gr.2012.03.005
Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ and Zhang HD. 2013. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton:Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing. Acta Petrologica Sinica, 29(7): 2508-2536 (in Chinese with English abstract)
Hu B, Zhai MG, Wu JL, Jia XL and Zhang HD. 2015. The LA-ICP-MS U-Pb geochronology of detrital zircons from the Neoproterozoic tillite in the southern margin of the North China Block and its geological significance. Acta Mineralogica Sinica, (S1): 701 (in Chinese with English abstract)
Hu GH, Zhao TP, Zhou YY and Yang Y. 2012. Depositional age and provenance of the Wufoshan Group in the southern margin of the North China Craton:Evidence from detrital zircon U-Pb ages and Hf isotopic compositions. Geochimica, 41(4): 326-342 (in Chinese with English abstract)
Hu GH, Zhao TP, Zhou YY and Wang SY. 2013. Meso-Neoproterozoic sedimentary formation in the southern margin of the North China Craton and its geological implications. Acta Petrologica Sinica, 29(7): 2491-2507 (in Chinese with English abstract)
Hu GH, Zhao TP and Zhou YY. 2014b. Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Research, 246: 296-318 DOI:10.1016/j.precamres.2014.03.013
Hu JM, Gong WB, Wu SJ, Liu Y and Liu SC. 2014a. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alax block, with tectonic implications. Precambrian Research, 255: 756-770 DOI:10.1016/j.precamres.2014.08.013
Hu JM, Li ZH, Gong WB, Hu GH and Dong XP. 2016. Meso-Neoproterozoic stratigraphic and tectonic framework of the North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 393-422 https://link.springer.com/chapter/10.1007/978-981-10-1064-4_15
Huang XL, Wilde SA, Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen:Implications for tectonic transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252 DOI:10.1016/j.lithos.2012.01.004
Jia C. 2018. Depositional age, provenance and tectonic background of Neoproterozoic strata in western Henan Province. Master Degree Thesis. Hefei: Hefei University of Technology (in Chinese)
Jiang GQ. 1993. Characteristics of Dahongkou Formation and Yuku Formation and their tectonic environment in Luanchuan area, Henan Province. Geoscience, 7(2): 138-144 (in Chinese with English abstract)
Jiang GQ, Zhou HR and Wang ZQ. 1994. Stratigraphic sequence, sedimentary environment and its tectono-paleogeographic significance of the Luanchuan Group, Luanchuan area, Henan Province. Geoscience, 8(4): 430-440 (in Chinese with English abstract)
Lan ZW, Li XH, Chen ZQ, Li QL, Hofmann A, Zhang YB, Zhong Y, Liu Y, Tang GQ, Ling XX and Li J. 2014. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton:Implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Research, 251: 21-32 DOI:10.1016/j.precamres.2014.06.012
Le Heron DP, Vandyk TM, Wu GH and Li M. 2018. New perspectives on the Luoquan Glaciation (Ediacaran-Cambrian) of North China. The Depositional Record, 4(2): 274-292 DOI:10.1002/dep2.46
Li CD, Zhao LG, Chang QS, Xu YW, Wang SY and Xu T. 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion. Geology in China, 44(3): 511-525 (in Chinese with English abstract)
Li M, Wang C and Wang ZF. 2013. Depositional age and geological implications of the Ruyang Group in the southwestern margin of the North China Craton:Evidence from detrital zircon U-Pb ages. Chinese Journal of Geology, 48(4): 1115-1139 (in Chinese with English abstract)
Li WC. 2013. Sedimentary facies and palaeogeography of the Mesoproterozoic Xiaogoubei and Yunmengshan formations in the western Henan Province. Master Degree Thesis. Wuhan: China University of Geosciences (in Chinese with English summary)
Li ZH, Xi SL, Hu JM, Dong XP and Zhang GS. 2019. New insights about the Mesoproterozoic sedimentary framework of North China Craton. Geological Journal, 54(1): 409-425 DOI:10.1002/gj.3190
Li ZX, Zhang L and Powell CM. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences, 43(6): 593-604 DOI:10.1080/08120099608728281
Li ZX and Powell CM. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Science Reviews, 53(3-4): 237-277 DOI:10.1016/S0012-8252(00)00021-0
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Research, 160(1-2): 179-210 DOI:10.1016/j.precamres.2007.04.021
Liu C, Knoll AH and Hazen RM. 2017b. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nature Communications, 8(1): 1950 DOI:10.1038/s41467-017-02095-x
Liu CH, Zhao GC, Sun M, Zhang J, Yin CQ and He YH. 2012. Detrital zircon U-Pb dating, Hf isotopes and whole-rock geochemistry from the Songshan Group in the Dengfeng Complex:Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Research, 192-195: 1-15 DOI:10.1016/j.precamres.2011.10.006
Liu CH, Zhao GC, Liu FL and Shi JR. 2014. Zircon U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the provenance and age of the Shuangshanzi and Qinglonghe groups in eastern Hebei:Implications for the tectonic evolution of the Eastern Block. Precambrian Research, 255: 699-715 DOI:10.1016/j.precamres.2014.05.016
Liu CH, Zhao GC, Liu FL and Shi JR. 2017a. Detrital zircon U-Pb and Hf isotopic and whole-rock geochemical study of the Bayan Obo Group, northern margin of the North China Craton:Implications for Rodinia reconstruction. Precambrian Research, 303: 372-391 DOI:10.1016/j.precamres.2017.04.033
