岩石学报  2019, Vol. 35 Issue (8): 2455-2469, doi: 10.18654/1000-0569/2019.08.09   PDF    
华北克拉通南缘古元古代末(~1.84Ga)垣头A-型花岗岩成因及其构造意义
邓小芹1, 彭头平2, 赵太平3, 丘志力1     
1. 中山大学地球科学与工程学院, 广东省地质过程与矿产资源探查重点实验室, 广东省地球动力作用与地质灾害重点实验室, 广州 510275;
2. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室, 广州 510640;
3. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州 510640
摘要:在华北克拉通陆续发现有大量的古元古代末-中元古代早期A-型花岗岩,它们具有独特的地球化学特征和特定的形成条件,可为进一步了解A-型花岗岩的岩石成因以及华北克拉通由结晶基底的形成向稳定盖层发育时期构造环境的转折提供重要依据。本文对华北克拉通南缘产出的垣头花岗岩体进行了岩石学、锆石U-Pb年代学、元素地球化学和Nd-Hf-O同位素研究。结果表明,垣头岩体岩石类型主要为正长花岗岩,形成时代为1841±4Ma;全岩样品具有较高的铁(FeOT/(FeOT+MgO)=0.75~0.86)、富碱(K2O+Na2O=8.11%~9.13%,K2O/Na2O>1)、低MgO(0.28%~0.56%)、P2O5(0.04%~0.08%)和MnO(0.03%~0.04%),富含大离子亲石元素(如Rb、Th、U、K)、亏损高场强元素(Nb、Ta、Zr、Hf),具有Eu、Sr负异常,高10,000Ga/Al比值(>2.76)、准铝质-弱过铝质且不含碱性暗色矿物,属于铝质A-型花岗岩;全岩εNdt)=-4.68、tDMC=2.70Ga,锆石εHft)=-12.0~-4.71、tDMC=3.22~2.78Ga,锆石δ18O=5.4‰~6.5‰(加权平均值为6.1‰),指示它们是古老基底物质部分熔融的产物。结合区域上的地质特征和研究资料,我们认为垣头A-型花岗岩体形成于碰撞后的伸展环境,标志着华北克拉通1.85Ga前后的造山运动的结束。
关键词: 古元古代末期     A-型花岗岩     岩石成因     构造意义     垣头岩体     华北克拉通南缘    
Petrogenesis of the Late Paleoproterozoic (~1.84Ga) Yuantou A-type granite in the southern margin of the North China Craton and its tectonic implications
DENG XiaoQin1, PENG TouPing2, ZHAO TaiPing3, QIU ZhiLi1     
1. School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Geological Process and Mineral Resource Exploration, Guangdong Provincial Key Laboratory of Geodynamic and Geological Hazards, Guangzhou 510275, China;
2. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
3. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: The North China Craton (NCC) has been successively recognized many Late Paleoproterozoic to Early Mesoproterozoic A-type granites, showing unique geochemistry characteristics and particular formation environment, which would provide further important insights into their petrogenesis and tectonic transition from the formation of crystalline basement to the deposition of stable sedimentary cover in NCC. Here we report systematic investigation on petrology, geochronology, elemental geochemistry, and Nd-Hf-O isotopic characteristics of the Yuantou pluton in the southern margin of the NCC. The results show that the Yuantou pluton mainly consists of syenogranite, which was emplaced at 1841±4Ma. All rocks are rich in ferroan(FeOT/(FeOT+MgO)=0.75~0.86) and alkaline (K2O+Na2O=8.11%~9.13%, K2O/Na2O>1), but poor in MgO (0.28%~0.56%), P2O5 (0.04%~0.08%) and MnO (0.03%~0.04%). Additionally, they show enrichment of LILEs (Rb, Th, U, K), depletion of HFSEs (Nb, Ta, Zr, Hf) with negative Eu and Sr anomalies. Their high 10, 000Ga/Al ratios (>2.76) with metaluminous to peraluminous characteristics, containing biotite without alkali mafic minerals, show an affinity to aluminous A-type granite. The Late Paleoproterozoic A-type granite displays low whole-rock εNd(t) value (-4.68) with two-stage Nd model age of 2.70Ga, low zircon εHf(t) values (-12.0~-4.71) with zircon two-stage Hf model ages of 3.22~2.78Ga, and high zircon δ18O values (5.4‰ to 6.5‰, weighted mean=6.1‰), indicating that the Yuantou A-type granite was derived predominantly from partial melting of the ancient continental crust. Combined with above results and regional geological data, the Yuantou A-type granite was related to the underplating of mafic magmas in a post-collisional regime, marking the end of~1.85Ga orogenic movement in the NCC.
Key words: Late Paleoproterozoic     A-type Granite     Petrogenesis     Tectonic implications     Yuantou pluton     Southern margin of the North China Craton    

A-型花岗岩具有独特的地球化学特征和特定的形成条件,对其形成的构造环境也含有重要的指示意义(Collins et al., 1982; King et al., 1997; Eby, 1990, 1992; Bonin, 2007)。它们普遍具有富碱,高Fe/(Fe+Mg)、Rb/Sr和HFSE,贫Ca、Fe和Mg,强烈亏损Eu、Sr、Ba、P和Ti,且Eu负异常明显的特点,包括幔源、壳源和壳-幔混合等多种成因类型(Collins et al., 1982; Rämö et al., 1995; King et al., 1997; Yang et al., 2006; Shellnutt et al., 2009; Frost and Frost, 2011; Huang et al., 2011)。这些A-型花岗岩通常形成于伸展的构造背景,如碰撞后、裂谷或者地幔柱等(包志伟等, 2009;高山林等, 2013;邓小芹等, 2015; Whalen et al., 1987; Eby, 1990, 1992; Rämö et al., 1995; Bonin, 2007; Shellnutt et al., 2009; Zhao and Zhou, 2009; Deng et al., 2016a, b ; Zhao et al., 2018)。近些年的研究工作发现,A-型花岗岩也可以形成于局部挤压但整体为伸展的环境中,但是非常有限,即便是在俯冲带,A-型花岗岩的形成也多与地壳的拉张和基性岩浆的底侵作用有关(吴福元等, 2007; Frost et al., 2007; Dall’Agnol et al., 2012)。因而A-型花岗岩可能指示不同的动力学机制和构造环境背景,对于厘清区域构造-岩浆演化的深部动力学过程具有至关重要的作用(Whalen et al., 1987; Anderson and Bender, 1989; Rämö et al., 1995; Dall’Agnol et al., 2012)。

