岩石学报  2019, Vol. 35 Issue (7): 2173-2188, doi: 10.18654/1000-0569/2019.07.14   PDF    
藏北双湖地区早白垩世晚期赞宗错安山岩:青藏高原早期隆升的时间约束
胡懿灵1, 刘治博2, 王根厚1, 宋扬2, 袁国礼1, 郑明2, 邵华胜1     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质科学院矿产资源研究所, 北京 100037
摘要: 班公湖-怒江缝合带中广泛分布早白垩世安山岩,其中碰撞后地壳增生所产生的安山岩对于青藏高原隆升研究具有重要的意义。赞宗错安山岩位于班公湖-怒江缝合带中段下白垩统去申拉组陆相红层中,锆石U-Pb年龄结果表明安山岩形成于113.44±0.88Ma~115.00±0.51Ma,属早白垩世晚期。岩石地球化学分析结果表明赞宗错安山岩属高钾钙碱性系列,富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素。同时,安山岩εNdt)为-3.56~-1.40,(87Sr/86Sr)i相对恒定(0.7069~0.7079),εHft)值为较小的正负值(-3.66~6.05)。Sr-Nd-Pb同位素和锆石Hf同位素显示安山岩来自幔源玄武质岩浆上涌造成的镁铁质下地壳部分重熔,为碰撞后地壳增生、下地壳重熔的产物,同时有幔源物质加入,指示了青藏高原中部地壳加厚及隆升。结合拉萨-南羌塘地块碰撞时间,推断赞宗错安山岩发育年代代表了高原中部早期隆升时间。本文为探讨青藏高原早期隆升提供了物质记录和有力证据。
关键词: 青藏高原隆升    班公湖-怒江缝合带    赞宗错安山岩    年代学    地壳增厚    
Late Early Cretaceous andesites at Zanzong Co area in Shuanghu County, northern Tibet: Chronological constraints for early uplift of Tibetan Plateau
HU YiLing1, LIU ZhiBo2, WANG GenHou1, SONG Yang2, YUAN GuoLi1, ZHENG Ming2, SHAO HuaSheng1     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The andesites formed by the crustal hyperplasia after the collision of Lhasa terrane and South Qiangtang terrane is of great significance to the uplift of Qinghai-Tibet Plateau. In the middle segment of the Banggong-Nujiang suture zone, Zanzong Co andesites located in the terrestrial red beds of the Lower Cretaceous, provide a record for the early uplift of the Qinghai-Tibet Plateau. Major and trace element, Sr-Nd-Pb and zircon U-Pb and Hf isotope data are presented for the newly discovered Zanzong Co andesites. These results offer new insights into the evolution of the Tibetan Plateau during Cretaceous. Zircon U-Pb dating constrains the timing of emplacement as Early Cretaceous (113.44±0.88Ma~115.00±0.51Ma) Geochemistry shows that the Zanzong Co andesites belong to high-K calc-alkaline series, and that all the samples are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), and depleted in high field strength elements (HFSE) and heavy rare earth elements (HREE). Furthermore, the andesites display negative εNd(t) (-3.56~-1.40), relatively constant 87Sr/86Sr ratios (0.7069~0.7079) and small oscillation with positive or negative εHf(t) values (-3.66~6.05). The Sr-Nd-Pb and Hf isotope signature suggest that the andesites were derived from the anatexis of mafic lower crust by intrusion or underplating of mantle-derived basaltic magma, and were the products of the crust hyperplasia and the remelting of lower crust and mantle material after the collision, indicating the crust thickening and uplift in the central Qinghai-Tibet Plateau. Based on the published collision time between Lhasa terrane and South Qiangtang terrane, it is inferred that the age of andesites represents the early uplift of the central part of Qinghai-Tibet Plateau. The study of Zanzong Co andesites provides robust evidence for the early uplift of the central Qinghai-Tibetan Plateau in the late Early Cretaceous.
Key words: Qinghai-Tibetan Plateau uplift    Bangong-Nujiang suture    Zanzong Co andesites    Geochronology    Crust thickening    

班公湖-怒江缝合带位于青藏高原中部,是南羌塘地块和拉萨地块的分界线,延伸近2000km(图 1a)(Dewey et al., 1988; Yin and Harrison, 2000;潘桂棠等, 2004),也是一条重要的成矿带(Lin et al., 2019; Song et al., 2018; Wang et al., 2018; Xie et al., 2017)。班公湖-怒江洋(班-怒洋)的闭合与碰撞造山是青藏中部白垩纪时期重要的地质事件(Guynn et al., 2006; Kapp et al., 2005; Murphy et al., 1997)。有关班公湖-怒江缝合带(班-怒带)的形成与青藏高原隆升演化之间的关系还存在争议。尽管部分学者认为青藏高原的隆升始于新生代(ca.50~60Ma)的印度板块和欧亚板块碰撞(Dewey et al., 1988; Zhang et al., 2002, 2004),但是另一部分学者则认为晚侏罗世-早白垩世南羌塘地块与拉萨地块的碰撞造山对于青藏高原隆升具有重要的意义(Kapp et al., 2003, 2005;王成善等, 2004)。研究显示,在印度板块和欧亚板块碰撞之前青藏高原中部已经发生大规模的地壳缩短、增厚以及隆升(Kapp et al., 2003, 2005; Murphy et al., 1997; Volkmer et al., 2007; Yin and Harrison, 2000;王成善等, 2004)。研究表明西藏中部上白垩统海相地层在拉萨-羌塘碰撞事件中发生强烈缩短(Burg and Chen, 1984; Murphy et al., 1997; Volkmer et al., 2007),在晚白垩世-古近纪期间(100~50Ma)拉萨地块发生了高达40%的地壳缩短量(Kapp et al., 2003)。此外,地球化学研究也显示青藏高原初始隆升始于晚白垩世早期(< 100Ma)(Li et al., 2013; Zhao et al., 2008)。对铁格隆南的矿床剥蚀研究表明,羌塘南缘在120~110Ma之间已经快速隆升为古高原(杨超等, 2014;唐菊兴等, 2016)。因此,寻找和研究与青藏高原隆升过程相关的晚侏罗-早白垩世的物质记录显得尤为重要。

