岩石学报  2019, Vol. 35 Issue (8): 2299-2324, doi: 10.18654/1000-0569/2019.08.02   PDF    
从哥伦比亚超大陆裂解事件论古/中元古代的界限
耿元生1, 旷红伟1, 杜利林1, 柳永清1, 赵太平2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州 510640
摘要:国际前寒武纪地层表中始终把古/中元古代的界线置于1.6Ga,我国则一直将这一界线置于1.8Ga。存在认识分歧的根本原因是对1.8Ga前后时期地质事件及其性质的理解与认识的差异或偏颇。本文通过阐述1.8~1.6Ga期间地质事件及其性质,重点分析和讨论古/中元古代(界)界限的划分及相关地质事件的标志与意义。大量的地质资料显示,超大陆从1.8~1.75Ga开始裂解,形成一系列的陆内盆地,如北美(劳伦古陆)的Thelon盆地、澳大利亚北部的Leichhardt超级盆地、南美巴西圣弗兰西斯科盆地、华北南缘的熊耳裂谷盆地以及扬子地块西南缘的东川盆地等。在这些盆地形成的早期沉积了冲积扇相、河流相的碎屑岩,之后伴有较广泛的火山岩喷发,中晚期从河流相、湖相碎屑岩沉积过渡到浅海碳酸盐台地沉积,反映一个拉伸裂解的过程。在复原的哥伦比亚超大陆内,广泛分布有1.78~1.72Ga的非造山花岗岩,包括AMCG组合(斜长岩、纹长二长岩、紫苏花岗岩和花岗岩)、环斑花岗岩、A型花岗岩等,以及广泛分布的基性岩墙群。这些岩浆岩都反映了拉伸裂解的地球动力学背景。在1.8~1.6Ga,不论是沉积事件还是岩浆事件,绝大部分与超大陆的拉伸裂解有关,并未显示造山作用、大陆固结和克拉通化的特点,用固结纪来概括这一阶段地质事件的性质并不合适。哥伦比亚超大陆上的许多盆地在1.6Ga左右经历了一次广泛的抬升,使沉积作用短时间间断,之后原有盆地继续发展,接受了更广泛的沉积,这种沉积作用可以一直延续到1.4~1.3Ga左右。与裂解有关的岩浆事件也以幕式方式从1.78Ga一直断续持续到1.4~1.32Ga左右。从1.8Ga(或1.78Ga)到1.4~1.3Ga,不论是盆地的沉积事件还是与裂解有关的岩浆事件,基本是连续的。以1.6Ga作为年代界线划分古/中元古代,人为地隔断了连续的沉积事件和岩浆事件,显然与"尽可能少地截断沉积作用、火成侵位或造山运动的主要序列"的前寒武纪地层划分原则相悖。连续的裂谷盆地沉积事件和非造山岩浆事件可以追溯到1.8Ga(或1.78Ga)。因此,我们建议将古/中元古代的界线置于1.8Ga或1.78Ga。考虑到裂谷作用的本质是在已有超大陆或克拉通的基础上盖层的发育过程,因此我们建议将~1.8Ga或1.78~1.4Ga都归入盖层系。
关键词: 古/中元古代界限     超大陆裂解     裂谷盆地     非造山花岗岩     基性岩墙群    
On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent
GENG YuanSheng1, KUANG HongWei1, DU LiLin1, LIU YongQing1, ZHAO TaiPing2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: In the International Precambrian Stratigraphic Chart, the Paleo-/Mesoproterozoic boundary is always set at 1.6Ga while in Chinese literatures, this boundary is always placed at 1.8Ga. The fundamental reason for this difference is the understanding of the nature of the geological events in this period. This paper focuses on discussing the boundary between Paleoproterozoic and Mesoproterozoic from the nature of the geological events during 1.8~1.6Ga. A large amount of geological data shows that the Columbia/Nuna supercontinent began to stretch and breakup from 1.8Ga to 1.75Ga and formed a series of intracontinental rifting-sag basins, such as Thelon basin in North America (Laurentia), Leichhardt superbasin in northern Australia, São Francisco basin in South America, Xiong'er rifting basin in the southern margin of the North China Craton, Dongchuan basin in the southwestern margin of the Yangtze Block, and others. During the early stage of basin formation, the clastic rocks of alluvial fan facies and fluvial facies were deposited, followed by extensive volcanic eruptions. During the middle and late stage, the ealier fluvial facies and lacustrine facies rocks were overlied by carbonate platform sediments deposited in shallow sea, which reflects a process of stretching and breakup. Anorogenic magmatic rocks of 1.78~1.72Ga distributed widely in continents/blocks that formed the Columbia supercontinent, including bimodal igneous rocks, AMCG assemblages (anorthosite, mangerite, charnockite and granite), rapakivi granite, A-type granite, etc., as well as widely distributed mafic dyke swarms. All these igneous rocks reflect the stretching and breaking process. During 1.8~1.6Ga, both sedimentary events and magmatic events were related to the stretching and breaking of the supercontinent, but did not show the characteristics of orogeny, continental solidation and cratonization. Therefore, it is not appropriate to use the Statherian to summarize the nature of the geological events in this stage. In Columbia supercongtinent, many intracontinental basins experienced a wide uplift at around 1.6Ga, resulting in a short interval of sedimentation. After that, the original basins continued to develop and accepted a wider range of sedimentation, which sustained until about 1.4~1.3Ga. Magmatic events related to supercontinental stretching and breaking can also be intermittent from 1.78Ga to 1.4~1.32Ga. From 1.8Ga (or 1.78Ga) to 1.4~1.3Ga, both sedimentary events in the basins and magmatic events related to stretching and breaking are basically continuous. Therefore, the set of Paleo-Mesoproterozoic boundary at 1.6Ga artificially destroys the continuity of global sedimentary events and magmatic events, which were obviously contrary to the principle that the major sequences of sedimentation, igneous emplacement, or orogeny should be cut off as little as possible in the Precambrian stratigraphic division. Since the time of the successive depositional events in rifting-basins and of the anorogenic magmatic events in continents can be traced back to 1.8Ga (or 1.78Ga), we propose to place the Paleo-Mesoproterozoic boundary at 1.8Ga or 1.78Ga, rather then 1.6Ga. Considering that the rifting process leads to the development of the overlying strata on the preexisting supercontinent or craton, we suggest classifying the sediments of ca. 1.8~1.4Ga into the Calymmian.
Key words: Paleo-Mesoproterozoic boundary     Supercontinental breakup     Rifting basin     Anorogenic granite     Mafic dyke swarms    

国际地层表中将1800~1600Ma作为固结系(Statherian),将1600~1400Ma作为盖层系(Calymmiian)(Cowie and Bassett, 1989; Gradstein et al., 2004),并将古元古代与中元古代的年代界线置于1600Ma。而在我国,长期以蓟县的元古宙剖面为基础将1800~1400Ma划分为长城系,1400~1000Ma划分为蓟县系,把古元古代与中元古代的界线置于1800Ma(全国地层委员会, 2001, 2002)。中外学者对古/中元古代年龄界线所持观点上的差异,造成了我国学者在国际交流上的不便。

对于前寒武纪的划分,国际地层委员会一直强调要以关键地质事件为标志作为地层单位的界限,这些事件是地球系统巨变过程中保存的地质记录,是客观实体,从而可以建议一个“自然的”前寒武纪地质年代表(Gradstein et al., 2004; 陆松年等, 2005)。鉴于此,Van Kranendonk (2012)指出:古元古代的结束(1.6Ga)还存在争论,因为其没有和全球的动力学事件相联系。因此在2004年和2012年建议的国际地层表中分别提出以1.8Ga或1.78Ga作为古/中元古代的界限(Gradstein et al., 2004; Van Kranendonk, 2012)。但是这两个建议的前寒武纪地质年表由于还存在争议,并未被国际地层委员会所采纳。我国长期以来以蓟县剖面长城群底部的常州沟组的底作为古/中元古代分界的地质标志,该界面的年龄被认为在1.8Ga左右。近年高精度锆石原位测年结果表明,长城群的底界只有1670Ma左右(李怀坤等, 2011; 和政军等, 2011a, b)。2014年出版的中国地层表(2014版)中仍将中国古/中元古代的界限划分在1800Ma,长城纪的时限限定在1800~1600Ma,蓟县纪的时限限定在1600~1400Ma。值得注意的是,在这个地层表中,长城纪作为一个地质年代单位其时限从1800Ma到1600Ma,但是相对应的岩石地层单位即以天津蓟县剖面为代表的长城群底界并没有到1800Ma,下部有一段地层缺失(中国地质调查局和全国地层委员会, 2014; 王泽九等, 2014)。这些新的资料,引起了我国古/中元古代界限以什么为标志,以及界限年龄究竟置于何处更适宜的争论。由此可见,不论是国际还是国内对古/中元古代的年代界限仍存在不同认识和争论,本文从古/中元古代界限划分的历史、原则标志、华北及世界其他有关地区的实例对古/中元古代(界)的年代界限进行讨论。

1 关于古/中元古代划分的简要历史回顾

前寒武纪是一个漫长的地质演化阶段,其演化历史占地球演化历史的7/8。但是直到20世纪60年代还没有全球统一的前寒武纪地质年代和年代地层的划分方案(James, 1978)。为此,1968年国际地球科学联合会成立了国际前寒武纪地层分会,其任务是:建立世界范围的前寒武纪年代地层学和前寒武纪时期的进一步划分(Rankama, 1970)。经过多年的酝酿,1979年在美国Duluth召开的分会第五次会议上首次提出元古宙三分的建议,分别用非正式的元古Ⅰ、元古Ⅱ和元古Ⅲ表示,推荐的元古Ⅰ与元古Ⅱ的界线年龄为1600Ma。会议提出,时间单位的选择基于全球重要地质事件的时间位置,所选定的界限应尽可能少地截断沉积作用、火成侵位或造山运动的主要序列,根据同位素资料确定它们的年龄以作为区域或大陆之间应用的基础(Sims, 1980; 陆松年和孙大中, 1983)。1982年在埃及Tanta召开的分会第六次会议上出席会议的委员和通讯委员对元古宙三分的建议进行了热烈的讨论,介绍了各自地区的元古宙地质背景和阶段划分建议。尽管很多委员和通讯委员在讨论对元古Ⅰ/元古Ⅱ的分界提出不同意见,但在最后由正式委员参加的投票中仍多数赞成票的投票结果通过了元古Ⅰ/元古Ⅱ界线年龄为1600Ma的方案(James, 1983)。我国参会的正式代表孙大中先生在会议上提出华北克拉通的古/中元古代的界限年龄应为1900Ma,因此在投票中投了弃权票。这次会议还提出了元古宙进一步划分为8个纪一级年代地层单位的建议(表 1, 孙大中和陆松年, 1983a, b)。1988年在天津召开了分会第八次会议,会议以多数票赞成通过了元古宙进一步划分为10个纪一级年代地层单位的方案,并以拉丁文为基础进行了统一命名(表 1, 孙大中, 1989)。会后国际前寒武纪地层分会主席将这一方案上报国际地层委员会,得到批准后成为我们现在广泛使用的国际元古宙年代地层划分方案。Gradstein et al. (2004)在建议的2004~2008年国际地层表方案中,提出以全球第一个超大陆(Columbia或Nuna超大陆)的汇聚作为划分古/中元古代的地质标志,界线年龄为1800Ma(表 1)。Van Kranendonk (2012)Gradstein et al. (2012)主编的地质年代表第十六章(A chronostratigraphic division of the Precambrian)中提出,以哥伦比亚(又称努娜)超大陆的形成作为古/中元古代的划分标志,其界线时代为1780Ma(表 1)。然而,不论是2004年的还是2012年的建议方案,由于尚存争议并未被国际地层委员会所采纳。因此在国际地层委员会历年公布的正式地层表中古/中元古代的界线年龄仍为1600Ma(表 1)。

表 1 国际元古宙年代地层划分的沿革 Table 1 The international Proterozoic chronostratigraphic subdivisions

我国蓟县剖面出露的长城群和蓟县群是一套未变质的沉积地层,由几个从底部的砂砾岩层,向上过渡到泥砂质、泥质、镁质碳酸盐岩的沉积旋回组成。这套未变质地层不整合覆盖在太古宙-古元古代变质岩层之上。长城群与下伏岩层是两个不同阶段的产物,代表地球发展历史过程中一个重要的地质事件转变。因此,我国长期以来以蓟县剖面作为中元古代地层的代表,曾划分为1.8~1.4Ga的长城系和1.4~1.0Ga的蓟县系(表 2)。早期根据长城系底部常州沟组页岩全岩Pb-Pb法年龄(1848±39Ma, 李顺智等, 1985; 1757±10Ma, 地质矿产部中国同位素地质年表工作组, 1987)将长城系底界(即古/中元古代界限)定为1.9Ga或1.8Ga(表 2)。2000年全国地层委员会根据多数人的意见在中国地层表中将长城系的底界定义在1.8Ga(全国地层委员会, 2001)。近年,高精度的锆石原位U-Pb年龄数据表明,蓟县地区蓟县群形成时代为1.6~1.4Ga(苏文博等, 2010; 李怀坤等, 2010, 2014; Zhang et al., 2012),长城群的时代ca. 1.67~1.60Ga,其底界年龄只有1.67Ga左右(李怀坤等, 2011; 和政军等, 2011a, b)。2014年全国地层委员会根据新的资料,对长城系和蓟县系的形成时代进行了调整(表 2)。同时,由于长城群的底界年龄只有1.67Ga左右,中国古/中元古代的界限以什么作为地质标志、界限年龄究竟是多少便成了新的问题。

表 2 我国元古宙年代地层划分的沿革 Table 2 The Chinese Proterozoic chronostratigraphic subdivisions
2 古/中元古代(界)分界的地质标志与重要原则

国际地层委员会一直强调,前寒武纪的划分要以关键地质事件(或事件群)为标志,并作为地层单位划分的界限,这些事件是地球系统巨变过程中保存的地质记录,是客观实体,从而可以建立一个“自然的”前寒武纪地质年代表(Gradstein et al., 2004; 陆松年等, 2005)。目前,国际地层表中将2.05~1.8Ga划分为造山纪(Orosirian),属于古元古代;1.8~1.6Ga划分为固结纪(Statherian, 或称稳化纪),是古元古代的最后一个系级年代地层单位;1.6~1.4Ga划分为盖层纪(Calymmian),是中元古代最下部的一个系级年代地层单位。这一方案将古元古代与中元古代的界线年龄置于1.6Ga。造山纪(2.05~1.8Ga)与目前广泛接受的形成哥伦比亚超大陆的造山运动时限基本吻合。固结纪(1.8~1.6Ga)对应的地质作用是“克拉通的稳定化、克拉通化”,其特征为“对大多数大陆而言,这一阶段或者以形成新的地台(如华北、澳大利亚北部)或以褶皱带的最终克拉通化(Baltic地盾和北美)为特征”(Van Kranendonk, 2012)。盖层纪(1.6~1.4Ga)对应的地质作用是“地台的盖层”,其特征是“地台上已有沉积盖层的扩张或在刚刚克拉通化的基底上形成地台”(Van Kranendonk, 2012)。固结纪与盖层纪之间是古/中元古代的界限。这是对古元古代最晚一个纪和中元古代最早一个纪的基本描述或者说是定义。

尽管上述定义中考虑了重要的地质事件的作用。但该定义或描述还存在如下一些问题。(1)仍缺乏全球重大地质事件在年代地层划分中的应用,如参考了各个克拉通的特殊性,但没有进一步从全球超大陆形成演化规律考虑;(2)固结纪定义的克拉通化事件持续时间过长,与目前的认识有较大差距;(3)未区分不同造山带的构造属性,如2.0Ga到1.6Ga(甚至到1.5Ga)全球不同地区发育多期造山运动,其中2.05~1.8Ga的造山运动是形成哥伦比亚超大陆最主要的碰撞造山作用,而1.75~1.6Ga的增生造山带仅分布于超大陆的边缘(如1.75~1.69Ga的Yavapai造山带和年轻于1.68Ga的Mazatzal造山带就依次发育在劳伦大陆的南缘,Furlanetto et al., 2016),但这是两种不同性质的造山作用的产物。早期(2.05~1.8Ga)是形成超大陆的主要造山运动,后期(1.75~1.6Ga)是超大陆形成后大陆边缘与大洋相互作用的造山产物;(4)缺少具有可操作性的明确标志,如固结纪的克拉通化的具体标志不明确;盖层纪时期的“地台上已有沉积盖层扩张”的确切时间和标志并不清晰。况且,从盖层开始至扩张通常是一个连续的沉积过程,前述的古/中元古界划分方案人为将一个连续演化的地质事件和周期拆分开了。

