岩石学报  2019, Vol. 35 Issue (8): 2344-2362, doi: 10.18654/1000-0569/2019.08.04   PDF    
贺兰山中段古元古代黄旗口花岗质岩石的成因及其构造意义
庞岚尹1,2, 高昕宇1, 孙乾迎1, 胡波3, 赵太平1     
1. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州 510640;
2. 中国科学院大学, 北京 100049;
3. 长安大学地球科学与资源学院, 西安 710054
摘要:华北克拉通西部陆块贺兰山地区分布有大规模的古元古代S型花岗岩,它们可以为进一步解析孔兹岩带的构造演化过程提供重要制约。本文选取出露于贺兰山中段的黄旗口花岗质岩体开展系统的全岩主微量元素、Sm-Nd同位素、锆石U-Pb年代学和Lu-Hf同位素研究,探讨其岩石成因和地质意义。黄旗口岩体主要岩石组合为英云闪长岩、二长花岗岩和花岗闪长岩。LA-ICP-MS锆石U-Pb定年结果表明黄旗口岩体为至少存在两次岩浆事件的复式岩体,早期岩体时代为2056±24Ma,晚期岩体时代为1965±14Ma。黄旗口早期岩体和晚期岩体呈现出相似的地球化学特征,都具有高的SiO2(62.77%~74.79%)、Al2O3(13.67%~18.05%)和K2O(2.37%~7.20%)值,低的Na2O(1.36%~3.47%)和FeOT(0.15%~8.82%)值。岩体的A/CNK(1.10~1.42)>1.1,含有S型花岗岩特征矿物(白云母、石榴子石和堇青石),表明岩体属于典型的强过铝质S型花岗岩。岩体轻稀土元素富集(∑LREE=70.0×10-6~259×10-6),轻、重稀土元素分异明显(LREE/HREE=6.25~21.5,(La/Yb)N=6.75~54.5),具有明显的负Eu异常(Eu*=0.33~0.93),亏损高场强元素(Nb、Ta和Ti)。岩体εNdt)值(+1.26~+3.78)和εHft)值(+0.7~+8.7)均为正值,二阶段同位素模式年龄分别为tDM2,Nd=2.12~2.34Ga和tDM2,Hf=2.09~2.82Ga。黄旗口两期岩体与孔兹岩系具有相似的主、微量元素特征和二阶段Hf模式年龄,表明贺兰山地区变质沉积岩为黄旗口S型花岗岩的主要源区物质。早期岩体和晚期岩体的εNdt)和εHft)值均为正值,表明源区物质除古老地壳物质外,还有一定量新生地壳成分的加入,其中晚期岩体具有更高的εNdt)和εHft)值,表明新生地壳物质的贡献更为明显。综合区域地质背景资料,本文认为黄旗口早期岩体形成于阴山陆块与鄂尔多斯陆块碰撞的早期阶段,暗示两个微陆块初始碰撞时间早于2.05Ga,晚期岩体形成于陆-陆碰撞阶段的峰期,表明阴山陆块与鄂尔多斯陆块碰撞阶段的持续时间很可能大于80Myr。
关键词: 古元古代     S型花岗岩     孔兹岩带     贺兰山     华北克拉通     陆-陆碰撞    
Petrogenesis of the Paleoproterozoic Huangqikou granitic rocks from the middle part of the Helanshan area and its tectonic implications
PANG LanYin1,2, GAO XinYu1, SUN QianYing1, HU Bo3, ZHAO TaiPing1     
1. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
Abstract: S-type granites are widely distributed in the Helanshan area, Western Block of the North China Craton and they provide important records on the tectonic evolution of the Khondalite Belt. Systematic major and trace elements, Sm-Nd isotope, zircon U-Pb geochronology and Lu-Hf isotope analyses were performed on the Huangqikou intrusions in the middle part of the Helanshan area to discuss their petrogenesis and geological significance. The main rock assemblages of the Huangqikou intrusions are tonalite, monzonitic granite and granodiorite. LA-ICP-MS zircon U-Pb dating results show that the Huangqikou granite is a composite pluton with at least two-stage magmatic events. The early intrusion was emplaced at 2056±24Ma and the late intrusion was emplaced at 1965±14Ma. They show similar geochemical characteristics, with high A/CNK (1.10~1.42), SiO2 (62.77%~74.79%), Al2O3 (13.67%~18.05%) and K2O (2.37%~7.20%) values, and low Na2O (1.36%~3.47%) and FeOT (0.15%~8.82%) values. Furthermore, high A/CNK (1.10~1.42) and presence of characteristic minerals of S-type granite (such as muscovite, garnet and cordierite) indicate that the plutons belong to typical strong peraluminous S-type granites. They are enriched in light rare earth elements (∑LREE=70.0×10-6~259×10-6) with significant differentiation between LREE and heavy rare earth elements (HREE) (LREE/HREE=6.25~21.5, (La/Yb)N=6.75~54.5), and shows markedly negative anomalies in Eu (Eu*=0.33~0.93) and high field strong elements (HFSE), such as Nb, Ta, Zr, Hf and Ti. The Huangqikou plutons display positive whole-rock εNd(t) values (+1.26~+3.78) with Nd model ages of 2.12~2.26Ga and zircon εHf(t) values (+0.7~+8.7) with model ages of 2.09~2.82Ga which are consistent with those of the khondalites, indicating that the Huangqikou plutons were derived from partial melting of the khondalites. The εNd(t) and εHf(t) values of the two stage plutons are positive, which implies that the source material has an addition of juvenile crustal material besides the old crustal materials. Moreover, the higher values of εNd(t) and εHf(t) in the late-stage rock show much more amount contribution from the juvenile crustal material. Combined with regional geological background, this paper proposes that the early-stage granite in the Huangqikou intrusions was produced in the tectonic setting of initial collision, namely, continental collision between the Yinshan and Ordos blocks, suggesting that the initial collision time of the two micro blocks was as early as 2.05Ga. The late-stage granitic magma was formed in the peak stage of the continental collision, indicating that the duration of the collision between the Yinshan and Ordos blocks was more than 80Myr.
Key words: Paleoproterozoic     S-type granite     The Khondalite Belt     Helanshan     North China Craton     Continental collision    

华北克拉通前寒武纪基底是由不同微陆块拼合而成的(伍家善等, 1998; 翟明国和卞爱国, 2000; Kusky and Li, 2003; Zhao et al., 2005; 赵国春, 2009)。Zhao et al. (2005)将华北克拉通分成东部陆块、西部陆块和中部造山带三个主要构造单元,其中西部陆块又可分为北部的阴山陆块、南部的鄂尔多斯陆块和中部的孔兹岩带(Zhao et al., 2005, 2012; Zhao and Zhai, 2013)。孔兹岩带是阴山陆块和鄂尔多斯陆块碰撞拼合形成西部陆块的产物,形成于~1.95Ga,是华北克拉通保存完好的古元古代构造带之一(Zhao et al., 2005, 2012; Wan et al., 2009; Yin et al., 2009, 2011, 2014, 2015; Gou et al., 2016; Qiao et al., 2016)。因此,孔兹岩带上各类岩石的成因研究对揭示华北克拉通西部陆块古元古代构造演化具有重要意义。孔兹岩带岩石自西向东不连续分布于贺兰山-千里山、乌拉山-大青山以及集宁等地区,主要由孔兹岩系和古元古代S型花岗岩组成,其中孔兹岩系为一套高角闪岩相-麻粒岩相变质沉积岩组合,主要由含石墨夕线石-石榴石片麻岩、石榴石石英岩、长英质副片麻岩、钙硅酸盐岩和大理石组成(Condie et al., 1992; 卢良兆等, 1996)。由于孔兹岩系在研究深部地质过程中具有一定的局限性,因此应结合该区广泛出露的古元古代S型花岗岩来探究孔兹岩带的构造演化历史。