Liu DY, Nutman APW, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342 DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu DY, Wan YS, Wu JS, Wilde SA, Zhou HY, Dong CY and Yin XY. 2007. Eoarchean rocks and zircons in the North China Craton. In: Kranendonk MJV, Smithies RH and Bennett VC (eds.). Developments in Precambrian Geology: Earth's Oldest Rocks. Amsterdam: Elsevier, 15: 251-273 http://www.sciencedirect.com/science/article/pii/S0166263507150350
Liu Q, Ma LF, Zhu YH, Jin RG, Dai WS, Chen YH, Fan XH, Zhang TG and Zhang ZJ. 1994. Lithofacies Paleogeography and Gypsum Deposits of the Lower Cambrian of North China Platform. Beijing: Geological Publishing House: 1-144 (in Chinese)
Liu XF, Zuo PF, Wang QF, Bagas L, He YL and Zheng DS. 2019. Initial accretion of the North Qinling Terrane to the North China Craton before the Grenville orogeny:Constraints from detrital zircons. International Geology Review, 61(1): 109-128 DOI:10.1080/00206814.2017.1410861
Liu YH. 1986. The Lower Cambrian Xinji Formation in Hennan Province. Henan Geology, (4): 28-35 (in Chinese)
Liu YH, Wang JP, Zhang HQ and Du FJ. 1991. The Cambrian and Ordovician Systems of Henan Province. Beijing: Geological Publishing House: 1-225 (in Chinese)
Liu YQ, Gao LZ, Liu YX, Song B and Wang ZX. 2005. Zircon LA-ICP-MS U-Pb dating of the Early Neoproterozoic mafic magma event in Xu-Huai area. Chinese Science Bulletin, 50(22): 2514-2521 (in Chinese) DOI:10.1360/csb2005-50-22-2514
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 DOI:10.1007/s11434-010-3052-4
Lu SN, Yang CL, Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131 DOI:10.1016/S1342-937X(05)70896-0
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HR and Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768 (in Chinese with English abstract)
Lu SN, Li HK, Chen ZH, Yu HF, Jin W and Guo KY. 2004. Relationship between Neoproterozoic cratons of China and the Rodinia. Earth Science Frontiers, 11(2): 515-523 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research, 160(1): 77-93
Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center
Ma MZ, Zhang YX, Xie HQ and Wan YS. 2014. SHRIMP U-Pb dating and LA-ICPMS Hf isotope analysis of detrital zircons from medium-to coarse-grained sandstones of the Bayan Obo Group and Sailinhudong Group and its geological significances. Acta Petrologica Sinica, 30(10): 2973-2988 (in Chinese with English abstract)
Meng Y, Zuo PF, Zheng DS, Sun FB, Wang PX, Wang ZJ and Li Y. 2018. The earliest clastic sediments overlying the Xiong'er volcanic rocks:Implications for the Mesoproterozoic tectonics of the southern North China Craton. Precambrian Research, 305: 268-282 DOI:10.1016/j.precamres.2017.12.001
Mosher S, Levine JSF and Carlson WD. 2008. Mesoproterozoic plate tectonics:A collisional model for the Grenville-aged orogenic belt in the Llano Uplift, central Texas. Geology, 36(1): 55-58
Pan GT, Lu SN, Xiao QH, Zhang KX, Yin FG, Hao GJ, Luo MS, Ren F and Yuan SH. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 10-23 (in Chinese with English abstract)
Pan JG, Qu YQ, Ma R, Pan ZK and Wang HL. 2013. Sedimentary and tectonic evolution of the Meso-Neoproterozoic strata in the northern margin of the North China Block. Geological Journal of China Universities, 19(1): 109-122 (in Chinese with English abstract)
Pan ZC. 1980. Discovery of the Dongjia Formation and the Huanglianyu Formation in western Henan and its stratigraphic significance. Henan Geology, (4): 27-43 (in Chinese)
Pease V, Daly JS, Elming SÅ, Kumpulainen R, Moczydlowska M, Puchkov V, Roberts D, Saintot A and Stephenson R. 2008. Baltica in the Cryogenian, 850~630Ma. Precambrian Research, 160(1-2): 46-65 DOI:10.1016/j.precamres.2007.04.015
Pei JL, Yang ZY and Zhao Y. 2006. A Mesoproterozoic paleomagnetic pole from the Yangzhuang Formation, North China and its tectonics implications. Precambrian Research, 151(1-2): 1-13 DOI:10.1016/j.precamres.2006.06.001
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China Craton. Gondwana Research, 12(1-2): 29-46 DOI:10.1016/j.gr.2006.10.022
Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. 1.78Ga large igneous province in the North China Craton:The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260-280 DOI:10.1016/j.lithos.2007.07.006
Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China Craton:Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221 DOI:10.1016/j.lithos.2011.08.018
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Sciences), 58(5): 649-675 DOI:10.1007/s11430-014-5026-x
Peng P, Sun FB, Wang C, Wang XP, Su XD, Zhang ZY and Zhou XT. 2018. Comparing the Precambrian geology of the North China Craton and the São Francisco Craton. Chinese Journal of Geology, 53(2): 363-399 (in Chinese with English abstract)
Qiao XF, Gao LZ and Zhang CH. 2007. New idea of the Meso-and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract)
Qu YQ, Meng QR, Ma SX, Li L and Wu GL. 2010. Geological characteristics of unconformities in Mesoproterozoic successions in the northern margin of North China Block and their tectonic implications. Earth Science Frontiers, 17(4): 112-127 (in Chinese with English abstract)
Qu YQ, Pan JG, Liang LD, Yang ZF and Wang HL. 2012. The attributes of the Mesoproterozoic unconformities in the Yanliao rift trough. Sedimentary Geology and Tethyan Geology, 32(2): 11-22 (in Chinese with English abstract)