Gradstein et al. (2004)针对上述这些问题,在2004~2008年国际地层表方案中建议,以全球第一个超大陆(Columbia或Nuna超大陆)的汇聚作为划分古/中元古代的地质事件标志,界线年龄为1800Ma(表 1)。Van Kranendonk (2012)也认为,古/中元古代的划分应以哥伦比亚超大陆的形成作为标志,界线年龄为1780Ma。此外,一些矿床地质学家也提出以哥伦比亚超大陆的形成作为成矿阶段划分的标志(Hazen et al., 2008)。由此可见,古/中元古代是一个极其重要的地质事件演化的时间分界点,应该有具体和明确,并可操作的一系列地质标志。哥伦比亚超大陆的形成是古/中元古代之间具有全球性的重大地质事件,对全球的构造格局产生了重大影响。因此,哥伦比亚超大陆的形成与紧随其后的裂解事件应作为古/中元古代的划分重要标志。即,哥伦比亚超大陆的汇聚并基本形成视为古元古代的结束,哥伦比亚超大陆形成后的较大规模裂解作用的启动为中元古代的起始。

3 哥伦比亚超大陆早期裂解的地质记录

尽管对于哥伦比亚超大陆的形成时间、超大陆的原始格局还存在不同认识(Rogers and Santosh, 2002; Meert, 2002, 2012; Sears and Price, 2002; Zhao et al., 2002a; Hou et al., 2008; Evans and Mitchell, 2011; Wang et al., 2016; Gibson et al., 2018),但多数研究者认为哥伦比亚超大陆在1.8Ga左右已经形成(图 1)。不同研究者将华北克拉通、扬子地块置于复原的哥伦比亚超大陆的不同位置(Zhao et al., 2002a; Hou et al., 2008; Evans and Mitchell, 2011; Wang et al., 2016; Gibson et al., 2018),尽管所处位置不同,但是都表明华北克拉通、扬子地块都参与了哥伦比亚超大陆的聚合过程,是哥伦比亚超大陆的组成部分。目前,对于哥伦比亚超大陆早期拉伸裂解启动的时限还有较多争议(Condie, 2002; Rogers and Santosh, 2002; Hou et al., 2008; Evans and Mitchell, 2011; Zhang et al., 2012; Peng, 2015; Wang et al., 2016; Gibson et al., 2018; Verbaas et al., 2018),本节将重点阐述哥伦比亚超大陆早期裂解的地质记录。

图 1 哥伦比亚超大陆复原图(据Zhao et al., 2002a; 造山带编号和克拉通名称等请参考原文) Fig. 1 Reconstruction of the Columbia Supercontinent (after Zhao et al., 2002a; symbols of cratongs and orogenic belt numbers, please refer to the original text)
3.1 华北克拉通1.8~1.6Ga的裂解记录

以往研究表明,华北克拉通南缘1789~1750Ma的熊耳群火山岩及相伴的侵入岩(图 2, Zhao et al., 2002b, 2004; He et al., 2009; Wang et al., 2010; Cui et al., 2011, 2013; 柳晓艳等, 2011)形成于大陆边缘三岔裂谷环境(Zhao et al., 2002b, 2004; 赵太平等, 2015)。但部分研究者根据熊耳群火山岩的岩石组合及地球化学特征则认为它们形成于大陆边缘弧环境(Zhao et al., 2009a; He et al., 2009)。考虑到华北克拉通内广泛分布的放射状镁铁质岩墙主要形成于1.78Ga左右(图 2, Halls et al., 2000; Peng et al., 2006, 2007; Peng, 2015; 韩宝福等, 2007; 王冲等, 2016; 彭澎, 2016),与熊耳群火山岩基本是同时的。因此本文认为,熊耳群火山岩和华北克拉通内广泛分布的基性岩墙群应代表克拉通化后旋即拉伸裂解的产物。如,熊耳群底部大古石组河流和湖泊相粗至细碎屑沉积以及地球化学特征均指示它们发育于被动大陆边缘裂谷构造背景(图 2, 徐勇航等, 2008)。熊耳群火山岩喷发之后,可能经历了短暂的抬升,之后在华北克拉通南缘的裂谷盆地内先后沉积了汝阳群和洛峪群(图 2),尽管这两个岩群下部和中部还缺少可靠的同位素年龄制约,但是洛峪群顶部洛峪口组凝灰岩获得了1.64~1.61Ga的锆石U-Pb年龄(苏文博等, 2012; 李承东等, 2017; 彭楠等, 2018),大体可以限定熊耳群火山岩之后沉积的汝阳群和洛峪群基本形成于1.75~1.60Ga期间。在华北克拉通北部,1.75~1.68Ga期间在密云-承德一带形成了代表拉伸环境的环斑花岗岩、斜长岩、纹长花岗岩、碱长花岗岩系列(Rämö et al., 1995;高维等, 2008; 杨进辉等, 2005; 任康绪等, 2006; 解广轰, 2005; Zhang et al., 2007; Zhao et al., 2009b; Wang et al., 2013),在密云-冀东和五台山北台并伴有1.73Ga的基性岩墙侵位(Peng et al., 2012a; Peng, 2015)。

图 2 华北克拉通中元古代初拗拉谷和岩墙群的时空分布 (a)华北克拉通构造区划示意图(据侯贵廷等, 2005);(b)华北克拉通中元古代初拗拉谷和岩墙群的分布(据侯贵廷等, 2005): 1-岩墙群;2-拗拉谷边界;3-拗拉谷沉积等厚线;4-岩墙群走向玫瑰图;5-扩张方向;6-岩墙侵位方向;7-郯庐断裂带;(c)华北克拉通中元古代基性岩墙群的年龄分布图(图中数据来源于:Peng et al., 2005, 2006, 2012a; Peng, 2015; 彭澎, 2016; Halls et al., 2000; 韩宝福等, 2007; 王冲等, 2016; Wang et al., 2014a; 胡国辉等, 2010; 相振群等, 2012);(d)熊耳-中条拗拉谷地层柱状图;(e)燕辽拗拉谷地层柱状图.柱状图图例:1-片麻岩;2-基性火山岩;3-中性火山岩;4-酸性火山岩;5-砾岩;6-含砾砂岩;7-粗砂岩;8-砂岩;9-粉砂岩;10-泥质岩;11-砂屑白云岩;12-泥质白云岩;13-白云岩;14-中基性脉岩;15-酸性脉岩.柱状图中年龄数据来源:(1)苏文博等, 2012;(2)李承东等, 2017;(3)彭楠等, 2018;(4)邓小芹等, 2015;(5)柳晓艳, 2011;(6)赵太平等, 2001;(7) Zhao et al., 2004;(8)徐勇航等, 2007;(9) Cui et al., 2011;(10)崔敏利等, 2010;(11) He et al., 2009;(12)柳晓艳等, 2011;(13)高林志等, 2007;(14)高林志等, 2008a;(15)高林志等, 2008b;(16) Su et al., 2008;(17)苏文博等, 2010;(18)李怀坤等, 2014;(19) Zhang et al., 2012;(20) Zhang et al., 2009;(21)李怀坤等, 2010;(22) Lu et al., 2008;(23) Wang et al., 2015;(24)张拴宏等, 2013;(25)高林志等, 2009;(26)李怀坤等, 2011;(27) Li et al., 2013;(28) Peng et al., 2012a Fig. 2 The spatial distribution and main ages of the Early Mesoproterozoic aulacogens and dyke swarms in the North China Craton (a) the tectonic division map of the North China Craton (after Hou et al., 2005); (b) the distributions of Early Mesoproterozoic aulacogens and mafic dyke swarms in the North China Craton (after Hou et al., 2005): 1-dyke swarms, 2-boundaries of the aulacogens, 3-sedimentary isopach in aulacogens, 4-roses diagram with orientations of mafic dyke swarms, 5-expansion direction, 6-intrusion direction of mafic dyke swarms, 7-Tanlu Fault; (c) the age distribution of the mafic dyke swarms (data from Peng et al., 2005, 2006, 2012a; Peng, 2015, 2016; Halls et al., 2000; Han et al., 2007; Wang et al., 2014, 2016; Hu et al., 2010; Xiang et al., 2012); (d) the stratigraphic column in Xiong'er-Zhongtiao aulacogen; (e) the stratigraphic column in Yanliao aulacogen. Legends in column: 1-gneiss, 2-mafic volcanics, 3-intermediate volccanics, 4-acid volcanics, 5-conglomerate, 6-pebbly sandstone, 7-coarse sandstone, 8-sandstone, 9-siltstone, 10-pelitic rocks, 11-dolorenite, 12-argillaceous dolostone, 13-dolostone, 14-mafic dyke, 15-acid dyke; Geochronologic data in columns come from: (1) Su et al., 2012; (2) Li et al., 2017; (3) Peng et al., 2018; (4) Deng et al., 2015; (5) Liu, 2011; (6) Zhao et al., 2001; (7) Zhao et al., 2004; (8) Xu et al., 2007; (9) Cui et al., 2011; (10) Cui et al., 2010; (11) He et al., 2009; (12) Liu et al., 2011; (13) Gao et al., 2007; (14) Gao et al., 2008a; (15) Gao et al., 2008b; (16) Su et al., 2008; (17) Su et al., 2010; (18) Li et al., 2014; (19) Zhang et al., 2012; (20) Zhang et al., 2009; (21) Li et al., 2010; (22) Lu et al., 2008; (23) Wang et al., 2015; (24) Zhang et al., 2013; (25) Gao et al., 2009; (26) Li et al., 2011; (27) Li et al., 2013; (28) Peng et al., 2012

1.68~1.60Ga期间在燕辽裂谷带沉积了以碎屑岩和碳酸盐岩为主的长城群,其中的团山子组和大红峪组发育富钾的火山岩(图 2, Lu et al., 2008; 高林志等, 2008b; 李怀坤等, 2011; Li et al., 2013; 张拴宏等, 2013; Wang et al., 2015),同时在鲁西地区发育1.62Ga左右的放射状基性岩墙群(相振群等, 2012; Li et al., 2015)。1.6~1.4Ga在燕辽裂谷带沉积了以碳酸盐岩、砂岩、页岩为主的蓟县群(图 2),其中夹有流纹质凝灰岩和钾质斑脱岩(苏文博等, 2010; 李怀坤等, 2014)。1.40~1.37Ga在燕辽裂谷带沉积了以砂岩和页岩为主的下马岭组(图 2),1.37~1.30Ga期间形成了大量的具有大陆玄武岩特点的基性岩床(Su et al., 2008; 高林志等, 2008a; Zhang et al., 2009, 2012)。上述华北克拉通内广泛发育的1.78~1.3Ga期间的沉积事件和岩浆事件表明,1.78Ga左右华北克拉通(哥伦比亚超大陆)已经开始裂解,并且持续发育到1.30Ga时期(翟明国等, 2014)。

3.2 扬子地块1.8~1.5Ga的裂解记录

由于扬子地块古元古代岩石出露零星,所以有关扬子地块古元古代构造热事件的规模、性质及它在哥伦比亚超大陆中的位置等还知之甚少。但近年对该区古元古代晚期变质作用演化、岩浆事件的研究表明,扬子地块普遍经历了2.0~1.9Ga期间的变质作用(Qiu et al., 2000; Gao et al., 2001, 2011; Zhang et al., 2006; Wu et al., 2009; Yin et al., 2013; Wang et al., 2016),并参与了形成哥伦比亚超大陆聚合的造山过程(耿元生等, 2016; Wang et al., 2016),且可能与劳伦大陆的西北、澳大利亚北部相连(Wang et al., 2014b, 2016)。

扬子地块在哥伦比亚超大陆形成后的最初拉伸发生于1.85Ga,以发育代表拉张环境的(圈椅埫)A型花岗岩、基性岩墙和环斑花岗岩(Xiong et al., 2009; Peng et al., 2009, 2012b; Zhang et al., 2011; Zhou et al., 2017)为标志,应属于哥伦比亚超大陆最初裂解(fragmentation)的地块(Zhou et al., 2014)。1.75~1.60Ga时期,云南大红山地区的大红山群、云南东川-武定地区东川群、四川西南河口地区河口群和四川会理南部的通安组等都是随后的持续裂解的沉积响应(图 3)。大红山群底部老厂河组以砂岩沉积为主,夹年龄为1722~1711Ma(杨红等, 2012)的薄层火山岩(图 3),发育于裂谷盆地早期阶段;中部曼岗河组和红山组以中基性火山岩为主,夹少量泥砂质和碳酸盐岩沉积,其火山岩年龄1681~1656Ma(图 3, Greentree and Li, 2008; Zhao and Zhou, 2011; 金廷福等, 2017),代表裂谷盆地第二个阶段;上部肥味河组和坡头组则以夹有部分泥砂质岩石的碳酸盐岩为主,代表了裂谷盆地的第三个阶段。四川西南代表裂谷盆早期阶段的河口群底部大营山组以砂岩沉积为主,夹少量火山岩,年龄为1722~1705Ma(Chen et al., 2013);中上部落凼组和长冲组发育于裂谷盆地第二阶段,以钠质火山岩为主,夹有较多的砂岩和碳酸盐岩,其中火山岩年龄1680~1659Ma(周家云等, 2011; Zhu et al., 2013; 耿元生等, 2017)。东川群和通安组以碎屑至碳酸盐岩并夹少量凝灰岩沉积序列为主,火山岩不发育。东川群下部凝灰岩锆石U-Pb年龄1742Ma(Zhao et al., 2010)和通安组下部凝灰岩的锆石U-Pb年龄为1744Ma(耿元生等, 2017)和1720Ma(任光明等, 2014),表明东川群和通安组是启动于1.75Ga的裂解作用产物。王伟等(Wang and Zhou, 2014; Wang et al., 2014b)基于东川群沉积岩石组合和沉积构造,总结了东川裂谷盆地如下的四个演化阶段,即:1742Ma区域拉伸机制导致裂谷盆地堆积了因民组下部冲积扇相粗粒碎屑岩;1742~1673Ma期间地壳持续拉伸导致裂谷盆地下部岩浆源上涌,同时发育了因民组中上部冲积平原相到临滨相碎屑岩夹碳酸盐岩组合;1673~1596Ma为裂谷盆地热松弛或后裂谷阶段,沉积了落雪组台地相碳酸盐岩;1596~1503Ma阶段,伴随着相邻地区海底扩张,东川裂谷盆地沉积了以鹅头厂组(黑山组)为代表的深海沉积。由上述可见,扬子地块西南缘1.75~1.50Ga时期沉积盆地的发育和演化也间接指示着该地区从1.75Ga左右启动了裂解作用,裂谷盆地由早至晚发育从陆相至深海相的沉积演化过程。

图 3 扬子地块西南缘大红山、东川、河口群及通安组地层、岩浆事件和年龄(单位Ma)资料对比 Fig. 3 Comparison of the stratigraphic, magmatic and geochronological data (unit: Ma) among the Dahongshan, Dongchuan, and Hekou groups, as well as and Tong'an Formation

扬子地块西南缘除上述1.75~1.50Ga的裂解作用的沉积响应之外,还同时伴有相应的1.76~1.50Ga时段的三期岩浆事件(表 3)。第一阶段(1.76~1.70Ga)主要发育双峰式岩浆岩,在东川地区、河口地区均有发育(Zhao et al., 2010; 关俊雷等, 2011),如云南武定1728~1765Ma的双峰式辉绿岩和花岗斑岩(王子正等, 2013; 郭阳等, 2014; 杨斌等, 2015; Liu et al., 2019),在四川会理有1713~1735Ma的辉绿辉长岩和花岗岩,它们具有双峰式岩浆岩特征,其中的花岗岩属于形成于板内环境的A型花岗岩(郭阳等, 2014;笔者未刊资料)。第二阶段(1.69~1.65Ga)表现为大红山群基性火山岩和河口群钠质火山岩的大量喷发(表 3),同时有少量镁铁质岩脉侵入(表 3)。第三阶段(1.53~1.48Ga),四川会理地区有辉长岩的侵位,东川群和通安组中发育凝灰岩(表 3)。上述这些侵入岩和火山岩的地球化学特征都显示它们形成于板内的裂谷环境(杨斌等, 2015; 郭阳等, 2014; Fan et al., 2013)。