Yin et al. (2009)总结了孔兹岩带的构造演化特征,共分为四个阶段:①古元古代早期(>1.95Ga),西部陆块还没有形成统一的基底,阴山陆块和鄂尔多斯陆块呈分离状态;② ~1.95Ga,阴山陆块与鄂尔多斯陆块碰撞拼合形成孔兹岩带;③ ~1.92Ga,孔兹岩带进入碰撞后伸展阶段;④ ~1.87Ga,位于下地壳的孔兹岩系发生折返作用。前人研究结果表明,孔兹岩带S型花岗岩至少可分为三期,分别为~1.95Ga、1.93~1.90Ga和~1.85Ga(钟长汀等, 2007; Yin et al., 2009, 2011; Peng et al., 2012; 李正辉等, 2013; Dan et al., 2014; 刘金科等, 2016)。大量研究工作者对1.95~1.85Ga的S型花岗岩做了精细的年代学、源区性质和构造背景等方面的分析(王成等, 2012; 李正辉等, 2013; Dan et al., 2012, 2014; 刘金科等, 2016; Li et al., 2017; Zhang et al., 2017)。研究表明,三期S型花岗岩都主要来源于孔兹岩系的部分熔融,分别形成于阴山陆块与鄂尔多斯陆块拼合过程中的碰撞挤压阶段、挤压向碰撞后伸展的过渡阶段以及碰撞后伸展阶段(Yin et al., 2009; 李正辉等, 2013; Dan et al., 2014; Zhang et al., 2017)。通常认为,阴山陆块与鄂尔多斯陆块于~1.95Ga已碰撞拼合在一起(Zhao et al., 2005, 2012; Yin et al., 2009),但关于两个微陆块的开始碰撞时间以及孔兹岩带早期演化尚无定论。近年来,在孔兹岩带西部贺兰山地区发现了一些~2.05Ga的S型花岗质岩体,如出露于贺兰山北段的黑云二长片麻岩(2053±58Ma; 耿元生等, 2009)、石榴石花岗岩(2047±42Ma; 耿元生等, 2009)、含石榴子石花岗岩(2045±17Ma; Li et al., 2017)和二云母花岗岩(~2069±25Ma; Li et al., 2017)以及贺兰山中段的黄旗口岩体(~2.06Ga; 杨华本, 2013),对贺兰山地区~2.05Ga S型花岗岩的成因研究可以为孔兹岩带古元古代构造演化提供更多证据。

本文围绕华北克拉通孔兹岩带西部贺兰山中段的黄旗口花岗质岩体开展相应的岩相学、全岩主微量元素、锆石U-Pb年代学和Lu-Hf同位素地球化学研究,探讨其代表的构造热事件性质,并对贺兰山地区大规模出露的古元古代S型花岗岩进行综合分析,为贺兰山地区古元古代构造演化提供重要依据。

1 区域地质背景及岩体地质

华北克拉通西部陆块由阴山陆块、鄂尔多斯陆块和孔兹岩带组成(图 1a)。其中,阴山陆块主要由新太古代TTG片麻岩和少量的变质表壳岩组成,变质时代为~2.5Ga(Zhao et al., 1999, 2012)。鄂尔多斯陆块几乎全部被显生宙地层所覆盖,少量的钻孔资料揭示下部存在新太古代-古元古代麻粒岩相变质基底(Hu et al., 2013; Wan et al., 2013a; Zhang et al., 2015)。孔兹岩带沿东西向展布,宽约220km,长约1000km。该带自东向西主要由集宁、大青山-乌拉山、千里山和贺兰山杂岩组成(图 1b)。岩石类型主要为麻粒岩相的变质表壳岩、S型花岗岩和少量的TTG片麻岩、基性麻粒岩、紫苏花岗岩(胡能高和杨家喜, 1993; Zhao et al., 1999; 钟长汀等, 2007; 周喜文等, 2010)。贺兰山地区位于孔兹岩带的最西端(图 1c),北段出露的地质体主要为古元古界贺兰山岩群以及S型花岗岩侵入体,并有少量中元古代盖层(黄旗口组和王全口组)出露;中段出露的地质体主要为古元古界赵池沟岩群和黄旗口花岗质岩体(本文研究对象),并被中-新元古代盖层覆盖,盖层包括中元古界黄旗口组、王全口组和新元古代正目观组。

图 1 华北克拉通基底构造单元划分图(a, 据Zhao et al., 2005)、孔兹岩带地质简图(b, 据Zhao et al., 2005)和贺兰山地区地质图(c, 据Dan et al., 2014) Fig. 1 Tectonic division map of basement units of the North China Craton (a, after Zhao et al., 2005), geologic map of the Khondalite Belt (b, after Zhao et al., 2005) and geologic map of the Helanshan area (c, after Dan et al., 2014)

黄旗口岩体分布于贺兰山中段南水-白寺口沟一带,呈近南北向展布,西部被中元古界黄旗口组不整合覆盖,东部被第四系覆盖,未见侵入于其它地质体中。岩体呈岩株状产出,1:20万宁夏区域地质调查将其大致划分为中心相、过渡相和边缘相,而杨华本(2013)认为黄旗口岩体包含两期侵入体,早期侵入体与晚期侵入岩呈超动侵入接触,沿着接触带发育细粒边,并观察到英云闪长岩侵入到花岗岩的地质现象。岩体南北长约20km,平均宽约4.5km,出露面积约81km2(王成等, 2012)。本次研究的样品主要采自贺兰山中段大口子沟和大水渠沟内,大口子沟主要岩性为二云母二长花岗岩和含石榴子石英云闪长岩,大水渠沟主要岩性为英云闪长岩(图 2a, b)。

图 2 黄旗口岩体野外照片(a、b)、手标本照片(c)和显微照片(d-j) 早期岩体——英云闪长岩(a)和晚期岩体——二云母二长花岗岩(b)野外照片;(c)晚期岩体——含石榴子石英云闪长岩手标本照片;二长花岗岩(d-f)、含石榴子石英云闪长岩(g、h)和英云闪长岩(i、j)显微照片.矿物缩写:Pl-斜长石;Mc-微斜长石;Q-石英;Bi-黑云母;Ms-白云母;Sil-夕线石;Grt-石榴子石;Crd-堇青石;Pth-条纹长石 Fig. 2 The field (a, b), sample (c) and microscopic (d-j) photos of the Huangqikou plutons Field photographs of tonalite in early stage (a) and two-mica monzonitic granites in late stage (b); (c) rock sample photograph of garnet-bearing tonalite in early stage; Microscopic photos of monzogranite (d-f), garnet-bearing tonalite (g, h) and tonalite (i, j). Pl-plagioclase; Mc-microcline; Q-quartz; Bi-biotite; Ms-muscovite; Sil-sillimanite; Grt-garnet; Crd-cordierite; Pth-perthite

大口子沟二云母二长花岗岩:岩石新鲜面呈灰白色,块状构造,中-粗粒花岗结构。主要矿物为斜长石(~33%)、石英(~30%)、微斜长石(~20%)、黑云母(~10%)、白云母(~5%)、夕线石(~1%)和堇青石(< 1%)。其中斜长石发生绢云母化,具聚片双晶,微斜长石具格子双晶,夕线石多呈毛发状、针柱状集合体,具竹节状结构;堇青石在正交偏光镜下呈一级黄干涉色。副矿物主要有锆石、钛铁矿、磷灰石和榍石(图 2c, d)。