图 1 研究区大地构造位置图(a, 据Li et al., 2013)和地质简图(b) Fig. 1 The tectonic setting map (a, after Li et al., 2013) and geological sketch map (b) of the study area

中性岩是研究地质历史时期地壳增厚及隆升的重要物质记录(Chapman et al., 2015; Mantle and Collins, 2008; Profeta et al., 2015)。在青藏高原隆升过程的研究中,相关研究也得以应用(Zhu et al., 2017)。其中安山岩作为典型中性岩得到广泛研究。例如,依布茶卡地区粗面安山岩的研究表明西藏北部在43~28Ma之间发生过地壳缩短与加厚(Ding et al., 2007),双湖枕头崖地区安山岩的研究表明其起源于加厚的下地壳重熔(Lai et al., 2003),果根错地区安山岩地球化学研究证实青藏高原中部在晚白垩世早期(~80Ma)发生明显的地壳加厚、高原隆升(Li et al., 2013)。

晚侏罗-早白垩世的碰撞所致的高原隆升与班-怒洋的闭合时代有紧密联系。尽管利用班-怒带上碰撞期安山岩研究高原隆升的报道较少(Hu et al., 2017; Li et al., 2013),不同学者、不同地区研究所得结果不同,例如高原早期隆升的时限、地壳增生机制、地区间差异。但大量发育的安山岩为相关研究提供了可能的更多物质记录。赞宗错地区位于班-怒带中段北部(图 1a),广泛分布有安山岩,产于白垩纪陆相红色碎屑岩系中,是探讨班-怒带闭合对高原早期隆升的影响的重要物质记录及窗口。

本文在野外详细调查的基础上,对双湖县多玛乡赞宗错地区安山岩,开展了锆石U-Pb定年、全岩地球化学、Sr-Nd-Pb同位素地球化学和锆石Hf同位素等相关研究,通过分析其形成年代、岩浆演化、岩石成因,探讨白垩纪班-怒带中段大洋闭合、陆陆碰撞对早期隆升的影响,尤其是早期隆升时间的限制。

1 地质背景与样品采集

研究区位于班公湖-怒江缝合带中段北部,色林错北东,赞宗错地区(图 1a, b)。研究区属崩则错-赞宗错混杂岩带,地质体多受南北向逆冲推覆构造改造。区内主要出露侏罗纪、白垩纪地层,第四系覆盖面积较大;岩浆岩主要有侏罗纪蛇绿混杂岩、白垩纪玄武岩、白垩纪安山岩、白垩纪酸性岩浆岩(图 1b),其中本文的研究对象安山岩为下白垩统去申拉组火山岩夹层(K1q)。

样品采集点位于赞宗错东南约8km(图 1b),属下白垩统去申拉组(K1q),岩性主要为安山岩、安山质火山碎屑岩以及紫红色碎屑岩,为陆相红层的夹层,属陆相喷发火山岩(图 2a)。本文共采集16件样品,经纬度坐标为32°10′59.47″N、89°39′49.30″E,。样品为斑状-基质似交织结构,块状构造。斑晶总含量15%,主要为斜长石(55%~60%)、角闪石(40%~45%)。斜长石半自形板状(0.3~1mm),星散状分布,局部蚀变。角闪石半自形柱状,暗化强烈,呈假象产出。副矿物有磁铁矿、磷灰石(图 2b)。

图 2 赞宗错安山岩露头照片(a)和显微照片(b) Fig. 2 Field photograph (a) and microphotograph (b) of Zanzong Co andesite (Sample α-gs1)
2 分析方法 2.1 LA-ICPMS锆石U-Pb

样品加工以及挑选锆石在河北省欣航测绘院进行。样品破碎至80~120目之后除去比重轻的矿物,再以浮选、磁选挑选出锆石,在双目镜下挑选色泽、晶形较好且透明度高的锆石继而用环氧树脂进行制靶,再用阴极发光(CL)显微照相排查裂隙、残留核及包裹体,选择测量点。

锆石U-Pb年龄测试在中国地质科学院地质研究所进行。LA-MC-ICP-MS为美国ThermoFisher公司NeptunePlus型多接收等离子体质谱仪,采用美国Coherent公司生产的GeoLasPro193nm激光剥蚀系统。激光剥蚀束斑直径为32μm,频率10Hz,能量密度大约为2.5J/cm2,载气为He。锆石年龄的计算以国际标准锆石91500和GJ-1为外标,实验室测定值分别是206Pb/238U=1065.6±3.5Ma和206Pb/238U=607±2.8Ma,与前人发表的结果在误差范围较一致(侯可军等, 2009)。测试结果用ICPMSDataCal软件计算(Liu et al., 2010),铅校正未进行,之后用Isoplot(Ludwig, 2003)软件完成年龄计算及图件绘制。具体分析的步骤和数据的处理过程参见文献(Gao et al., 2002;侯可军等, 2009;柳小明等, 2002)。