表 3 扬子地块中元古代早期的岩浆事件与年龄数据一览表 Table 3 Magmatic events and data during 1.78~1.5Ga in Yangtze Block

综上所述,扬子地块1.75~1.7Ga大量发育陆内裂谷,随后伴随区域地壳拉张的不断增强,裂谷盆地发育由冲积扇、河流和海相的沉积充填序列。1.69~1.65Ga时期部分裂谷盆地的火山活动增强,并从裂谷盆地逐渐转化为被动大陆边缘。这种连续的裂解作用一直持续到1.5Ga之后。

3.3 劳伦古陆1.78~1.4Ga的裂解记录

图 4可以看出,1.78Ga时在劳伦古陆内部已经发育了具有一定规模的Thelon盆地,在古陆的北侧为马扎察尔(Mazatzal)岛弧带。研究表明,Thelon盆地从1.84Ga左右已经开始形成(Rainbird et al., 2006)。到1.75Ga,Thelon盆地与Athabasca盆地相连,形成更大规模的盆地,至1.65Ga联合的Thelon与Athabasca盆地又与Wernecke盆地相连,形成劳伦古陆内的超大型盆地。

图 4 劳伦和澳大利亚大陆裂谷盆地分布(据Betts et al., 2008) Fig. 4 Distribution of the Laurentia and Australian continental rift basins (after Betts et al., 2008)

Thelon盆地早期沉积地层为Dubawnt超群,自下而上为Baker Lake群、Wharton群和Barrensland群。Baker Lake群主要由河流相砾岩、砂岩和过钾质火山岩组成。该群下部过钾质火山岩的锆石U-Pb年龄为1833±3Ma (Rainbird et al., 2006),侵入到该群的云煌岩的云母Ar-Ar年龄为1811±13Ma(Rainbird et al., 2006), 这表明Thelon盆地从1.84Ga左右已经开始裂解。中部的Wharton群由下部的Amarook组和上部的Pitz组组成。Amarook组主要由风成砂岩夹粗粒河流相砂岩组成;Pitz组主要由河流相的砾岩和砂岩为主,夹有流纹岩和火山碎屑岩(图 5),其中流纹岩锆石U-Pb年龄为1758±3Ma和1753±2Ma(Rainbird and Davis, 2007),表明Wharton群形成于1.75Ga左右。上部的Barrensland群自下至上为Thelon组、Kuungmi组和Lookout Point组。Thelon组从底部陆相砾岩和砂岩向上过渡到海相砂岩;Kuungmi组主要由玄武岩组成,其中橄榄安粗岩斜锆石的U-Pb年龄为1540±30Ma(Chamberlain et al., 2010);最上部的Lookout Point组主要为碳酸盐岩(图 5)。由此可见,劳伦古陆Thelon盆地从1.84Ga开始裂解,早期以陆相冲积扇相碎屑岩为主,向上逐渐过渡为河流相碎屑沉积,同时伴有过钾质和流纹质火山岩,为裂谷盆地主要发育阶段;上部主要为海相碎屑岩和碳酸盐岩, 伴有玄武质岩浆岩,应属于后裂谷演化阶段。Thelon盆地持续演化了大约3亿年。因此,Dubawnt超群的沉积作用和火山活动记录了劳伦古陆早期的裂解事件。

图 5 劳伦古陆Thelon盆地Dubawnt超群地层柱和同时代的岩浆岩套(据Rainbird et al., 2003; Peterson et al., 2015; Scott et al., 2015) 年龄数据来源:(a) Chamberlain et al., 2010; (b) Davis et al., 2011; (c) Rainbird and Davis, 2007; (d) van Breemen et al., 2005; (e) Scott et al., 2015 Fig. 5 Stratigraphic column of the Dubawnt Supergroup and contemporaneous igneous units in Thelon Basin, Laurentia paleocontinent (after Rainbird et al., 2003; Peterson et al., 2015; Scott et al., 2015) Geochronological data refer to: (a) Chamberlain et al., 2010; (b) Davis et al., 2011; (c) Rainbird and Davis, 2007; (d) van Breemen et al., 2005; (e) Scott et al., 2015

在Thelon盆地沉积序列中部的Wharton群有较多的由玄武岩和流纹岩组成的双峰式火山岩(Pitz组),形成时代为1.75Ga左右(图 5),表明劳伦古陆在1.75Ga已经有明显的裂解。与此同时,从Thelon盆地向东到哈德逊湾基底出露区有大量的非造山型花岗岩和基性岩脉群出露(Peterson et al., 2015)。其中Nueltin花岗岩套包括碱性花岗岩、二长花岗岩、正长花岗岩等,属于典型的非造山花岗岩(Peterson et al., 2015),年龄为1751±5Ma~1764±5Ma(van Breemen et al., 2005)。基性侵入岩包括粗粒斜长岩、粗粒辉长岩为主体的Mallery杂岩等,后者中的斜锆石U-Pb年龄为1769±6Ma(Peterson et al., 2015)。基性岩墙群包括McRae Lake岩墙群、Amer岩脉群和Thelon河岩墙群。McRae Lake岩墙群北北东走向,延伸至少达到600km,其中一条最大的岩墙,延长23km,宽1.8km,斜锆石的U-Pb年龄为1754±2Ma (Peterson et al., 2015)。以辉绿岩为主的Amer岩脉群位于McRae Lake岩墙群的西侧,走向大致与McRae Lake岩墙群平行,分布范围170km×40km,根据磁异常推测在Thelon盆地之下可能还有该岩墙群的分布。Thelon河岩墙群走向北东75°左右,出露面积520km×40km,根据Thelon河岩墙群平行于一条脆性断裂,而该断裂切割了McRae Lake岩墙群,由此判断Thelon河岩墙群略年轻(Peterson et al., 2015)。这些非造花岗岩和岩墙群的广泛分布和Pitz组双峰式火山岩的形成基本是同时期的,表明劳伦古陆在1.75Ga左右经历了一次强烈的拉伸裂解作用。

在劳伦古陆上,除了Thelon盆地之外,还有一些与哥伦比亚超大陆裂解有关的盆地,如Athabasca盆地、Hornby Bay盆地、Muskwa盆地和Elu等盆地(Furlanetto et al., 2016; Verbaas et al., 2018)。尽管这些沉积盆地沉积作用的启动、结束的时间以及盆地充填的方式和物质组成等不尽相同(图 6),但仍表现出如下共同的规律。(1)沉积盆地启动的时间多在1.75Ga左右;(2)盆地充填建造皆从下部陆相碎屑岩向上逐渐过渡到海相砂岩、页岩和碳酸盐岩,反映了从裂谷到后裂谷的沉积演化;(3)盆地间的充填建造中火山岩发育极不均衡;(4)各个盆地充填演化都表现多次沉积间断,或角度不整合或平行不整合(图 6),间接指示盆地发育过程中经历过较强的构造改造。上述劳伦古陆盆地演化的四方面共性特征说明,该古陆上大多数盆地的伸展拉张起始于1.75Ga左右,并经历了漫长的演化过程。同时,多数盆地也主要表现了两阶段的伸展拉张时期,第一阶段从1.75Ga到1.60Ga左右,第二阶段从1.55Ga到1.2Ga。每个伸展阶段的早期都以陆相碎屑岩沉积为主(夹火山岩)(主裂谷阶段),晚期以海相砂岩、页岩和碳酸盐岩沉积为主(后裂谷阶段)。

图 6 劳伦古陆中元古代地层对比(据Hahn et al., 2013) Fig. 6 Mesoproterozoic stratigraphic correlation of Laurene paleocontinent (after Hahn et al., 2013)
3.4 澳大利亚北部克拉通1.8~1.4Ga的裂解记录

图 4可见,北澳大利亚克拉通在1.78Ga已发育具有相当规模的Leichhardt超级盆地。随后,盆地不断扩大,经过一个旋回的演化,盆地不断扩大,至1.75Ga发育成更大规模的Calvert超级盆地。由于动力学机制的变化,到1.65Ga时形成南北向拉长的大规模Isa超级盆地(Betts et al., 2008)。

发育于1800~1750Ma期间的Leichhardt超级盆地(Neumann et al., 2006)起始为西部地区50~80km宽的狭长裂谷盆地(Jackson et al., 2000; Scott et al., 2000)。盆地充填序列的底部为含砾砂岩,向上为发育交错层理的河流相至湖泊相石英岩和长石砂岩,下部夹玄武岩层,构成由水进体系域到高水位体系域的Guide超层序(图 7)。随后,盆地向东部扩展,但东部和西部盆地充填建造不同。盆地西部以Myally超层序为代表,最下部是水下喷发的玄武岩,向上是砂岩,到顶部出现夹少量叠层石白云岩(Lochness组)的红层(Gibson et al., 2012)。盆地东部主要发育巨厚玄武质火山岩(Marraba),其底部可见少量的浅水相叠层石白云岩夹层,火山岩上部被浅水相的石英岩和砂岩所覆盖(Gibson et al., 2012)。此外,东部的Argylla组发育年龄为1760~1780Ma的酸性火山岩(图 7)(Neumann et al., 2009; Page, 1983)。并且盆地内Guide超层序和Myally超层序同时被与盆地拉伸方向一致的粗玄岩岩墙所侵入。1.75Ga时期(Quilalar超层序),盆地西部发育纯石英岩和叠层石白云岩与钙质砂岩,东部则为Ballara石英岩和Corella组台地相碳酸盐岩序列(图 7)。该超层序中碎屑锆石和侵入其中Burstall花岗岩(1740Ma, Page, 1983)的年龄限定了其时代约为1755~1740Ma。

图 7 澳大利亚北部1.8~1.57Ga盆地的演化(据Gibson et al., 2012) Fig. 7 Evolution of the sedimentary basin during 1.8~1.57Ga in northern Australia (after Gibson et al., 2012)

在西部,Quilalar超层序沉积之后Calvert超级盆地经历了局部隆升,之后开始了新旋回的裂谷作用,这一过程以区域不整合、冲积扇砾岩的沉积和高角度断层控制裂谷内粗砂岩的沉积(Bigie组)为标志(Gibson et al., 2012)。之后是1710Ma的Fiery Creek双峰式火山岩的喷发(Hutton and Sweet, 1982; Jackson et al., 2000)和1710Ma的Weberra花岗岩的侵入(Neumann et al., 2006)。其后,发育若干从近岸环境转变为三角洲或浅海环境的高硅砂岩旋回(Prize超层序;图 7)(Hutton and Sweet, 1982; Southgate et al., 2000),并被薄层状炭质页岩韵律沉积覆盖(Surprise Creek组)。裂谷作用晚期则有1678Ma的Carters Bore流纹岩(Page et al., 2000)喷发,并被1670Ma的Sybella花岗岩(Neumann et al., 2006)所侵入。在盆地东部,Prize超层序沉积终止后,沉积了Soldiers Cap群,其主要由深水硅质碎屑浊积岩和夹层的炭质沉积为主,并被变质的1685Ma的富铁粗玄岩(Baker et al., 2010)所侵入(Gibson et al., 2012)。

Isa超级盆地在Lawn Hill地台最具代表性,它由8km厚的浅水至深水海相韵律层状浊积岩、炭质页岩和叠层石白云岩组成(Hutton and Sweet, 1982; Krassay et al., 2000)。

Leichhardt超级盆地代表了早期(1.80~1.74Ga)从裂谷到后裂谷的演化,Calvert超级盆地代表了第二阶段的裂谷盆地阶段(1.74~1.67Ga)的演化,Isa盆地代表了第二阶段后裂谷盆地阶段(1.76~1.60Ga)的演化(图 7)。

3.5 南美圣弗兰西斯科-西非刚果克拉通1.8~1.4Ga的裂解记录

古元古代时期,巴西圣弗兰西斯科(São Francisco)克拉通与西非刚果克拉通通过Trans-Amazonian(南美)和Eburnian(非洲)造山作用结合成统一的克拉通大陆,直到新元古代才发生裂解(Schannor et al., 2019)。最终,随着大西洋的发展才成为各自独立大陆的组成部分(Pedreira and De Waele, 2008)。因此,我们将它们在1.8~1.4Ga期间的拉伸裂解事件一起讨论。

1.8~1.4Ga的裂解事件主要记录在圣弗兰西斯科盆地和Paramirim拗拉槽(Alkmim andMartins-Neto, 2012)。圣弗兰西斯科盆地1.8~1.4Ga的盆地充填可分为上、下两个巨型地层序列。下部序列发育于固结纪,以河流相砾岩和风成砂岩为主,广泛发育1.78~1.70Ga的岩浆岩,其或以熔岩和岩床形式出现,或以基性和酸性岩体侵入到圣弗兰西斯科克拉通基底。下部序列火山岩年龄为1724±5Ma到1775±3Ma(Turpin et al., 1988; Lobato et al., 2015; Danderfer et al., 2009, 2015),表明圣弗兰西斯科盆地的拉伸从1.77Ga之前已经开始,裂谷主要阶段火山强烈活动,而火山岩上覆的巨厚冲积扇相、风成和河口相的碎屑岩标志着早期裂谷旋回的结束(Guadagnin and Junior, 2015),即从早期同裂谷(或前裂谷)的碎屑沉积,到裂谷阶段强烈火山活动及之后河流相、河口相碎屑沉积的盆地演化过程。

上部序列发育于盖层纪-延展纪早期的克拉通内裂谷-凹陷盆地内,由冲积河流、三角洲、浅海的高硅碎屑岩组成(Guadagnin et al., 2015)。该系列中下部的酸性凝灰岩和熔岩年龄为1582±8Ma和1569±14Ma(Danderfer et al., 2009),侵入到Mangabeira组的板内拉斑玄武质的岩墙群年龄为1501±9Ma(Silveira et al., 2013),而上部的火山碎屑岩年龄为1436±26Ma(Silveira et al., 2013),上述火山岩的年龄及碎屑锆石的年龄峰值(Guadagnin and Junior, 2015)共同约束上部地层序列时代约为1.6~1.38Ga。

同时,1.8~1.4Ga时期圣弗兰西斯科盆地东侧的Paramirim拗拉槽(Alkmim andMartins-Neto, 2012)的拉张裂解作用的沉积产物是Espinhaço超群。该超群可划分为两个一级旋回(层序),分别为Espinhaço Ⅰ和Espinhaço Ⅱ。Espinhaço Ⅰ形成于盆地早期阶段,主要为河流相、冲积扇相和风成沉积的砂岩,也代表着Paramirim拗拉槽的古水槽(Alkmim andMartins-Neto, 2012);Espinhaço Ⅰ中期发育了厚约600m的流纹岩、英安岩和火山碎屑岩(Novo层和Sao Simao组,图 8),其中火山岩年龄集中在1.75Ga左右,随后堆积了厚约850m的冲积扇相-湖泊相砾岩、砂岩和页岩(图 8, Danderfer et al., 2009);Espinhaço Ⅰ晚期阶段的盆地继续不断扩大,沉积了1000~2500m厚风成或海相砂岩与浅海相页岩(图 8, Alkmim and Martins-Neto, 2012)。Espinhaço Ⅱ旋回早期主体为厚约400m冲积扇砂岩、含金刚石砾岩和基性火山岩(被相同性质的岩脉和岩席切割)的地层序列(Alkmim andMartins-Neto, 2012),上部发育巨厚风成砂岩和浅海相页岩,其中夹有碳酸盐岩或少量蒸发岩(图 8)。Espinhaço Ⅱ旋回的晚期时盆地逐渐缩小,对应堆积了底部河口湾相砾岩及其上的浅海相砂岩及页岩(图 8)。Espinhaço Ⅱ旋回早期火山岩的年龄为1581±8Ma和1569±14Ma(Danderfer et al., 2009),Tombador组碎屑岩中凝灰岩夹层锆石上交点年龄为1437±50Ma,两颗最和谐锆石加权平均年龄为1416±28Ma(Guadagnin et al., 2015),从而可以大致限定Espinhaço Ⅱ旋回的时限为~1.6~1.4Ga。