华北克拉通记录了世界上几乎所有主要的前寒武纪地质事件,具有复杂的演化过程(Zhai et al., 2011),其中东部、西部陆块沿着中部造山带在~1.85Ga发生碰撞最终拼合形成了统一的华北克拉通(Zhao et al., 2008a; Zhao and Cawood, 2012)。一般认为“吕梁运动”是华北克拉通结晶基底最终形成的标志性构造-热事件(白瑾等, 1996;赵宗溥, 1993),此后开始发育以长城系为代表的沉积盖层。在华北克拉通南缘中元古代早期(本文中元古代以1.8Ga作为起始年龄,全国地层委员会,2002赵太平等,2015及其参考文献)发育一套巨厚的、未发生变质变形的熊耳群火山-沉积岩系和同期的基性岩墙(任富根等, 2000;彭澎等, 2004, 2011;赵太平等, 2004;胡国辉等, 2010; Peng et al., 2008; Zhao et al., 2009; Peng, 2015),以及多期次碱性岩和A-型花岗质岩浆活动(任富根等, 2000;陆松年等, 2003;包志伟等, 2009;万渝生等, 2009;柳晓艳, 2011;邓小芹等, 2015;师江朋等, 2017; Zhao and Zhou, 2009; Wang et al., 2013; Zhang et al., 2013; Deng et al., 2016a, b ; Zhao et al., 2018)。这些特殊类型的岩石具有特征性的成岩机理和构造意义,可为华北克拉通由结晶基底的形成向稳定盖层发育时期构造环境的转折提供重要信息(赵太平等, 2015)。尤其是发育于构造体制转折初期(古元古代末-中元古代早期)的A-型花岗岩,暗示大陆地壳演化与板块构造、地球动力学之间具有紧密联系(Bonin, 2007; Dall’Agnol et al., 2012),但其岩石成因和构造背景还存在争议(Zhao and Zhou, 2009; Zhang et al., 2013)。

因此,本文选取了华北克拉通南缘小秦岭地区的垣头花岗质岩体进行系统的岩石学、锆石年代学、元素地球化学和Nd-Hf-O同位素组成研究,以期了解该岩体的形成时代、揭示其岩石成因和构造环境,可以为丰富华北克拉通南缘古-中元古代岩浆事件提供资料,也为探讨华北克拉通南缘古元古代末-中元古代早期可能经历的构造演化过程提供重要信息。

1 岩体地质及岩相学特征

垣头岩体(据陕西省地质矿产局, 1989;也被称为驾鹿岩体, 柳晓艳, 2011)位于华北克拉通南缘小秦岭地区,陕西省商洛市洛南县驾鹿乡高山河村与华阴市华阳县垣头村之间,出露面积约15km2,总体呈EW向展布(图 1)。该岩体距离北部华山岩体(133.8±1.1Ma, 郭波等, 2009)约20km,距离东部小河岩体(1400~1500Ma,陕西省地质矿产局, 2012)约6km。垣头岩体由花岗质岩石组成,围岩为太华群的黑云母斜长片麻岩和片麻状黑云母二长花岗岩,与围岩呈侵入接触关系(柳晓艳, 2011陕西省地质矿产局, 1989)。此外,研究区内还出露有中元古代熊耳群和高山河组地层,以及古-中元古代和中生代花岗岩(图 1)。

图 1 华北克拉通地质简图(a)、研究区在华北南缘的位置(b,据Deng et al., 2016a)和垣头岩体地质简图(c, 据陕西省地质矿产局, 1989) Fig. 1 Simplified geological map of the NCC (a), the position of the study area in the southern margin of the NCC (b, modified after Deng et al., 2016a) and simplified geological map of the Yuantou pluton (c, after BGMRS, 1989)

垣头正长花岗岩侵入太华群黑云母斜长片麻岩和片麻状黑云母二长花岗岩中,呈灰白色(图 2a)。主要矿物组成为钾长石(45%~50%)、斜长石(18%~25%)、石英(~18%)和少量的黑云母(8%),以及褐帘石、磁铁矿等副矿物(3%)(图 2b, c)。钾长石系列的微斜长石、正长石和条纹长石均有出现。可见微斜长石的格子双晶、正长石的卡式双晶(图 2c)和斜长石的聚片双晶。长石多发生绢云母化、绿帘石化(图 2b, c)。黑云母多分布在钾长石和石英等颗粒的间隙(图 2b)。

图 2 垣头岩体野外照片和显微照片 (a)垣头花岗岩侵入到太华群片麻岩;(b、c)花岗岩中的钾长石主要为条纹长石和微斜长石,正长石可见卡式双晶,斜长石多发生绿帘石化.矿物缩写:Kfs-钾长石;Q-石英;Bi-黑云母;Ep-绿帘石化;Ser-绢云母化 Fig. 2 Field outcrop (a) and micrographs (b, c) of the Yuantou pluton

从垣头岩体中选择了7个样品进行主、微量测试分析。其中,选取1个代表性花岗岩样品(YT-1:N34°22′48″、E110°05′19″)进行进一步锆石U-Pb定年、Hf-O同位素和全岩Nd同位素分析。

2 测试方法

本文锆石样品制靶和阴极发光(CL)照相均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。样品YT-1制成两个锆石靶YT-1-1和YT-1-2。锆石样品(YT-1-1)LA-ICPMS U-Pb测年在合肥工业大学资源与环境工程学院完成,测试仪器型号为Agilent 7500a,激光剥蚀系统为ComPex102 ArF准分子激光剥蚀系统,激光束斑直径为32μm,激光脉冲重复频率为6Hz(闫峻等, 2012)。锆石样品(YT-1-2)U-Pb测年分析在中国科学院广州地球化学研究所完成,测试仪器为Cameca IMS-1280型二次离子质谱仪,用强度为10nA一次O2-离子束通过-13kV加速电压轰击样品表面,二次离子经过60eV能量窗过滤,束斑约为20μm×30μm,质量分辨率为5400。每个样品点分析7组数据,测量时间约13min。单点分析的同位素比值及年龄误差为1σ,U-Pb平均年龄误差为95%置信度(Li et al., 2009)。

锆石U-Pb年龄测定后,样品YT-1-1再在原位用LA-MC-ICPMS进行Lu-Hf同位素分析。测试仪器为Thermo公司制造的Neptune型多接收电感耦合等离子体质谱(LA-MC-ICPMS),加载德国Lamda Physik公司制造的Geolas193nm准分子激光取样系统,在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。其激光束直径约为32μm,剥蚀频率为8Hz,能量密度为15~20J/cm2,剥蚀时间约60s。

