岩石学报  2019, Vol. 35 Issue (8): 2363-2376, doi: 10.18654/1000-0569/2019.08.05   PDF    
鄂尔多斯盆地长城系碎屑锆石SHRIMP U-Pb定年和Hf同位素研究
白文倩, 董春艳, 颉颃强, 万渝生     
中国地质科学院地质研究所北京离子探针中心, 北京 100037
摘要:沉积盖层的碎屑锆石内部结构和年龄谱是了解碎屑沉积岩形成环境和物源区的重要研究对象。本文报道了鄂尔多斯盆地3口钻井中的4个长城系(变质)沉积岩样品的碎屑锆石SHRIMP U-Pb定年和Hf同位素分析结果。结果表明,主年龄峰值为~1.8Ga,另外,在~2.5Ga存在一个次年龄峰值,最年轻碎屑锆石年龄为~1.6Ga,但存在大的误差。锆石的Hf同位素组成存在很大变化,εHft)值变化范围为-10.5~+6.7。结合前人研究,可得出如下结论:(1)鄂尔多斯盆地长城系底界沉积时代小于1.7Ga,与华北克拉通东部的类似;(2)鄂尔多斯盆地长城系碎屑沉积物来自其北部古元古代孔兹岩系和/或鄂尔多斯变质基底本身;(3)鄂尔多斯盆地长城系与华北克拉通东部地区长城系形成于类似的构造环境,如大陆裂谷或坳拉槽。
关键词: 碎屑锆石     SHRIMP U-Pb定年     Hf同位素     长城系     鄂尔多斯盆地    
The Changcheng System in Ordos Basin: Detrital zircon SHRIMP U-Pb dating and Hf isotope analysis
BAI WenQian, DONG ChunYan, XIE HangQiang, WAN YuSheng     
Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Changcheng System was widely developed in an extensional tectonic setting in the North China Craton after the formation of the Xiong'er Group in the earliest Mesoproterozoic. The internal texture and age histogram of detrital zircons from sedimentary rocks are important for the understanding upon their formation backgrounds and provenance. This paper reports SHRIMP U-Pb ages and Hf isotope analysis of detrital zircons from four (meta-)sedimentary rock samples of the Changcheng System from three cores in the Ordos Basin, western China. According to their internal textures, two types of zircons can be divided, namely magmatic and metamorphic in origin. The detrital zircons have a major age peak at about 1.8Ga and a minor age peak at~2.5Ga. The youngest detrital zircon is~1.6Ga in age but with a large error. Zircons have different Hf isotopic compositions, with εHf(t) values ranging from -10.5 to +6.7. Combined with previous work, the main conclusions can be drawn as follows:(1) the bottom boundary age of the Changcheng System in Ordos Basin is younger than 1.7Ga, probably the same as that of the Changcheng System in eastern North China Craton; (2) the detrital sediments of the Changcheng System in Ordos Basin are mainly derived from the Paleoproterozoic Khondalite Belt in the north and/or the Ordos metamorphic basement itself. The zircons with magmatic textures have εHf(t) values of -6.8~+5.2, suggesting that mantle addition to continental crust or mantle-continent mixture occur in the source region; (3) the Changcheng System in the Ordos Basin and eastern North China Craton were formed in similar tectonic settings, such as continental rift or aulacogen.
Key words: Detrital zircon     SHRIMP U-Pb dating     Hf isotope     Changcheng System     Ordos Basin    

古元古代晚期强烈构造热事件(吕梁运动)导致华北克拉通最终稳定化,形成统一的早前寒武纪变质基底(Zhai and Santosh, 2011)。之后,华北克拉通构造体制发生根本变化,从碰撞造山转向伸展构造。中元古代最早期熊耳群火山-沉积岩系形成之后(Zhao et al., 2004),长城系盖层在华北克拉通广泛发育,之后沉积了中-新元古代蓟县系和青白口系。华北克拉通东部中新元古代沉积岩的碎屑锆石测年工作表明,碎屑锆石年龄峰值集中在新太古代晚期和古元古代晚期,表明中新元古代沉积岩的碎屑物质主要来自华北克拉通变质基底本身(Wan et al., 2011; 第五春荣等, 2011; 翟明国等, 2014)。