2.2 全岩地球化学分析

主量、微量元素分析在中国地质大学(北京)科学研究院完成,主量元素分析以飞利浦PW2404X射线荧光光谱仪完成,按照GB/T 14506.28—93硅酸盐岩石化学分析方法X射线荧光光谱法测定。微量元素和稀土元素采用FinniganMaT ELEMENT型等离子体质谱仪(ICP-MS)进行分析,采用DZ/T 0223—2001电感耦合等离子体质谱方法。测试过程简要介绍如下:称取50mg粉末状样品放于PTFE溶样器中,每个样品加入1mL的HF(38%)和0.5mL的HNO3(68%),而后蒸干溶液,除掉大部分的硅;加入1mL的HF和0.5mL的HNO3,置于190℃烘干箱中加热12h。冷却后再加入1mL浓度为0.5μg/mL的Rh内标溶液,加热到约150℃蒸干溶液;加入1mL的HNO3并蒸干,并再加一次HNO3进行蒸干;用8mL 40%的HNO3提取最终的残留物,密封溶样器,将其放入110℃烘干箱中加热3h,冷却之后,加入去离子水将溶液稀释到100mL。检测标样为美国地质调查局标准样AGV-2和中国地质测试中心岩石标样GSR-3、GSR-1,Li、P、K分析误差介于 < 15%,Ni、Co、Cr、Sc分析误差介于 < 10%,其它元素 < 5%。

从16件样品中挑选8件样品用作全岩Sr-Nd-Pb同位素分析,分析在中国科学院广州地球化学研究所同位素地球化学实验室进行,Sr和Nd同位素比值采用MC-ICP-MS分析,仪器为GVI公司IsoProbe型MC-ICPMS主机和New Wave公司LUV-213激光探针进样系统。样品为小于180目的粉末,用11的HF+HNO3在Teflon容器中低温溶解,再利用AG 50W×8(H+)阳离子交换柱和P507萃淋树脂提取出纯净的Rb、Sr、Nd和Sm。分别用87Sr/86Sr=0.1194和146Nd/144Nd=0.7219对87Sr/86Sr和143Nd/144Nd的测定比值进行标准化,以2σ给出分析误差。JB-3标准样品6次测量平均值143Nd/144Nd=0.513049±0.00001,BCR-2标准样6次测定平均值为87Sr/86Sr=0.705013±0.000018。

进行Pb同位素测定,先称重100mg样品粉末至于Teflon容器中,并在140℃温度下溶解于HNO3+HF混合物达72h。再将溶液蒸发干,加入2mL浓HNO3,在140℃的热板上加热24h,再次蒸发至干,而后加入2mL HCl,在140℃的热板上再次加热24h。最后溶解在0.8M HBr溶液中使Pb纯化。通过阴离子交换技术(AG1X8,200-400树脂处理)将稀释的HBr作为洗脱剂分离和纯化Pb。Pb同位素分析标准物质分别为JB-3标样(4次测量平均值206Pb/204Pb=18.2949±0.0004,207Pb/204Pb=15.5318±0.0004,以及208Pb/204Pb=38.2367±0.0021)和BCR-2标样(3次测量平均值206Pb/204Pb=18.7622±0.0012,207Pb/204Pb=15.6225±0.0006,以及208Pb/204Pb=38.7250±0.0039)。详细的分析程序请参考(Baker and Waight, 2002)。

2.3 锆石Hf同位素分析

锆石Hf同位素分析工作在中国科学院广州地球化学研究所同位素地球化学国家重点实验室进行,使用的仪器设备为Resonetics RESOlution M-50-LR激光器和Neptune Plus MC-ICP-MS。分析点为锆石U-Pb分析的同一点,束斑大小为60μm,脉冲频率为8Hz。具体的仪器条件和数据采集细节见(Wang et al., 2015)。分析中,标准锆石(Penglai)176Hf/177Hf和176Lu/177Hf比值分别为0.282906±0.000013(2σ,n=25)和0.000443423,与Penglai标准锆石推荐的176Hf/177Hf比值(0.282906±0.000016, 2σ, n=117)在误差范围内一致(Li et al., 2010)。

3 分析结果 3.1 锆石U-Pb年代学

对α-gs1、α-gs2两件年龄样品进行了锆石U-Pb年龄测试,测试结果如表 1

表 1 赞宗错安山岩锆石LA-ICP-MS U-Pb测年结果 Table 1 LA-ICPMS U-Pb results of zircon from Zanzong Co andesite

样品锆石多为长、短柱状,半自形-自形晶形,大多数锆石具有明显的岩浆震荡环带,部分锆石显示核边结构(图 3)。α-gs1样品锆石的Th/U比值为0.19~1.18,均值为0.77;α-gs2样品锆石的Th/U比值为0.57~1.30,均值为0.77。二者均显示典型的岩浆锆石特征(Hoskin and Black, 2000)。除去继承核年龄点和谐和度不好的数据点,2件样品分别有24、20个数据点单点谐和度>95%,均落在一致曲线上或附近(图 4a, c)。2件样品的加权平均年龄分别为115±0.51Ma(MSWD=0.83),113.44±0.88Ma(MSWD=2.0)(图 4b, d)。

图 3 样品α-gs1 (a)和样品α-gs2 (b)的锆石CL图像、测年点 Fig. 3 CL images showing the internal structure of the analyzed zircon grains from samples α-gs1 (a) and α-gs2 (b)