大口子沟含石榴子石英云闪长岩:岩石新鲜面呈灰色,块状构造,中-粗粒花岗结构。主要矿物为斜长石(~50%)、石英(~35%)、黑云母(~10%)、碱性长石(~5%)、白云母(< 1%)和石榴子石(< 1%)。其中斜长石多发生绢云母化,表面较脏;碱性长石含量少,为微斜长石和条纹长石;石榴子石自形为六边形。副矿物主要为锆石、钛铁矿和榍石(图 2e, f)。

大水渠沟英云闪长岩:岩石新鲜面呈灰白色,块状构造,中-粗粒花岗结构。主要矿物为斜长石(~55%)、石英(~30%)、钾长石(~5%)、黑云母(~10%)和白云母(< 1%)。岩石蚀变明显,斜长石呈板状、半自形状,发生了较强的绢云母化;黑云母和白云母呈片状自形-半自形。副矿物主要为锆石、磷灰石、榍石和钛铁矿(图 2g, h)。

本文从黄旗口岩体中选择了10个样品进行主、微量测试分析,5个样品进行全岩Nd同位素分析。其中,分别选取大口子沟和大水渠沟各1个代表性样品进行锆石U-Pb定年和Hf同位素分析。

2 分析方法

本文样品的全岩主量元素在澳实矿物实验室完成。全岩微量元素、全岩Sm-Nd同位素和锆石Lu-Hf同位素测试工作在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。锆石U-Pb年代学测试在西北大学大陆动力学国家重点实验室完成。

锆石U-Pb年龄在LA-ICP-MS仪器上测定,激光束斑直径为32μm,频率为8Hz,详细分析流程见Yuan et al.(2004, 2008),锆石U-Pb数据用Glitter处理。锆石U-Pb年龄测定后,再在原位用LA-MC-ICP-MS进行Lu-Hf同位素分析,激光束斑直径为32μm,剥蚀频率为8Hz,能量密度为15~20J/cm2,剥蚀时间约为60s,详细的分析流程见Wu et al. (2006)。全岩主量元素分析用X射线荧光光谱法(XRF)测试,分析精度优于2%。微量元素分析测试采用Perkin-Elmer Sciex ELAN 6000型电感耦合等离子体质谱仪(ICP-MS),使用USGS标准W-2和G-2,以及国内标准GSR-1、GSR-2和GSR-3来校正所测样品的元素含量,分析精度一般高于5%,具体的流程见刘颖等(1996)。全岩Nd同位素分析运用Thermo Neptune Plus MC-ICP-MS(多接受等离子质谱仪)完成,同位素分馏通过146Nd/144Nd=0.512085±0.000006 (2σ),Nd同位素的全流程空白小于60pg。测试过程采用BCR-2作为监控样品,分析精度高于0.002%。

3 分析结果 3.1 锆石U-Pb年龄

对采自大水渠沟的英云闪长岩(样品17149N:38°39′32″N、105°55′38″E)和采自大口子沟的含石榴子石英云闪长岩(样品17102N:38°36′11.71″N、105°5′08.92″E)进行锆石U-Pb年龄测试,LA-ICP-MS锆石U-Pb测年结果详见表 1,锆石CL图像如图 3所示。

表 1 黄旗口岩体锆石LA-ICP-MS分析结果 Table 1 LA-ICP-MS zircon U-Pb results for the Huangqikou plutons

图 3 黄旗口岩体代表性锆石阴极发光(CL)图像 红色圈为LA-ICP-MS分析点,黄色圈为MC-ICP-MS分析点;锆石下方数字为207Pb/206Pb年龄值 Fig. 3 Cathodoluminescence (CL) images of representative zircons from Huangqikou plutons Red circles indicate the LA-ICP-MS analysis spots, and yellow circles denote the MC-ICP-MS analysis spot. Numbers below zircons are 207Pb/206Pb age

英云闪长岩(17149N)中的锆石多为无色透明-半透明,半自形-自形长柱状,粒径约为60~130μm,长宽比约为3:1~2:1。CL图像显示锆石的阴极发光性较好,显示清晰的震荡环带(图 3)。其Th/U比值除了24、25和26号点小于0.1外,其余测得均大于0.1(0.11~0.49),表明这些锆石为岩浆成因(Belousova et al., 2002; Williams et al., 2009)。对该样品进行了22个点的分析,在U-Pb年龄谐和线图上(图 4a),大部分样品都经历了不同程度的铅丢失,但构成了较好的不一致线,上交点年龄为2056±24Ma(MSWD=2.0,n=22),与杨华本(2013)获得的2067±60Ma、2051±40Ma和2051±21Ma(LA-ICP-MS U-Pb年龄)及Li et al. (2018)获得的2023±14Ma~2034±16Ma在误差范围内基本一致,代表了早期岩体的形成时代,为目前在贺兰山地区发现的最早的一期S型花岗岩,本文将该期岩体称为黄旗口早期岩体。

图 4 黄旗口早期岩体和晚期岩体U-Pb谐和年龄图 Fig. 4 U-Pb concordia diagrams of zircons from early and late Huangqikou plutons

含石榴子石英云闪长岩(17102N)中的锆石多为无色透明-半透明,半自形-自形长柱状,粒径约为50~150μm,长宽比约为3:1~2:1。CL图像显示锆石的阴极发光性较好,显示清晰的震荡环带(图 3)。其Th/U比值均大于0.1(0.11~0.39),表明这些锆石为岩浆成因(Belousova et al., 2002; Williams et al., 2009)。对该样品进行了28个点的分析,在U-Pb年龄谐和图上(图 4b),大部分样品都经历了不同程度的铅丢失,但构成了较好的不一致线,上交点年龄为1965±14Ma(MSWD=0.39,n=28)。其中,有5个数据点位于谐和线上,其加权平均年龄为1967±33Ma(MSWD=0.056,n=5),两者在误差范围内一致。同时,该年龄值与Dan et al. (2012)年测得的1956±19Ma(SIMS U-Pb年龄)在误差范围内基本一致。上交点年龄较加权平均年龄误差较小,本文选取上交点年龄1965±14Ma代表晚期岩体的侵位时代,本文将该期岩体称为黄旗口晚期岩体。黄旗口早期岩体和晚期岩体相隔~80Myr,说明黄旗口岩体为至少存在两次岩浆事件的花岗质复式岩体。

3.2 全岩主、微量元素特征

黄旗口早期和晚期花岗质岩体的主、微量元素列于表 2。早期岩体与晚期岩体主量元素特征基本一致,都具有高SiO2(62.77%~74.79%)、K2O(2.37%~7.20%)、Al2O3(13.67%~18.05%),低Na2O(1.36%~3.47%)、CaO(0.28%~3.25%)和MnO(0.01%~0.11%)的特征,Fe2O3T含量变化在0.15%~8.82%之间。在R1-R2图解(R1=4Si-11(Na+K)-2(Fe+Ti)、R2=6Ca+2Mg+Al)中(图 5a),黄旗口岩体样品点落入英云闪长岩-花岗闪长岩-花岗岩区域,主要落入花岗岩区域。样品具有高的A/CNK比值(1.10~1.52)和A/NK比值(1.34~1.86),在A/NK-A/CNK图解上落于强过铝质系列区域(图 5b)。在Harker图解上,TiO2、Al2O3、Fe2O3T、MnO、MgO和CaO都与SiO2具有负相关关系(图 6)。

表 2 黄旗口岩体主量元素(wt%)和微量元素(×10-6)数据 Table 2 Major (wt%) and trace (×10-6) element concentrations of the Huangqikou plutons