样品YT-1-2的锆石原位O同位素测试在中国科学院广州地球化学研究所的Cameca IMS-1280型双离子源多接收器二次离子质谱仪上进行。该样品的O同位素测试在其U-Pb测年之前完成,以免遭受U-Pb定年时造成的氧污染。仪器质量分馏校正采用91500锆石标准和Penglai锆石巨晶,本次分析数据的平均值均与参考值在误差范围内是一致的。测量的18O/16O比值通过VSMOW(Vienna Standard Mean Ocean Water,18O/16O=0.0020052)值校正后,再加上仪器质量分馏校正因子IMF即为该点的δ18O值:(δ18Ο)M=((18O/16OM)/0.0020052-1)×1000 (‰),IMF=(δ18O)M(standard)-(δ18O)VSMOWδ18OSample=(δ18O)M+IMF。详细的分析流程见Li et al. (2009)

全岩主、微量元素分析分别在中国科学院广州地球化学研究所同位素地球化学国家重点实验室Rigaku ZSX 100e型荧光光谱仪(XRF)、PE Elan 6000型电感耦合等离子体-质谱仪(ICP-MS)上完成,详细分析见刘颖等(1996)。全岩Nd同位素测试则在中国科学技术大学地球与空间科学学院壳幔物质与环境重点实验室完成。称取~100 mg的全岩粉末样品,加入适量的149Sm-150Nd稀释剂和纯化的HF-HClO4混合试剂,在高温下将其完全溶解。Sm、Nd的分离和纯化在石英交换柱上用1.7mL的Teflon粉末作为交换介质完成,将含有Sm、Nd的溶液在电热板上蒸干以备下一步测试。Sm-Nd同位素比值分析在Triton热电离质谱仪上利用平行双灯丝构件的离子源完成。149Sm/152Sm和147Sm/152Sm比值用149Sm/152Sm=0.516858进行标准化处理,143Nd/144Nd比值用146Nd/144Nd=0.721900作为同位素校正因子,衰变常数λ 147Sm=6.54×10-12/yr,测试精度优于0.003%。

3 测试结果 3.1 锆石U-Pb年龄

本文对垣头岩体中的1个花岗岩样品(YT-1)分别进行了锆石LA-ICPMS(YT-1-1)和SIMS U-Pb(YT-1-2)定年。其锆石多为无色透明-半透明,呈长柱状或粒状,自形程度较好,粒径在80~130μm之间,长宽比值范围为11~21,CL图像上显示明显的韵律性成分环带(图 3a, b)。锆石的Th/U比值相对较高且变化范围较大(0.3~2.3),与典型的岩浆锆石特征相似(Belousova et al., 2002)。

图 3 垣头岩体锆石阴极发光图像(a、b)、LA-ICPMS年龄图(c)和SIMS年龄图(d) Fig. 3 Zircon cathodoluminescence images (a, b) and U-Pb concordia diagrams (c, d) from the Yuantou pluton

锆石LA-ICPMS测试中,对于花岗岩样品YT-1-1中25个测试点,有4个207Pb/206Pb值较大的点:YT-1-1-13(2417±35Ma)、YT-1-1-19(1880±36Ma)、YT-1-1-20(2067±88Ma,误差较大)和YT-1-1-25(2213±28Ma),锆石均具有较高的Th/U比值(>0.3),与小秦岭地区太华群的形成年龄(2.45~2.20Ga, 第五春荣等, 2010; Diwu et al., 2014)或变质年龄(1.97~1.82Ga, Diwu et al., 2014)一致,可能是围岩太华群中的老锆石。其余测试点组成上交点年龄(1810±21Ma,MSWD=0.84),与谐和点加权平均年龄1800±32Ma(n=5)基本一致(图 3c)。LA-ICPMS锆石U-Pb测年分析结果见表 1

表 1 垣头岩体锆石LA-ICPMS U-Pb测年分析数据 Table 1 LA-ICP-MS zircon U-Pb results for the Yuantou pluton

同时对花岗岩样品YT-1-2进行了13个点的锆石SIMS年龄测试,207Pb/206Pb值从1846±6Ma变化到1697±10Ma,得到的上交点年龄为1834±23Ma(MSWD=0.44),与谐和点加权平均年龄1841±4Ma(n=5)基本一致(图 3d)。SIMS锆石U-Pb测年分析结果见表 2

表 2 垣头岩体锆石SIMS U-Pb测年分析数据和O同位素数据 Table 2 SIMS zircon U-Pb results and O isotope data for the Yuantou pluton

垣头岩体花岗岩样品中的锆石大部分测试点呈不谐和线性分布,可能是由于Pb丢失造成的。本文选取高精度SIMS测试样品(YT-1-2)的锆石年龄1841±4Ma作为垣头花岗岩的形成年龄,与柳晓艳(2011)曾获得该岩体正长花岗岩1840±8Ma的形成年龄在误差范围内是一致的。

3.2 全岩主-微量元素

对垣头岩体中7个花岗岩样品进行主量元素分析,其含量列于表 3。花岗岩总体高硅(SiO2=69.85%~72.92%),富碱(K2O+Na2O=8.11%~9.13%)、高K2O/Na2O比值(1.4~3.1),低MgO(0.28%~0.56%)、CaO(0.54%~1.95%)、P2O5(0.04%~0.08%)和MnO(0.03%~0.04%)。它们的A/CNK值范围为0.93~1.07,且A/NK值均大于1,属于准铝质-弱过铝质花岗岩(图 4a),显示碱钙质特征(图 4b)。在Harker图解中,垣头岩体花岗岩的SiO2与TiO2、MgO、CaO和P2O5呈负相关性,与Fe2O3T和Al2O3之间没有显示规律性的变化特征(图 5)。

表 3 垣头岩体主量(wt%)、微量(×10-6)元素数据 Table 3 Major (wt%) and trace (×10-6) element concentrations of the Yuantou pluton

图 4 垣头花岗岩地球化学图解(据Wilson, 1989) (a) A/NK-A/CNK图;(b) (K2O+Na2O-CaO)-SiO2 Fig. 4 Classification plots of A/CNK vs. A/NK (a) and SiO2 vs. (K2O+Na2O-CaO) (b) for the Yuantou pluton (after Wilson, 1989)