图 4 样品α-gs1 (a、b)和样品α-gs2 (c、d)的锆石U-Pb年龄谐和图和加权平均年龄图 Fig. 4 U-Pb concordia diagrams and weighted average ages of zircons for samples α-gs1 (a, b) and α-gs2 (c, d)
3.2 全岩地球化学分析及Sr-Nd同位素

16件赞宗错安山岩样品主微量元素分析结果见表 2

表 2 赞宗错安山岩主量元素(wt%)、微量元素(×10-6)和Sr-Nd-Pb组成 Table 2 Bulk-rock major(wt%), trace (×10-6) element and Sr-Nd-Pb isotopic data from Zanzong Co andesite

16件样品中,α-HX2,α-HX3,α-HX5,α-HX8,α-HX11五件样品发生不同程度的蚀变,故而Ba、K、Na、Rb、Sr、U等活动性元素不宜用作相关解释和判别,一般认为蚀变过程中高场强元素(Nb、Ta、Zr、Hf等)、相容性元素(Cr、Ni)和稀土元素受到的影响较小,可用作讨论岩石类型和成因(Hastie et al., 2007; Winchester and Floyd, 1977)。其余11件样品较为新鲜。去除烧失量计算到100%后,16件样品SiO2含量为61.36%~74.74%,K2O+Na2O含量为4.32%~8.82%,均值为6.98%。样品Al2O3含量较高,为9.99%~16.65%,均值14.90%。MgO含量较低,为0.16%~2.22%,同时具有较低的Mg#值(6~52,均值36.8)。A/CNK指数在0.305~1.067,均值为0.831。在Zr/TiO2-Nb/Y图解中,样品落入安山岩-粗面安山岩范围内(图 5a),在Th-Co图解中,样品也大部分落入中性岩范围内,属高钾钙碱性系列(图 5b)。

图 5 赞宗错安山岩Zr/TiO2-Nb/Y图解(a, 据Winchester and Floyd, 1977)和Th-Co图解(b, 据Hastie et al., 2007) Fig. 5 Classifications diagrams of Zr/TiO2 vs. Nb/Y after (a, after Winchester and Floyd, 1977) and Th vs. Co (b, after Hastie et al., 2007) for Zanzong Co andesite

赞宗错安山岩∑REE=78.87×10-6~143.6×10-6,∑LREE=70.07×10-6~131.3×10-6,∑HREE=10.75×10-6~26.20×10-6。富集轻稀土元素,(La/Yb)N=9.44~25.5,Eu显示为正异常(δEu=1.45~1.67)(图 6a)。原始地幔标准化微量元素蛛网图中(图 6b),样品富集大离子亲石元素(Rb、Ba、Sr等),亏损高场强元素(Zr、Hf、Nb、Ta、Ti等)。特别的是,赞宗错安山岩与西藏中北部依布茶卡粗面安山岩(Ding et al., 2007)、枕头崖安山岩(Lai et al., 2003)、果根错安山岩(Li et al., 2013)有着类似的稀土配分模式,但稀土总量偏低。

图 6 赞宗错安山岩球粒陨石标准化稀土元素配分曲线(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素配分曲线(b, 标准化值据Sun and McDonough, 1989)数据来源:依布茶卡粗面安山岩(Ding et al., 2007);枕头崖安山岩(Lai et al., 2003);果根错安山岩(Li et al., 2013).图 10图 11数据来源同此图 Fig. 6 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element patterns (b, normalization values after Sun and McDonough, 1989) for the Zanzong Co andesite and other related rocks in the Tibet Plateau Date sources: Yibuchaka trachy-andesites (Ding et al., 2007), Zhentouya andesites (Lai et al., 2003), Guogen Co andesites (Li et al., 2013). Data sources in Fig. 10 and Fig. 11 are the same as in this figure

图 7 赞宗错安山岩87Sr/86Sr-La/Nb图解(a)和176Lu/177Hf-εHf(t)图解(b) Fig. 7 Plots of 87Sr/86Sr vs. La/Yb (a) and 176Lu/177Hf vs. εHf(t) (b) for the Zanzong Co andesite

图 8 赞宗错安山岩εNd(t)-SiO2图解(a)和(87Sr/86Sr)i-SiO2图解(b) Fig. 8 Plots of εNd(t) vs. SiO2 (a) and (87Sr/86Sr)i vs. SiO2 (b) for the Zanzong Co andesite

图 9 赞宗错安山岩部分熔融-分离结晶选择性判别图解 Fig. 9 Selected geochemical plots of the Zanzong Co andesite

图 10 赞宗错安山岩εNd(t)-(87Sr/86Sr)i图解 Fig. 10 Plot of εNd(t) vs. (87Sr/86Sr)i diagram for the Zanzong Co andesite and other related rocks in the Tibet Plateau

图 11 赞宗错安山岩207Pb/204Pb-206Pb/204Pb图解(a)和208Pb/204Pb-206Pb/204Pb图解(b)(底图据Li et al., 2013修改) Fig. 11 Plots of 207Pb/204Pb vs. 206Pb/204Pb (a) and 208Pb/204Pb vs. 206Pb/204Pb (b) for the Zanzong Co andesite and other related rocks in the Tibet Plateau (base map modified after Li et al., 2013)