鄂尔多斯盆地是华北克拉通的重要组成部分。长城系碎屑锆石定年初步研究表明,其具有与华北克拉通东部地区长城系类似的年龄分布模式(公王斌等, 2016)。长城系物源区组成可为确定鄂尔多斯盆地基底性质及该时期的大地构造环境提供重要信息。然而,鄂尔多斯盆地长城系缺乏锆石SHRIMP U-Pb定年及Hf同位素资料,影响了对鄂尔多斯盆地的性质及中元古代所处构造环境的认识。本文报道了鄂尔多斯长城系碎屑沉积岩的碎屑锆石SHRIMP U-Pb定年和Hf同位素分析结果,从锆石外部形态和内部结构特征探讨物源区性质和外生作用过程,对沉积时代、物质来源等相关问题进行了讨论。

1 地质背景

鄂尔多斯盆地位于华北克拉通西部,北临孔兹岩带,东临中部造山带,南临秦岭造山带(图 1a)。由于中生代以来沉积盖层广泛覆盖,对鄂尔多斯盆地基底的研究多通过地球物理、钻孔及邻区露头进行。钻孔资料显示,鄂尔多斯盆地基底主要由古元古代具孔兹岩系性质的副变质岩和片麻状花岗质岩石组成,也可能存在新太古代晚期侵入岩,在古元古代晚期遭受强烈构造热事件改造(Hu et al., 2013; Wan et al., 2013; Wang et al., 2014; Zhang et al., 2015; He et al., 2016)。鄂尔多斯盆地自古元古代晚期以来长期稳定,明显不同于华北克拉通东部,后者遭受中生代以来的克拉通破坏,导致岩石圈明显减薄。在鄂尔多斯盆地中南部,长城系不整合覆盖在早前寒武纪变质基底之上,在东北部古生代-中生代地层直接覆盖在变质基底之上(公王斌等, 2016)。长城系下部主要为石英岩夹板岩,上部为粉砂质板岩、硅质岩及含燧石条带的白云质灰岩与石英砂岩。先前所进行的长城系LA-MC-ICPMS U-Pb定年,获得1.60Ga、1.85Ga、1.95Ga、2.35Ga和2.50Ga碎屑锆石年龄峰值(公王斌等, 2016)。本文采集样品都来自紧邻不整合变质基底之上的(变质)沉积层位,为长城系盖层(中国长庆油田,2011)。

图 1 华北克拉通早前寒武纪构造格局简图(a,据Zhao et al., 2002)和鄂尔多斯盆地及周缘地质图(b,据中国长庆油田,2011 ) A-阴山陆块;B-孔兹岩带;C-鄂尔多斯陆块;D-中部造山带;E-秦岭造山带 Fig. 1 Simplified Early Precambrian tectonic framework of the North China Craton (a, after Zhao et al., 2002) and geological map of the Ordos Basin and surrounding areas (b) A-Yinshan Block; B-Khondalite Belt; C-Ordos Block; D-Trans-North China Orogen; E-Qinling Orogen

① 中国长庆油田. 2011.鄂尔多斯盆地与前寒武纪基底相关钻孔简介.内部资料, 1-20

2 样品特征及分析方法 2.1 样品特征

本文对鄂尔多斯盆地三口揭露到中元古代底层的钻孔的4个(变质)沉积岩样品进行了碎屑锆石SHRIMP U-Pb定年及Hf同位素分析。其中2个样品(HT1-12、K1-2)来自合探1井和克1井,它们所属地层为中元古代长城系,对此前人已有讨论(中国长庆油田,2011;公王斌等, 2016),这里不再述及。采样位置见图 1b

石英砂岩(HT1-12)采自鄂尔多斯盆地南部甘肃合水地区的合探1井。该井完钻井深4140m。样品采自4131~4132m,为肉红色细粒石英砂岩(图 2a)。岩石几乎都由石英组成(>95%,图 3a),分选磨圆好,颗粒支撑,胶结物很少,部分石英颗粒有次生加大。

图 2 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩岩芯照片 Fig. 2 Photographs of (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin

图 3 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩正交偏光镜下岩相学照片 Qz-石英; Fsp-长石; Mca-云母 Fig. 3 Photographs under cross polarized light showing petrographic features of (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin Qz-quartz; Fsp-feldspar; Mca-mica

石英砂岩(K1-2)采自鄂尔多斯盆地西北部鄂托克旗地区的克1井。该井完钻井深4080m。样品采自4038~4046m,也为肉红色细粒石英砂岩(图 2b)。岩石主要由石英(90%)组成,存在少量长石(10%,图 3b)。与样品HT1-12相比,分选和磨圆较差,颗粒支撑,胶结物充填在碎屑之间,存在具波状消光的他型细粒石英集合体(图 3b)。部分石英颗粒发育次生加大。

变质石英砂岩(ZT1-9A)采自鄂尔多斯盆地北部榆林地区的召探1井(N38°50′25″、E109°10′50″)。该井完钻井深3602.3m。样品采自3516~3519m,为肉红色浅变质石英砂岩(图 2c)。岩石主要由石英(90%)组成(图 3c),分选磨圆好,颗粒支撑,胶结物充填在碎屑之间。胶结物转变为细片状绢云母(10%),表明岩石已遭受低绿片岩相浅变质作用改造,但变形很弱。由于遭受变质,原认为形成时代为古元古代,与滹沱群相当(中国长庆油田,2011),

变质砂岩(ZT1-9B)与样品ZT1-9A采自同一钻井,位于其下部数米位置。岩石呈灰色(图 2d),主要由长石(55%)、石英(40%)和云母(5%)组成(图 3d)。长石帘石化和绢云母化较强,但长石颗粒仍可识别。为长石石英砂岩浅变质产物。岩石变形也弱。形成时代原也认为是古元古代。

2.2 分析方法

锆石分选和SHRIMP U-Pb定年都在北京离子探针中心完成。测年方法见Williams(1998)。一次离子流强度为4nA,束斑为30μm。标准锆石91500(U=81.2×10-6)用于未知锆石U、Th含量修正(Williams, 1998),标准锆石TEM(年龄=417Ma)用于未知锆石年龄修正(Black et al., 2003)。标准锆石定年由5组扫描完成,未知样品定年为3~5组扫描。TEM与未知样品测定比例为1:3~1:5。数据处理采用SQUID和ISOPLOT程序(Ludwig, 2001),根据实测204Pb进行普通铅校正。由于锆石年龄大于1.4Ga,使用207Pb/206Pb年龄。单个数据年龄误差为1σ, 加权平均年龄误差为95%置信度。

Hf同位素分析在中国地质科学院矿产资源研究所LA-MC-ICPMS同位素实验室完成,使用仪器为Thermo Finnigan Neptune型多接受电感耦合等离子体质谱仪(MC-ICP-MS)。分析方法见侯可军等(2007)。采用静态信号采集模式,背景采集时间30s,积分时间为0.131s,采集200组数据,总计约30s。激光能量密度为15J/cm2,束斑直径为55μm。计算参数:176Lu衰变常数为1.865×10-11yr-1(Schere et al., 2001),球粒陨石的176Hf/177Hf和176Lu/177Hf比值分别为0.0332和0.282772(Blichert-Toft and Albarède, 1997),现今亏损地幔176Hf/177Hf比值为0.28325(Nowell et al., 1998),用于计算2阶段模式年龄(tDM2(Hf))大陆地壳的(176Lu/177Hf)平均值为0.015(Griffin et al., 2002)。

3 锆石特征和年龄

本文几个样品的锆石都是碎屑锆石。但从物源区角度,可把锆石划分为岩浆锆石(MA)和变质锆石(ME)两类。岩浆锆石具有明显的岩浆震荡环带,变质锆石包括重结晶锆石和变质增生边锆石。在一些情况下,这两类锆石不易区分。下面有关锆石成因的论述都是相对于物源区而言的。锆石定年结果见表 1

表 1 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩锆石SHRIMP U-Pb年龄 Table 1 SHRIMP U-Pb data for zircons from (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin

石英砂岩(HT1-12)的锆石呈等轴状或椭圆状,阴极发光下锆石具封闭环带或板状环带,一些锆石发育核-边结构(图 4a)。对46颗锆石进行了47个数据点分析。除45.1ME外,其余数据点都位于谐和线上或附近(图 5a)。21个岩浆锆石的U含量为19×10-6~211×10-6,Th/U比值为0.27~1.63,除11.1MA的年龄为~2.5Ga外,其余数据点的207Pb/206Pb年龄在1638~1941Ma之间。年龄小的3个岩浆锆石数据点(6.1 MA、16.1 MA、38.1 MA)的加权平均207Pb/206Pb年龄为1779±29Ma (MSWD=1.03)。26个变质锆石的U含量为20×10-6~132×10-6, Th/U比值为0.27~1.63,207Pb/206Pb年龄在1512~2203Ma之间。

图 4 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩的锆石阴极发光图像 MA代表岩浆锆石,ME代表变质锆石,均指其物源区的成因;图 5 Fig. 4 Cathodoluminescence images of zircons from (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin MA and ME mean magmatic and metamorphic zircons respectively, which refer to their origins in source region; also means in Fig. 5

图 5 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩的锆石U-Pb谐和图 Fig. 5 Concordia diagrams of zircon data for (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin

石英砂岩(K1-2)的锆石呈等轴状或椭圆状,个别锆石具自形形态,阴极发光下具封闭环带或板状环带,一些锆石遭受不同程度重结晶改造(图 4b)。对53颗锆石进行了53个数据点分析,数据点都位于谐和线上或附近(图 5b)。37个岩浆锆石的U含量为30×10-6~162×10-6,Th/U比值为0.50~1.63,207Pb/206Pb年龄在1774~2552Ma之间。16个变质锆石的U含量为17×10-6~163×10-6,Th/U比值为0.05~1.26,207Pb/206Pb年龄在1797~2484Ma之间。所有数据点均位于谐和线上或附近,可划分为>2.3Ga和<2.3Ga两个年龄段。

变质石英砂岩(ZT1-9A)的锆石呈浑圆状或柱状,阴极发光下锆石具封闭环带,部分具板状环带,许多锆石都遭受重结晶改造,部分锆石发育变质增生边(图 4c)。对41颗锆石进行了44个数据点分析。20个岩浆锆石的U含量为60×10-6~768×10-6, Th/U比值为0.33~1.14,207Pb/206Pb年龄在1632~2484 Ma之间。24个变质锆石的U含量为45×10-6~2778×10-6,Th/U比值为0.09~1.73,207Pb/206Pb年龄在1358~1922Ma之间(图 5c)。许多锆石存在不同程度铅丢失,与锆石U含量普遍较高有关。许多数据点分布于上交点年龄分别为~2.5Ga和~2.0Ga的不一致线上。

变质砂岩(ZT1-9B)仅分选出很少锆石颗粒。锆石呈浑圆状或柱状,阴极发光下锆石具封闭环带或板状环带结构,一些锆石普遍遭受不同程度的重结晶改造,存在变质增生边(图 4d)。对8颗锆石进行了8个数据点分析。5个岩浆锆石的U含量为64×10-6~882×10-6, Th/U比值为0.42~2.09,207Pb/206Pb年龄在1752~2025Ma之间。3个变质锆石的U含量为51×10-6~169×10-6, Th/U比值为0.64~1.24,207Pb/206Pb年龄在1822~2445 Ma之间。一些锆石显示强烈的铅丢失,数据点大致位于上交点年龄为~2.0Ga的不一致线上(图 5d)。

对4个样品锆石的207Pb/206Pb年龄进行统计,年龄峰值为~1.8 Ga,在~2.5 Ga还有1个小的年龄峰值(图 6)。

图 6 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩的锆石年龄直方图 Fig. 6 Zircon age histograms for (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin
4 锆石Hf同位素特征

对62个碎屑锆石进行了Hf同位素分析,分析点位置与SHRIMP U-Pb定年位置相同或结构类似。Hf同位素分析数据见表 2图 7。35个岩浆锆石的εHf(t)和tDM2(Hf)分别为-6.8~+5.2和2390~2850Ma,27个变质锆石的εHf(t)和tDM2(Hf)分别为-10.5~+6.7和2205~2935Ma。

表 2 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩的锆石Hf同位素组成 Table 2 Hf isotope compositions of zircons from (meta-)sedimentary rocks of the Mesoproterozoic Changcheng System from drill cores in the Ordos Basin