图 5 垣头花岗岩Harker图解 Fig. 5 Harker variation diagrams for the Yuantou pluton

垣头岩体花岗岩的微量元素数据见表 3,其稀土元素总量(∑REE)为120×10-6~277×10-6。在球粒陨石标准化稀土元素分布模式图上(图 6a),所有样品展示出相似的平滑右倾型特征,轻、重稀土分异明显((La/Yb)CN分别为31.3~85.4、28.5~54.6),以及明显的Eu负异常(δEu分别为0.52~0.72,0.53~0.86)。在原始地幔标准化微量元素蛛网图上(图 6b),花岗岩样品显示Rb、Th、U、K等大离子亲石元素的富集,以及Sr、Ti、P、Nb和Ta等元素的亏损。稀土和微量元素说明垣头岩体在岩浆演化过程中可能存在长石、磷灰石和Fe-Ti氧化物等矿物强烈的结晶分异作用。

图 6 垣头花岗岩球粒陨石标准化稀土元素分布模式图(a)和原始地幔标准化微量元素图解(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams (b) of the Yuantou pluton (normalization values after Sun and McDonough, 1989)
3.3 全岩Nd同位素

对垣头中的样品YT-1进行了全岩Nd同位素分析(表 4)。其143Nd/144Nd初始比值为0.510942,εNd(t)为-4.68,二阶段Nd模式年龄(tDMC)为2.70Ga,暗示它们可能来自比较老的源区(由于本文全岩Nd同位素测试样品少,同位素分析主要参考下面的锆石Hf-O同位素)。

表 4 垣头岩体全岩Nd同位素数据 Table 4 Whole-rock Nd isotopic data of the Yuantou pluton
3.4 锆石Hf-O同位素组成

Hf同位素结果显示(表 5),测试锆石的176Lu/177Hf比值均小于0.002,平均值为0.000744,表明锆石在形成以后,具有极低的放射性成因Hf的积累。它们的176Hf/177Hf同位素比值分布于0.281306~0.281511之间,平均值为0.281415。按照t=1.84Ga计算,εHf(t)值为-12.0~-4.71,变化范围较大(图 7a),二阶段Hf模式年龄(tDMC)为3.22~2.78Ga。

表 5 垣头岩体锆石Hf同位素数据 Table 5 LA-MC-ICPMS zircon Hf isotopic compositions of the Yuantou pluton

图 7 垣头花岗岩锆石原位微区Hf同位素组成(a)和O同位素组成(b,地幔δ18O值据Valley et al., 1998) Fig. 7 Zircon εHf(t) (a) and δ18O (b, mantel value after Valley et al., 1998) data histograms of the Yuantou pluton

锆石O同位素分析结果表明(表 2图 7b),垣头花岗岩具有较高的δ18O值(5.4‰~6.5‰,加权平均值为6.1‰±0.1‰),略高于正常地幔的δ18O值(5.3‰±0.3‰, Valley et al., 1998),而与大多数花岗岩中岩浆锆石的O同位素组成(δ18O=5‰~10‰, Bindeman, 2008)相似,揭示了其主要来自地壳的源区特征。

4 讨论 4.1 岩石属性判别:铝质A-型花岗岩

A-型花岗岩最初是在1979年美国地质协会年会上提出的一个岩石学术语,特指碱性的(alkaline)、无水的(anhydrous)和非造山的(anorogenic)花岗岩,侵位于裂谷带和稳定陆块内部(Loiselle and Wones, 1979)。A-型花岗岩具有标志性的矿物组成——碱性暗色矿物,如钠闪石-钠铁闪石、霓石-霓辉石、铁橄榄石等;具有独特的地球化学特征,含有高的Fe/(Fe+Mg)、(K+Na)/Al、K/Na和Ga/Al比值,富集不相容元素(LILE和HFSE),亏损镁铁质硅酸盐(Sc、Cr、Ni)和长石(Ba、Sr、Eu)等矿物相容的元素(Loiselle and Wones, 1979; Collins et al., 1982; Whalen et al., 1987)。但随着世界各地对A-型花岗岩研究的深入,其定义发生了很大变化。例如有些A-型花岗岩并不贫水,不少A-型花岗岩是准铝质-过铝质而非过碱性的(Eby, 1990; King et al., 1997),且大多形成于造山后而不是非造山的构造环境(Eby, 1990, 1992; Bonin, 2007)。

King et al. (1997)通过对澳大利亚Lachlan褶皱带中A-型花岗岩的特征和成因的研究,确切的提出了“铝质A-型花岗岩”的概念(准铝质-弱过铝质特征),以区别于传统定义的“过碱性A-型花岗岩”。过碱性A-型花岗岩和铝质A-型花岗岩在矿物学、岩石学和地球化学特征上有明显的差异。过碱性A-型花岗岩以碱性花岗岩为主,通常发育钠闪石-钠铁闪石,霓石-霓辉石、铁橄榄石等碱性暗色矿物;铝质A-型花岗岩以正长花岗岩、碱长花岗岩为主,暗色矿物主要是普通角闪石和/或黑云母,且偶尔含石榴石和白云母等矿物(Wu et al., 2002)。从主量元素特征上看,前者富碱,后者相对富铝,通常可根据全岩成分的A/NK-A/CNK图解进行鉴别。从微量元素特征看,过碱性A-型花岗岩具有相对弱的轻重稀土分馏,但负Eu异常更为强烈。目前,根据岩石成分将A-型花岗岩两分为铝质和过碱性的方案已经得到了国内外同行的认可和广泛使用(Patiño Douce, 1997; Wu et al., 2002; Bonin, 2007; Shellnutt et al., 2009; Zhou et al., 2014; Deng et al., 2016a, b )。

综合以上资料,垣头岩体花岗岩具有铝质A-型花岗岩的矿物学和地球化学特征:(1)含有较高的铁值(FeOT/(FeOT+MgO),范围在0.75~0.86,落于铁质、碱钙质A-型花岗岩的区域(表 3图 4b);(2)富含大离子亲石元素(如Rb,Th,U)、亏损高场强元素(Nb、Ta、Zr、Hf),具有Eu、Sr负异常;(3)其总碱(K2O+Na2O)含量高范围在8.11%~9.13%,而且K2O/Na2O均大于1(1.4~3.1),属于富钾富碱岩石;(4)具有高10, 000Ga/Al比值(>2.76),在A-型花岗岩的判别图中,垣头岩体样品都投于A-型花岗岩的区域(图 8);(5)其A/CNK值范围为0.9~1.14(图 4a),同时含有黑云母而不含碱性暗色矿物(图 2),表现为铝质A-型花岗岩的特点。