图 5 黄旗口岩体R1-R2图解(a, 据De La Roche et al., 1980)和A/NK-A/CNK图解(b, 据Maniar and Piccoli, 1989) Fig. 5 R1 vs. R2 (a, after De La Roche et al., 1980) and A/NK vs. A/CNK diagrams (b, after Maniar and Piccoli, 1989) for Huangqikou plutons

图 6 黄旗口岩体的Harker图解 Fig. 6 Harker variation diagrams for the Huangqikou plutons

黄旗口早期岩体和晚期岩体具有相似的微量元素特征。在球粒陨石标准化稀土元素配分图上,所有样品都具有稀土元素总量较高(∑REE=75.2×10-6~291×10-6),轻稀土元素富集(∑LREE=70.0×10-6~259×10-6),重稀土元素亏损(∑HREE=5.26×10-6~32.7×10-6,轻重稀土元素分异明显(LREE/HREE=6.25~21.5,(La/Yb)N=6.75~54.5)的特征,并且绝大多数样品具有明显的负Eu异常(Eu*=0.33~0.93)(图 7a)。在原始地幔标准化微量元素蛛网图上,所有的样品都亏损高场强元素(Nb、Ta、Zr、Hf和Ti)(图 7b)。岩体的Rb含量为112×10-6~276×10-6,Sr含量为67.6×10-6~321×10-6,Ba含量为159×10-6~1215×10-6,Zr含量为22×10-6~243×10-6,Rb/Ba为0.14~0.96,Rb/Sr为0.35~2.21。

图 7 黄旗口岩体球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams (b) of the Huangqikou plutons (normalization values after Sun and McDonough, 1989)
3.3 全岩Sm-Nd同位素特征

选取1个早期岩体和4个晚期岩体进行全岩Nd同位素分析,数据列于表 3。早期岩体(17149N)147Sm/144Nd为0.1177,143Nd/144Nd为0.511633,εNd(t=2056Ma)值为+1.26,Nd二阶段模式年龄为2399Ma,在εNd(t)-t图中,数据点投于亏损地幔Nd同位素演化线与球粒陨石Nd同位素演化线之间(图 8a)。晚期岩体(17101N、17102N、17112N和17116N)147Sm/144Nd为0.0891~0.1184,143Nd/144Nd为0.511411~0.511730,εNd(t=1956Ma)值变化于+2.05~+3.78之间,Nd二阶段模式年龄变化于2122~2260Ma,在εNd(t)-t图中,数据点均投于亏损地幔Nd同位素演化线与球粒陨石Nd同位素演化线之间(图 8a)。

表 3 黄旗口岩体全岩Nd同位素数据 Table 3 Whole-rock Nd isotopic data of the Huangqikou plutons

图 8 黄旗口岩体εNd(t)-t (a)和εHf(t)-t (b)图解 Fig. 8 εNd(t) vs. t (a) and εHf(t) vs. t (b) diagrams of Huangqikou plutons
3.4 锆石Lu-Hf同位素特征

锆石Lu-Hf同位素组成数据列于表 4。早期岩体(17149N)176Hf/177Hf变化于0.281524~0.281676(平均值为0.281617),εHf(t)为+0.7~+5.5(t=2056Ma),二阶段模式年龄为2428Ma~2821Ma,在εHf(t)-t图中,样品的原位Hf同位素分析数据点均投于亏损地幔Hf同位素演化线与球粒陨石Hf同位素演化线之间(图 8b)。晚期岩体(17102N)176Hf/177Hf变化于0.281650~0.281838(平均值为0.281732),εHf(t)为+2.6~+8.7(t=1965Ma),二阶段模式年龄为2089~2622Ma,在εHf(t)-t图中,样品的原位Hf同位素分析数据点均投于亏损地幔Hf同位素演化线与球粒陨石Hf同位素演化线之间(图 8b)。

表 4 黄旗口岩体锆石Hf同位素数据 Table 4 LA-MC-ICP-MS zircon Hf isotopic compositions of the Huangqikou plutons
4 讨论 4.1 源区性质

黄旗口早期岩体和晚期岩体具有相似的特征,它们具有高的SiO2、Al2O3和K2O含量,低的TiO2、Na2O和FeOT含量,铝饱和指数A/CNK=1.10~1.42,属强过铝质花岗岩(图 5b)。矿物组合中出现S型花岗岩特征矿物,如石榴子石、白云母和堇青石。在n(A=Al-Na-K)-n(C=Ca)-n(F=Fe+Mg)图解(n为物质的量,mol)中(图 9),几乎所有样品均落在S型花岗岩区域。以上证据表明,黄旗口早期岩体和晚期岩体都为强过铝质S型花岗岩(Chappell and White, 2001; Clemens, 2003)。在球粒陨石标准化稀土元素配分图上,早期岩体和晚期岩体特征一致,都表现为轻重稀土元素分异明显和Eu负异常显著的特征,与上地壳配分模式一致(图 7a)。在原始地幔标准化微量元素蛛网图上,所有样品亏损高场强元素(Nb、Ta、Zr、Hf和Ti),也与上地壳分布模式相一致(图 7b)。岩体的全岩εNd(t)(早期岩体为+2.05~+3.78,晚期岩体为+1.26)和锆石εHf(t)(早期岩体为+0.7~+5.5,晚期岩体为+2.6~+7.7)大于0。以上特征与陆壳物质所形成的花岗岩的特征相一致。

图 9 黄旗口岩体ACF图解 Fig. 9 ACF diagram of the Huangqikou plutons

通常认为S型花岗岩可由变杂砂岩和变泥质岩的部分熔融产生(White and Chappell, 1988; Patiño Douce and Beard, 1995; Chappell, 1999; Cai et al., 2011)。Chappell and White (1992)认为强过铝质S型花岗岩的CaO和Na2O含量变化反映了其原岩中粘土成分含量的不同。实验岩石学证据表明,由泥质岩和杂砂岩部分熔融形成的熔体显示出不同的CaO和Na2O含量,受温度(熔融程度)、压力、H2O活性以及原岩成分等多方面的影响(Holtz and Johannes, 1991; Skjerlie and Johnston, 1996),而CaO/Na2O比值则主要受原岩的中斜长石/粘土比值的控制。因此,CaO/Na2O比值是判定过铝质S型花岗岩源岩中泥质物质含量的一个较好参数,CaO/Na2O比值小于0.3为泥质岩的部分熔融,大于0.3为杂砂岩的部分熔融(Sylvester, 1998)。此外,过铝质S型花岗岩中的Rb-Sr-Ba变化特征与源区物质为泥质岩和杂砂岩有关。在花岗岩体系中,由于许多微量元素存在于副矿物相中而使其含量变化的解释变得复杂,但是Rb、Sr和Ba几乎只赋存于云母和长石中(Harris and Inger, 1992),Sr和Ba是斜长石中的相容元素,Rb为其中的不相容元素,对解释过铝质S型花岗岩的源岩成分特征具有重要意义。杂砂岩产生的熔体相对于泥质岩产生的熔体常具有更低的Rb/Sr和Rb/Ba比值(Sylvester, 1998)。黄旗口岩体的大多数样品都具有较高的CaO/Na2O比值(0.15~1.06,仅三个样品 < 0.3)以及较低的Rb/Sr(0.35~2.21)和Rb/Ba比值(0.14~0.96)。在Rb/Sr与Rb/Ba比值协变图解上,主要落在由高CaO/Na2O比值的杂砂岩熔融产生的熔体区(图 10),表明黄旗口岩体可能主要来自混有少量泥质岩组分、富长石的杂砂岩源区物质的部分熔融。