图 7 鄂尔多斯盆地钻孔中元古代长城系(变质)沉积岩锆石年龄-εHf图解 Fig. 7 Zircon εHf(t) vs. U-Pb ages of Mesoproterozoic Changcheng System (meta-)sedimentary rocks from drill cores in the Ordos Basin
5 讨论 5.1 锆石成因

本文定年样品包括了2个变质沉积岩,但变质程度仅为低绿片岩相,不会对锆石内部结构产生明显影响,碎屑锆石的内部结构都应是物源区锆石的特征。碎屑锆石外部形态和内部结构特征可提供外生作用的重要信息。由于变质作用通常可使锆石向圆的形态发生变化,以达到自由能最小。对于碎屑沉积岩中的变质锆石,其等轴状和椭圆状外形(如图 4a中的颗粒29,图 4b中的颗粒42),不能作为其遭受强烈外生磨蚀的确切依据,岩浆锆石的外形与内部结构的不协调切割关系(如图 4a中的颗粒3、11和38,图 4b中的颗粒29和39,图 4c中的颗粒9)则是外生磨蚀作用的结果(Wan et al., 2011)。对于具变质增生边或边部发生重结晶的锆石,锆石内部结构与外形的不协调切割关系(图 4a中的颗粒20,图 4d中的颗粒1和2),也是碎屑锆石的典型特征。与其他样品相比,石英砂岩样品(HT1-12)胶结物最少,石英磨圆度最高,锆石的磨圆度也最高。不过,这种强烈分选和磨蚀并不一定表明碎屑物质经过长距离搬运,也可能是在海岸线附近长期海浪作用的结果。其余3个样品(K1-2、ZT1-9A和ZT1-9B)中,一些锆石呈长柱状或具自形形态(如图 4b中的颗粒36,图 4c中的颗粒9,图 4d中的颗粒6和7),表明至少部分碎屑物质来自近源区,并可能以岩屑形式搬运沉积。总体上,与具岩浆结构的碎屑锆石相比,具变质结构的碎屑锆石的Th/U比值变化更大,一些变质锆石的Th/U比值很低。

5.2 长城系变质作用

在华北克拉通东部,长城系通常未遭受变质,但原岩沉积时代可与长城系对比的河北省平山县东南的东焦群(主要由碎屑沉积岩组成)遭受了浅变质作用(Wan et al., 2010)。在鄂尔多斯,长城系未遭受变质或遭受浅变质(公王斌等,2016)。根据以往认识,长城系仅存在于鄂尔多斯盆地中南部,而在东北部缺失(公王斌等,2016)。但是,取自榆林西北部同一钻孔相邻的2个样品(ZT1-9A、ZT1-9B)都为变形弱的浅变质沉积岩,而根据锆石结构和年龄,它们不是早前寒武纪变质基底岩石,而很可能属于长城系。因此长城系的分布范围应比以往认为的更广,向东北至少到了召探1井的位置。长城系沉积岩遭受变质的时代还不清楚,但许多锆石的分析数据点沿不一致线分布,下交点年龄为200~400Ma(公王斌等,2016;本文),需进一步研究来确定变质作用是否发生在古生代-中生代。

5.3 长城系底界年龄

中-新元古代盖层是华北克拉通早前寒武纪变质基底稳定化之后的重要盖层。长城系的下限年龄有1.95Ga、1.8Ga和1.7Ga等不同认识(王曰伦等,1980陆松年和李惠民,1991李怀坤等,1995钟富道,1997)。近年来,随着对斑脱岩等的锆石定年工作的开展,华北克拉通东部中元古代盖层年代学研究取得了重大进展,确定长城系底界年龄为1650~1680Ma(和政军等, 2011; 李怀坤等,2011)。在对鄂尔多斯钻孔长城系碎屑沉积岩碎屑锆石定年时,公王斌等(2016)获得3个~1.6Ga的年龄数据,数据点位于谐和线上或附近。本次研究获得更多位于谐和线及其附近的1.6~1.7Ga的碎屑锆石年龄数据。尽管数据误差较大及后期铅丢失影响,最年轻碎屑锆石年龄不可能明显大于1.7Ga,支持了长城系底界沉积时代小于1.7Ga的认识,推测华北克拉通西部和东部长城系沉积时代大致相同。鄂尔多斯盆地的中元古代长城系主要由砾岩、砂岩、粉砂岩和泥质岩组成,蓟县系主要由碳酸盐岩和泥质岩组成(中国长庆油田,2011;公王斌等,2016郭艳琴等,2019),华北克拉通东部燕辽坳拉槽的中元古代长城系和蓟县系也主要由这些类型岩石组成(李怀坤等,2014及其中参考文献)。两者岩石组合十分类似,可以相互对比,都反映了陆相向滨海相,进而向海相的海侵演化进程。