Rainbird R, Cawood P and Gehrels G. 2012. The great Grenvillian sedimentation episode: Record of supercontinent Rodinia's assembly. In: Busby C and Azor A (eds.). Tectonics of Sedimentary Basins: Recent Advances. Oxford: Blackwell Publishing Ltd, 583-601 https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444347166.ch29
Rainbird RH, Heaman LM and Young GM. 1992. Sampling Laurentia:Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville Orogen. Geology, 20(4): 351-354 DOI:10.1130/0091-7613(1992)020<0351:SLDZGO>2.3.CO;2
Rainbird RH, McNicholl J, Heaman LM, Abbott JG, Long DGF and Thorkelson DJ. 1997. Pan-continental river system draining Grenville Orogen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada. Journal of Geology, 105(1): 1-17
Shi JP. 2017. Geochronology and geochemistry of the Paleoproterozoic A-type granites in the southern margin of the Central North China Craton. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Shi QZ, Tao ZQ, Pang JQ and Qu MX. 1996. Study on Luanchuan Group in the southern margin of North China Plate. Journal Geology & Minerals Research of the North China, 11(1): 51-59 (in Chinese with English abstract)
Shi Y, Yu JH and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, central China:New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19-60 DOI:10.1016/j.precamres.2013.03.001
Spencer CJ, Cawood PA, Hawkesworth CJ, Prave AR, Roberts NMW, Horstwood MSA, Whitehouse MJ and EIMF. 2015. Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 6(3): 357-372 DOI:10.1016/j.gsf.2014.12.001
Spencer CJ, Kirkland CL and Taylor RJM. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4): 581-589 DOI:10.1016/j.gsf.2015.11.006
Su WB, Li HK, Huff WD, Ettensohn FR, Zhang SH, Zhou HY and Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323 DOI:10.1007/s11434-010-4007-5
Su WB, Li HK, Xu L, Jia SH, Geng JZ, Zhou HY, Wang ZH and Pu HY. 2012. Luoyu and Ruyang groups at the southern margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System:Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China. Geological Survey and Research, 35(2): 96-108 (in Chinese with English abstract)
Su WB. 2016. Revision of the Mesoproterozoic chronostratigraphic subdivision both of North China and Yangtze cratons and the relevant issues. Earth Science Frontiers, 23(6): 156-185 (in Chinese with English abstract)
Sun S, Cong BL and Li JL. 1981. Evolution of the Henan-Shanxi sedimentary basin of the Middle and Late Proterozoic age (Part Ⅰ). Scientia Geologica Sinica, (4): 314-322 (in Chinese with English abstract)
Sun S, Chen ZM and Wang QC. 1982. Evolution of the Henan-Shanxi Sedimengtary basin of the Middle and Late Proterozoic age (Part Ⅱ). Scientia Geologica Sinica, (1): 5-12 (in Chinese with English abstract)
Wan YS, Song B, Liu DY, Li HM, Yang C, Zhang QD, Yang CH, Geng YS and Shen QH. 2001. Geochronology and geochemistry of 3.8~2.5Ga ancient rock belt in the Dongshan Scenic Park, Anshan Area. Acta Geologica Sinica, 75(3): 363-370 (in Chinese with English abstract)
Wan YS, Liu DY, Dong CY, Nutman A, Wilde SA, Wang W, Xie HQ, Yin XY and Zhou HY. 2009. The oldest rocks and zircons in China. Acta Petrologica Sinica, 25(8): 1793-1807 (in Chinese with English abstract)
Wan YS, Liu DY, Wang W, Song TS, Kröner A, Dong CY, Zhou HY and Yin XY. 2011. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1): 219-242 DOI:10.1016/j.gr.2011.02.009
Wang C, Peng P, Wang XP and Yang SY. 2016. Nature of three Proterozoic (1680Ma, 1230Ma and 775Ma) mafic dyke swarms in North China:Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 285: 109-126 DOI:10.1016/j.precamres.2016.09.015
Wang T, Wang XX, Zhang GW, Pei XZ and Zhang CL. 2003. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling Orogenic Belt (China). Gondwana Research, 6(4): 699-710 DOI:10.1016/S1342-937X(05)71018-2
Wang XL, Jiang SY, Dai BZ, Griffin WL, Dai MN and Yang YH. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca.830Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35-47 DOI:10.1016/j.precamres.2011.08.004
Wang YF. 2000. Preliminary researching on the volcanic rock of Dahongkou Formation, Luanchuan Group. Henan Geology, 18(3): 181-189 (in Chinese with English abstract)
Wang ZQ, Gao LD, Wang T and Jiang CF. 2007. Newly discovered microfossils and their stratigraphic age limitation of Taowan Group in North Qinling. Science in China (Series D), 37(11): 1467-1473 (in Chinese)
Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract)
Wang ZT, Shen Y, Wang XL, Ma BY and Huang XH. 2017. Detrital zircon LA-ICP-MS U-Pb dating of the Changlongshan Formation of Qingbaikou System in Huailai County, Hebei Province and its tectonic-paleogeographic significance. Acta Geologica Sinica, 91(8): 1760-1775 (in Chinese with English abstract)
Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362 DOI:10.1016/j.precamres.2008.10.002
Wu TS. 1982. The contrasting and unified division of the Sinian stratigraphy in the west of Henan Province. Regional Geology of China, (1): 73-81 (in Chinese)
Wu TS. 2002. Late Precambrian (Meso-to Neoproterozoic) lithostratigraphic units in North China and their multiple division and correlation. Geology in China, 29(2): 147-154 (in Chinese with English abstract)
Xi WX and Pei F. 2008. Stratigraphy (Lithostratic) of Henan Province. Wuhan: China University of Geosciences Press: 1-299 (in Chinese)
Xiang ZQ. 2014. Mesoproterozoic magmatic events and mineralization in the North China Craton. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