赞宗错安山岩8件Sr-Nd-Pb同位素样品的Sr-Nd-Pb同位素分析结果见表 2。赞宗错安山岩样品的(87Sr/86Sr)i为0.7069~0.7079,(143Nd/144Nd)i为0.5123~0.5124,εNd(t)为-3.56~-1.40,Nd同位素二阶模式年龄tDM2为1023.9~1200.1Ma。样品初始Pb同位素特征:(206Pb/204Pb)t=18.6470~18.7170,(207Pb/204Pb)t=15.6829~15.7041,(208Pb/204Pb)t=38.8801~39.0793。

3.3 锆石Hf同位素

对α-gs1样品进行锆石原位Hf同位素分析(表 3),176Yb/177Hf和176Lu/177Hf比值范围分别为:0.050662~0.12236和0.000991~0.002063,176Lu/177Hf比值绝大部分小于0.002,表明这些锆石在形成后基本没有放射性成因Hf的积累,故而测定的176Hf/177Hf能代表形成时的Hf同位素组成(Wu et al., 2006)。样品锆石的176Hf/177Hf为0.282601~0.282874,εHf(t)值基本为零值附近的较小正负值(-3.66~6.05)。样品锆石Hf模式年龄较古老,tDM=539.0~946.3Ma,tDMC=785.3~1402.2Ma。

表 3 赞宗错安山岩锆石Hf同位素分析结果 Table 3 Hf isotopic data for zircons from Zanzong Co andesite
4 讨论 4.1 岩浆源区和岩石成因

安山质岩浆的起源主要有:1)长英质岩浆和镁铁质岩浆的混合或者长英质的上地壳物质受到镁铁质岩浆的同化混染作用(Boettcher, 1973);2)俯冲洋壳板片和上覆沉积物的重熔(Boettcher, 1973; Grove et al., 2002; Grove and Kinzler, 1986);3)拆沉作用相关的幔源玄武岩浆底侵作用造成镁铁质下地壳重熔(Kuno, 1968; Boettcher, 1973)。

第一种,地幔橄榄岩的局部熔融通常产生玄武质熔体,玄武质熔体与地壳酸性岩浆的混合可以形成安山质岩浆。利用Sr-Nd-Pb同位素和锆石Hf同位素可以判别是否发生岩浆混合作用。赞宗错安山岩表现出较统一的稀土元素和微量元素配分模式(图 6),有着较稳定的(87Sr/86Sr)i值(0.7069~0.7079),同时εNd(t)值变化范围较小(-3.56~-1.40)。通常,岩浆岩的锆石有不同的类型和形貌特点(Yang et al., 2007)。赞宗错安山岩样品中的锆石多为自形或半自形,发育有良好的震荡环带(图 3),同时采集两个年龄样品测年结果基本相同(图 4)。上述特征与岩浆混合成因相矛盾,因此排除赞宗错安山岩是岩浆混合的产物,推断是来自单一岩浆源区。在87Sr/86Sr-La/Nb图解中(图 7a),随着87Sr/86Sr比值增大,赞宗错安山岩样品的La/Nb比值变化不明显,表明上述的单一岩浆源区具有源区混合特性(Chi et al., 2005)。

此外,赞宗错安山岩的176Lu/177Hf比值与εHf(t)之间没有表现出任何相关性(图 7b),表明上地壳物质混染没有对Lu/Hf比值造成影响,排除了岩浆上升过程中严重的上地壳物质混染。同时,这些火山岩样品的Sr-Nd同位素均未与SiO2含量表现出明显的相关性(图 8a, b),更进一步证实上陆壳物质混染在赞宗错安山岩成因中作用很小。因此排除赞宗错安山岩是上地壳长英质物质受镁铁质岩浆同化混染作用的产物,证实样品的Sr-Nd-Pb同位素和锆石Hf同位素特征能够真正地反映岩浆源区的性质。

87Sr/86Sr-La/Nb图解中(图 7a),有1个样品点偏离了主要趋势,表明岩浆岩演化过程中发生了一定的分离结晶(Chi et al., 2005)。赞宗错安山岩具有较低的Mg#值(6~52,均值36.8)和较低的相容元素浓度(Cr、Ni),亦暗示岩浆演化过程中受到了较弱的分离结晶作用影响。较低的Sc含量(3.634×10-6~14.00×10-6)表明单斜辉石分离结晶,Sr和Ba的负异常表明斜长石分离结晶(图 6b)。赞宗错安山岩中含有一定的斜长石斑晶,地球化学解释与岩石学特征较为吻合。可以利用强不相容元素与中等不相容元素的比值进一步判别部分熔融与分离结晶趋势(Allègre and Minster, 1978)。本文利用强不相容元素Th与中等不相容元素Sm和Zr,以及强不相容元素La与Sm,来评估赞宗错安山岩的部分熔融趋势(图 9),如图,赞宗错安山岩在Th/Zr-Th图解、Th/Sm-Th图解以及La/Sm-La图解中均表现出良好的线性趋势,表明赞宗错安山岩来自源区物质的部分重熔。

通过上述讨论,初步推断赞宗错安山岩起源于单一岩浆源,该单一岩浆源具有源区混合的特征;岩浆的成因以部分熔融作用为主,岩浆演化过程中受到一定的但不明显的分离结晶作用,其次,岩浆演化过程中,几乎没有受到上地壳物质的混染。