5.4 物质来源

4个样品中都存在岩浆结构和变质结构的碎屑锆石,锆石年龄峰值分别为~1.8Ga和~2.5Ga,以前者为主。物源区为以古元古代晚期岩浆构造热事件为主的早前寒武纪变质基底。一些样品中存在具波状消光的细粒石英集合体表明它们来自变质岩区。鄂尔多斯北部为古元古代孔兹岩带(Zhao et al., 2005),2.0~2.3Ga岩浆作用和1.82~1.96Ga变质作用发育(Wan et al., 2009; Dong et al., 2013; Liu et al., 2013; 钟长汀等, 2014; 董春艳等,未发表资料)。鄂尔多斯盆地本身也广泛存在古元古代晚期岩浆构造热事件(Hu et al., 2013; Wan et al., 2013; Zhang et al., 2015),都可以是长城系碎屑沉积物的物源区。首次获得的鄂尔多斯盆地长城系(变质)沉积岩碎屑锆石Hf同位素组成也支持这一认识。锆石的Hf同位素组成存在很大变化(εHf(t)=-10.5~+6.7),具岩浆结构的碎屑锆石的εHf(t)值从-6.8到+5.2,表明碎屑沉积物源区存在不同时期地幔添加或壳幔物质混合作用。碎屑锆石的内部结构、年龄谱和Hf同位素组成特征与孔兹岩带和鄂尔多斯变质基底的锆石类似(Dong et al., 2013; Hu et al., 2013; Liu et al., 2013; Wan et al., 2013; Zhang et al., 2015)。长城系碎屑沉积岩中存在少量~2.5Ga碎屑锆石,也与变质基底中新太古代晚期地质体零星分布相一致。总体上,鄂尔多斯盆地长城系与华北克拉通东部地区长城系的沉积岩岩石组合和碎屑锆石年龄谱及Hf同位素组成显示了类似的特征(Wan et al., 2011),但是,一些样品中含有更年轻的碎屑锆石(王公斌等,2016),表明不同物源区的存在。内部结构和年龄分布特征表明碎屑锆石来自华北克拉通本身,支持了长城系盖层形成于大陆环境(陆内裂谷、拗拉槽等)的认识(冯娟萍等, 2018; 包洪平等,2019)。古元古代晚期变质锆石和岩浆锆石在华北克拉通中元古代盖层中以碎屑形式大量存在,与华北克拉通早前寒武纪变质基底发育古元古代中-晚期构造岩浆热事件相吻合(Wan et al., 2006; 魏春景, 2018)。古元古代晚期克拉通化导致华北克拉通进入稳定阶段,接受盖层沉积。

6 结论

(1) 鄂尔多斯盆地长城系碎屑沉积岩的最年轻碎屑锆石年龄为~1.7Ga,支持了长城系底界时间小于1.7Ga的认识。

(2) 鄂尔多斯盆地长城系与华北克拉通东部地区长城系十分类似,它们形成于类似的构造环境,长城系碎屑沉积物来自其北部古元古代孔兹岩系和/或鄂尔多斯变质基底本身。

(3) 鄂尔多斯盆地长城系碎屑沉积岩的碎屑锆石年龄峰值为~1.8Ga和~2.5Ga,与华北克拉通变质基底构造热事件的时间基本一致。具岩浆结构锆石的εHf(t)值变化范围为-6.8到+5.2,表明物源区存在不同时期的地幔添加或壳幔物质混合作用。