图 10 黄旗口花岗质岩体物源区判别图解 (a) n(Al2O3)/n(MgO+FeOT)-n(CaO)/n(MgO+FeOT)(据Altherr et al., 2000), n为物质的量,mol;(b) (Na2O+K2O)/(FeOT+MnO+TiO2)-(Na2O+K2O+FeOT+MnO+TiO2)(据Patiño Douce, 1999);(c) Rb/Ba-Rb/Sr和(d) CaO/Na2O-Al2O3/TiO2(据Sylvester, 1998) Fig. 10 Source discrimination diagrams for Huangqikou pluton

研究区位于孔兹岩带西段贺兰山地区,区内主要出露有孔兹岩系(贺兰山岩群和赵池沟岩群)和S型花岗质岩体(Zhao et al., 1999; 钟长汀等, 2007)。可能作为黄旗口过铝质S型花岗岩源区物质的地质体为贺兰山岩群和赵池沟岩群。贺兰山岩群岩性主要为石榴二长片麻岩、石榴黑云二长片麻岩和黑云斜长片麻岩,夹二云石英片岩、白云石英片岩和浅粒岩(卢良兆等, 1996),原岩为含粘土质长石杂砂岩-富粘土质长石杂砂岩-泥质岩组合(钟焱等, 2016),碎屑锆石主要分布于2.0~2.2Ga,变质年龄为1.95Ga,表明贺兰山岩群的原岩沉积作用主要发生在2.0~1.95Ga(Dan et al., 2012)。赵池沟岩群岩性主要为黑云斜长片麻岩、二云母片岩和含石墨二长片麻岩,夹二长片麻岩和片理化蚀变安山岩,原岩为长石石英砂岩、长石杂砂岩和含砂质泥岩,陆彦俊和周喜文(2012)通过测定赵池沟岩群中原岩为火山沉积岩的黑云母石英片岩中获得了2047~2060Ma的锆石U-Pb年龄,基本可以代表赵池沟岩群的沉积时代。研究区附近的贺兰山岩群和赵池沟岩群的原岩岩石组合特征与黄旗口花岗质岩体源区物质特征相一致,并且孔兹岩系与岩体相距很近,可能为黄旗口S型花岗岩的源区物质。

黄旗口S型花岗岩与孔兹岩系具有相似的主、微量元素地球化学特征,在A/NK-A/CNK图解(图 5)、ACF图解(图 9)、稀土元素配分模式图和微量元素蛛网图(图 7)上都落入相同区域,且二阶段Hf模式年龄(早期岩体为2.43~2.82Ga,晚期岩体为2.18~2.62Ga)与孔兹岩系(2.1~2.8Ga; Yin et al., 2011; Dan et al., 2012)基本一致。同时,有许多研究者对孔兹岩带内其他S型花岗岩的研究也支持该解释(李正辉等, 2013; Dan et al., 2014; 刘金科等, 2016; Zhang et al., 2017)。赵池沟岩群和贺兰山岩群形成时代早于黄旗口晚期岩体,推测其可能为晚期岩体的主要物质来源。贺兰山岩群沉积时代晚于黄旗口早期岩体,不能作为其源区物质,而赵池沟岩群形成时代与早期岩体侵位时代大致相同,在特定构造背景下,赵池沟岩群可以快速埋藏并发生部分熔融形成黄旗口早期岩体,因此我们推测赵池沟岩群可能为早期岩体的物质来源。另外,早期岩体和晚期岩体的εNd(t)和εHf(t)值均为正值,表明源区物质除古老地壳物质外,还有一定量新生地壳成分的加入,其中晚期岩体较早期岩体具有更高的εNd(t)和εHf(t)值,表明晚期岩体源区中新生地壳物质的贡献更为明显。

4.2 构造背景及地质意义

大洋岩石圈的俯冲最终导致洋盆封闭,岛弧与大陆块体碰撞,并沿碰撞缝合线发育一系列花岗质岩浆作用(Pitcher, 1983; Pearce et al., 1984; Harris et al., 1986)。碰撞构造环境可分为三个阶段:碰撞前、同碰撞和碰撞后。碰撞前阶段通常在活动大陆边缘一侧的岛弧环境下形成钙碱性侵入体;同碰撞阶段通常在陆-陆碰撞带发育过铝质侵入体(如淡色花岗岩),碰撞后阶段通常在陆-陆碰撞带和原为被动大陆边缘一侧的板块内部分别发育钙碱性和碱性侵入体(Harris et al., 1986)。本文所研究的黄旗口岩体属强过铝质钙碱性花岗岩,位于华北克拉通西部孔兹岩带西段的贺兰山地区,可能是古元古代阴山陆块与鄂尔多斯陆块碰撞拼合背景下的产物,需结合区域大地构造演化历史来判断岩体形成的具体构造环境。

华北克拉通北缘主要发育三期古元古代花岗质岩浆事件(耿元生等, 2009),早期阶段(2.05~2.0Ga)岩体主要出露在贺兰山地区,主要岩性为黑云斜长片麻岩(原岩为英云闪长岩)(Li et al., 2017, 2018);第二阶段(2.0~1.87Ga)岩体在孔兹岩带东部和西部都有出露,主要岩性为闪长岩类和英云闪长岩类(Zhang et al., 2017; Dan et al., 2014; 耿元生等, 2009; 陈佩嘉等, 2017; Wang et al., 2017);第三阶段(1.85~1.8Ga)岩体仅在孔兹岩带东部发育,孔兹岩带西段(贺兰山地区和千里山地区)缺少该期岩浆事件(Wan et al., 2013b)。

对第二阶段地质事件岩浆的研究最为广泛,岩浆作用的峰期时间为1.97~1.95Ga(Wan et al., 2013b),该期岩浆事件在孔兹岩带伴随有广泛的变质作用,变质峰期为~1.95Ga(Wan et al., 2013b; Yin et al., 2009, 2011),孔兹岩带西部贺兰山杂岩(周喜文等, 2010; Yin et al., 2015)、千里山杂岩(Yin et al., 2014)以及东部的乌拉山杂岩(Cai et al., 2015)和集宁杂岩(Wang et al., 2011)经历了麻粒岩相变质作用,具有相似的顺时针P-T演化轨迹,指示近等温降压过程,表明在~1.95Ga孔兹岩带处于陆-陆碰撞造山过程的峰期,限定了阴山陆块和鄂尔多斯陆块碰撞的峰期时间。本文研究的黄旗口晚期岩体,形成于~1.97Ga,为1.97~1.95Ga峰期岩浆活动阶段的产物,形成于陆-陆碰撞构造背景下,该结论与贺兰山地区同期S型花岗岩的构造背景相一致,如形成于1958±30Ma的沙巴台花岗岩(李正辉等, 2013)。

贺兰山中段位于孔兹岩带南缘,要判定黄旗口早期岩体(~2.05Ga)形成于碰撞前岛弧环境还是陆-陆碰撞环境,首先应弄清阴山陆块与鄂尔多斯陆块碰撞拼合前鄂尔多斯陆块北缘的大地构造背景。鄂尔多斯陆块北缘发育花岗片麻质基底,但缺乏与岛弧作用相关的火山岩,而阴山陆块南缘在晚太古代至早元古代期间处于活动大陆边缘,在大青山和乌拉山地区形成了晚太古代-古元古代TTG侵入体和镁铁质-长英质火山岩组合(Liu et al., 1993; 赵国春等, 2002)。岛弧作用下形成的花岗岩通常会有地幔组分的加入,而黄旗口早期岩体的微量元素特征、Nd同位素特征和锆石Hf同位素特征均未显示有地幔成分的加入。因此,排除了早期岩体形成于碰撞前岛弧环境下。本文认为黄旗口早期岩体形成于阴山陆块与鄂尔多斯陆块碰撞拼合的早期阶段。