Xiao SH, Knoll AH, Kaufman AJ, Yin LM and Zhang Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research, 84(3-4): 197-220 DOI:10.1016/S0301-9268(97)00029-6
Xu HR. 2015. Paleomagnetic study on the Paleoproterozoic mafic dyke swarms and Xiong'er volcanic rocks in the North China Craton and its tectonic implication. Ph. D. Dissertation. Beijing: Chinese Academy of Sciences (in Chinese)
Xu WC, Chang YZ, Jia HM, Wang ZH, Zhao LS and Pei HY. 2015. Discovery and geological implications of Huanglianduo Formation in Shanxian County, Henan Province. Global Geology, 34(3): 599-604 (in Chinese with English abstract)
Yan GH, Ma F, Cai JH, Ren KX, Liu CX, Liu XY, Mou BL, Yang B, Li FT and Huang BL. 2010. SHRIMP U-Pb zircon dating on the Dahongkou alkali trachyte of Luanchuan Group in southern margin of North China Craton. In: 2010's National Symposium on Petrology and Geodynamics. Beijing: Chinese Society of Geology, 289-290 (in Chinese)
Yang DB, Xu WL, Xu YG, Wang QH, Pei FP and Wang F. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China:Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research, 216-219: 162-176 DOI:10.1016/j.precamres.2012.07.002
Yang KF, Fan HR, Santosh M, Hu FF and Wang KY. 2011. Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton:Implications for the final breakup of Columbia supercontinent. Tectonophysics, 498(1-4): 1-10 DOI:10.1016/j.tecto.2010.11.015
Yang M. 2017. Detrital zircon U-Pb dating of metaclastic rocks from Erlangping, Kuanping and Taowan Group in the Eastern Qinling area and its tectonic implication. Master Degree Thesis. Xi'an: Northwest University (in Chinese)
Yin LM and Guan BD. 1999. Organic-walled microfossils of Neoproterozoic Dongjia Formation, Lushan County, Henan Province, North China. Precambrian Research, 94(1-2): 121-137 DOI:10.1016/S0301-9268(98)00115-6
Ying JF, Zhou XH, Su BX and Tang YJ. 2011. Continental growth and secular evolution:Constraints from U-Pb ages and Hf isotope of detrital zircons in Proterozoic Jixian sedimentary section (1.8~0.8Ga), North China Craton. Precambrian Research, 189(3-4): 229-238 DOI:10.1016/j.precamres.2011.07.007
Yu XQ, Liu JL, Li CL, Chen SQ and Dai YP. 2013. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex:Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Research, 230: 31-44 DOI:10.1016/j.precamres.2012.12.008
Yue L and Liu ZL. 2017. An alluvial fan to coastal transition:A case study of Mesoproterozoic Bingmagou Formation, southern margin of the North China Craton. Acta Sedimentologica Sinica, 35(4): 752-762 (in Chinese with English abstract)
Yue L, Liu ZL and Ma YS. 2018. Sedimentary environment and depositional evolution of the Mesoproterozoic Bingmagou Formation on the southern margin of the North China Craton. Scientific Reports, 8(1): 8255 DOI:10.1038/s41598-018-26622-y
Zhai MG, Shao JA, Hao J and Peng P. 2003. Geological signature and possible position of the North China Block in the supercontinent Rodinia. Gondwana Research, 6(2): 171-183 DOI:10.1016/S1342-937X(05)70968-0
Zhai MG. 2006. Geological Significance of the Neoarchean global cratonization event and the boundary between Archean and Proterozoic. Geotectonica et Metallogenia, 30(4): 419-421 (in Chinese with English abstract)
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract)
Zhai MG. 2011. Cratonization and the ancient North China continent:A summary and review. Science China (Earth Sciences), 54(8): 1110-1120 DOI:10.1007/s11430-011-4250-x
Zhai MG. 2013. Secular changes of metallogenic systems link with continental evolving of the North China Craton. Acta Petrologica Sinica, 29(5): 1759-1773 (in Chinese with English abstract)
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhai MG, Hu B, Zhao TP, Peng P and Meng QR. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance:A study advance and review. Tectonophysics, 662: 153-166 DOI:10.1016/j.tecto.2015.01.019
Zhang HF, Zhang J, Zhang GW, Santosh M, Yu H, Yang YH and Wang JL. 2016a. Detrital zircon U-Pb, Lu-Hf, and O isotopes of the Wufoshan Group:Implications for episodic crustal growth and reworking of the southern North China Craton. Precambrian Research, 273: 112-128 DOI:10.1016/j.precamres.2015.12.004
Zhang KX, Xu YD, He WH, Yu Y, Wang LJ, Wang JX, Kou XH and Luo MS. 2018. Oceanic and continental blocks distribution during Neoproterozoic Early Qingbaikouan Period (1000~820Ma) in China. Earth Science, 43(11): 1-16 (in Chinese with English abstract)
Zhang LH. 1994. Stratigraphic types and litho-paleogeography of the Sinian in southern margin of the North China Platform. In: Wang HZ, Wang ZQ, Zhang LH, Zhu H et al. (eds.). Tectonic Evolution of Meso-Neoproterozoic and Paleozoic in the Margin of China. Beijing: Geological Publishing House, 57-77 (in Chinese)
Zhang SH, Li ZX, Wu HC and Wang HZ. 2000. New paleomagnetic results from the Neoproterozoic successions in southern North China Block and paleogeographic implications. Science in China (Series D), 43(S1): 233-244 DOI:10.1007/BF02911948
Zhang SH, Li ZX and Wu HC. 2006. New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia. Precambrian Research, 144(3-4): 213-238 DOI:10.1016/j.precamres.2005.11.007
Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009. The 1.35Ga diabase sills from the northern North China Craton:Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600 DOI:10.1016/j.epsl.2009.10.023