图 8 巴西Paramirim拗拉槽Espinhaço Ⅰ和Ⅱ阶段的地层事件对比图(据Alkmim and Martins-Neto, 2012) Fig. 8 Stratigraphic chart of the Espinhaço Ⅰ and Ⅱ sequences in the Paramirim aulacogen (after Alkmim and Martins-Neto, 2012)

刚果克拉通与圣弗兰西斯科克拉通内Espinhaço Ⅰ层序可对比的地层是Chela群,其不整合于克拉通西南部安哥拉地块太古宙基底之上(Pedreira and De Waele, 2008),由厚约600米的海相砂岩与酸性火山岩、页岩、砾岩和少量碳酸盐岩夹层组成。Chela群中部基性-酸性火山岩和火山碎屑岩年代测定结果分别为1790±17Ma和1718±12Ma(Mccourt et al., 2004),可与圣弗兰西斯科盆地及拗拉槽中的Nevo层和Sãn Simão组(火山岩)对比。而刚果克拉通中东部的Kibaran超群和/或Akanyaru超群主要由巨厚海相页岩组成,向上过渡到砂岩。该两个超群都被1.37~1.38Ga的花岗岩类所侵入(Kokonyangi et al., 2004; Pedreira and De Waele, 2008)。因此,Kibaran超群和/或Akanyaru超群形成的下限在1.4Ga左右,可与圣弗兰西斯科盆地或拗拉槽中的Espinhaço Ⅱ层序对比。

此外,除上述哥伦比亚超大陆上这些1.8~1.4Ga的盆地沉积之外,澳大利亚西部的Bangemall盆地(Martin and Thorne, 2004),Svecofennian地盾与东欧克拉通之间的Ladoga裂谷带(Bogdanova et al., 1996),Siberia克拉通的Uchur-Mukun盆地(Khudoley et al., 2015)以及印度西北部的North Delhi超群中以(石英)砂岩为主的Ajabgarh群(Roy and Purohit, 2015; Wang et al., 2017)等盆地和充填建造也都是1.8~1.4Ga期间超大陆拉伸裂解的沉积响应与产物。由于俄罗斯学者长期认为古/中元古代的界线应位于1.65Ga,因此他们将西伯利亚克拉通Uchur-Mukun盆地中的沉积地层的下限通常置于1.65Ga。在南部地区该套地层底部的碎屑岩中曾获得过1717±32Ma的碎屑锆石年龄数据(Khudoley et al., 2015),所以推测西伯利亚Uchur-Mukun盆地的拉张裂解的起始时间很可能早于1.65Ga。

3.6 哥伦比亚/努娜超大陆1.8~1.4Ga裂解的深成岩浆响应

在超大陆拉张裂解过程中常伴有各种类型的非造山的岩浆作用,火山岩多以双峰式火山岩为特征,侵入岩以斜长岩、纹长二长岩、紫苏花岗岩、花岗岩(AMCG组合),环斑花岗岩以及基性岩墙群为代表(Larin, 2009; Ernst, 2014; Hou et al., 2008; Peng et al., 2008)。哥伦比亚超大陆裂解过程中的火山作用在前述几个主要盆地演化中已经论及,本节主要讨论与哥伦比亚超大陆裂解有关的深成岩浆作用。

与哥伦比亚超大陆早期裂解有关的华北克拉通的岩浆作用可以分为三个阶段,~1.78Ga阶段主要形成分布于华北克拉通中部太行山-吕梁山等地的基性岩墙群(图 1)。岩墙群呈放射状排列,其岩浆中心位于华北南缘的熊耳裂谷系,因此这期岩墙的岩浆源可能与熊耳火山岩的岩浆源相同(Peng et al., 2008)。1.73~1.68Ga的岩浆作用,包括北京密云、冀东太平寨、山西北台基性岩墙群(彭澎, 2016)。承德地区AMCG组合的杂岩体,包括大庙斜长岩、密云环斑花岗岩、长哨营碱性花岗岩等。其中,大庙斜长岩出露面积约100km2,各类岩石齐全,包括85%的斜长岩、10%的苏长岩、4%的纹长二长岩、< 1%的橄长岩以及少量铁闪长质和辉长质脉体,并赋存有Fe-Ti-P矿床(赵太平等, 2004; Zhao et al., 2009b)。大量的年代学研究表明,华北克拉通北缘出露的AMCG组合主要形成于1.73~1.68Ga(Rämö et al., 1995;赵太平等, 2004; Zhang et al., 2007; 杨进辉等, 2005; 高维等, 2008; Zhao et al., 2009b; Jiang et al., 2011; Wang et al., 2013)。~1.6Ga阶段,包括1.62Ga的鲁西红门岩墙(相振群等, 2012)和华北南缘以龙王碱性花岗岩为代表的碱性花岗岩带。龙王碱性花岗岩主要分布在卢氏县大清沟、卢氏管、龙王等地,呈120km2的椭圆状岩株产出,主体为中粗粒钠铁闪石正长花岗岩,部分为中粗粒正长花岗岩(陆松年等, 2003),锆石U-Pb年龄分别为1625±16Ma、1616±20Ma和1602±6Ma(陆松年等, 2003; 包志伟等, 2009)。华北克拉通1.78~1.60Ga的非造山型岩浆岩主要分布在华北克拉通的北缘和南缘,基性岩墙群主要分布于华北克拉通的中部。如果考虑到中元古代代雾迷山组和铁岭组中1.47~1.43Ga的斑脱岩(苏文博等, 2010; 李怀坤等, 2014),以及中元古代下马岭组等1.33~1.31Ga基性岩大火山岩省(Zhang et al., 2012, 2017),那么华北克拉通中元古代岩浆事件的发育表明,华北克拉通拉张和裂解起始于1.78Ga,并一直持续到中元古代中期。

乌克兰地盾北缘的Volyn地块、Ingul地块和Azov地块也出露大量的1.8~1.7Ga的非造山花岗岩和基性岩墙群,其中Volyn地块最为发育。在该区,出露有1.80~1.76Ga的斜长岩、淡色辉长岩-苏长岩、辉长岩-苏长岩岩体,有1.76~1.74Ga的环斑花岗岩型的花岗岩侵入体,包括二长花岗岩、碱性花岗岩,称为Koroten AMCG杂岩(Shumlyanskyy et al., 2016),以及大量的基性岩墙(图 9)。岩墙群可分为高Ti的粗玄岩(二长苏长岩)和高Ni的拉斑玄武质的岩墙。前者曾获得过1799±10Ma的锆石U-Pb年龄及1793±3Ma的斜锆石U-Pb年龄(Shumlyanskyy et al., 2016)。后者除了大量的岩墙之外还有层状侵入体,层状侵入体以Prutivka为代表,厚110~210m,含有Ni-Cu-PGE硫化物矿。岩墙的锆石U-Pb年龄为1787±6Ma,斜锆石的U-Pb年龄为1791±5Ma(Bogdanova et al., 2013; Shumlyanskyy et al., 2012);岩床的锆石U-Pb年龄为1777±5Ma,斜锆石的U-Pb年龄为1779±7Ma(Shumlyanskyy et al., 2016)。乌克兰地盾北缘的Volyn地块中的非造山AMCG组合和基性岩墙主要形成于1.8~1.75Ga,也指示着该地区哥伦比亚超大陆的裂解从1.8Ga已经开始。

图 9 乌克兰地盾Volyn地块中1.8~1.74Ga AMCG深成杂岩和相关的基性岩墙(据Bogdanova et al., 2013; Shumlyanskyy et al., 2016) 图中①为Rudnya Bazarska岩墙(1793Ma);② Zamyslovychi岩墙(1789Ma);③ Pugachivka岩墙(1761Ma);④ Bilokorovychi岩墙(1799Ma) Fig. 9 The 1.80~1.74Ga Korosten AMCG pluton and associated mafic dykes in the Volyn block of the Ukrainian Shield (after Bogdanova et al., 2013; Shumlyanskyy et al., 2016) ① Rudnya Bazarska dyke (1793Ma); ② Zamyslovychi dyke (1789Ma); ③ Pugachivka dyke (1761Ma); ④ Bilokorovychi dyke (1799Ma)

西伯利亚克拉通南部同样具有与哥伦比亚超大陆早期裂解有关的岩浆活动记录,包括1758~1752Ma的Timptaon-Algamaisky和1751Ma的Chaiskii基性岩墙群(Ernst et al., 2016; Gladkochub et al., 2010),1750Ma的Tarak-Podporozhye-Kuzeevo A型花岗岩(Larin, 2014),1736~1705Ma以酸性岩为主的Bilyakchan-Ulkan双峰式岩浆岩,其中酸性岩具有典型的A型花岗质岩石特征,基性岩属于拉斑玄武岩系列(Didenko et al., 2015)。并且在Baikal北部发育~1674Ma(Gladkochub et al., 2007)及1650Ma的Elkon-Gonam基性岩墙群和1641Ma的Nersa基性岩浆事件(Ernst et al., 2016)等。它们均形成于克拉通内部,是陆内裂谷环境相关岩浆作用的产物(Ernst et al., 2016)。

Peterson et al. (2015)总结了全球1.77~1.73Ga期间具有相当规模的非造山花岗岩和基性岩墙群(表 4中1~14),本文补充了扬子地块西南缘的双峰式岩浆岩、印度东北Singhbhum克拉通的基性岩墙群和澳大利亚北部Mt. Isa地区Wonga花岗岩套的资料(表 4中的15~17)。从表 4图 10可以看出,该期与拉伸裂解有关的岩浆事件在全球广泛分布,有的地区以非造山花岗岩为主,有的地区以基性岩墙群为主,有的地区非造山花岗岩和基性岩墙群同时分布。这些岩浆事件或与同时期的盆地的演化关系密切,或侵入到古老克拉通或基底岩系之中。哥伦比亚超大陆从1.78Ga出现了大量的非造山花岗岩和基性岩墙群,意味着这一阶段的拉张裂解事件是全球性的,并具有相当的强度。

表 4 1.77~1.73Ga代表性的非造山花岗岩省(AP)和基性岩墙群(DS)(据Peterson et al., 2015补充) Table 4 Representative anorogenic granite provinces (AP) and mafic dyke swarms (DS), 1.77~1.73Ga (according to Peterson et al., 2015 supplemented)

图 10 1750Ma时的Nuna/Columbia超大陆及代表性的1.77~1.73Ga非造山花岗岩省或基性岩墙群(表 4)分布(据Peterson et al., 2015修改) 克拉通或大陆片段的缩写:Am=亚马逊;Au=澳大利亚;Ba=波罗的地盾;Co=刚果;He=赫恩;In=印度;Ka=卡累利阿;NA=北大西洋;NC=华北;NS=北西伯利亚;Ra=瑞伊;Pa=原澳大利亚;SC=华南;SI=斯拉韦;SF=圣弗兰西斯科;SS=南西伯利亚;Su=苏必利尔;WA=西非;WAu=西澳大利亚;Wy=怀俄明 Fig. 10 The Nuna/Columbia supercontinent at 1750Ma with locations of representative 1.73~1.77Ga anorogenic granite provinces and mafic dyke swarms (see Table 4) (modified after Peterson et al., 2015) Abbreviations of continental fragments/cratons: Am=Amazonia; Au=Australia; Ba=Baltica; Co=Congo; He=Hearne; In=India; Ka=Karelia; NA=North Atlantic; NC=North China; NS=North Siberia; Ra=Rae; Pa=Proto-Australia; SC=South China; SI=Slave; SF=Sao Francisco; SS=South Siberia; Su=Superior; WA=West Africa; WAu=West Australia; Wy=Wyoming
4 关于哥伦比亚超大陆裂解的讨论

作为古/中元古代的划分,应以具有全球意义的重大地质事件为标志。

目前的国际地层表中把1.8~1.6Ga划分为固结纪(Statherian),是古元古代的最后一个系级年代地层单位。并把这一阶段的地质作用概括为“克拉通的稳定化、克拉通化”,其特点是“对大多数大陆而言,这一阶段或者以形成新的地台(如华北、澳大利亚北部)或以褶皱带的最终克拉通化(Baltic地盾和北美)为特征”(Van Kranendonk, 2012)。然而,大量的资料表明,形成哥伦比亚超大陆的造山事件在1.85~1.80Ga已经结束,之后在1.80~1.60Ga期间并没有全球性的造山事件发生,也没有形成新的地台。局部的造山作用只发生在超大陆的边缘(图 4),这种局部的造山作用不可与形成超大陆的全球性造山作用相等同。

世界各主要大陆从~1.80Ga已开始形成具有相当规模的裂谷盆地、凹陷盆地。劳伦古陆中的Thelon盆地形成的时间较早,其他多数盆地开始盖层沉积的时间多在1.80Ga左右。这些盆地的底部多沉积有冲积扇相、河流相的砾岩,表明固结的大陆已经隆升,提供了碎屑的物源。在盆地演化的早-中期(1.78~1.65Ga)大多数盆地都发育有火山岩,其中华北克拉通南缘的熊耳裂谷盆地中的火山岩、澳大利亚北部Leichhardt超级盆地中Argulia组和Haslingden群的火山岩发育相对较早,大致在1.78~1.75Ga期间。1.75~1.72Ga在一些盆地也有大量的火山岩喷发,劳伦古陆Thelon盆地中的Pitz组、南美圣弗兰西斯科盆地中的Novo Horizonte组等的火山岩(图 8),这一阶段大量火山岩的喷发表明各盆地已经拉张到相当规模并切割很深。很多盆地经历了大量火山岩喷发之后发生短暂抬升,并从1.6Ga开始陆续沉积了浅海相的砂岩、页岩和碳酸盐岩组合。从早期(1.8~1.60Ga)各主要盆地的演化可以看出,该阶段的地质作用主要是从早期的陆内裂谷盆地逐渐演化到广阔的浅海盆地。对于该阶段盆地的形成方式具有不同的认识。

Wang and Zhou (2014)王伟等(2019)在详细分析东川群的沉积相和分布的基础上提出,在区域地壳拉张的背景下,在约1742Ma在一系列正断层控制下东川裂谷盆地开始形成,沉积了因民组下部冲积扇相的地层。在区域地壳不断拉张背景下,一方面盆地继续扩大,一方面由于拉伸导致深部岩浆上涌,因民组中上部沉积了冲积扇相到临滨相的砂岩并有少量火山喷发。到ca.1673~1596Ma阶段,由于西部地壳上涌岩浆的热松弛,使盆地继续扩大并加深,沉积了碳酸盐台地相的落雪组地层。到ca.1596~1503Ma阶段由于大洋扩张的影响,盆地继续扩大,沉积了深海相的鹅头厂组,东川盆地逐渐转化为被动陆缘,可以看出从1.75~1.50Ga东川盆地的演化始终处于一个拉张裂解的构造背景。巴西圣弗兰斯西科盆地也是在地壳拉张导致的一系列正断层控制的裂谷带中发育起来的(Danderfer et al., 2015)。劳伦古陆中的Thelon盆地中1.77~1.73Ga的Wharton群及其周围广泛分布的同时代的基性岩浆杂岩、非造山花岗岩及基性岩墙群(图 5),是在地幔上涌过程中,上地壳拉张裂解的过程中形成的(Peterson et al., 2015)。从ca.1.8~1.7Ga盆地的发育看,该阶段全球性的重要地质事件是在哥伦比亚超大陆基础上陆内的拉张和裂解形成一系列的盆地。