板块汇聚阶段会引起陆壳增厚,伴随大量挥发性组分的释放,同时,K、U和Th等元素衰变以及剪切构造作用会释放大量的热,引起增厚地壳部分熔融,形成温度较低(< 875℃)的花岗质岩浆(Harris et al., 1986)。黄旗口两期花岗质岩体的锆石饱和温度均较低,早期岩体锆石饱和温度范围为735~815℃(平均值为772℃),晚期岩体为703~829℃(平均值为794℃),岩浆温度较低,与加厚地壳部分熔融形成的花岗质岩浆特征一致。

孔兹岩带西段贺兰山地区记录有大规模的~1.95Ga构造-热事件,通常将这一期区域性的构造-热事件解释为阴山陆块和鄂尔多斯陆块碰撞拼合的结果(Zhao et al., 2005, 2010; Yin et al., 2009, 2011, 2014; Wang et al., 2011; Zhao and Guo, 2012)。通常认为,阴山陆块与鄂尔多斯陆块于~1.95Ga已碰撞拼合在一起(Zhao et al., 2005, 2012),但关于两个微陆块开始碰撞的时间尚无定论。黄旗口早期岩体为目前在贺兰山地区发现的最早的形成于碰撞构造背景下的S型花岗岩,该岩体的年代学以及成因研究将阴山陆块与鄂尔多斯陆块开始碰撞的时间提前至~2.05Ga之前。黄旗口晚期岩体形成于阴山陆块与鄂尔多斯陆块碰撞的晚期阶段。两期岩浆事件表明阴山陆块与鄂尔多斯陆块的碰撞阶段至少持续了~80Myr。碰撞时间可以持续80Myr以上是存在实验模拟和研究实例支持的,例如Grenville造山带的模拟研究表明,其造山时间可以持续100Myr(Jamieson and Beaumont, 2011);华北克拉通中部造山带的中段到南段构造-热事件,可能持续了~150Myr(1.96~1.86Ga)(Lu et al., 2015)。另外,大部分研究认为喜马拉雅陆-陆造山带已经持续了~50Myr的碰撞,至今仍处于陆-陆碰撞阶段(Ding et al., 2016),但最新的研究成果表明,拉萨南部存在~62Ma的淡色花岗岩,形成于碰撞作用下的板片后撤背景下(Ma et al., 2017),表明喜马拉雅陆-陆造山作用至少已经持续了62Myr。以上实验模拟结果和研究实例表明碰撞时间持续~80Myr是有可能的。

4.3 贺兰山地区古元古代晚期(2.1~1.8Ga)多期S型花岗质岩浆事件总结

耿元生等(2009)将华北克拉通北缘古元古代晚期花岗岩分为三期,第一阶段大于2.0Ga,第二阶段为2.0~1.87Ga,第三阶段为1.85~1.80Ga,与古元古代晚期造山过程的不同阶段相对应。本文收集了贺兰山地区古元古代晚期(2.1~1.8Ga)已经发表的高精度花岗质岩浆事件和变质事件的年龄(表 5),年龄数据结果主要集中于~1.95Ga、~2.05Ga、~1.92Ga和~1.85Ga。因此,本文依据贺兰山地区岩浆事件年龄将该地区的岩浆事件分为四期,分别为~2.05Ga、~1.95Ga、~1.92Ga和~1.85Ga,对应于三期不同的古元古代构造事件。

表 5 华北克拉通西部贺兰山地区古元古代岩体同位素年龄 Table 5 Isotopic ages of the Paleoproterozoic complex rocks in the Helanshan area from the western of North China Craton

第一期和第二期S型花岗质岩浆岩为阴山陆块与鄂尔多斯陆块碰撞阶段的产物。碰撞阶段早期(~2.05Ga),贺兰山地区记录的岩浆事件主要包括黑云母英云闪长岩(2056±24Ma; 本文)、黑云斜长片麻岩(2053±58Ma; 耿元生等, 2009)和石榴子石花岗岩(2047±42Ma; 耿元生等, 2009),代表阴山陆块与鄂尔多斯陆块碰撞的早期阶段。碰撞阶段晚期(~1.95Ga),贺兰山地区记录的岩浆事件主要为S型花岗岩和辉绿岩墙(周喜文和耿元生等, 2009; 耿元生等, 2009; 李正辉等, 2013; 宋新华等, 2010; Dan et al., 2012; 本文),同期的变质事件为高压麻粒岩相变质作用,对应于阴山陆块和鄂尔多斯陆块陆-陆碰撞的峰期(Zhao et al., 2005, 2010; Yin et al., 2009, 2011, 2014, 2015; Jiao et al., 2013; Cai et al., 2014)。

第三期S型花岗质岩浆岩为碰撞挤压过程向碰撞后伸展过程转变的产物。前人已报导出贺兰山地区存在~1.92Ga的S型花岗岩(1922±31Ma; 刘金科等, 2016; 1902±22Ma; Zhang et al., 2017)和闪长岩(1920±7Ma; 耿元生等, 2009)。研究区泥质麻粒岩广泛分布,其变质年龄为1923±9Ma和1903±9Ma(Qiao et al., 2016)。虽然在孔兹岩带西部贺兰山地区并未发现~1.92Ga的基性岩,但是在孔兹岩带东部,Guo et al. (2012)发现辉长岩墙与超高温变质岩相伴生。赵国春(2009)Zhao et al. (2012)认为碰撞后地幔上涌可以很好的解释该期岩浆事件和变质事件。千里山-贺兰山孔兹岩系高压泥质麻粒岩中~1.92Ga的变质锆石温度为697~794℃,与780~820℃峰后减压温度重叠,表明在该时间可能发生了近等温减压作用(Qiao et al., 2016)。考虑到该地区有~1.92Ga超镁铁质岩脉的侵入,碰撞后地幔上涌(赵国春, 2009; Zhao et al., 2012)有利于解释该地区~1.92Ga的岩浆/变质事件,表明其构造背景已由挤压环境变为伸展环境。

第四期S型花岗质岩浆岩为造山后减压过程的产物。该期岩浆事件在贺兰山地区以未发生变形的S型花岗岩(1840±15Ma和1858±23Ma; Yin et al., 2011)为主。该区记录有~1.85Ga的变质年龄,主要岩性为石榴石-夕线石-黑云母(-堇青石)片麻岩(1865Ma; Yin et al., 2011)和黑云斜长片麻岩(1871±21Ma; 耿元生等, 2009),记录了麻粒岩相变质峰期之后减压冷却阶段的年龄。这些岩浆事件被解释为与孔兹岩带折返发生减压部分熔融有关(Yin et al., 2009, 2010; Jiao et al., 2013; Wan et al., 2013b)。

综上所述,以上多期岩浆事件和变质事件记录了阴山陆块和鄂尔多斯陆块从陆-陆碰撞到碰撞后伸展形成孔兹岩带的过程,代表着华北克拉通西部陆块的拼合过程。

5 结论

(1) 贺兰山地区古元古代黄旗口花岗质岩体属于至少存在两期岩浆事件的花岗质复式岩体,早期岩体形成于2056±24Ma,晚期岩体形成于1965±14Ma。

(2) 黄旗口两期岩体均属于典型的过铝质S型花岗岩,可能主要来自于孔兹岩系的部分熔融,并含有一定量新生地壳物质的加入,其中晚期岩体新生地壳物质的贡献更为明显。

(3) 黄旗口早期岩体形成于阴山陆块与鄂尔多斯陆块陆-陆碰撞的早期阶段,表明两个微陆块初始碰撞时间早于~2.05Ga。晚期岩体形成于两个微陆块碰撞阶段的峰期,表明阴山陆块与鄂尔多斯陆块的碰撞持续时间大于80Myr。

致谢      在野外工作过程中,得到了中国地质科学院地质力学研究所胡国辉博士的帮助;审稿人杜利林研究员、第五春荣教授、张华锋副教授和王洛娟博士提出了许多宝贵意见。在此对他们表示衷心感谢!