致谢      研究得到中国石油长庆油田公司的大力支持。SHRIMP锆石定年得到张玉海高级工程师和杨之青高级工程师的帮助;锆石样品靶由杨淳高级工程师制作;锆石阴极发光图像由李宁和周丽芹工程师完成;锆石标准由Ian Williams和Lance Black提供;胡健民研究员、张成立教授、第五春荣教授和张健教授审阅了稿件,对提高论文质量起了重要作用。在此一并深表谢意。

参考文献
Bao HP, Shao DB, Hao SL, Zhang GS, Ruan ZZ, Liu G and Ouyang ZJ. 2019. Basement structure and evolution of early sedimentary cover of the Ordos Basin. Earth Science Frontiers, 26(1): 33-43 (in Chinese with English abstract)
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170 DOI:10.1016/S0009-2541(03)00165-7
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Diwu CR, Sun Y, Liu YJ, Han W, Dai MN and Li YX. 2011. The protolith nature of quartz sandstone from Changlongshan Formation in Liujiang area, Qinhuangdao City:Evidence of U-Pb and Hf-isotope from detrital zircons. Acta Petrologica et Mineralogica, 30(1): 1-12 (in Chinese with English abstract)
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area North China Craton. Science China (Earth Sciences), 56(1): 115-125 DOI:10.1007/s11430-012-4459-3
Feng JP, Ouyang ZJ, Zhou YJ, Bao HP and Yan T. 2018. Revision of the Mesoproterozoic "Aulacogen" in Ordos area. Journal of Northwest University (Natural Science Edition), 48(4): 587-592 (in Chinese with English abstract)
Gong WB, Xi SL, Liu XS, Hu JM and Li ZH. 2016. LA-ICP-MS U-Pb dating of detrital zircons from Changcheng System in Ordos Block, western North China Craton and its implications. Geological Review, 62(6): 1379-1391 (in Chinese with English abstract)
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Guo YQ, Li WH, Guo BC, Zhang Q, Chen Q, Wang RG, Liu X, Ma Y, Li ZC, Zhang MT and Li BQ. 2019. Sedimentary systems and palaeogeography evolution of Ordos Basin. Journal of Palaeogeography, 21(2): 293-320 (in Chinese)
He XF, Santosh A, Bockmann K, Kelsey DE, Hand M, Hu JM and Wan YS. 2016. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 262: 44-57 DOI:10.1016/j.lithos.2016.06.022
He ZJ, Niu BG, Zhang XY, Zhao L and Liu RY. 2011. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract)
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2013. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127 DOI:10.1007/s11434-012-5274-0
Li HK, Li HM and Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochimica, 24(1): 43-48 (in Chinese with English abstract)
Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)
Li HK, Su WB, Zhou HY, Xiang ZQ, Tian H, Yang LG, Huff WD and Ettensohn FR. 2014. The first precise age constraints on the Jixian System of the Meso-to Neoproterozoic Standard Section of China:SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section, North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012 (in Chinese with English abstract)
Liu SJ, Dong CY, Xu ZY, Santosh M, Ma MZ, Xie HQ, Liu DY and Wan YS. 2013. Palaeoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton:Evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area. Geological Journal, 48(5): 429-455 DOI:10.1002/gj.2453
Lu SN and Li HM. 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation of Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, (22): 137-146 (in Chinese with English abstract)
Ludwig KR. 2001. Squid 1.02: A User's Manual. Berkeley: Geochronology Centre Special Publication
Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ and Taylor RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry:Insights into the depleted mantle. Chemical Geology, 149(3-4): 211-233 DOI:10.1016/S0009-2541(98)00036-9
Schere E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271 DOI:10.1016/j.precamres.2006.06.006
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic. In: Reddy SM, Mazumder R, Evans DAD and Collins AS (eds.). Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications, 323(1): 73-97