图 8 A-型花岗岩判别图解(据Whalen et al., 1987) Fig. 8 Discrimination diagrams of A-type granite (after Whalen et al., 1987)
4.2 岩石成因和源区特征

A-型花岗岩的成因争议主要集中在源区和成岩过程,归结起来有以下几类:1)幔源碱性玄武岩发生分离结晶(Shellnutt et al., 2009);2)继I型或者S型岩浆分异抽取之后的富含F/Cl的下地壳麻粒岩残留体(residual-source)在高压下的部分熔融(Collins et al., 1982; Whalen et al., 1987; King et al., 1997);3)结晶基底或者变质沉积岩的部分熔融(Rämö et al., 1995; Frost and Frost, 2011; Huang et al., 2011; Zhou et al., 2014);或4)壳-幔岩浆混合作用(Yang et al., 2006)。

研究区内铝质A-型花岗岩具有高SiO2,低MgO(< 1%)、TiO2和FeOT含量,富集大离子亲石元素(Rb、Th、U、K等),亏损高场强元素(Nb、Ta、Zr、Hf等),而明显亏损Sr、Eu元素(图 6),显示出地壳来源的特征。尽管幔源岩浆强烈的结晶分异也可能会产生少量的低Sr、Eu花岗岩,但是通常会伴随着大规模的镁铁质岩浆作用,且产生的是相对应的碱性花岗质岩石,这与直接从幔源岩浆分离结晶的产物不相符合。重要的是,大多数垣头A-型花岗岩具有高于正常地幔的δ18O组成(加权平均值为6.1‰±0.1‰),也与地幔来源的岩浆不一致。此外,早期学者提出的长英质岩浆出熔之后的残余麻粒岩质下地壳物质模型(Collins et al., 1982),已被后来的实验岩石学证明如此的残余下地壳物质部分熔融不可能析出A-型花岗质岩浆(Creaser et al., 1991)。

实验岩石学研究进一步表明,钙碱性花岗质岩石,如英云闪长质-花岗闪长质岩石在地壳浅部(≤20km)脱水形成干的紫苏花岗岩,并进一步发生高温部分熔融可以产生铝质A-型花岗质熔体(Creaser et al., 1991; Patiño Douce, 1997; Zhao et al., 2008b; Frost and Frost, 2011)。垣头岩体具有较高的SiO2含量,低MgO、TiO2和Fe2O3T含量,富集Zr和亏损Sr、Eu,并具有强烈的负Eu和Sr异常,均与这些钙碱性花岗岩部分熔融产生的实验熔体特征非常相似,说明垣头花岗岩来源于浅部地壳部分熔融。事实上,垣头花岗岩的二阶段Hf和Nd模式年龄分别为3.22~2.78Ga、2.70Ga,远比岩体形成年龄(1.84Ga)要大,暗示这些花岗岩主要来源于古老的地壳源区,例如该区广泛存在的基底物质——太华群(图 7a图 9)。这也与铝质A-型花岗岩源区为长英质地壳(Creaser et al., 1991; Patiño Douce, 1997)的观点一致。此外,结合O同位素数据,显示垣头岩体具有较高的δ18O组成(加权平均值为6.1‰±0.1‰,图 7b),也表明垣头A-型花岗岩是古老(3.22~2.78Ga)基底物质部分熔融的产物。

图 9 垣头花岗岩εHf(t)-t图解 太华群数据见第五春荣等(2010)Diwu et al. (2014)邓小芹等(2015)及其内参考文献 Fig. 9 εHf(t) vs. t diagram of the Yuantou granite
4.3 构造意义

A-型花岗岩具有特征性的构造指示意义,通常形成于碰撞后、裂谷或者地幔柱等伸展的构造环境中(包志伟等, 2009;高山林等, 2013;邓小芹等, 2015; Whalen et al., 1987; Eby, 1990, 1992; Rämö et al., 1995; Bonin, 2007; Shellnutt et al., 2009; Zhao and Zhou, 2009; Deng et al., 2016a, b ; Zhao et al., 2018)。判别A-型花岗岩构造环境最为普遍的方法是通过地球化学投点,依据如Pearce et al. (1984)Pearce (1996)Eby(1990, 1992)等提出的构造环境图解进行初步判别,同时结合区域地质资料综合分析得出其构造环境。通过Pearce et al. (1984)Pearce (1996)构造环境判别图解可以看出(图略),垣头岩体并非落于板内/碰撞后的构造环境区域,而暗示其为局部受挤压的碰撞环境。在板块构造体系中,以局部张力或横向构造(转换挤压/转换拉伸)为特点的局部压力作用下,相对刚硬、薄弱的板片会发生断离(拆沉作用),从而可以使整体区域呈现拉张的特点(Dall’Agnol et al., 2012)。由此,垣头岩体可能形成于碰撞后/造山后阶段与岩石圈减薄或拆沉有关的软流圈地幔上涌引起的伸展相关的环境。