参考文献
Altherr R, Holl A, Hegner E, Langer C and Kreuzer H. 2000. High-potassium, calcalkaline I-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73 DOI:10.1016/S0024-4937(99)00052-3
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161-184 DOI:10.1016/j.precamres.2013.11.012
Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2015. Silica-undersaturated spinel granulites in the Daqingshan complex of the Khondalite Belt, North China Craton:Petrology and quantitative P-T-X constraints. Precambrian Research, 266: 119-136 DOI:10.1016/j.precamres.2015.05.005
Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP and Wu FY. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127(1-2): 261-281 DOI:10.1016/j.lithos.2011.09.001
Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1-26 DOI:10.1017/S0263593300007720
Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chappell BW and White AJR. 2001. Two contrasting granite types:25 years later. Australia Journal Earth Sciences, 48(4): 489-499 DOI:10.1046/j.1440-0952.2001.00882.x
Chen PJ, Dai CC, Huang C and Wang XL. 2017. Geochemical characteristics and zircon U-Pb age of the Paleoproterozic S-type granite in Wulashan region and its geological significance. Geology in China, 44(5): 959-973 (in Chinese with English abstract)
Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18 DOI:10.1016/S0012-8252(02)00107-1
Condie KC, Boryta MD, Liu JZ and Qian XL. 1992. The origin of khondalites:Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China Craton. Precambrian Research, 59(3-4): 207-223 DOI:10.1016/0301-9268(92)90057-U
Dan W, Li XH, Guo JH, Yu L and Wang XC. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-223: 143-158 DOI:10.1016/j.precamres.2011.07.016
Dan W, Li XH, Wang Q, Wang XC, Liu Y and Wyman DA. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton:Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254: 59-72 DOI:10.1016/j.precamres.2014.07.024
De La Roche H, Leterrier J, Grandclaude P and Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses:Its relationships with current nomenclature. Chemical Geology, 29(1-4): 183-210 DOI:10.1016/0009-2541(80)90020-0
Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H, Mu HC, Gou ZB, Shui XF, Li WC and Mao LJ. 2016. Early Eocene (c.50Ma) collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73
Geng YS, Zhou XW, Wang XS and Ren LD. 2009. Late-Paleoproterozoic granite events and their geological significance in Helanshan area, Inner Mongolia:Evidence from geochronology. Acta Petrologica Sinica, 25(8): 1830-1842 (in Chinese with English abstract)
Gou LL, Zhang CL, Brown M, Piccoli PM, Lin HB and Wei XS. 2016. P-T-t evolution of pelitic gneiss from the basement underlying the Northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276: 67-84 DOI:10.1016/j.precamres.2016.01.030
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, (222-223): 124-142
Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67-81 DOI:10.1144/GSL.SP.1986.019.01.04
Harris NBW and Inger S. 1992. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110(1): 46-56 DOI:10.1007/BF00310881
Holtz F and Johannes W. 1991. Genesis of peraluminous granites Ⅰ.Experimental investigation of melt compositions at 3 and 5kb and various H2O-activities. Journal of Petrology, 32(5): 935-958
Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2013. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127 DOI:10.1007/s11434-012-5274-0
Hu NG and Yang JX. 1993. Discussion on the age of the main metamorphism in the Helanshan Group. Journal of Xi'an College of Geology, 15(1): 10-18 (in Chinese with English abstract)
Jamieson RA and Beaumont C. 2011. Coeval thrusting and extension during lower crustal ductile flow-implications for exhumation of high-grade metamorphic rocks. Journal of Metamorphic Geology, 29(1): 33-51 DOI:10.1111/j.1525-1314.2010.00908.x
Jiao SJ, Guo JH, Harley SL and Peng P. 2013. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks:Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78-100 DOI:10.1016/j.precamres.2013.09.008
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397 DOI:10.1016/S1367-9120(03)00071-3
Li W, Dong YP and Liu XM. 2018. Geochronology, geochemistry and Nd-Hf isotopes of the Xiaokouzi granite from the Helanshan complex:Constraints on the Paleoproterozoic evolution of the Khondalite Belt, North China Craton. Precambrian Research, 317: 57-76 DOI:10.1016/j.precamres.2018.08.021
Li WJ, Yin CQ, Long XP, Zhang J, Xia XP and Wang LJ. 2017. Paleoproterozoic S-type granites from the Helanshan complex in Inner Mongolia:Constraints on the provenance and the Paleoproterozoic evolution of the Khondalite Belt, north china craton. Precambrian Research, 299: 195-209 DOI:10.1016/j.precamres.2017.07.009
Li ZH, Liu XM, Dong YP and Xiao ZB. 2013. Geochemistry and zircon U-Pb age of the Paleoproterozoic syn-collisional granites in Helanshan region and its geological significance. Acta Petrologica Sinica, 29(7): 2405-2415 (in Chinese with English abstract)
Liu JK, Zhang DH, Wei JH, Fu LB, Tan J, Wang DZ, Shi HP and Wang YL. 2016. Zircon U-Pb age and geochemical characteristics of the Paleoproterozoic S-type granite in the northern part of Helanshan and its geological significance. Journal of central South University (Science and Technology), 47(1): 187-197 (in Chinese with English abstract)
Liu XS, Jin W, Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499-510 DOI:10.1111/j.1525-1314.1993.tb00167.x
Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract)
Lu JS, Wang GD, Wang H, Chen HX, Peng T and Wu CM. 2015. Zircon SIMS U-Pb geochronology of the Lushan terrane:Dating metamorphism of the southwestern terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 152(2): 367-377 DOI:10.1017/S0016756814000430
Lu LZ, Xu XC and Liu FL. 1996. Early Precambrian Khondalite series of North China. Changchun: Changchun Publishing House: 1-273 (in Chinese)
Lu YJ and Zhou XW. 2012. Characteristics and formation age of rock group in Zhaochigou Group complex from Early Precambrian metamorphic basement in Helanshan region. Ningxia Engineering Technology, 11(2): 107-109 (in Chinese with English abstract)
Ma L, Wang Q, Kerr AC, Yang JH, Xia XP, Ou Q, Yang ZY and Sun P. 2017. Paleocene (ca.62Ma) leucogranites in southern Lhasa, Tibet:Products of syn-collisional crustal anatexis during slab roll-back? . Journal of Petrology, 58(11): 2089-2114
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101: 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Patiño Douce AE and Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology, 36(3): 707-738 DOI:10.1093/petrology/36.3.707
Patiño Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?. Geological Society, London, Special Publications, 168(1): 55-75 DOI:10.1144/GSL.SP.1999.168.01.05
Pearce JA, Harris NW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peng P, Guo JH, Windley BF, Liu F, Chu Z and Zhai MG. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton:Implications for ridge subduction. Precambrian Research, 222-223: 107-123 DOI:10.1016/j.precamres.2011.06.002
Pitcher WS. 1983. Granite type and tectonic environment. In: Mountain Building Processes. London: Academic Press, 19-40
Qiao HZ, Yin CQ, Li QL, He XL, Qian JH and Li WJ. 2016. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan complex of the Khondalite Belt, North China Craton. Precambrian Research, 276: 1-13 DOI:10.1016/j.precamres.2016.01.020