Zhang SH, Zhao Y and Liu YS. 2016b. Formation of the giant Bayan Obo deposit by ca.1.3Ga carbonatitic magmatism and its link with continental rifting in the Columbia supercontinent. Acta Geologica Sinica, 90(Suppl.): 195-196
Zhang SH, Zhao Y, Li XH, Emst RE and Yang ZY. 2017. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton:Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125 DOI:10.1016/j.epsl.2017.02.034
Zhang SH, Ernst RE, Pei JL, Zhao Y, Zhou MF and Hu GH. 2018. A temporal and causal link between ca.1380Ma large igneous provinces and black shales:Implications for the Mesoproterozoic time scale and paleoenvironment. Geology, 46(11): 963-966 DOI:10.1130/G45210.1
Zhang WJ and Li YJ. 1989. The sequences and the age of the Taowan Group. Journal of Xi'an College of Geology, 11(2): 1-10 (in Chinese with English abstract)
Zhang WL, Chen G, Zhang HR, Gao L, Yang F, Shi XL and Shen JJ. 2016. Detrital zircon U-Pb geochronology from Zhaoling Formation in Tangwangling. Acta Sedimentologica Sinica, 34(3): 497-505 (in Chinese with English abstract)
Zhang YG, Chen L and Liu CL. 2011. The discovery of the Middle Proterozoic Bingmagou Formation in Lushan County, Henan Province, and its significance. Geological Bulletin of China, 30(11): 1716-1720 (in Chinese with English abstract)
Zhao GC, Sun M and Wilde SA. 2003. Major tectonic units of the North China Craton and their paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38 DOI:10.1360/03yd9003
Zhao GC, Sun M, Wilde SA and Li SZ. 2004. A Paleo-Mesoproterozoic supercontinent:Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123 DOI:10.1016/j.earscirev.2004.02.003
Zhao GC, Wilde SA, Sun M, Li SZ, Li XP and Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang complex:Implications for the accretion and evolution of the Trans-North China orogen. Precambrian Research, 160(3-4): 213-226 DOI:10.1016/j.precamres.2007.07.004
Zhao GC, He YH and Sun M. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181 DOI:10.1016/j.gr.2009.02.004
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276 DOI:10.1016/j.precamres.2009.12.007
Zhao TP, Zhou MF, Jin CW, Guan H and Li HM. 2001. Discussion on age of the Xiong'er Group in southern margin of North China Craton. Chinese Journal of Geology, 36(3): 326-334 (in Chinese with English abstract)
Zhao TP, Jin CW, Zhai MG, Xia B and Zhou MF. 2002. Geochemistry and petrogenesis of the Xiong'er Group in the southern regions of the North China Craton. Acta Petrologica Sinica, 18(1): 56-69 (in Chinese with English abstract)
Zhao TP, Deng XQ, Hu GH, Zhou YY, Peng P and Zhai MG. 2015. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues:A review. Acta Petrologica Sinica, 31(6): 1495-1508 (in Chinese with English abstract)
Zhao TP and Deng XQ. 2016. Petrogenesis and tectonic significance of the Late Paleoproterozoic to Early Mesoproterozoic (ca.1.80~1.53Ga) A-type granites in the southern margin of the North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 423-434
Zheng DS, Sun FB, Cheng Y and Zhang FP. 2016a. Geochemical characteristics of argillaceous rocks of the Mesoproterozoic Bingmagou Formation in Yichuan, western Henan and its environment and provenance. Geological Journal of China Universities, 22(2): 254-263 (in Chinese with English abstract)
Zheng DS, Wang PX and Sun FB. 2016b. Sedimentary environment of Mesoproterozoic Bingmagou Formation in Jiyuan, western Henan province. Geological Science and Technology Information, 35(1): 1-7 (in Chinese with English abstract)
Zheng JP, Ping XQ, Xia B and Yu CM. 2013. The weak Neoproterozoic thermal records in North China and its significances for the lithospheric thickness. Acta Petrologica Sinica, 29(7): 2456-2464 (in Chinese with English abstract)
Zheng W and Liu SX. 2012. Analysis on lithofacies and sedimentary environments evolution of Sinian in Lushan area, western Henan Province. Journal of Henan Polytechnic University (Natural Science), 31(6): 669-673 (in Chinese with English abstract)
Zhong Y, Zhai MG, Peng P, Santosh M and Ma XD. 2015. Detrital zircon U-Pb dating and whole-rock geochemistry from the clastic rocks in the northern marginal basin of the North China Craton:Constraints on depositional age and provenance of the Bayan Obo Group. Precambrian Research, 258: 133-145 DOI:10.1016/j.precamres.2014.12.010
Zhou HR, Wang ZQ, Cui XS, Lei ZY, Dong WM and Shen Y. 1999. Study on the Sequence Stratigraphy of the Middle Neoproterozoic in the Southern North China Platform. Beijing: Geological Publishing House: 1-90 (in Chinese)
Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ and Cheng H. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323-340 DOI:10.1016/j.precamres.2007.08.004
Zhu XY, Chen FK, Liu SQ, Yang YZ, Nie H, Siebel W and Zhai MG. 2011. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China:Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20(1): 194-204 DOI:10.1016/j.gr.2010.12.009
Zuo PF, Li Y, Zhang GC, Si RJ, Wang SY, Liu SC, Zheng DS and Sun JT. 2019. Reviews of the Mesoproterozoic to Neoproterozoic sedimentary sequences and new constraints on the tectono-sedimentary evolution of the southern margin of the North China Craton. Journal of Asian Earth Sciences, 179: 416-429 DOI:10.1016/j.jseaes.2019.04.010
初航, 陆松年, 王惠初, 相振群, 刘欢. 2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究. 岩石学报, 27(4): 1017-1028.