现有资料显示,全球A-型花岗岩在古元古代及其之前非常稀少,而在古元古代末期(中元古代早期)开始大量出现(Whalen et al., 1987; Anderson and Bender, 1989; Rämö et al., 1995; Dall’Agnol et al., 2012),这种通常形成于伸展背景的花岗岩的出现,与其它地质事件一起暗示了大陆演化过程中的构造体制转变(Zhai et al., 2011)。大量的构造地质学、岩石学、变质地质学、地球化学和地质年代学资料显示,几乎所有的早前寒武纪岩石都遭受了古元古代(峰期1.85Ga)广泛的变质变形,在古元古代末期发生陆-陆碰撞并在~1.85Ga完成最终拼合(翟明国等, 2014及其参考文献; Lu et al., 2008; Zhao et al., 2008a, 2012; Zhai et al., 2011; Zhao and Cawood, 2012)。这一构造-热事件被称为“吕梁运动”(白瑾等, 1996;赵宗溥, 1993)。华北克拉通1.85~1.80Ga岩浆活动记录也逐渐被识别出来,例如吕梁会家庄花岗岩(1854±20Ma, Zhao et al., 2018)、蒙阴辉绿岩墙(1841±17Ma, Wang et al., 2007)、泰山辉绿岩墙(1837±18Ma, Hou et al., 2006)、内蒙古孔兹岩地层中的S型花岗岩(1837±40Ma, 郭敬辉等, 1999)、桑干地区石榴石花岗岩(1836±18Ma, 郭敬辉等, 1999)、吕梁胡家庄片麻状花岗岩(1832±11Ma, Zhao et al., 2008a)、西榆皮花岗岩脉(1830±21Ma, Zhao et al., 2018)、芦芽山紫苏花岗岩(1815±5Ma, Zhao et al., 2008a)、辽西建平簸箕山-断石洼石英正长岩(1835±27Ma, 任康旭等, 2006)、以及吕梁(1805±8Ma, 耿元生等, 2006)-胶北(1801±21Ma, Liu et al., 2014)-淮安(1806±15Ma, Wang et al., 2010)-贺兰山(1803±15Ma, 高山林等, 2013)等地A-型花岗岩。随后发育的一系列岩浆岩,包括1.80~1.75Ga熊耳群双峰式火山岩(赵太平等, 2004; Zhao et al., 2002)和1.68~1.62Ga长城系火山-沉积建造(Lu et al., 2008),以及与它们同期的基性岩墙群(彭澎等, 2004, 2011;胡国辉等, 2010; Wang et al., 2004, 2008; Peng et al., 2008; Peng, 2015)和1.72~1.60Ga的斜长岩-环斑花岗岩、碱性岩-碱性花岗岩等非造山岩浆活动(包志伟等, 2009; Zhao et al., 2009; Zhao and Zhou, 2009; Zhang et al., 2013; Wang et al., 2013),均表明华北克拉通从1.85Ga已经处于持续的区域伸展环境中。

在华北克拉通南缘分布一条碱性岩-碱性花岗岩带,呈东西向展布长约400km,地质学者们从中相继发现了大量的古元古代末-中元古代早期A-型花岗岩:如~1.84Ga本文垣头花岗岩和~1.83Ga小秦岭北矿带秦南-大湖正长岩(马桂霞等, 2013);~1.80Ga摩天寨花岗岩(Zhao and Zhou, 2009)、桂家峪花岗岩(Deng et al., 2016b)和上店花岗斑岩和登封正长花岗岩(师江朋等, 2017);以及1.78~1.75Ga石秤花岗岩(万渝生等, 2009; Zhao and Zhou, 2009; Zhang et al., 2013);1.64Ga庙岭霓辉正长岩(任富根等, 2000),1.60Ga龙王花岗岩(陆松年等, 2003;包志伟等, 2009; Wang et al., 2013)和麻坪花岗斑岩(柳晓艳, 2011;邓小芹等, 2015);以及1.53Ga张家坪花岗岩(Deng et al., 2016a)等。这些A-型花岗岩的出现,暗示华北克拉通南缘在~1.84Ga已经显示为伸展环境。

因此,本文所研究的垣头花岗岩,与华北其它地区同期的岩浆作用一起,代表了一期整体伸展的岩浆-热事件,暗示华北克拉通造山运动结束之后的伸展活动。结合区域岩浆作用呈带状产出特征,我们倾向于认为古元古代末期的岩浆作用是由于陆-陆发生碰撞并完成克拉通最终拼合,因俯冲板片拆沉机制而引发了之后的碰撞后/造山后伸展(Deng et al., 2016b)构造体制转折,即,华北克拉通在早期俯冲板片发生断离?引发软流圈地幔的上涌,造成地温梯度增大致使受俯冲板片脱水交代的岩石圈地幔发生部分熔融,产生的基性岩浆上升,并底侵中-下地壳,提供热能促使古老基底物质部分熔融,随着伸展作用进一步扩大,形成上述~1.84Ga垣头岩体和其后的A-型花岗岩。这些A-型花岗岩的形成,标志着华北克拉通1.85Ga前后的造山运动的结束,而其后(~1.78Ga)的熊耳群双峰式火山岩以及同期或稍晚的基性岩墙群等则可能是受地幔柱作用影响的岩浆活动(彭澎等, 2004; Peng et al., 2008)。

5 结论

(1) 华北克拉通南缘垣头岩体的形成时代为古元古代末期1841±4Ma。

(2) 垣头岩体全岩样品具有富碱、高铁质、高Ga/Al比值、准铝质-弱过铝质且不含碱性暗色矿物等特征,显示为铝质A-型花岗岩。

(3) 垣头岩体A-型花岗岩来源于基性岩浆底侵作用下的古老基底物质部分熔融;形成于碰撞后的伸展环境中,暗示华北克拉通在~1.84Ga已经由挤压向伸展环境转变,标志着华北克拉通1.85Ga前后的造山运动的结束。

致谢      野外工作中得到了中国科学院地质与地球物理研究所周艳艳博士、中国科学院广州地球化学研究所孙乾迎博士的帮助;审稿人张成立教授、赵新福教授、包志伟研究员和张华峰教授提出许多宝贵意见。在此对他们表示衷心感谢!