第二种,赞宗错安山岩SiO2含量为61.36%~74.74%,K2O+Na2O含量为4.32%~8.82%,均值为6.98%。在Zr/TiO2-Nb/Y图解中,样品落入安山岩-粗面安山岩范围内,在Th-Co图解中,样品大部分落入高钾钙碱性系列&橄榄粗玄岩系列范围内(图 5b)。钙碱性火山岩长期以来一般解释为汇聚型板块边界中与俯冲相关的弧火山岩。其次,大离子亲石元素(如Rb、Ba、Th等)的富集,高场强元素(Nb、Ta、Ti等)的亏损,以及轻稀土相对于重稀土富集的稀土配分模式(图 6a),暗示着赞宗错安山岩与岛弧型火山岩有着类似之处(Condie, 2005; Pearce et al., 1984)。另一方面较高的La/Nb比值(2.44~4.08),进一步突出了与俯冲相关的弧火山岩特征。那么赞宗错安山岩可能是班公湖-怒江洋壳与上覆沉积物俯冲、重熔的产物。

然而,如果赞宗错安山岩起源于俯冲板片和上覆沉积物重熔,而未遭受严重的地壳混染,样品应当有类似于大洋中脊玄武岩(MORB)的Sr-Nd-Pb同位素组成(Li et al., 2013)(εNd(t)≈10)(Defant and Drummond, 1990),赞宗错安山岩却有着截然不同的同位素特征(εNd(t)=-3.56~-1.40;(87Sr/86Sr)i=0.7069~0.7079)。样品的Ce/Pb比值为3.42~8.46,Nb/U比值为2.64~5.23,均远小于大洋玄武岩(MORB和OIB)(Hofmann et al., 1986)。而且,现代的弧火山岩一般(87Sr/86Sr)i=0.703~0.704(Hawkesworth et al., 1993),与赞宗错安山岩的同位素特征不同。故而排除赞宗错安山岩是俯冲洋壳板片和上覆沉积物重熔产物的可能性。

第三种,岩石圈的拆沉,导致软流圈物质上涌、镁铁质下地壳重熔,能产生安山质岩浆(Bonin, 2004; Lustrino, 2005; Tatsumi et al., 2008)。新生代的枕头崖安山岩(Lai et al., 2003)、依布茶卡粗面安山岩(Ding et al., 2007)以及果根错安山岩(Li et al., 2013)即与这种过程相关。赞宗错安山岩与上述岩石具有相似的稀土元素和微量元素配分模式(图 6a, b)。而εHf(t)值基本为零值附近的较小正负值(-3.66~6.05),说明幔源物质和壳源物质都有参与。在(87Sr/86Sr)i-εNd(t)图解中(图 10),赞宗错安山岩样品点位于下地壳区域和地幔区域分界线附近,暗示着岩石起源于软流圈地幔和下地壳,而以下地壳物质为主。在207Pb/204Pb-206Pb/204Pb图解中(图 11a)分布于Ⅱ型富集地幔区域,靠近下地壳区域,208Pb/204Pb-206Pb/204Pb图解中(图 11b),赞宗错安山岩样品分布于DUPAL异常区,亦靠近下地壳,综合Pb同位素图解分析,赞宗错安山岩Pb同位素表现出近似于下地壳的特征,同时有一定的富集地幔物质加入。

通过上述的讨论,可知赞宗错安山岩是镁铁质下地壳加厚、重熔的产物,是班-怒带中段乃至青藏高原中部早白垩世晚期地壳加厚的物质记录之一。

4.2 大地构造意义

通常情况下,碰撞事件发生,大规模的地壳水平运动将导致地壳垂向加厚,地壳加厚的初始时间应当晚于或接近于碰撞时间(宋鸿林等, 2013)。因此,拉萨地块和南羌塘地块的碰撞时间是理解青藏高原中部早白垩世晚期地壳初始加厚时限的关键。尽管部分学者认为班公湖-怒江缝合带闭合时代较晚,在早白垩世晚期或之后(Fan et al., 2015; Liu et al., 2014; Zhang, 2004)。但是普遍认为其闭合时代为晚侏罗世-早白垩世(Dewey et al., 1988; Kapp et al., 2005, 2007; Qu et al., 2012; Xu et al., 1985; Yin and Harrison, 2000; Zhu et al., 2011, 2016)。研究发现,陆相的白垩系红层与下伏海相地层之间存在角度不整合(Kapp et al., 2005; Pan et al., 2012; Zhang et al., 2002, 2012),尼玛县附近在早白垩世出现边缘海沉积相向河流相沉积转化(Kapp et al., 2005, 2007),以及广泛发育的上白垩统磨拉石建造(Pan et al., 2012),上述证据都表明拉萨地块-南羌塘地块碰撞事件发生在晚白垩世之前。另外,班公湖-怒江缝合带上约109~113Ma的板内A型花岗岩的发现(Qu et al., 2012),以及拉萨地块北缘大规模的~113Ma岩浆岩的研究结果(Zhu et al., 2011),都指示了南羌塘地块与拉萨地块在早白垩世晚期进入碰撞环境。因此,可以推断班公湖-怒江洋中段在早白垩世晚期闭合消亡,且发生南羌塘-拉萨地块碰撞事件。而本文赞宗错安山岩的成岩年代为约113~115Ma,与碰撞时代极为接近,代表了班公湖-怒江缝合带碰撞后的初期地壳加厚的年代学记录,其形成与碰撞后的岩石圈拆沉作用相关。

上文有关去申拉组(K1q)赞宗错安山岩的研究表明,在早白垩世晚期西藏中部发生了地壳加厚、下地壳重熔,赞宗错安山岩的形成与该时期的碰撞后的岩石圈拆沉相关(Bird, 1979; Bonin, 2004; Lustrino, 2005)。