崔敏利, 张宝林, 彭澎, 张连昌, 沈晓丽, 郭志华, 黄雪飞. 2010. 豫西崤山早元古代中酸性侵入岩锆石/斜锆石U-Pb测年及其对熊耳火山岩系时限的约束. 岩石学报, 26(5): 1541-1549.
崔新省, 董文明, 周洪瑞. 1996. 豫西震旦系露头序地层学初步研究及其意义. 地球科学-中国地质大学学报, 21(3): 17-21.
邓小芹, 赵太平, 彭头平, 高昕宇, 包志伟. 2015. 华北克拉通南缘1600Ma麻坪A型花岗岩的成因及其地质意义. 岩石学报, 31(6): 1621-1635.
丁继凯. 2017.华北克拉通~1.22Ga基性岩墙古地磁学和年代学研究及其对超大陆演化的意义.博士学位论文.北京: 中国地质大学
第五春荣, 刘祥, 孙勇. 2018. 华北克拉通南缘太华杂岩组成及演化. 岩石学报, 34(4): 999-1018.
董文明, 沈亚, 周洪瑞, 崔新省. 1999. 层序地层学在前寒武纪地层研究中的应用——以河南省西部震旦系为例. 沉积学报, 17(增): 742-746.
杜汝霖, 李培菊, 吴振山. 1979. 燕山西段震旦亚界. 河北地质学院学报, (4): 1-17.
高林志, 尹崇玉, 王自强. 2002. 华北地台南缘新元古代地层的新认识. 地质通报, 21(3): 130-135. DOI:10.3969/j.issn.1671-2552.2002.03.004
高林志, 张传恒, 陈寿铭, 刘鹏举, 丁孝忠, 刘燕学, 董春燕, 宋彪. 2010. 辽东半岛细河群沉积岩碎屑锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113-1122. DOI:10.3969/j.issn.1671-2552.2010.08.002
高维, 张传恒, 王自强. 2011. 华北古陆南缘豫西新元古代大型疑源类及古地理环境分析. 中国地质, 38(5): 1232-1243. DOI:10.3969/j.issn.1000-3657.2011.05.010
关保德, 耿午辰, 戎治权. 1988. 河南东秦岭北坡中-上元古界. 郑州: 河南科学技术出版社: 1-210.
关保德. 1996. 河南华北地台南缘前寒武纪-早寒武世地质和成矿. 武汉: 中国地质大学出版社: 1-330.
河南省地质矿产局. 1989. 河南省区域地质志. 北京: 地质出版社: 1-772.
胡波, 翟明国, 郭敬辉, 彭澎, 刘富, 刘爽. 2009. 华北克拉通北缘化德群中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义. 岩石学报, 25(1): 193-211.
胡波, 翟明国, 彭澎, 刘富, 第五春荣, 王浩铮, 张海东. 2013. 华北克拉通古元古代末-新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据. 岩石学报, 29(7): 2508-2536.
胡波, 翟明国, 吴佳林, 贾晓亮, 张海东. 2015. 华北陆块南缘上元古界冰碛岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 矿物学报, (S1): 701.
胡国辉, 赵太平, 周艳艳, 杨阳. 2012. 华北克拉通南缘五佛山群沉积时代和物源区分析:碎屑锆石U-Pb年龄和Hf同位素证据. 地球化学, 41(4): 326-342.
胡国辉, 赵太平, 周艳艳, 王世炎. 2013. 华北克拉通南缘中-新元古代沉积地层对比研究及其地质意义. 岩石学报, 29(7): 2491-2507.
贾超. 2018.豫西地区新元古代地层的形成时限、物源及构造背景分析.硕士学位论文.合肥: 合肥工业大学
蒋干清. 1993. 豫西栾川地区大红口组、鱼库组的特征及其大地构造背景. 现代地质, 7(2): 138-144.