参考文献
All China Commission of Stratigraphy. 2002. The Instruction Book of Regional Chronostratigraphic (Geological Time) Scale in China. Beijing: Geological Publishing House (in Chinese)
Anderson JL and Bender EE. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23(1-2): 19-52 DOI:10.1016/0024-4937(89)90021-2
Bai J, Huang XG and Wang HC, et al. 1996. The Precambrian Crustal Evolution of China. Beijing: Geological Publishing House (in Chinese)
Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of North China Craton:Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522 (in Chinese with English abstract)
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Bindeman I. 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478 DOI:10.2138/rmg.2008.69.12
Bonin B. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29 DOI:10.1016/j.lithos.2006.12.007
Bureau of Geology and Mineral Resources of Shaanxi Province (BGMRS). 1989. Regional Geology of Shaanxi Province. Beijing: Geological Publishing House (in Chinese)
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology, 19(2): 163-166
Dall'Agnol R, Frost CD and Rämö OT. 2012. IGCP Project 510 "A-type granites and related rocks through time":Project vita, results, and contribution to granite research. Lithos, 151: 1-16 DOI:10.1016/j.lithos.2012.08.003
Deng XQ, Zhao TP, Peng TP, Gao XY and Bao ZW. 2015. Petrogenesis of 1600Ma Maping A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 31(6): 1621-1635 (in Chinese with English abstract)
Deng XQ, Zhao TP and Peng TP. 2016a. Age and geochemistry of the Early Mesoproterozoic A-type granites in the southern margin of the North China Craton:Constraints on their petrogenesis and tectonic implications. Precambrian Research, 283: 68-88 DOI:10.1016/j.precamres.2016.07.018
Deng XQ, Peng TP and Zhao TP. 2016b. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton:Petrogenesis and tectonic implications. Precambrian Research, 285: 127-146 DOI:10.1016/j.precamres.2016.09.013
Diwu CR, Sun Y, Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua Complex on the southern margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557-2571 DOI:10.1007/s11434-010-3273-6
Diwu CR, Sun Y, Zhao Y and Lai SC. 2014. Early Paleoproterozoic (2.45~2.20Ga) magmatic activity during the period of global magmatic shutdown:Implications for the crustal evolution of the southern North China Crato. Precambrian Research, 255: 627-640 DOI:10.1016/j.precamres.2014.08.001
Eby GN. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134 DOI:10.1016/0024-4937(90)90043-Z
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Frost CD, Rämö OT and Dall'Agnol R. 2007. IGCP project 510-A-type granites and related rocks through time. Lithos, 97(1-2): Vii-Xiii DOI:10.1016/j.lithos.2007.01.006
Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids:Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53 DOI:10.1093/petrology/egq070
Gao SL, Lin JY and Lu YJ. 2013. Formation epoch and its geological implications of Paleoprotozoic A-type granite in Shizuizi of Jingyuan County, Ningxia Province. Acta Petrologica Sinica, 29(8): 2676-2684 (in Chinese with English abstract)
Geng YS, Yang CH and Wan YS. 2006. Paleoproterozoic granitic magmatism in the Luliang area, North China Craton:Constraint from isotopic geochronology. Acta Petrologica Sinica, 22(2): 305-314 (in Chinese with English abstract)
Guo B, Zhu LM, Li B, Gong HJ and Wang JQ. 2009. Zircon U-Pb age and Hf isotope composition of the Huashan and Heyu granite plutons at the southern margin of North China Craton:Implications for geodynamic setting. Acta Petrologica Sinica, 25(2): 265-281 (in Chinese with English abstract)
Guo JH, Shi X, Bian AG, Xu RH, Zhai MG and Li YG. 1999. Pb isotopic composition of feldspar and U-Pb age of zircon from early Proterozoic granite in Sanggan area, North China craton:Metamorphism, crustal melting and tectono-thermal event. Acta Petrologica Sinica, 15(2): 199-207 (in Chinese with English abstract)
Hou GT, Liu YL and Li JH. 2006. Evidence for~1.8Ga extension of the eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401 DOI:10.1016/j.jseaes.2005.05.001
Hu GH, Hu JL, Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1.78Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563-1576 (in Chinese with English abstract)
Huang HQ, Li XH, Li WX and Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39(10): 903-906 DOI:10.1130/G32080.1
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010
Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL and Wang F. 2014. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255: 685-698 DOI:10.1016/j.precamres.2013.12.004
Liu XY. 2011. Chronological, petrological and geochemical characteristics of the paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences
Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract)
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological of Society of America, 11(7): 468
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research, 160(1-2): 77-93 DOI:10.1016/j.precamres.2007.04.017
Ma GX, Liu FY, Su L, Han YG and Wang QH. 2013. LA-ICP-MS zircon U-Pb age from the Proterozoic syenite in Xiaoqinling area in the North China Craton and its geological implications. Journal of Jilin University (Earth Science Edition), 43(5): 1457-1470 (in Chinese with English abstract)
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125
Peng P, Zhai MG, Zhang HF, Zhao TP and Ni ZY. 2004. Geochemistry and geological significance of the 1.8Ga mafic dyke swarms in the North China Craton:An example from the juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrologica Sinica, 20(3): 439-456 (in Chinese with English abstract)
Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China craton:The Xiong'er volcanic province and the North China dyke swarm. Lithos, 101(3-4): 260-280 DOI:10.1016/j.lithos.2007.07.006
Peng P, Liu F, Zhai MG and Guo JH. 2012. Age of the Miyun dyke swarm:Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110 DOI:10.1007/s11434-011-4771-x
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Sciences), 58(5): 649-675 DOI:10.1007/s11430-014-5026-x
Rämö OT, Haapala I, Vaasjoki M, Yu JH and Fu HQ. 1995. 1700Ma Shachang complex, northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815-818 DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
Ren FG, Li HM, Yin YJ, Li SB, Ding SY and Chen ZH. 2000. The upper chronological limit of Xionger Group's volcanic rock series, and its geological significance. Progress in Precambrian Research, 23(3): 140-146 (in Chinese with English abstract)
Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB and Chu ZY. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract)
Shellnutt JG, Wang CY, Zhou MF and Yang YH. 2009. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China):Constraints on the mantle source. Journal of Asian Earth Sciences, 35(1): 45-55 DOI:10.1016/j.jseaes.2008.12.003