表 4图 10可以看出,1.78~1.73Ga的非造山型花岗岩和基性岩墙在哥伦比亚超大陆广泛分布,且常与火山岩相伴。如华北克拉通南缘1.78~1.75Ga的熊耳群火山岩同时伴有广泛分布的太行岩墙群(见图 2);劳伦古陆Wharton群~1.75Ga的Pitz组火山岩也伴有大量同时代的基性侵入岩、非造山花岗岩和基性岩墙群(见图 5, Peterson et al., 2015),等等。尽管目前对于这些岩浆岩形成的构造背景还存在分歧(He et al., 2009; Zhao et al., 2009a; Hou et al., 2001; 彭澎, 2016; Bogdanova et al., 2013; Shumlyanskyy et al., 2016),但无论哪种岩浆岩构造环境模型都要考虑该期岩浆事件如下三个方面的重要特点。(1)分布广泛、规模巨大。从图 10中可以看出这一阶段的非造山花岗岩和基性岩墙群分布与全球各主要大陆。劳伦古陆(北美)该期非造山花岗岩、基性岩脉群和相关火山岩出露的面积1, 190, 000km2(~1700km×700km, Peterson et al., 2015), 圭亚那地盾和亚马逊该期的岩浆岩总面积超过300, 000km2(Youbi et al., 2013),华北克拉通太行岩墙群的分布面积达到100, 000km2(Peng et al., 2010);(2)这些非造山花岗岩和基性岩墙群多位于复原的哥伦比亚超大陆内部,如前述的Thelon盆地及其周围的岩浆杂岩分布于劳伦古陆的中心部位(图 10中的1, Peterson et al., 2015),加拿大大熊省的Cleaver岩墙群也分布在劳伦古陆内部(图 10中的5),西伯利亚南部的A型花岗岩及Vilyui河岩墙群也分布于复原的哥伦比亚内部(图 10中的8);(3)地球化学表明1.78~1.72Ga的岩浆事件多具有双峰式的特点,大多数地区的火山岩具有玄武岩+流纹岩的双峰式特点,如劳伦古陆Thelon盆地中的Pitz组(Rainbird and Davis, 2007)、澳大利亚北部Leichhardt超级盆地早期序列中的双峰式火山岩(Neumann et al., 2009)等等。侵入岩的基性端元以辉长岩、辉绿岩、斜长岩等为代表,酸性端元以AMCG组合、环斑花岗岩、A型花岗岩为特点,如劳伦古陆的丘吉尔省西部的Kivalliq岩套(Peterson et al., 2015)、乌克兰地盾Volyn地块中的Koroten AMCG杂岩(图 9Shumlyanskyy et al., 2016)、华北北缘的承德地区的AMCG杂岩(翟明国等, 2014)等等。

如上,1.78~1.72Ga岩浆杂岩的三个共性特点间接表明,该期岩浆事件在哥伦比亚超大陆内部广泛分布反映了一种与造山事件无关的岩浆作用,更代表着板内的拉张裂解构造背景。另外,这一阶段大规模的基性岩墙群也引起广泛关注,彭澎等学者通过规模宏大的基性岩墙群重建了哥伦比亚超大陆格局(见彭澎, 2016文中的图9),如侯贵廷(2012)通过岩墙群的对比认为,华北克拉通、印度克拉通和北美克拉通的基性岩墙群延长可达上千千米,共同构成一个放射状的巨型岩墙群,汇聚于华北克拉通南部(见侯贵廷,2012文中图7-4)。Youbi et al. (2013)认为,西非北西走向的Akka岩墙群可以与中心位于西伯利亚克拉通中部的岩墙群相连,这样其延伸可达2000km, 其规模可以与中元古代晚期(1270Ma)的麦卡基(Mackenzie)岩墙群相媲美。这样的规模也与数值模拟的超级地幔柱的规模(Campbell and Davies, 2006)相当。如果这种认识成立,那么1.78~1.73Ga的岩浆事件和基性岩墙的形成就很可能与地幔柱的形成发展有关。

此外,尽管哥伦比亚超大陆上多数盆地在1.6Ga左右经历了一次抬升,但盆地的演化基本是连续的。如澳大利亚北部1800~1750Ma的Leichhardt超级盆地、1740~1670Ma的Calvert超级盆地和1670~1590Ma的Isa超级盆地等,这些超级盆地都是在相同断裂系统控制下连续演化和发展的(见Gibson et al., 2012文中图5)。其中,Isa超级盆地中的McNamara群形成于1709~1589Ma,上部连续沉积的Lawn Hill组,从下到上的锆石SHRIMP U-Pb年龄分别为1615±15Ma、1611±6Ma、1595±6Ma和1589±10Ma(Bradshaw et al., 2000),如果按照目前国际地层表,Lawn Hill组已经跨越了古/中元古代。华北克拉通燕辽裂谷中的长城群和蓟县群也是同样实例。目前长城群中上部火山岩的年龄为1664~1622Ma,上覆蓟县群中部的火山岩夹层的年龄为1559Ma(见图 2)。从年代学资料看长城群和蓟县群是基本连续的,也跨越了目前国际地层表的古/中元古代界线。同时,哥伦比亚超大陆上的许多地区发育1.78Ga到1.4Ga时期非造山岩浆岩,如非洲圭亚那克拉通1.78Ga的基性岩墙群、1.76~1.75Ga的A型花岗岩和1.55~1.43Ga的AMCG岩浆岩套(Reis et al., 2013),从组合上可以看出这些岩浆事件都代表了非造山的拉张裂解产物,也就是说岩浆事件反映的拉张和裂解作用从1.78Ga一直持续到1.43Ga,也跨越了目前的古/中元古代界线。再如扬子地块西南缘也发育从1.76Ga一直持续到1.50Ga左右的非造山岩浆事件(见表 3)。

5 结论

以上论述表明,哥伦比亚超大陆上重要盆地持续发育于1.80~1.40Ga期间,演化进程间并没有改变盆地性质的相关重大地质事件的发生。同时,非造山型岩浆事件也表现为从1.78Ga到1.40Ga左右基本连续过程。现行国际地层表中将1.8~1.6Ga划分为固结纪(Statherian),1.6~1.4Ga归为盖层纪(Calymmian),定义1.6Ga为古/中元古代的分界。这样的划分方案把许多连续演化的沉积与和非造山岩浆等地质事件分割并分别置于古元古代或中元古代,显然是与前寒武纪年代地层界限划分的基本原则相悖,即前寒武纪年代地层界限应尽可能少地截断沉积作用、火成侵位或造山运动。特别是,1.8~1.6Ga的主要地质事件的性质是与拉张和裂解有关的裂谷(盆地)作用和非造山的岩浆作用,裂谷作用的本质是在已有超大陆或克拉通的基础上的盖层发育过程,用固结纪来概括这一阶段地质事件的性质值得进一步商榷和讨论。另外,1.8~1.6Ga的裂谷作用和非造山的岩浆作用可以延续到1.4Ga左右,用1.6Ga作为古/中元古代的界限年龄,人为地把一套连续的地质事件从中隔断,也不符合前寒武纪地层划分的基本原则。裂谷作用的本质是在已有超大陆或克拉通的基础上盖层的发育过程。因此,本文建议,古/中元古代(年代地层)界线应置于1.8Ga或1.78Ga,1.8Ga或1.78~1.4Ga(年代地层)属于盖层纪(系)。

致谢      本文从酝酿到成文过程中与王泽九先生、陆松年先生和杨崇辉研究员进行过多次有益的探讨,对作者深有启发。三位审稿人提出了中肯的修改意见。在此一并表示感谢。