蒋干清, 周洪瑞, 王自强. 1994. 豫西栾川地区栾川群的层序、沉积环境及其构造古地理意义. 现代地质, 8(4): 430-440.
李承东, 赵利刚, 常青松, 许雅雯, 王世炎, 许腾. 2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论. 中国地质, 44(3): 511-525.
李猛, 王超, 王钊飞. 2013. 华北克拉通西南缘汝阳群沉积时代及其地质意义:来自碎屑锆石U-Pb年龄的证据. 地质科学, 48(4): 1115-1139. DOI:10.3969/j.issn.0563-5020.2013.04.011
李文超. 2013.豫西中元古界小沟背组和云梦山组沉积相与古地理分析.硕士学位论文.武汉: 中国地质大学
刘群, 马丽芳, 祝有海, 金若谷, 戴维声, 陈郁华, 范小华, 张天国, 张增杰. 1994. 华北早寒武世岩相古地理与膏盐沉积. 北京: 地质出版社: 1-144.
刘印环. 1986. 河南省下寒武统辛集组. 河南地质, (4): 28-35.
刘印环, 王建平, 张海清, 杜凤军. 1991. 河南的寒武系和奥陶系. 北京: 地质出版社: 1-225.
柳永清, 高林志, 刘燕学, 宋彪, 王宗秀. 2005. 徐淮地区新元古代初期镁铁质岩浆事件的锆石U-Pb定年. 科学通报, 50(22): 2514-2521. DOI:10.3321/j.issn:0023-074X.2005.22.013
陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王(石童)碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768. DOI:10.3969/j.issn.1671-2552.2003.10.003
陆松年, 李怀坤, 陈志宏, 于海峰, 金巍, 郭坤一. 2004. 新元古时期中国古大陆与罗迪尼亚超大陆的关系. 地学前缘, 11(2): 515-523. DOI:10.3321/j.issn:1005-2321.2004.02.021
马铭株, 章雨旭, 颉颃强, 万渝生. 2014. 华北克拉通北缘白云鄂博群和腮林忽洞群底部碎屑锆石U-Pb定年、Hf同位素分析及其地质意义. 岩石学报, 30(10): 2973-2988.
潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 10-23.
潘建国, 曲永强, 马瑞, 潘中奎, 王海龙. 2013. 华北地块北缘中新元古界沉积构造演化. 高校地质学报, 19(1): 109-122. DOI:10.3969/j.issn.1006-7493.2013.01.015
潘泽成. 1980. 豫西黄连垛组董家组的发现及其地层意义. 河南地质, (4): 27-43.
彭澎, 孙风波, 王冲, 王欣平, 苏向东, 张志越, 周小童. 2018. 华北和圣弗朗西斯科克拉通前寒武纪地质对比. 地质科学, 53(2): 363-399.
乔秀夫, 高林志, 张传恒. 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509. DOI:10.3969/j.issn.1671-2552.2007.05.001
曲永强, 孟庆任, 马收先, 李林, 武国利. 2010. 华北地块北缘中元古界几个重要不整合面的地质特征及构造意义. 地学前缘, 17(4): 112-127.
曲永强, 潘建国, 梁利东, 杨祖锋, 王海龙. 2012. 燕辽裂陷槽中元古界不整合面的性质. 沉积与特提斯地质, 32(2): 11-22. DOI:10.3969/j.issn.1009-3850.2012.02.002
师江朋. 2017.华北克拉通中部南缘古元古代A型花岗岩的年代学和地球化学研究.硕士学位论文.长春: 吉林大学
石铨曾, 陶自强, 庞继群, 曲明绪. 1996. 华北板块南缘栾川群研究. 华北地质矿产杂志, 11(1): 51-59.
苏文博, 李怀坤, Huff WD, Ettensohn FR, 张世红, 周红英, 万渝生. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197-2206.
苏文博, 李怀坤, 徐莉, 贾松海, 耿建珍, 周红英, 王志宏, 蒲含勇. 2012. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束. 地质调查与研究, 35(2): 96-108. DOI:10.3969/j.issn.1672-4135.2012.02.003
苏文博. 2016. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨. 地学前缘, 23(6): 156-185.
孙枢, 丛柏林, 李继亮. 1981. 豫陕中-晚元古代沉积盆地(一). 地质科学, (4): 314-322.
孙枢, 陈志明, 王清晨. 1982. 豫陕中-晚元古代沉积盆地(二). 地质科学, (1): 5-12.
万渝生, 宋彪, 刘敦一, 李惠民, 杨淳, 张巧大, 杨崇辉, 耿元生, 沈其韩. 2001. 鞍山东山风景区3.8~2.5Ga古老岩带的同位素地质年代学和地球化学. 地质学报, 75(3): 363-370.
万渝生, 刘敦一, 董春艳, Nutman A, Wilde SA, 王伟, 颉颃强, 殷小艳, 周红英. 2009. 中国最老岩石和锆石. 岩石学报, 25(8): 1793-1807.
王跃峰. 2000. 栾川群大红口组火山岩研究初探. 河南地质, 18(3): 181-189.
王宗起, 高联达, 王涛, 姜春发. 2007. 北秦岭陶湾群新发现的微体化石及其对地层时代的限定. 中国科学(D辑), 37(11): 1467-1473.