Shi JP, Yang DB, Huo TF, Yang HT, Xu WL and Wang F. 2017. The geochronology and Nd-Hf isotope compositions of A-type granites on the southern margin of North China Craton:Constraints on the Late Paleoproterozoic extensional events. Acta Petrologica Sinica, 33(10): 3042-3056 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Valley JW, Kinny PD, Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11 DOI:10.1007/s004100050432
Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX and Gao LZ. 2009. Early Precambrian crustal evolution in the Dengfeng area, Henan Province (eastern China):Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract)
Wang J, Wu YB, Gao S, Peng M, Liu XC, Zhao LS, Zhou L, Hu ZC, Gong HJ and Liu YS. 2010. Zircon U-Pb and trace element data from rocks of the Huai'an Complex:New insights into the late Paleoproterozoic collision between the Eastern and Western blocks of the North China Craton. Precambrian Research, 178(1-4): 59-71 DOI:10.1016/j.precamres.2010.01.007
Wang XL, Jiang SY, Dai BZ and Kern J. 2013. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton:Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal, 48(5): 498-515 DOI:10.1002/gj.2464
Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF and Peng TP. 2004. Geochemical, 40Ar/39Ar geochronological, Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research, 135(1-2): 55-77 DOI:10.1016/j.precamres.2004.07.005
Wang YJ, Zhao GC, Fan WM, Peng TP, Sun LH and Xia XP. 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1-2): 107-124 DOI:10.1016/j.precamres.2006.12.010
Wang YJ, Zhao GC, Cawood PA, Fan WM, Peng TP and Sun LH. 2008. Geochemistry of Paleoproterozoic (~1770Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences, 33(1-2): 61-77 DOI:10.1016/j.jseaes.2007.10.018
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. London: Chapman & Hall, 13-34
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Yan J, Peng G, Liu JM, Li QZ, Chen ZH, Shi L, Liu XQ and Jiang ZZ. 2012. Petrogenesis of granites from Fanchang district, the Lower Yangtze region:Zircon geochronology and Hf-O isotopes constrains. Acta Petrologica Sinica, 28(10): 3209-3227 (in Chinese with English abstract)
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106 DOI:10.1016/j.lithos.2005.10.002
Zhai MG, Santosh M and Zhang LC. 2011. Precambrian geology and tectonic evolution of the North China Craton. Gondwana Research, 20(1): 1-5 DOI:10.1016/j.gr.2011.04.004
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhang J, Zhang HF and Lu XX. 2013. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton. Precambrian Research, 226: 1-20 DOI:10.1016/j.precamres.2012.11.015
Zhao GC, Wilde SA, Sun M, Li SZ, Li XP and Zhang J. 2008a. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex:Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213-226 DOI:10.1016/j.precamres.2007.07.004
Zhao GC, He YH and Sun M. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia supercontinent. Gondwana Research, 16(2): 170-181 DOI:10.1016/j.gr.2009.02.004
Zhao GC and Cawood PA. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54 DOI:10.1016/j.precamres.2012.09.017
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zhao J, Zhang CL, Guo XJ and Liu XY. 2018. The late-Paleoproterozoic I-and A-type granites in Lüliang complex, North China craton:New evidence on post-collisional extension of Trans-North China Orogen. Precambrian Research, 318: 70-88 DOI:10.1016/j.precamres.2018.09.007
Zhao TP, Zhou MF, Zhai MG and Xia B. 2002. Paleoproterozoic rift-related volcanism of the Xiong'er group, North China craton:Implications for the breakup of Columbia. International Geology Review, 44(4): 336-351 DOI:10.2747/0020-6814.44.4.336
Zhao TP, Chen FK, Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract)
Zhao TP and Zhou MF. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36(2-3): 183-195 DOI:10.1016/j.jseaes.2009.05.005
Zhao TP, Deng XQ, Hu GH, Zhou YY, Peng P and Zhai MG. 2015. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues:A review. Acta Petrologica Sinica, 31(6): 1495-1508 (in Chinese with English abstract)
Zhao XF, Zhou MF, Li JW and Wu FY. 2008b. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257(1-2): 1-15 DOI:10.1016/j.chemgeo.2008.07.018
Zhao ZP. 1993. Precambrian Crustal Evolution of the Sino-Korean Paraplatform. Beijing: Science Press (in Chinese)
Zhou YY, Zhai MG, Zhao TP, Lan ZW and Sun QY. 2014. Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. Journal of Asian Earth Sciences, 94: 190-204 DOI:10.1016/j.jseaes.2014.03.003
白瑾, 黄学光, 王慧初, 等. 1996. 中国前寒武纪地壳演化. 北京: 地质出版社.
包志伟, 王强, 资锋, 唐功建, 杜凤军, 白国典. 2009. 龙王A型花岗岩地球化学特征及其地球动力学意义. 地球化学, 38(6): 509-522. DOI:10.3321/j.issn:0379-1726.2009.06.001
邓小芹, 赵太平, 彭头平, 高昕宇, 包志伟. 2015. 华北克拉通南缘1600Ma麻坪A型花岗岩的成因及其地质意义. 岩石学报, 31(6): 1621-1635.
第五春荣, 孙勇, 林慈銮, 王洪亮. 2010. 河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成. 科学通报, 55(21): 2112-2123.
高山林, 林晋炎, 陆彦俊. 2013. 宁夏泾源石咀子古元古代A型花岗岩的形成时代及其地质意义. 岩石学报, 29(8): 2676-2684.
耿元生, 杨崇辉, 万渝生. 2006. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据. 岩石学报, 22(2): 305-314.
郭波, 朱赖民, 李犇, 弓虎军, 王建其. 2009. 华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景. 岩石学报, 25(2): 265-281.
郭敬辉, 石昕, 卞爱国, 许荣华, 翟明国, 李永刚. 1999. 桑干地区早元古代花岗岩长石Pb同位素组成和锆石U-Pb年龄:变质与地壳熔融作用及构造-热事件演化. 岩石学报, 15(2): 199-207.
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563-1576.
柳晓艳. 2011.华北克拉通南缘古-中元古代碱性岩岩石地球化学与年代学研究及其地质意义.硕士学位论文.北京: 中国地质科学院
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558. DOI:10.3321/j.issn:0379-1726.1996.06.004
陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768. DOI:10.3969/j.issn.1671-2552.2003.10.003
马桂霞, 刘富营, 苏犁, 韩衣贵, 王清海. 2013. 华北克拉通小秦岭地区元古宙正长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 43(5): 1457-1470.
彭澎, 翟明国, 张华锋, 赵太平, 倪志耀. 2004. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例. 岩石学报, 20(3): 439-456.
彭澎, 刘富, 翟明国, 郭敬辉. 2011. 密云岩墙群的时代及其对长城系底界年龄的制约. 科学通报, 56(35): 2975-2980.
全国地层委员会. 2002. 中国区域年代地层(地质年代)表说明书. 北京: 地质出版社.
任富根, 李惠民, 殷艳杰, 李双保, 丁士应, 陈志宏. 2000. 熊耳群火山岩系的上限年龄及其地质意义. 前寒武纪研究进展, 23(3): 140-146.
任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377-386.
陕西省地质矿产局. 1989. 陕西省区域地质志. 北京: 地质出版社.
师江朋, 杨德彬, 霍腾飞, 杨浩田, 许文良, 王枫. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd-Hf同位素组成:对古元古代晚期伸展事件的制约. 岩石学报, 33(10): 3042-3056.
万渝生, 刘敦一, 王世炎, 赵逊, 董春艳, 周红英, 殷小艳, 杨长秀, 高林志. 2009. 登封地区早前寒武纪地壳演化-地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999. DOI:10.3321/j.issn:0001-5717.2009.07.007
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O同位素制约. 岩石学报, 28(10): 3209-3227.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
赵太平, 陈福坤, 翟明国, 夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685-690.
赵太平, 邓小芹, 胡国辉, 周艳艳, 彭澎, 翟明国. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论. 岩石学报, 31(6): 1495-1508.
赵宗溥. 1993. 中朝准地台前寒武纪地壳演化. 北京: 科学出版社.