通过以上讨论,结合区域地质研究成果,归纳出与下地壳加厚,进而发生下地壳重熔,甚至高原早期隆升相关的班公湖-怒江缝合带中段区域岩浆-构造事件模型如下:

(1) 晚侏罗世-早白垩世之间(>120Ma)(图 12a),班公湖-怒江洋壳向北俯冲,导致南羌塘地块在早白垩世形成岛弧火山岩(Zhang et al., 2012)。

图 12 赞宗错地区火山岩岩浆-构造事件模型简图 Fig. 12 Simplified model for the magma-tectonic events based on Zanzong Co andesite

(2) 早白垩世晚期(约120Ma前后),洋壳俯冲结束,拉萨-南羌塘地块发生碰撞(图 12b)。导致西藏中部发生地壳缩短、加厚(如(Murphy et al., 1997)推测有约3~4km的海拔抬升)。

(3) 早白垩世晚期(约120Ma)开始,地壳增厚、下地壳重熔,随着岩石圈地幔的拆沉作用,形成了赞宗错等地区的安山岩(图 12c)。该过程导致了青藏高原中部地壳加厚与相关的岩浆活动,致使西藏中部在早白垩世晚期开始不断隆升。故,早白垩世晚期的赞宗错安山岩为拉萨地块和羌塘地块的碰撞造山后的产物,与高原早期隆升相关,其形成时代有效的限制了青藏高原中部的早期隆升时限。

5 结论

(1) 赞宗错安山岩的锆石U-Pb测年结果为:115.00±0.51Ma(MSWD=0.83)、113.44±0.88Ma(MSWD=2.0),同班公湖-怒江缝合带中广泛分布的晚白垩世中酸性火山岩较为一致。

(2) 赞宗错安山岩岩性主要为安山岩-粗面安山岩。地球化学、年代学以及区域地质背景表明,赞宗错安山岩属高钾钙碱性系列。Sr-Nd-Pb和锆石Hf同位素数据表明,赞宗错安山岩起源于岩石圈拆沉作用下,幔源玄武质岩浆底侵或上涌,造成的下地壳重熔。

(3) 赞宗错安山岩的岩石成因学研究表明该安山岩是地壳增厚的物质记录,其形成年代与拉萨-南羌塘地块碰撞时间接近,代表了青藏高原中部早期隆升的时间,为高原隆升提供了初始时间约束。

致谢      感谢班公湖-怒江成矿带铜多金属矿资源基地调查项目组在野外调查和样品采集过程中的帮助。特别感谢中国地质大学(北京)高金汉教授在野外工作和论文撰写中的指导。15万赞宗错区域地质调查项目组的任宏磊、陈科衡、赵振洋同志在野外工作中提供了帮助;中国地质大学(北京)的李典、唐宇、李超在成文过程中给出了宝贵意见;二位审稿人提出了宝贵的修改意见;在此一并表示感谢。