王宗起, 闫全人, 闫臻, 王涛, 姜春发, 高联达, 李秋根, 陈隽璐, 张英利, 刘平, 谢春林, 向忠金. 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, 83(11): 1527-1546. DOI:10.3321/j.issn:0001-5717.2009.11.001
王振涛, 沈阳, 王训练, 马伯永, 黄晓宏. 2017. 河北怀来龙凤山青白口系长龙山组碎屑锆石LA-ICP-MS U-Pb年龄及其构造古地理意义. 地质学报, 91(8): 1760-1775. DOI:10.3969/j.issn.0001-5717.2017.08.008
武铁山. 1982. 豫西(型)震旦系地层的对比统一划分和时代问题. 中国区域地质, (1): 73-81.
武铁山. 2002. 华北晚前寒武纪(中、新元古代)岩石地层单位及多重划分对比. 中国地质, 29(2): 147-154. DOI:10.3969/j.issn.1000-3657.2002.02.008
席文祥, 裴放. 1997. 河南省岩石地层. 武汉: 中国地质大学出版社: 1-299.
相振群. 2014.华北克拉通中元古代岩浆事件群与成矿作用.博士学位论文.北京: 中国地质大学
徐慧茹. 2015.华北克拉通早元古代基性岩墙群和熊耳火山岩古地磁研究及其构造意义.博士学位论文.北京: 中国科学院大学
徐文超, 常云真, 贾慧敏, 王志宏, 赵留升, 裴海洋. 2015. 河南陕县黄连垛组的发现及其地质意义. 世界地质, 34(3): 599-604. DOI:10.3969/j.issn.1004-5589.2015.03.003
阎国翰, 马芳, 蔡剑辉, 任康绪, 刘楚雄, 柳晓艳, 牟保磊, 杨斌, 李凤棠, 黄宝玲. 2010.华北克拉通南缘栾川群大洪口组碱性粗面岩锆石SHRIMP U-Pb年龄及其意义.见: 2010年全国岩石学与地球动力学研讨会.北京: 中国地质学会, 289-290 http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7414773
杨敏. 2017.东秦岭地区二郎坪、宽坪及陶湾岩群变沉积岩碎屑锆石年代学研究及其地质意义.硕士学位论文.西安: 西北大学
岳亮, 刘自亮. 2017. 冲积扇沉积向滨岸沉积的转变——以华北克拉通南缘中元古界兵马沟组为例. 沉积学报, 35(4): 752-762.
翟明国. 2006. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义. 大地构造与成矿学, 30(4): 419-421. DOI:10.3969/j.issn.1001-1552.2006.04.002
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36. DOI:10.3969/j.issn.0258-7106.2010.01.004
翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学(地球科学), 41(8): 1037-1046.
翟明国. 2013. 华北前寒武纪成矿系统与重大地质事件的联系. 岩石学报, 29(5): 1759-1773.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
张克信, 徐亚东, 何卫红, 于洋, 王丽君, 王嘉轩, 寇晓虎, 骆满生. 2018. 中国新元古代青白口纪早期(1000~820Ma)洋陆分布. 地球科学, 43(11): 1-16.
张玲华. 1994.华北地台南部大陆边缘的中、新元古界及其构造地理分析.见: 王鸿桢, 王自强, 张玲华, 朱鸿等著.中国古大陆边缘中、新元古代及古生代构造演化.北京: 地质出版社, 57-77
张维吉, 李育敬. 1989. 陶湾群层序及时代研究. 西安地质学院学报, 11(2): 1-10.
张文龙, 陈刚, 章辉若, 高磊, 杨甫, 师晓林, 申锦江. 2016. 唐王陵昭陵组砾岩碎屑锆石U-Pb年代学分析. 沉积学报, 34(3): 497-505.
张元国, 陈雷, 刘长乐. 2011. 河南鲁山地区中元古代兵马沟组的发现及其地质意义. 地质通报, 30(11): 1716-1720. DOI:10.3969/j.issn.1671-2552.2011.11.008
赵太平, 周美夫, 金成伟, 关鸿, 李惠民. 2001. 华北陆块南缘熊耳群形成时代讨论. 地质科学, 36(3): 326-334. DOI:10.3321/j.issn:0563-5020.2001.03.007
赵太平, 金成伟, 翟明国, 夏斌, 周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与成因. 岩石学报, 18(1): 56-69.
赵太平, 邓小芹, 胡国辉, 周艳艳, 彭澎, 翟明国. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论. 岩石学报, 31(6): 1495-1508.
郑德顺, 孙风波, 程涌, 张飞鹏. 2016a. 豫西伊川地区中元古界兵马沟组泥质岩地球化学特征及其环境与物源示踪. 高校地质学报, 22(2): 254-263.
郑德顺, 王鹏晓, 孙风波. 2016b. 豫西济源中元古界兵马沟组沉积环境分析. 地质科技情报, 35(1): 1-7.
郑建平, 平先权, 夏冰, 余淳梅. 2013. 华北深部岩石圈存在弱的新元古代热活动的同位素年代学信息:证据及意义. 岩石学报, 29(7): 2456-2464.
郑伟, 刘顺喜. 2012. 豫西鲁山地区震旦系岩相分析及沉积环境的演化. 河南理工大学学报(自然科学版), 31(6): 669-673. DOI:10.3969/j.issn.1673-9787.2012.06.009
周洪瑞, 王自强, 崔新省, 雷振宇, 董文明, 沈亚. 1999. 华北地台南部中新元古界层序地层研究. 北京: 地质出版社: 1-90.