Skjerlie KP and Johnston AD. 1996. Vapour-Absent melting from 10 to 20kbar of crustal rocks that contain multiple hydrous phases:Implications for anatexis in the deep to very deep continental crust and active continental margins. Journal of Petrology, 37(3): 661-691 DOI:10.1093/petrology/37.3.661
Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324 DOI:10.1016/S0012-821X(04)00012-3
Song XH, Li HY, Guo HW, Zhang LC, Sun WK, Gu SJ, Chen ZG and Zhang XJ. 2010. Original rocks, ages, and its significance for the wall rock of Niutougou gold deposit in northern Helan Mountains. Acta Petrologica Sinica, 26(5): 1625-1632 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313-345
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44 DOI:10.1016/S0024-4937(98)00024-3
Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627 DOI:10.1038/379624a0
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publications, 323(1): 73-97 DOI:10.1144/SP323.4
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013a. Is the Ordos Block Archeanor Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313(7): 683-711 DOI:10.2475/07.2013.03
Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013b. Episodic Paleoproterozoic (~2.45, ~1.95 and~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93 DOI:10.1016/j.precamres.2012.09.014
Wang C, Meng F and Mao ZL. 2012. Zircon SHRIMP U-Pb dating technique for Huangqikou granite in Helanshan area and its lithogeochemical characteristics. Ningxia Engineering Technology, 11(3): 206-213 (in Chinese with English abstract)
Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of Khondalites from the Jining complex, North China Craton. International Geology Review, 53(2): 212-229 DOI:10.1080/00206810903028144
Wang LJ, Guo JH, Yin CQ and Peng P. 2017. Petrogenesis of ca.1.95Ga meta-leucogranites from the Jining complex in the Khondalite Belt, North China Craton:Water-fluxed melting of metasedimentary rocks. Precambrian Research, 303: 355-371
White AJR and Chappell BW. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3): 169-181 DOI:10.1017/S026359330001419X
Williams IS, Cho DL and Kim SW. 2009. Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea:Constraints on Triassic post-collisional magmatism. Lithos, 107(3-4): 239-256 DOI:10.1016/j.lithos.2008.10.017
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu JS, Geng YS, Shen QH, Wan YS, Liu DY and Song B. 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-continent. Beijing: Geological Publishing House: 1-212 (in Chinese with English abstract)
Yang HB. 2013. Geochemistry and significance of the Paleoproterozoic granitoids from Huangqikou, the Central Helanshan area. Master Degree Thesis. Wuhan: China University of Geosciences (in Chinese with English summary)
Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW and Leung WH. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78-94 DOI:10.1016/j.precamres.2009.06.008
Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38 DOI:10.1016/j.lithos.2010.11.010
Yin CQ, Zhao GC, Wei CJ, Sun M, Guo JH and Zhou XW. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex:Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172-186 DOI:10.1016/j.precamres.2013.12.025
Yin CQ, Zhao GC and Sun M. 2015. High-pressure pelitic granulites from the Helanshan Complex in the Khondalite Belt, North China Craton:Metamorphic P-t path and tectonic implications. American Journal of Science, 315(9): 846-879 DOI:10.2475/09.2015.03
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118 DOI:10.1016/j.chemgeo.2007.10.003
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its break-up during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.): 219-232
Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton:Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136 DOI:10.1016/j.precamres.2015.06.001
Zhang DH, Wei JH, Fu LB, Schmitt AK, Wang DZ, Tan J and Liu JK. 2017. Petrogenesis and thermal overprint of S-type granites in Helanshan region, North China Craton:Constraints on the 1.90Ga khondalites decompression melting and 1.32Ga tectono-thermal event. Precambrian Research, 303: 660-672 DOI:10.1016/j.precamres.2017.08.016
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53 DOI:10.1016/S0040-1951(99)00152-3
Zhao GC, Sun M and Wilde SA. 2002. Characteristics of basic tectonic units and Early Proterozoic assembly of the North China Craton. Science in China (Series D), 32(7): 538-549 (in Chinese)
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276 DOI:10.1016/j.precamres.2009.12.007
Zhao GC and Guo JH. 2012. Precambrian geology of China:Preface. Precambrian Research, 222-223: 1-12 DOI:10.1016/j.precamres.2012.09.018
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, 23(4): 1207-1240 DOI:10.1016/j.gr.2012.08.016
Zhong CT, Deng JF, Wan YS, Mao DB and Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China craton:Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585-600 (in Chinese with English abstract)
Zhong Y, Chen YL, Zhai MG and Ma XD. 2016. Stratigraphic correlation and lithofacies paleogeography of khondalite series in the western North China Craton. Acta Petrologica Sinica, 32(3): 713-726 (in Chinese with English abstract)
Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the Western Block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843-1852 (in Chinese with English abstract)
Zhou XW, Zhao GC and Geng YS. 2010. Helanshan high pressure pelitic granulite:Petrologic evidence for collision event in the Western Block of the North China Craton. Acta Petrologica Sinica, 26(7): 2113-2121 (in Chinese with English abstract)
陈佩嘉, 戴朝成, 黄成, 王新亮. 2017. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义. 中国地质, 44(5): 959-973.
耿元生, 周喜文, 王新社, 任留东. 2009. 内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义:同位素年代学的证据. 岩石学报, 25(8): 1830-1842.
胡能高, 杨家喜. 1993. 贺兰山群变质杂岩主变质期的时代探讨. 西安地质学院学报, 15(1): 10-18.
李正辉, 柳小明, 董云鹏, 肖志斌. 2013. 贺兰山古元古代同碰撞花岗岩地球化学、锆石U-Pb年代及其地质意义. 岩石学报, 29(7): 2405-2415.
刘金科, 张道涵, 魏俊浩, 付乐兵, 谭俊, 王大钊, 施海鹏, 王艺龙. 2016. 贺兰山北段古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义. 中南大学学报(自然科学版), 47(1): 187-197.
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558. DOI:10.3321/j.issn:0379-1726.1996.06.004
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社: 1-273.
陆彦俊, 周喜文. 2012. 贺兰山地区前寒武纪变质基底赵池沟岩群的岩石地层特征及形成时代. 宁夏工程技术, 11(2): 107-109. DOI:10.3969/j.issn.1671-7244.2012.02.003
宋新华, 李红宇, 郭合伟, 张连昌, 孙文坤, 谷守江, 陈志广, 张晓静. 2010. 贺兰山北段牛头沟金矿区围岩的原岩恢复、时代及其地质意义. 岩石学报, 26(5): 1625-1632.
王成, 孟方, 毛自力. 2012. 贺兰山黄旗口花岗岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 宁夏工程技术, 11(3): 206-213. DOI:10.3969/j.issn.1671-7244.2012.03.004
伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社: 1-212.
杨华本. 2013.贺兰山中段黄旗口古元古代花岗质岩体的岩石地球化学特征及其地质意义.硕士学位论文.武汉: 中国地质大学 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2437111
翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增刊): 129-137.
赵国春, 孙敏, Wilde SA. 2002. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学(D辑), 32(7): 538-549.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585-600. DOI:10.3321/j.issn:0379-1726.2007.06.007
钟焱, 陈雅丽, 翟明国, 马旭东. 2016. 华北克拉通西部古元古代孔兹岩系的地层对比、岩相古地理特征及其地质意义. 岩石学报, 32(3): 713-726.
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852.
周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113-2121.