参考文献
Alkmim FF and Martins-Neto MA. 2012. Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Marine and Petroleum Geology, 33(1): 127-139 DOI:10.1016/j.marpetgeo.2011.08.011
All China Commission of Stratigraphy. 2001. Stratigraphical Guide of China and Its Explanation (Revised Edition). Beijing: Geological Publishing House: 1-59 (in Chinese)
All China Commission of Stratigraphy. 2002. Regional Chronostratigraphic Chart of China (Geologic time). Beijing: Geological Publishing House: 1-72 (in Chinese)
Baker MJ, Crawford AJ and Withnall IW. 2010. Geochemical, Sm-Nd isotopic characteristics and petrogenesis of Paleoproterozoic mafic rocks from the Georgetown Inlier, North Queensland:Implications for relationship with the Broken Hill and Mount Isa eastern succession. Precambrian Research, 177(1-2): 39-54 DOI:10.1016/j.precamres.2009.11.003
Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of North China Craton:Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522 (in Chinese with English abstract)
Betts PG, Giles D and Schaefer BF. 2008. Comparing 1800~1600Ma accretionary and basin processes in Australia and Laurentia:Possible geographic connections in Columbia. Precambrian Research, 166(1-4): 81-92 DOI:10.1016/j.precamres.2007.03.007
Bogdanova SV, Pashkevich IK, Gorbatschev R and Orlyuk MI. 1996. Riphean rifting and major Palaeoproterozoic crustal boundaries in the basement of the East European Craton:Geology and geophysics. Tectonophysics, 268(1-4): 1-21 DOI:10.1016/S0040-1951(96)00232-6
Bogdanova SV, Gintov OB, Kurlovich DM, Lubnina NV, Nilsson MKM, Orlyuk MI, Pashkevich IK, Shumlyanskyy LV and Starostenko VI. 2013. Late palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotations during the assembly of supercontinent Columbia (Nuna). Lithos, 174: 196-216 DOI:10.1016/j.lithos.2012.11.002
Bradshaw BE, Lindsay JF, Krassay AA and Wells AT. 2000. Attenuated basin-margin sequence stratigraphy of the Palaeoproterozoic Calvert and Isa Superbasins:The Fickling Group, southern Murphy Inlier, Queensland. Australian Journal of Earth Sciences, 47(3): 599-623 DOI:10.1046/j.1440-0952.2000.00794.x
Brown PE, Dempster TJ, Hutton DHW and Becker SM. 2003. Extensional tectonics and mafic plutons in the Ketilidian rapakivi granite suite of South Greenland. Lithos, 67(1-2): 1-13 DOI:10.1016/S0024-4937(02)00212-8
Campbell IH and Davies GF. 2006. Do mantle plumes exist?. Episodes, 29(3): 162-168
Chamberlain KR, Schmitt AK, Swapp SM, Harrison TM, Swoboda-Colberg N, Bleeker W, Peterson TD, Jefferson CW and Khudoley AK. 2010. In situ U-Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks:Method with examples. Precambrian Research, 183(3): 379-387 DOI:10.1016/j.precamres.2010.05.004
Chen WT, Zhou MF and Zhao XF. 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77 DOI:10.1016/j.precamres.2013.03.011
China Geological Survey and All China Commission of Stratigraphy. 2014. Geologic Time Scale of China. Beijing: Geological Publishing House: 1 (in Chinese)
Collerson KD, van Schmus RW, Lewry JF and Bickford ME. 1988. Buried Precambrian basement in South-Central Saskatchewan:Provisional results from Sm-Nd model ages and U-Pb zircon geochronology. Saskatchewan Geological Survey: 142-150
Condie KC. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41-43 DOI:10.1016/S1342-937X(05)70886-8
Cowie JW and Bassett MG. 1989. Global stratigraphic chart with geochronometric and magnetostratigraphic calibration. Episodes, 12(2): Supplement
Cui ML, Zhang BL, Peng P, Zhang LC, Shen XL, Guo ZH and Huang XF. 2010. Zircon/baddeleyite U-Pb dating for the Paleo-proterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province. Acta Petrologica Sinica, 26(5): 1541-1549 (in Chinese with English abstract)
Cui ML, Zhang BL and Zhang LC. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton:Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184-193 DOI:10.1016/j.gr.2011.01.010
Cui ML, Zhang LC, Zhang BL and Zhu MT. 2013. Geochemistry of 1.78Ga A-type granites along the southern margin of the North China Craton:Implications for Xiong'er magmatism during the break-up of the supercontinent Columbia. International Geology Review, 55(4): 496-509 DOI:10.1080/00206814.2012.736709
Danderfer A, De Waele B, Pedreira AJ and Nalini HA. 2009. New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton-Brazil. Precambrian Research, 170(1-2): 116-128 DOI:10.1016/j.precamres.2009.01.002
Danderfer Filho A, Lana CC, Nalini Junior HA and Costa AFO. 2015. Constraints on the Statherian evolution of the intraplate rifting in a Paleo-Mesoproterozoic paleocontinent:New stratigraphic and geochronology record from the eastern São Francisco Craton. Gondwana Research, 28(2): 668-688 DOI:10.1016/j.gr.2014.06.012
Davis WJ, Gall Q, Jefferson CW and Rainbird RH. 2011. Fluorapatite in the Paleoproterozoic Thelon Basin:Structural-stratigraphic context, in situ ion microprobe U-Pb ages, and fluid-flow history. GSA Bulletin, 123(5-6): 1056-1073 DOI:10.1130/B30163.1
Deng XQ, Zhao TP, Peng TP, Gao XY and Bao ZW. 2015. Petrogenesis of 1600Ma Maping A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 31(6): 1621-1635 (in Chinese with English abstract)
Didenko AN, Vodovozov VY, Peskov AY, Guryanov VA and Kosynkin AV. 2015. Paleomagnetism of the Ulkan massif (SE Siberian platform) and the apparent polar wander path for Siberia in Late Paleoproterozoic-Early Mesoproterozoic times. Precambrian Research, 259: 58-77 DOI:10.1016/j.precamres.2014.11.019
Ernst RE and Buchan KL. 2004. Igneous rock associations in Canada 3.Large Igneous Provinces (LIPS) in Canada and adjacent regions:3Ga to present. Geoscience Canada, 31(3): 103-126
Ernst RE. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press: 1-653
Ernst RE, Hamilton MA, Soderlund U, Hanes JA, Gladkochub DP, Okrugin AV, Kolotilina T, Mekhonoshin AS, Bleeker W, LeCheminant AN, Buchan KL, Chamberlain KR and Didenko AN. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geosciences, 9(6): 464-469 DOI:10.1038/ngeo2700
Evans DAD and Mitchell RN. 2011. Assembly and breakup of the core of Paleoproterozoic-mesoproterozoic supercontinent Nuna. Geology, 39(5): 443-446 DOI:10.1130/G31654.1
Fan HP, Zhu WG, Li ZX, Zhong H, Bai ZJ, He DF, Chen CJ and Cao CY. 2013. Ca. 1.5Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos, 168-169: 85-98 DOI:10.1016/j.lithos.2013.02.004
Furlanetto F, Thorkelson DJ, Rainbird RH, Davis WJ, Gibson HD and Marshall DD. 2016. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada:Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China. Gondwana Research, 39: 14-40 DOI:10.1016/j.gr.2016.06.007
Gao LZ, Zhang CH, Shi XY, Zhou HR and Wang ZQ. 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26(3): 249-255 (in Chinese with English abstract)
Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ and Liu YM. 2008a. Mesoproterozic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665-2671
Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ and Song B. 2008b. SHRIMP zircon ages:Basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Oldland. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract)
Gao LZ, Zhang CH, Liu PJ, Ding XZ, Wang ZQ and Zhang YJ. 2009. Recognition of Meso-and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract)
Gao S, Qiu YM, Ling WL, McNaughton NJ and Groves DI. 2001. Single zircon U-Pb dating of the Kongling high-grade metamorphic terrain:Evidence for >3.2Ga old continental crust in the Yangtze craton. Science in China (Series D), 44(4): 326-335 DOI:10.1007/BF02907103
Gao S, Yang J, Zhou L, Li M, Hu ZC, Guo JL, Yuan HL, Gong HJ, Xiao GQ and Wei JQ. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3Ga granitoid gneisses. American Journal of Science, 311(2): 153-182 DOI:10.2475/02.2011.03
Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract)
Geng YS, Liu YQ, Gao LZ, Peng N and Jiang XJ. 2012. Chronology of the Mesoproterozoic Tong'an Formation in southwestern margin of Yangtze Craton:New evidence from zircon LA-ICP-MS U-Pb ages. Acta Geologica Sinica, 86(9): 1479-1490 (in Chinese with English abstract)
Geng YS, Shen QH, Du LL and Song HX. 2016. Regional metamorphism and continental growth and assembly in China. Acta Petrologica Sinica, 32(9): 2579-2608 (in Chinese with English abstract)
Geng YS, Kuang HW, Liu YQ and Du LL. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151-2174 (in Chinese with English abstract)
Gibson GM, Henson PA, Neumann NL, Southgate PN and Hutton LJ. 2012. Paleoproterozoic-earliest Mesoproterozoic basin evolution in the Mount Isa region, northern Australia and implications for reconstructions of the Nuna and Rodinia supercontinents. Episodes, 35(1): 131-141
Gibson GM, Champion DC, Withnall IW, Neumann NL and Hutton LJ. 2018. Assembly and breakup of the Nuna supercontinent:Geodynamic constraints from 1800 to 1600Ma sedimentary basins and basaltic magmatism in northern Australia. Precambrian Research, 313: 148-169 DOI:10.1016/j.precamres.2018.05.013
Gladkochub DP, Donskaya TV, Mazukabzov AM, Stanevich A, Sklyarov EV and Ponomarchuk VA. 2007. Signature of Precambrian extension events in the southern Siberian craton. Russian Geology and Geophysics, 48(1): 17-31 DOI:10.1016/j.rgg.2006.12.001
Gladkochub DP, Pisarevsky SV, Ernst R, Donskaya TV, Söderlund U, Mazukabzov AM and Hanes J. 2010. Large igneous province of about 1750Ma in the Siberian Craton. Doklady Earth Sciences, 430(2): 168-171 DOI:10.1134/S1028334X10020042
Gradstein FM, Ogg JG, Smith AG, Bleeker W and Lourens LJ. 2004. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27(2): 83-100
Gradstein FM, Ogg JG, Schmitz MD and Ogg GM. 2012. The Geological Time Scale 2012. Amsterdam: Elsevier
Greentree MR and Li ZX. 2008. The oldest known rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6): 289-302 DOI:10.1016/j.jseaes.2008.01.001
Guadagnin F and Junior FC. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60: 104-116 DOI:10.1016/j.jsames.2015.02.007
Guadagnin F, Chemale Jr F, Magalhães AJC, Santana A, Dussin I and Takehara L. 2015. Age constraints on crystal-tuff from the Espinhaço Supergroup:Insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo-São Francisco Craton. Gondwana Research, 27(1): 363-376 DOI:10.1016/j.gr.2013.10.009
Guan JL, Zheng LL, Liu JH, Sun ZM and Cheng WH. 2011. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan Province, China and its geological significance. Acta Geologica Sinica, 85(4): 482-490 (in Chinese with English abstract)
Guo Y, Wang SW, Sun XM, Wang ZZ, Yang B, Liao ZW, Zhou BG, Jiang XF, Hou L and Yang B. 2014. The Paleoproterozoic breakup event in the Southwest Yangtze Block:Evidence from U-Pb zircon age and geochemistry of diabase in Wuding, Yunnan Province, SW China. Acta Geologica Sinica, 88(9): 1651-1665 (in Chinese with English abstract)
Haapala I, Front K, Rantala E and Vaarma M. 1987. Petrology of Nattanen-type granite complexes, northern Finland. Precambrian Research, 35: 225-240 DOI:10.1016/0301-9268(87)90056-8
Hahn K, Rainbird R and Cousens B. 2013. Sequence stratigraphy, provenance, C and O isotopic composition, and correlation of the late Paleoproterozoic-early Mesoproterozoic upper Hornby Bay and lower Dismal Lakes groups, NWT and Nunavut. Precambrian Research, 232: 209-225 DOI:10.1016/j.precamres.2012.06.001
Halls HC, Li JH, Davis D, Hou GT, Zhang BX and Qian XL. 2000. A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to paleocontinental reconstruction. Geophysical Journal International, 143(1): 185-203 DOI:10.1046/j.1365-246x.2000.00231.x
Han BF, Zhang L, Wang YM and Song B. 2007. Enriched mantle source for Paleoproterozoic high Mg and low Ti-P mafic dykes in central part of the North China Craton:Constraints from zircon Hf isotopic compositions. Acta Petrologica Sinica, 23(2): 277-284 (in Chinese with English abstract)
Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA and Yang HX. 2008. Mineral evolution. American Mineralogist, 93(11-12): 1693-1720 DOI:10.2138/am.2008.2955
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3-4): 213-222 DOI:10.1016/j.precamres.2008.09.011
He ZJ, Zhang XY, Niu BG, Liu RY and Zhao L. 2011a. The paleo-weathering mantle of the Proterozoic rapakivi granite in Miyun County, Beijing and the relationship with the Changzhougou Formation of Changchengian System. Earth Science Frontiers, 18(4): 123-130 (in Chinese with English abstract)
He ZJ, Niu BG, Zhang XY, Zhao L and Liu RY. 2011b. Discovery of the paleo-weathered mantle of the rapakivi granites covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract)
Hou GT, Li JH and Qian XL. 2001. The palaeomagnetism and geological significcance of Mesoproterozoic dyke swarms in the central North China Craton. Science in China (Series D), 44(2): 185-192 DOI:10.1007/BF02879661
Hou GT, Li JH, Liu YL and Qian XL. 2005. Late paleoproterozoic extension of the North China Craton:Aulacogen and mafic dyke swarm. Progress in Natural Science, 15(11): 1366-1373 (in Chinese)
Hou GT, Santosh M, Qian XL, Lister G and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia:Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409 DOI:10.1016/j.gr.2008.01.010
Hou GT. 2012. Mafic Dyke Swarms of North China. Beijing: Science Press: 1-177 (in Chinese)
Hou L, Ding J, Deng J, Liao ZW and Peng HJ. 2013. Zircon LA-ICP-MS dating of the magmatic breccia from the Yinachang iron-copper deposit in Wuding County of Yunnan Province and its geological significance. Geological Bulletin of China, 32(4): 580-588 (in Chinese with English abstract)
Hu GH, Hu JL, Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1.78Ga mafic dyke swarms in the Mt.Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563-1576 (in Chinese with English abstract)
Hutton LJ and Sweet IP. 1982. Geological evolution, tectonic style, and economic potential of the Lawn Hill Platform cover, northwest Queensland. BMR Journal of Australian Geology and Geophysics, 7(2): 125-134
Irving E, Baker J, Hamilton M and Wynne PJ. 2004. Early Proterozoic geomagnetic field in western Laurentia:Implications for paleolatitudes, local rotations and stratigraphy. Precambrian Research, 129(3-4): 251-270 DOI:10.1016/j.precamres.2003.10.002
Jackson MJ, Scott DL and Rawlings DJ. 2000. Stratigraphic framework for the Leichhardt and Calvert Superbasins:Review and correlations of the pre-1700Ma successions between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3): 381-403 DOI:10.1046/j.1440-0952.2000.00789.x
James HL. 1978. Subdivision of the Precambrian:A brief review and a report on recent decisions by the Subcommission on Precambrian Stratigraphy. Precambrian Research, 7(3): 193-204 DOI:10.1016/0301-9268(78)90038-4
James HL. 1983. Precambrian subcommission meets in Tanta, Egypt. Precambrian Research, 20(1): 1-2 DOI:10.1016/0301-9268(83)90025-6
Jiang N, Guo JH and Zhai MG. 2011. Nature and origin of the Wenquan granite:Implications for the provenance of Proterozoic A-type granites in the North China Craton. Journal of Asian Earth Sciences, 42(1-2): 76-82 DOI:10.1016/j.jseaes.2011.04.010
Jin TF, Li YG, Fei GC, Feng YC, Zhou H, Sha XB and Wu K. 2017. Geochronology of zircon U-Pb from Hongshan Formation in the Dahongshan Group in the Southwest Yangtze Block for the redefinitions of the forming age of the protolith and metamorphic ages. Geological Review, 63(4): 894-910 (in Chinese with English abstract)
Kaur P, Zeh A, Chaudhri N and Eliyas N. 2017. Two distinct sources of 1.73~1.70Ga A-type granites from the northern Aravalli orogen, NW India:Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes. Gondwana Research, 49: 164-181 DOI:10.1016/j.gr.2017.05.012
Khudoley A, Chamberlain K, Ershova V, Sears J, Prokopiev A, MacLean J, Kazakova G, Malyshev S, Molchanov A, Kullerud K, Toro J, Miller E, Veselovskiy R, Li A and Chipley D. 2015. Proterozoic supercontinental restorations:Constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambrian Research, 259: 78-94 DOI:10.1016/j.precamres.2014.10.003
Kokonyangi J, Armstrong R, Kampunzu AB, Yoshida M and Okudaira T. 2004. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo):Implications for the evolution of the Mesoproterozoic Kibaran belt. Precambrian Research, 132(1-2): 79-106 DOI:10.1016/j.precamres.2004.02.007
Krassay AA, Domagala J, Bradshaw BE and Southgate PN. 2000. Lowstand ramps, fans and deep-water Palaeoproterozoic and Mesoproterozoic facies of the Lawn Hill Platform:The Term, Lawn, Wide and Doom Supersequences of the Isa Superbasin, northern Australia. Australian Journal of Earth Sciences, 47(3): 563-597 DOI:10.1046/j.1440-0952.2000.00791.x
Larin AM. 2009. Rapakivi Granites in the geological history of the Earth.Part 1, Magmatic associations with rapakivi granites:Age, geochemistry, and tectonic setting. Stratigraphy and Geological Correlation, 17(3): 235-258
Larin AM. 2014. Ulkan-Dzhugdzhur ore-bearing anorthosite-rapakivi granite-peralkaline granite association, Siberian Craton:Age, tectonic setting, sources, and metallogeny. Geology of Ore Deposits, 56(4): 257-280 DOI:10.1134/S1075701514040047