Wan YS, Miao PS, Liu DY, Yang CH, Wang W, Wang HC, Wang ZJ, Dong CY, Du LL and Zhou HY. 2010. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons:Resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(13): 1278-1284 DOI:10.1007/s11434-009-0615-3
Wan YS, Liu DY, Wang W, Song TR, Kröner A, Dong CY, Zhou HY and Yin XY. 2011. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1): 219-242 DOI:10.1016/j.gr.2011.02.009
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013. Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313(7): 638-711
Wang W, Liu XS, Hu JM, Li ZH, Zhao Y, Zhai MG, Liu XC, Clarke G, Zhang SH and Qu HJ. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China:Petrology, phase equilibrium modeling and U-Pb geochronology. Precambrian Research, 251: 181-196 DOI:10.1016/j.precamres.2014.06.016
Wang YL, Lu ZB, Xing YS, Gao ZJ, Lin YX, Ma GG, Zhang LY and Lu SN. 1980. Subdivision and correlation of the Upper Precambrian in China. In: Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Science (ed.). Sinian Suberathem in China-Research on Precambrian Geology. Tianjin: Tianjin Science and Technology Press, 1-30 (in Chinese)
Wei CJ. 2018. Neoarchean granulite facies metamorphism and its tectonic implications from the East Hebei terrane. Acta Petrologica Sinica, 34(4): 895-912 (in Chinese with English abstract)
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC and Ridley WI (eds.). Application of Microanalytical Techniques to Understanding Mineralizing Processes. Colorado: Review of Economical Geology, 7: 1-35
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton:Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136 DOI:10.1016/j.precamres.2015.06.001
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1~1.8Ga orogens:Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group:Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502 DOI:10.1007/BF03183721
Zhong CT, Deng JF, Wan YS and Tu WP. 2014. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia:Geochemistry, SHRIMP zircon dating and geological significance. Acta Petrologica Sinica, 30(11): 3172-3188 (in Chinese with English abstract)
Zhong FD. 1997. On the geological chronology of Sinina in China from the isotopic age of Sinian strata in the Yanshan area. Science in China (Series D), (2): 151-161 (in Chinese)
包洪平, 邵东波, 郝松立, 章贵松, 阮正中, 刘刚, 欧阳征健. 2019. 鄂尔多斯盆地基底结构及早期沉积盖层演化. 地学前缘, 26(1): 33-43.
第五春荣, 孙勇, 刘养杰, 韩伟, 戴梦宁, 李永项. 2011. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成:来自碎屑锆石U-Pb-Hf同位素的证据. 岩石矿物学杂志, 30(1): 1-12. DOI:10.3969/j.issn.1000-6524.2011.01.001
冯娟萍, 欧阳征健, 周义军, 包洪平, 严婷. 2018. 鄂尔多斯地区中元古界"拗拉槽"的重新厘定. 西北大学学报(自然科学版), 48(4): 587-592.
公王斌, 席胜利, 刘新社, 胡健民, 李振宏. 2016. 华北克拉通西部鄂尔多斯地块长城系碎屑锆石LA-ICP-MS U-Pb测年及意义. 地质论评, 62(6): 1379-1391.
郭艳琴, 李文厚, 郭彬程, 张倩, 陈强, 王若谷, 刘溪, 马瑶, 李智超, 张梦婷, 李百强. 2019. 鄂尔多斯盆地沉积体系与古地理演化. 古地理学报, 21(2): 293-320.
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报, 30(5): 798-802. DOI:10.3969/j.issn.1671-2552.2011.05.020
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
李怀坤, 李惠民, 陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24(1): 43-48. DOI:10.3321/j.issn:0379-1726.1995.01.004
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120.
李怀坤, 苏文博, 周红英, 相振群, 田辉, 杨立公, Huff WD, Ettensohn FR. 2014. 中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012.
陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, (22): 137-146.
王曰伦, 陆宗斌, 邢裕盛, 高振家, 林蔚兴, 马国干, 张录易, 陆松年. 1980.中国上前寒武系的划分和对比.见: 中国地质科学院天津地质矿产研究所编.中国震旦亚界: 前寒武地质研究.天津: 天津科学技术出版社, 1-30
魏春景. 2018. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义. 岩石学报, 34(4): 895-912.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
钟长汀, 邓晋福, 万渝生, 涂伟萍. 2014. 内蒙古大青山地区古元古代花岗岩:地球化学、锆石SHRIMP定年及其地质意义. 岩石学报, 30(11): 3172-3188.
钟富道. 1997. 从燕山地区震旦地层同位素年龄论中国震旦地质年表. 中国科学(D辑), (2): 151-161.