Lenharo SLR, Moura MA and Botelho NF. 2002. Petrogenetic and mineralization processes in Paleo-to Mesoproterozoic rapakivi granites:Examples from Pitinga and Goiás, Brazil. Precambrian Research, 119(1-4): 277-299 DOI:10.1016/S0301-9268(02)00126-2
Li CD, Zhao LG, Chang QS, Xu YW and Xu T. 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion. Geology in China, 44(3): 511-525 (in Chinese with English abstract)
Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)
Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)
Li HK, Lu SN, Su WB, Xiang ZQ, Zhou HY and Zhang YQ. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227 DOI:10.1016/j.jseaes.2013.02.020
Li HK, Zhang CL, Yao CY and Xiang ZQ. 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Science China (Earth Sciences), 56(4): 628-639 DOI:10.1007/s11430-013-4590-9
Li HK, Su WB, Zhou HY, Xiang ZQ, Tian H, Yang LG, Huff WD and Ettensohn FR. 2014. The first precise age constraints on the Jixian System of the Meso-to Neoproterozoic Standard Section of China:SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section, North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012 (in Chinese with English abstract)
Li SZ, Lin YX and Zhang XQ. 1985. The ages of the Changzhougou and Chuanlinggou formations of the Changcheng system in Yanshan area. Precambrian Geology, 2: 129-134 (in Chinese)
Li Y, Peng P, Wang XP and Wang HZ. 2015. Nature of 1800~1600Ma mafic dyke swarms in the North China Craton:Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Research, 257: 114-123 DOI:10.1016/j.precamres.2014.12.002
Liu K, Lu GM, Wang ZZ, Huang SF, Xue EK and Wang W. 2019. The Paleoproterozoic bimodal magmatism in the SW Yangtze block:Implications for initial breakup of the Columbia supercontinent. Lithos, 332-333: 23-38 DOI:10.1016/j.lithos.2019.02.021
Liu XY. 2011. Chronological, petrological and geochemical characteristics of the Paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton.Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences: 1-84
Liu XY, Cai JH and Yan GH. 2011. Lithogeochemistry and Geochronology of Xiong'er Group Yanyaozhai subvolcanics in the southern margin of the North China Craton and their geological signifans. Acta Geologica Sinica, 85(7): 1134-1145 (in Chinese with English abstract)
Lobato LM, Pimentel MM, Cruz SCP, Machado N, Noce CM and Alkmim FF. 2015. U-Pb geochronology of the Lagoa Real uranium district, Brazil:Implications for the age of the uranium mineralization. Journal of South American Earth Sciences, 58: 129-140 DOI:10.1016/j.jsames.2014.12.005
Lu SN and Sun DZ. 1983. The background information about the subdivision of Proterozoic Eon. Overseas Precambrian Geology, (1): 44-61 (in Chinese)
Lu SN. 1998. A review on subdivision of Proterozoic eon in China. Progress in Precambrian Research, 21(4): 1-9 (in Chinese with English abstract)
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(12): 762-768 (in Chinese with English abstract)
Lu SN, Li HK, Wang HC and Chen ZH. 2005. Brief introduction and comment on the special reference to the Precambrian subdivision by the International Commission on Stratigraphy. Geological Review, 51(2): 169-173 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research, 160(1-2): 77-93 DOI:10.1016/j.precamres.2007.04.017
Lu GM, Wang W, Ernst RE, Söderlund U, Lan ZF, Huang SF and Xue EK. 2019. Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China:Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 322: 66-84 DOI:10.1016/j.precamres.2018.12.019
Martin DM and Thorne AM. 2004. Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen. Precambrian Research, 128(3-4): 385-409 DOI:10.1016/j.precamres.2003.09.009
Martins-Neto MA. 2000. Tectonics and sedimentation in a Paleo/Mesoproterozoic rift-sag basin (Espinhaço basin, southeastern Brazil). Precambrian Research, 103(3-4): 147-173 DOI:10.1016/S0301-9268(00)00080-2
Mccourt S, Armstrong RA, Kampunzu AB, Mapeo RBM and Morais E. 2004. New U-Pb SHRIMP ages on zircons from the Lubango region, Southwest Angola: Insights into the proterozoic evolution of South-Western Africa. In: Proceedings of the 20th CAG. Orleans, France: Geoscience: Geological Society of South Africa, 438-439 https://www.researchgate.net/publication/283679352_New_U-Pb_SHRIMP_ages_on_zircons_from_the_Lubango_region_southwest_Angola_insights_into_the_Proterozoic_evolution_of_south-western_Africa
Meert JG. 2002. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research, 5(1): 207-215 DOI:10.1016/S1342-937X(05)70904-7
Meert JG. 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research, 21(4): 987-993 DOI:10.1016/j.gr.2011.12.002
Neumann NL, Southgate PN, Gibson GM and McIntyre A. 2006. New SHRIMP geochronology for the western fold belt of the Mt.Isa Inlier:Developing a 1800~1650Ma event framework. Australian Journal of Earth Sciences, 53(6): 1023-1039
Neumann NL, Gibson GM and Southgate PN. 2009. New SHRIMP age constraints on the timing and duration of magmatism and sedimentation in the Mary Kathleen Fold Belt, Mt Isa Inlier, Australia. Australian Journal of Earth Sciences, 56(7): 965-983 DOI:10.1080/08120090903005410
Page RW. 1983. Chronology of magmatism, skarn formation, and uranium mineralization, Mary Kathleen, Queensland, Australia. Economic Geology, 78(5): 838-853 DOI:10.2113/gsecongeo.78.5.838
Page RW, Jackson MJ and Krassay AA. 2000. Constraining sequence stratigraphy in north Australian basins:SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3): 431-459 DOI:10.1046/j.1440-0952.2000.00797.x
Pang WH, Ren GM, Sun ZM and Yin FG. 2015. Division and correlation of Paleo-Mesoproterozoic strata on the western margin of Yangtze block:Evidence from the U-Pb age of tuff zircon in the Tongan Formation. Geology in China, 42(4): 921-936 (in Chinese with English abstract)
Pedreira AJ and De Waele B. 2008. Contemporeaneous evolution of the Paleoproterozoic-Mesoproterozoic sedimentary basins of the São Francisco-Congo craton. In: Pankhurst RJ, Trouw RAJ, De Brito Neves BB and De Wit MJ (eds.). West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Geological Society, London, Special Publication, 294: 33-48 https://www.researchgate.net/publication/228670180_Contemporaneous_evolution_of_the_Palaeoproterozoic-Mesoproterozoic_sedimentary_basins_of_the_Sao_Francisco-Congo_Craton
Peng M, Wu YB, Wang J, Jiao WF, Liu XC and Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54(6): 1098-1104
Peng M, Wu YB, Gao S, Zhang HF, Wang J, Liu XC, Gong HJ, Zhou L, Hu ZC, Liu YS and Yuan HL. 2012b. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block:Constraints on petrogenesis and geologic implications. Gondwana Research, 22(1): 140-151 DOI:10.1016/j.gr.2011.08.012
Peng N, Kuang HW, Liu YQ, Geng YS, Xia XX, Wang YC, Chen XS and Zheng HH. 2018. Recognition of geological age for acanthomorphic acritarchs from the Ruyang Group, southern margin of North China Craton and its implication for evolution of early eukaryotes. Journal of Palaeogeography, 20(4): 595-608 (in Chinese with English abstract)
Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton:SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508 DOI:10.2747/0020-6814.47.5.492
Peng P, Zhai MG and Guo JH. 2006.1.80~1.75Ga mafic dyke swarms in the central North China craton: Implications for a plume-related break-up event. In: Hanski E, Mertanen S, Ramö T and Vuollo J (eds.). Dyke Swarms-Time Markers of Crustal Evolution. London: Taylor & Francis, 99-112
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1-2): 29-46 DOI:10.1016/j.gr.2006.10.022
Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China craton:The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260-280 DOI:10.1016/j.lithos.2007.07.006
Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton:Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659 DOI:10.1016/j.precamres.2010.08.015
Peng P, Liu F, Zhai MG and Guo JH. 2012a. Age of the Miyun dyke swarm:Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110 DOI:10.1007/s11434-011-4771-x
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Sciences), 58(5): 649-675 DOI:10.1007/s11430-014-5026-x
Peng P. 2016. Map of Precambrian Dyke Swarms and Related Plutonic/Volcanic Units in the North China Block (Instructions). Beijing: Science Press: 1-90 (in Chinese with English abstract)
Peterson TD, Scott JMJ, Le Cheminant AN and Jefferson CW. 2015. The Kivalliq Igneous Suite:Anorogenic bimodal magmatism at 1.75Ga in the western Churchill Province, Canada. Precambrian Research, 262: 101-119 DOI:10.1016/j.precamres.2015.02.019
Qiao XF and Wang YB. 2014. Discussions on the lower boundary age of the Mesoproterozoic and basin tectonic evolution of the Mesoproterozoic in North China Craton. Acta Geologica Sinica, 88(9): 1623-1637 (in Chinese with English abstract)
Qiu YM, Gao S, McNaughton NJ, Groves DI and Ling WL. 2000. First evidence of >3.2Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11-14
Rainbird RH, Hadlari T, Aspler LB, Donaldson JA, Le Cheminant AN and Peterson TD. 2003. Sequence stratigraphy and evolution of the Paleoproterozoic intracontinental Baker Lake and Thelon basins, western Churchill Province, Nunavut, Canada. Precambrian Research, 125(1-2): 21-53 DOI:10.1016/S0301-9268(03)00076-7
Rainbird RH, Davis WJ, Stern RA, Peterson TD, Smith SR, Parrish RR and Hadlari T. 2006. Ar-Ar and U-Pb geochronology of a Late Paleoproterozoic rift basin:Support for a genetic link with Hudsonian orogenesis, western Churchill Province, Nunavut, Canada. The Journal of Geology, 114(1): 1-17
Rainbird RH and Davis WJ. 2007. U-Pb detrital zircon geochronology and provenance of the late Paleoproterozoic Dubawnt Supergroup:Linking sedimentation with tectonic reworking of the western Churchill Province, Canada. GSA Bulletin, 119(3-4): 314-328 DOI:10.1130/B25989.1
Rämö OT, Haapala I, Vaasjoki M, Yu JH and Fu HQ. 1995. 1700Ma Shachang complex, northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815-818 DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
Rankama K. 1970. Global precambrian stratigraphy:Background and principles. Scientia, 64(5): 382
Reis NJ, Teixeira W, Hamilton MA, Bispo-Santos F, Almeida ME and D'Agrella-Filho MS. 2013. Avanavero mafic magmatism, a Late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton:U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 174: 175-195 DOI:10.1016/j.lithos.2012.10.014
Ren GM, Pang WH, Sun ZM and Yin FG. 2014. Zircon U-Pb chronology of the amphibolite of Tong'an Formation and its geological significance. Journal of Mineralogy and Petrology, 34(2): 33-39 (in Chinese with English abstract)
Ren KX, Yan GH, Cai JH, Mu BL Li FT, Wang YB and Chu ZY. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract)
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic super-continent. Gondwana Research, 5(1): 5-22 DOI:10.1016/S1342-937X(05)70883-2
Ross GM and Eaton DW. 1997. Winagami reflection sequence:Seismic evidence for postcollisional magmatism in the Proterozoic of western Canada. Geology, 25(3): 199-202
Roy AB and Purohit R. 2015. Lithostratigraphic, geochronological and depositional framework of the Precambrian basins of the Aravalli Mountains and adjoining areas, Rajasthan, India. Geological Society, London, Memoirs, 43: 55-65 DOI:10.1144/M43.4
Schannor M, Lana C and Fonseca MA. 2019. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt. Geoscience Frontiers, 10(2): 611-628
Scott DL, Rawlings DJ, Page RW, Tarlowski CZ, Idnurm M, Jackson MJ and Southgate PN. 2000. Basement framework and geodynamic evolution of the Palaeoproterozoic superbasins of north-central Australia:An integrated review of geochemical, geochronological and geophysical data. Australian Journal of Earth Sciences, 47(3): 341-380 DOI:10.1046/j.1440-0952.2000.00793.x
Scott JMJ, Peterson TD, Davis WJ, Jefferson CW and Cousens BL. 2015. Petrology and geochronology of Paleoproterozoic intrusive rocks, Kiggavik uranium camp, Nunavut. Canadian Journal of Earth Sciences, 52(7): 495-518 DOI:10.1139/cjes-2014-0153
Sears JW and Price RA. 2002. The hypothetical Mesoproterozoic supercontinent Columbia:Implications of the Siberian-West Laurentian connection. Gondwana Research, 5(1): 35-39 DOI:10.1016/S1342-937X(05)70885-6
Shankar R, Sarma DS, Babu NR and Parashuramulu V. 2018. Paleomagnetic study of 1765Ma dyke swarm from the Singhbhum Craton:Implications to the paleogeography of India. Journal of Asian Earth Sciences, 157: 235-244 DOI:10.1016/j.jseaes.2017.08.026
Shumlyanskyy L, Billström K, Hawkesworth C and Elming SÅ. 2012. U-Pb age and Hf isotope compositions of zircons from the north-western region of the Ukrainian shield:Mantle melting in response to post-collision extension. Terra Nova, 24(5): 373-379 DOI:10.1111/j.1365-3121.2012.01075.x
Shumlyanskyy L, Ernst RE, Söderlund U, Billström K, Mitrokhin O and Tsymbal S. 2016. New U-Pb ages for mafic dykes in the northwestern region of the Ukrainian shield:Coeval tholeiitic and jotunitic magmatism. GFF, 138(1): 79-85 DOI:10.1080/11035897.2015.1116602
Silveira EM, Söderlund U, Oliveira EP, Ernst RE and Menezes Leal AB. 2013. First precise U-Pb baddeleyite ages of 1500Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos, 174: 144-156 DOI:10.1016/j.lithos.2012.06.004
Sims PK. 1980. Subdivision of the Proterozoic and Archean Eons:Recommendations and suggestions by the International Subcommission on Precambrian Stratigraphy. Precambrian Research, 13(4): 379-380 DOI:10.1016/0301-9268(80)90052-2
Southgate PN, Bradshaw BE, Domagala J, Jackson MJ, Idnurm M, Krassay AA, Page RW, Sami TT, Scott DL, Lindsay JF, McConachie BA and Tarlowski C. 2000. Chronostratigraphic basin framework for Palaeoproterozoic rocks (1730~1575Ma) in northern Australia and implications for basemetal mineralisation. Australian Journal of Earth Sciences, 47(3): 461-483 DOI:10.1046/j.1440-0952.2000.00787.x
Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B and Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553 DOI:10.1016/j.gr.2008.04.007
Su WB, Li HK, Huff WD, Ettensohnd FR, Zhang SH, Zhou HY and Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323 DOI:10.1007/s11434-010-4007-5
Su WB, Li HK, Xu L, Jia SH, Geng JZ, Zhou HY, Wang ZH and Pu HY. 2012. Luoyu and Ruyang Groups at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System:Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China. Geological Survey and Research, 35(2): 96-108 (in Chinese with English abstract)
Sun DZ and Lu SN. 1983a. The International Precambrian Subcommission holds a meeting in Tanta, Egypt. Geological Review, 29(3): 302 (in Chinese)
Sun DZ and Lu SN. 1983b. Overview of the sixth meeting of the International Precambrian Subcommission of the International Union of Geological Sciences. Overseas Precambrian Geology, (1): 41-44 (in Chinese)
Sun DZ and Lu SN. 1985. A subdivision of the Precambrian of China. Precambrian Research, 28(2): 137-162 DOI:10.1016/0301-9268(85)90077-4
Sun ZD. 1989. A new division and naming of the Precambrian Era. Bulletin of Mineralogy, Petrology and Geochemistry, (4): 243-245 (in Chinese)
Sun ZM, Yin FG, Guan JL, Liu JH, Li JM, Geng QR and Wang LQ. 2009. SHRIMP U-Pb dating and its stratigraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan Province, China. Geological Bulletin of China, 28(7): 896-900 (in Chinese with English abstract)
The Working Group on the Geological Time Scale of China and MG MR. 1987. A Geological Time Scale of China. Beijing:Geological Publishing House: 1-146 (in Chinese)
Turpin L, Maruejol P and Cuney M. 1988. U-Pb, Rb-Sr and Sm-Nd chronology of granitic basement, hydrothermal albitites and uranium mineralizations (Lagoa Real, South-Bahia, Brazil). Contributions to Mineralogy and Petrology, 98(2): 139-147 DOI:10.1007/BF00402107
Van Breemen O, Peterson TD and Sandeman HA. 2005. U-Pb zircon geochronology and Nd isotope geochemistry of Proterozoic granitoids in the western Churchill Province:Intrusive age pattern and Archean source domains. Canadian Journal of Earth Sciences, 42(3): 339-377 DOI:10.1139/e05-007
Van Kranendonk MJ. 2012. A chronostratigraphic division of the Precambrian: Possibilities and challenges. In: Gradstein FM, Ogg JG, Schmitz MD and Ogg GM (eds.). The Geological Time Scale 2012. Amsterdam: Elsevier, 299-392
Verbaas J, Thorkelson DJ, Crowley J, Davis WJ, Foster DA, Gibson HD, Marshall DD and Milidragovic D. 2018. A sedimentary overlap assemblage links Australia to northwestern Laurentia at 1.6Ga. Precambrian Research, 305: 19-39 DOI:10.1016/j.precamres.2017.10.001
Wang C, Peng P, Wang XP, Li QL, Xu XY and Yang SY. 2016. The generations and U-Pb dating of baddeleyites from the Taihang dyke swarm in North China and their implications for magmatic evolution. Acta Petrologica Sinica, 32(3): 646-658 (in Chinese with English abstract)
Wang DB, Sun ZM, Yin FG, Wang LQ, Wang BD and Zhang WP. 2012. Geochronology of the Hekou Group on the western margin of the Yangtze Block:Evidence from zircon LA-ICP-MS U-Pb dating of volcanic rocks. Journal of Stratigraphy, 36(3): 630-635 (in Chinese with English abstract)
Wang DB, Yin FG, Sun ZM, Wang LQ, Wang BD, Liao SY, Tang Y and Ren GM. 2013. Zircon U-Pb age and Hf isotope of Paleoproterozoic mafic intrusion on the western margin of the Yangtze Block and their implications. Geologcal Bulletin of China, 32(4): 617-630 (in Chinese with English abstract)
Wang HZ. 1982. On the use of "Sinian" from the perspective of stratigraphic specification and the division of the Precambrian Era in China. Journal of Stratigraphy, 6(4): 241-246 (in Chinese)
Wang HZ. 1986. Precambrian geochronologic and chronostratigraphic subdivision of China. Earth Science (Journal of China University of Geosciences), 11(5): 447-453 (in Chinese with English abstract)
Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH and Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the Late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton:Implications for petrogenesis and geodynamic setting. Lithos, 162-163: 175-194 DOI:10.1016/j.lithos.2013.01.005
Wang W and Zhou MF. 2014. Provenance and tectonic setting of the Paleo-to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China:Implication for the breakup of the supercontinent Columbia. Tectonophysics, 610: 110-127 DOI:10.1016/j.tecto.2013.11.009
Wang W, Zhou MF, Zhao XF, Chen WT and Yan DP. 2014b. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent. Sedimentary Geology, 309: 33-47 DOI:10.1016/j.sedgeo.2014.05.004
Wang W, Liu SW, Santosh M, Deng ZB, Guo BR, Zhao Y, Zhang SH, Yang PT, Bai X and Guo RR. 2015. Late Paleoproterozoic geodynamics of the North China Craton:Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1): 300-325 DOI:10.1016/j.gr.2013.10.004
Wang W, Cawood PA, Zhou MF and Zhao JH. 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters, 433: 269-279 DOI:10.1016/j.epsl.2015.11.005
Wang W, Cawood PA, Pandit MK, Zhou MF and Chen WT. 2017. Zircon U-Pb age and Hf isotope evidence for an Eoarchean crustal remnant, and crustal episodic reworking in response to supercontinental cycles in NW India. Journal of the Geological Society, 174(4): 759-772 DOI:10.1144/jgs2016-080
Wang W, Lu GM, Huang SF and Xue EK. 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52 (in Chinese with English abstract)
Wang X, Zhu WB, Luo M, Ren XM and Cui X. 2014a. Approximately 1.78Ga mafic dykes in the Lüliang Complex, North China Craton:Zircon ages and Lu-Hf isotopes, geochemistry, and implications. Geochemistry, Geophysics, Geosystems, 15(8): 3123-3144 DOI:10.1002/2014GC005378
Wang XL, Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithospheric mantle:Evidence from the ca.1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204-216
Wang ZJ, Huang ZG, Yao JX and Ma XL. 2014. Characteristics and main progress of the Stratigraphic Chart of China and Directions. Acta Geoscientica Sinica, 35(3): 271-276 (in Chinese with English abstract)
Wang ZZ, Guo Y, Yang B, Wang SW, Sun XM, Hou L, Zhou BG and Liao ZW. 2013. Discovery of the 1.73Ga Haizi anorogenic type granite in the western margin of Yantze Craton, and its geological significance. Acta Geologica Sinica, 87(7): 931-942 (in Chinese with English abstract)
Wu TS. 2002. Late Precambrian (Meso-to Neoproterozoic) lithostratigraphic units in North China and their multiple division and correlation. Geology in China, 29(2): 147-154 (in Chinese with English abstract)
Wu YB, Gao S, Gong HJ, Xiang H, Jiao WF, Yang SH, Liu YS and Yuan HL. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton:Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27(6): 461-477 DOI:10.1111/j.1525-1314.2009.00826.x
Xiang ZQ, Li HK, Lu SN, Zhou HY, Li HM, Wang HC, Chen ZH and Niu J. 2012. Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China:Baddeleyite U-Pb precise dating. Acta Petrologica Sinica, 28(9): 2831-2842 (in Chinese with English abstract)
Xie GH. 2005. Petrology and Geochemistry of the Damiao Anorthosite and the Miyun Rapakivi Granite. Beijing: Science Press: 1-195 (in Chinese)
Xiong Q, Zheng JP, Yu CM, Su YP, Tang HY and Zhang ZH. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:Signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3): 436-446
Xu YH, Zhao TP, Peng P, Zhai MG, Qi L and Luo Y. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lüliang area, Shanxi Province. Acta Petrologica Sinica, 23(5): 1123-1132 (in Chinese with English abstract)
Xu YH, Zhao TP, Zhang YX and Chen W. 2008. Geochemical characteristics and geological significances of the Dagushi Formation siliciclastic rocks, the Paleoproterozoic Xiong'er Group from the southern North China Craton. Geological Review, 54(3): 316-326 (in Chinese with English abstract)
Yang B, Wang WQ, Dong GC, Guo Y, Wang ZZ and Hou L. 2015. Geochemistry, geochronology and their significances of Haizi bimodal intrusions in Kangdian fault-uplift zone, southwestern margin of Yangtze platform. Acta Petrologica Sinica, 31(5): 1361-1373 (in Chinese with English abstract)
Yang B, Dong GC, Guo Y, Wang ZZ and Wang P. 2016. Geochemistry, zircon U-Pb geochronology and significances of the Dazhupeng rhyolites in the western Yangtze platform. Journal of Mineralogy and Petrology, 36(2): 82-91 (in Chinese with English abstract)
Yang H, Liu FL, Du LL, Liu PH and Wang F. 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze block, and its geological significance. Acta Petrologica Sinica, 28(9): 2994-3014 (in Chinese with English abstract)
Yang JH, Wu FY, Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract)
Yin CQ, Lin SF, Davis DW, Zhao GC, Xiao WJ, Li LM and He YH. 2013. 2.1~1.85Ga tectonic events in the Yangtze Block, South China:Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182-183: 200-210 DOI:10.1016/j.lithos.2013.10.012
Youbi N, Kouyaté D, Söderlund U, Ernst RE, Soulaimani A, Hafid A, Ikenne M, El Bahat A, Bertrand H, Chaham KR, Abbou MB, Mortaji A, El Ghorfi M, Zouhair M and El Janati M. 2013. The 1750Ma magmatic event of the West African Craton (Anti-Atlas, Morocco). Precambrian Research, 236: 106-123 DOI:10.1016/j.precamres.2013.07.003
Yu WJ, Luo ZH, Liu YS, Sun JY, Li Z, Wang Z and Tang ZX. 2017. Petrogenesis of the Lala iron-copper deposit:Evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data. Acta Petrologica Sinica, 33(3): 925-941 (in Chinese with English abstract)
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhang LJ, Ma CQ, Wang LX, She ZB and Wang SM. 2011. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance. Chinese Science Bulletin, 56(3): 306-318 DOI:10.1007/s11434-010-4236-7
Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006. Zircon isotope evidence for ≥ 3.5Ga continental crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34 DOI:10.1016/j.precamres.2006.01.002
Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton:Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287-312 DOI:10.1016/j.precamres.2007.02.008
Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009. The 1.35Ga diabase sills from the northern North China Craton:Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600 DOI:10.1016/j.epsl.2009.10.023
Zhang SH, Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton:Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367 DOI:10.1016/j.precamres.2011.06.003
Zhang SH, Zhao Y, Ye H, Hu JM and Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490 (in Chinese with English abstract)
Zhang SH, Zhao Y, Li XH, Ernst RE and Yang ZY. 2017. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton:Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125 DOI:10.1016/j.epsl.2017.02.034
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002a. Review of global 2.1~1.8Ga orogens:Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, He YH and Sun M. 2009a. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181 DOI:10.1016/j.gr.2009.02.004
Zhao TP, Zhou MF, Jin CW, Guan H and Li HM. 2001. Discussion on age of the Xiong'er Group in southern margin of North China Craton. Chinese Journal of Geology, 36(3): 326-334 (in Chinese with English abstract)
Zhao TP, Zhou MF, Zhai MG and Xia B. 2002b. Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China Craton:Implications for the breakup of Columbia. International Geology Review, 44(4): 336-351 DOI:10.2747/0020-6814.44.4.336
Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group:Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502 DOI:10.1007/BF03183721
Zhao TP, Chen FK, Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract)
Zhao TP, Chen W and Zhou MF. 2009b. Geochemical and Nd-Hf isotopic constraints on the origin of the 1.74 Ga Damiao anorthosite complex, North China Craton. Lithos, 113(3-4): 673-690 DOI:10.1016/j.lithos.2009.07.002
Zhao TP, Deng XQ, Hu GH, Zhou YY, Peng P and Zhai MG. 2015. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues:A review. Acta Petrologica Sinica, 31(6): 1495-1508 (in Chinese with English abstract)
Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69 DOI:10.1016/j.precamres.2010.06.021
Zhao XF and Zhou MF. 2011. Fe-Cu deposits in the Kangdian region, SW China:A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineralium Deposita, 46(7): 731-747 DOI:10.1007/s00126-011-0342-y
Zhou GY, Wu YB, Wang H, Qin ZW, Zhang WX, Zheng JP and Yang SH. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 292: 57-74 DOI:10.1016/j.precamres.2017.02.005
Zhou JY, Mao JW, Liu FY, Tan HQ, Shen B, Zhu ZM, Chen JB, Luo LP, Zhou X and Wang Y. 2011. SHRIMP U-Pb zircon chronology and geochemistry of albitite from the Hekou Group in the western Yangtze Block. Journal of Mineralogy and Petrology, 31(3): 66-73 (in Chinese with English abstract)
Zhou MF, Zhao XF, Chen WT, Li XC, Wang W, Yan DP and Qiu HN. 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth-Science Reviews, 139: 59-82 DOI:10.1016/j.earscirev.2014.08.013
Zhu HP, Fan WY, Zhou BG, Wang SW, Luo MJ, Liao ZW and Guo Y. 2011. Assessing Precambrian stratigraphic sequence of Dongchuan area:Evidence from zircon SHRIMP and LA-ICP-MS dating. Geological Journal of China Universities, 17(3): 452-461 (in Chinese with English abstract)
Zhu ZM, Hou KJ, Zhu KY and Tan HQ. 2013. Geochronology and geochemistry of the Hekou Group in Sichuan Province, SW China. Geochemical Journal, 47(1): 51-64 DOI:10.2343/geochemj.2.0244
包志伟, 王强, 资锋, 唐功建, 杜凤军, 白国典. 2009. 龙王(石童)A型花岗岩地球化学特征及其地球动力学意义. 地球化学, 38(6): 509-522. DOI:10.3321/j.issn:0379-1726.2009.06.001
崔敏利, 张宝林, 彭澎, 张连昌, 沈晓丽, 郭志华, 黄雪飞. 2010. 豫西崤山早元古代中酸性侵入岩锆石/斜锆石U-Pb测年及其对熊耳火山岩系时限的约束. 岩石学报, 26(5): 1541-1549.
邓小芹, 赵太平, 彭头平, 高昕宇, 包志伟. 2015. 华北克拉通南缘1600Ma麻坪A型花岗岩的成因及其地质意义. 岩石学报, 31(6): 1621-1635.
地质矿产部中国同位素地质年表工作组. 1987. 中国同位素地质年表. 北京: 地质出版社: 1-146.
高林志, 张传恒, 史晓颖, 周洪瑞, 王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249-255. DOI:10.3969/j.issn.1671-2552.2007.03.001
高林志, 张传恒, 史晓颖, 宋彪, 王自强, 刘耀明. 2008a. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据. 科学通报, 53(21): 2617-2623.
高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 宋彪. 2008b. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376.
高林志, 张传恒, 刘鹏举, 丁孝忠, 王自强, 张彦杰. 2009. 华北-江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433-446. DOI:10.3321/j.issn:1006-3021.2009.04.004
高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793-798. DOI:10.3969/j.issn.1671-2552.2008.06.007
耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代——锆石LA-ICP-MS U-Pb年龄. 地质学报, 86(9): 1479-1490. DOI:10.3969/j.issn.0001-5717.2012.09.009
耿元生, 沈其韩, 杜利林, 宋会侠. 2016. 区域变质作用与中国大陆地壳的形成与演化. 岩石学报, 32(9): 2579-2608.
耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174. DOI:10.3969/j.issn.0001-5717.2017.10.001
关俊雷, 郑来林, 刘建辉, 孙志明, 程万华. 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490.
郭阳, 王生伟, 孙晓明, 王子正, 杨斌, 廖震文, 周邦国, 蒋小芳, 侯林, 杨波. 2014. 扬子地台西南缘古元古代末的裂解事件——来自武定地区辉绿岩锆石U-Pb年龄和地球化学证据. 地质学报, 88(9): 1651-1665.
韩宝福, 张磊, 王亚妹, 宋彪. 2007. 华北克拉通中部古元古代高Mg低Ti-P镁铁质岩墙的富集地幔源区——锆石Hf同位素的制约. 岩石学报, 23(2): 277-284.
和政军, 张新元, 牛宝贵, 刘仁燕, 赵磊. 2011a. 北京密云元古宙环斑花岗岩古风化壳及其与长城系常州沟组的关系. 地学前缘, 18(4): 123-130.
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011b. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报, 30(5): 798-802.
侯贵廷, 李江海, 刘玉琳, 钱祥麟. 2005. 华北克拉通古元古代末的伸展事件:拗拉谷与岩墙群. 自然科学进展, 15(11): 1366-1373. DOI:10.3321/j.issn:1002-008X.2005.11.014
侯贵廷. 2012. 华北基性岩墙群. 北京: 科学出版社: 1-177.
侯林, 丁俊, 邓军, 廖震文, 彭惠娟. 2013. 云南武定迤纳厂铁铜矿岩浆角砾岩LA-ICP-MS锆石U-Pb年龄及其意义. 地质通报, 32(4): 580-588. DOI:10.3969/j.issn.1671-2552.2013.04.006
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563-1576.
金廷福, 李佑国, 费光春, 冯裕昌, 周恒, 沙小保, 吴愧. 2017. 扬子地台西南缘大红山群红山组的锆石U-Pb年代学研究——对其原岩形成时代和变质时代的再限定. 地质论评, 63(4): 894-910.
李承东, 赵利刚, 常青松, 许雅雯, 王世炎, 许腾. 2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论. 中国地质, 44(3): 511-525.
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120.
李怀坤, 张传林, 姚春彦, 相振群. 2013. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成. 中国科学(地球科学), 43(8): 1287-1298.
李怀坤, 苏文博, 周红英, 相振群, 田辉, 杨立公, Huff WD, Ettensohn FR. 2014. 中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012.
李顺智, 林源贤, 张学祺. 1985. 燕山地区长城系常州沟组、串岭沟组的年龄. 前寒武纪地质, 2: 129-134.
柳晓艳. 2011.华北克拉通南缘古-中元古代碱性岩岩石地球化学与年代学研究及其地质意义.硕士学位论文.北京: 中国地质科学院, 1-84 http://cdmd.cnki.com.cn/Article/CDMD-82501-1011152782.htm
柳晓艳, 蔡剑辉, 阎国翰. 2011. 华北克拉通南缘熊耳群眼窑寨组次火山岩岩石地球化学与年代学研究及其意义. 地质学报, 85(7): 1134-1145.
陆松年, 孙大中. 1983. 有关元古宙划分的背景材料. 国外前寒武纪地质, (1): 44-61.
陆松年. 1998. 关于中国元古宙地质年代划分几个问题的讨论. 前寒武纪研究进展, 21(4): 1-9. DOI:10.3969/j.issn.1672-4135.1998.04.001
陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王(石童)碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(12): 762-768.
陆松年, 李怀坤, 王惠初, 陈志宏. 2005. 对国际地层委员会前寒武纪划分参考方案的简介及评述. 地质论评, 51(2): 169-173. DOI:10.3321/j.issn:0371-5736.2005.02.009
庞维华, 任光明, 孙志明, 尹福光. 2015. 扬子地块西缘古-中元古代地层划分对比研究:来自通安组火山岩锆石U-Pb年龄的证据. 中国地质, 42(4): 921-936. DOI:10.3969/j.issn.1000-3657.2015.04.010
彭楠, 旷红伟, 柳永清, 耿元生, 夏晓旭, 王玉冲, 陈骁帅, 郑行海. 2018. 华北克拉通南缘汝阳群大型具刺疑源类时代再厘定及早期真核生物群演化意义. 古地理学报, 20(4): 595-608.
彭澎. 2016. 华北陆块前寒武纪岩墙群及相关岩浆岩地质图说明书:1:2500000. 北京: 科学出版社: 1-90.
乔秀夫, 王彦斌. 2014. 华北克拉通中元古界底界年龄与盆地性质讨论. 地质学报, 88(9): 1623-1637.
全国地层委员会. 2001. 中国地层指南及中国地层指南说明书. 北京: 地质出版社: 1-59.
全国地层委员会. 2002. 中国区域年代地层(地质年代)表说明书. 北京: 地质出版社: 1-72.
任光明, 庞维华, 孙志明, 尹福光. 2014. 扬子西缘会理地区通安组角闪岩锆石U-Pb定年及其地质意义. 矿物岩石, 34(2): 33-39.
任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377-386.
苏文博, 李怀坤, Huff WD, Ettensohn FR, 张世红, 周红英, 万渝生. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197-2206.
苏文博, 李怀坤, 徐莉, 贾松海, 耿建珍, 周红英, 王志宏, 蒲含勇. 2012. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束. 地质调查与研究, 35(2): 96-108. DOI:10.3969/j.issn.1672-4135.2012.02.003
孙大中, 陆松年. 1983a. 国际前寒武地层分会在埃及坦塔召开会议. 地质论评, 29(3): 302.
孙大中, 陆松年. 1983b. 国际地质科学联合会前寒武地层分会第六次会议概况. 国外前寒武纪地质, (1): 41-44.
孙大中. 1989. 前寒武时代的新划分和命名. 矿物岩石地球化学通讯, (4): 243-245.
孙志明, 尹福光, 关俊雷, 刘建辉, 李军敏, 耿全如, 王立全. 2009. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报, 28(7): 896-900. DOI:10.3969/j.issn.1671-2552.2009.07.009
王冲, 彭澎, 王欣平, 李秋立, 徐希阳, 杨书艳. 2016. 华北太行岩墙群斜锆石生长世代和U-Pb年龄及其对岩浆演化的启示. 岩石学报, 32(3): 646-658.
王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630-635.
王冬兵, 尹福光, 孙志明, 王立全, 王保弟, 廖世勇, 唐渊, 任光明. 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 32(4): 617-630. DOI:10.3969/j.issn.1671-2552.2013.04.010
王鸿祯. 1982. 从地层规范观点论"震旦"一词的使用与中国前寒武纪的时代划分. 地层学杂志, 6(4): 241-246.
王鸿祯. 1986. 论中国前寒武纪地质时代及年代地层的划分. 地球科学-武汉地质学院学报, 11(5): 447-453.
王伟, 卢桂梅, 黄思访, 薛尔堃. 2019. 扬子陆块古-中元古代地质演化与Columbia超大陆重建. 矿物岩石地球化学通报, 38(1): 30-52.
王泽九, 黄枝高, 姚建新, 马秀兰. 2014. 中国地层表及说明书的特点与主要进展. 地球学报, 35(3): 271-276.
王子正, 郭阳, 杨斌, 王生伟, 孙晓明, 侯林, 周邦国, 廖震文. 2013. 扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义. 地质学报, 87(7): 931-942. DOI:10.3969/j.issn.0001-5717.2013.07.003
武铁山. 2002. 华北晚前寒武纪(中、新元古代)岩石地层单位及多重划分对比. 中国地质, 29(2): 147-154. DOI:10.3969/j.issn.1000-3657.2002.02.008
相振群, 李怀坤, 陆松年, 周红英, 李惠民, 王惠初, 陈志宏, 牛健. 2012. 泰山地区古元古代末期基性岩墙形成时代厘定——斜锆石U-Pb精确定年. 岩石学报, 28(9): 2831-2842.
解广轰. 2005. 大庙斜长岩和密云环斑花岗岩的岩石学和地球化学:兼论全球岩体型斜长岩和环斑花岗岩类的时空分布及其意义. 北京: 科学出版社: 1-195.
徐勇航, 赵太平, 彭澎, 翟明国, 漆亮, 罗彦. 2007. 山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义. 岩石学报, 23(5): 1123-1132.
徐勇航, 赵太平, 张玉修, 陈伟. 2008. 华北克拉通南部古元古界熊耳群大古石组碎屑岩的地球化学特征及其地质意义. 地质论评, 54(3): 316-326. DOI:10.3321/j.issn:0371-5736.2008.03.004
杨斌, 王伟清, 董国臣, 郭阳, 王子正, 侯林. 2015. 扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义. 岩石学报, 31(5): 1361-1373.
杨斌, 董国臣, 郭阳, 王子正, 王鹏. 2016. 扬子地台西南缘大竹棚流纹岩的年代学、地球化学特征及其地质意义. 矿物岩石, 36(2): 82-91.
杨红, 刘福来, 杜利林, 刘平华, 王舫. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义. 岩石学报, 28(9): 2994-3014.
杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义. 岩石学报, 21(6): 1633-1644.
于文佳, 罗照华, 刘永顺, 孙君一, 李重, 王峥, 唐泽勋. 2017. 拉拉铁铜矿床成因:来自隐爆角砾岩结构定量化和锆石U-Pb年代学的证据. 岩石学报, 33(3): 925-941.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490.
赵太平, 周美夫, 金成伟, 关鸿, 李惠民. 2001. 华北陆块南缘熊耳群形成时代讨论. 地质科学, 36(3): 326-334. DOI:10.3321/j.issn:0563-5020.2001.03.007
赵太平, 陈福坤, 翟明国, 夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685-690.
赵太平, 邓小芹, 胡国辉, 周艳艳, 彭澎, 翟明国. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论. 岩石学报, 31(6): 1495-1508.
中国地质调查局, 全国地层委员会. 2014. 中国地层表. 北京: 地质出版社: 1.
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73. DOI:10.3969/j.issn.1001-6872.2011.03.010
朱华平, 范文玉, 周邦国, 王生伟, 罗茂金, 廖震文, 郭阳. 2011. 论东川地区前震旦系地层层序:来自锆石SHRIMP及LA-ICP-MS测年的证据. 高校地质学报, 17(3): 452-461. DOI:10.3969/j.issn.1006-7493.2011.03.010