参考文献
Allègre CJ and Minster JF. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1-25 DOI:10.1016/0012-821X(78)90123-1
Baker J and Waight TE. 2002. Pb isotope analysis using Tl and a Pb-207-Pb-204 spike on a double focusing MC-ICPMS. Geochimica et Cosmochimica Acta, 66(15A): A44
Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571 DOI:10.1029/JB084iB13p07561
Boettcher AL. 1973. Volcanism and orogenic belts: The origin of andesites. Tectonophysics, 17(3): 223-240 DOI:10.1016/0040-1951(73)90004-8
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1-24 DOI:10.1016/j.lithos.2004.04.042
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114 DOI:10.1016/B978-0-444-42148-7.50008-3
Burg JP and Chen GM. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 311(5983): 219-223 DOI:10.1038/311219a0
Chapman JB, Ducea MN, Decelles PG and Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922 DOI:10.1130/G36996.1
Chi XG, Li C and Jin W. 2005. Cenozoic volcanism and lithospheric tectonic evolution in Qiangtang area, northern Qinghai-Tibet Plateau. Science in China (Series D), 48(7): 1011-1024 DOI:10.1360/03yd0324
Condie KC. 2005. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?. Lithos, 79(3-4): 491-504 DOI:10.1016/j.lithos.2004.09.014
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Dewey JF, Shackleton RM, Chang CF and Sun YY. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 379-413 DOI:10.1098/rsta.1988.0135
Ding L, Kapp P, Yue YH and Lai QZ. 2007. Postcollisional Calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters, 254(1-2): 28-38 DOI:10.1016/j.epsl.2006.11.019
Fan JJ, Li C, Xie CM, Wang M and Chen JW. 2015. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos, 227: 148-160 DOI:10.1016/j.lithos.2015.03.021
Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty- two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 26(2): 181-196 DOI:10.1111/ggr.2002.26.issue-2
Grove T, Parman S, Bowring S, Price R and Baker M. 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142(4): 375-396 DOI:10.1007/s004100100299
Grove TL and Kinzler RJ. 1986. Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences, 14: 417-454 DOI:10.1146/annurev.ea.14.050186.002221
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G and Ding L. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508 DOI:10.1130/G22453.1
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357 DOI:10.1093/petrology/egm062
Hawkesworth CJ, Gallagher K, Hergt JM and McDermott F. 1993. Mantle and slab contributions in ARC magmas. Annual Review of Earth and Planetary Sciences, 21: 175-204 DOI:10.1146/annurev.ea.21.050193.001135
Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45 DOI:10.1016/0012-821X(86)90038-5
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu PY, Zhai QG, Jahn BM, Wang J, Li C, Chung SL, Lee HY and Tang SH. 2017. Late Early Cretaceous magmatic rocks (118~113Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44: 116-138 DOI:10.1016/j.gr.2016.12.005
Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH and Ding L. 2003. Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22(4): 17
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8): 865-878
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933 DOI:10.1130/B26033.1
Keto LS and Jacobsen SB. 1987. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary Science Letters, 84(1): 27-41 DOI:10.1016/0012-821X(87)90173-7
Kuno H. 1968. Origin of andesite and its bearing on the Island arc structure. Bulletin Volcanologique, 32(1): 141-176 DOI:10.1007/BF02596589
Lai SC, Liu CY and Yi HS. 2003. Geochemistry and Petrogenesis of Cenozoic andesite-dacite associations from the Hoh Xil Region, Tibetan Plateau. International Geology Review, 45(11): 998-1019 DOI:10.2747/0020-6814.45.11.998
Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for Microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134 DOI:10.1111/j.1751-908X.2010.00036.x
Li YL, He J, Wang CS, Santosh M, Dai JE, Zhang YX, Wei YS and Wang JG. 2013. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan Plateau?. Lithos, 160-161: 1-13 DOI:10.1016/j.lithos.2012.11.019
Lin B, Tang JX, Chen YC, Baker M, Song Y, Yang HH, Wang Q, He W and Liu ZB. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168-182 DOI:10.1016/j.gr.2018.07.009
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD and Ding L. 2014. Subduction of the Bangong-Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2): 188-206 DOI:10.1002/gj.v49.2
Liu XM, Gao S, Yuan HL, Hattendorf B, Gunther D, Chen L and Hu SH. 2002. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS. Acta Petrologica Sinica, 18(3): 408-418 (in Chinese with English abstract)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's manual for Isoplot 3.6: A geochronological toolkit for microsoft excel.Berkeley CA, USA: Berkeley Geochronology Center
Lustrino M. 2005. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews, 72(1-2): 21-38 DOI:10.1016/j.earscirev.2005.03.004
Mantle GW and Collins WJ. 2008. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology, 36(1): 87-90
Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?. Geology, 25(8): 719-722 DOI:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Pan GT, Zhu DC, Wang LQ, Liao ZL, Geng QR and Jiang XS. 2004. Bangong Lake-Nu River suture zone, the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract)
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SM, Kirsch M, Petrescu L and DeCelles PG. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5: 17786
Qu XM, Wang RJ, Xin HB, Jiang JH and Chen H. 2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan Plateau. Lithos, 146-147: 264-275 DOI:10.1016/j.lithos.2012.05.006
Song HL, Zhang CH and Wang GH. 2013. Structural Geology. Beijing: Geological Publishing House (in Chinese)
Song Y, Yang C, Wei SG, Yang HH, Fang X and Lu HT. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, central Tibet, China. Minerals, 8(9): 398 DOI:10.3390/min8090398
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tang JX, Song Y, Wang Q, Lin B, Yang C, Guo N, Fang X, Yang HH, Wang YY, Gao K, Ding S, Zhang Z, Duan JL, Chen HQ, Su DK, Feng J, Liu ZB, Wei SG, He W, Song JL, Li YB and Wei LJ. 2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geoscientia Sinica, 37(6): 663-690 (in Chinese with English abstract)
Tatsumi Y, Takahashi T, Hirahara Y, Chang Q, Miyazaki T, Kimura JI, Ban M and Sakayori A. 2008. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao volcano, NE Japan. Journal of Petrology, 49(11): 1971-2008 DOI:10.1093/petrology/egn055
Volkmer JE, Kapp P, Guynn JH and Lai QZ. 2007. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics, 26(6): TC6007
Wang C, Liang XQ, Xie YH, Tong CX, Pei JX, Zhou Y, Jiang Y, Fu JG and Wen SN. 2015. Late Miocene provenance change on the eastern margin of the Yinggehai-Song Hong Basin, South China Sea: Evidence from U-Pb dating and Hf isotope analyses of detrital zircons. Marine and Petroleum Geology, 61: 123-139 DOI:10.1016/j.marpetgeo.2014.12.004
Wang CS, Zhu LD and Liu ZF. 2004. Tectonic and sedimentary evolution of basins in the north of Qinghai-Tibet Plateau and northward growing process of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 373-381 (in Chinese with English abstract)
Wang WL, Cheng QM, Zhang SY and Zhao J. 2018. Anisotropic singularity: A novel way to characterize controlling effects of geological processes on mineralization. Journal of Geochemical Exploration, 189: 32-41 DOI:10.1016/j.gexplo.2017.07.019
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343 DOI:10.1016/0009-2541(77)90057-2
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Xie GQ, Mao JW, Wang RT, Meng DM, Sun J, Dai JZ, Ren T, Li JB and Zhao HJ. 2017. Origin of the Lengshuigou porphyry-skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits. Mineralium Deposita, 52(4): 621-639 DOI:10.1007/s00126-016-0688-2
Xu RH, Schrer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. The Journal of Geology, 93(1): 41-57 DOI:10.1086/628918
Yang C, Tang JX, Wang YY, Yang HH, Wang Q, Sun XG, Feng J, Yin XB, Ding S, Fang X, Zhang Z and Li YB. 2014. Fluid and geological characteristics researches of southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet. Mineral Deposits, 33(6): 1287-1305 (in Chinese with English abstract)
Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. 2007. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
Zhang KJ, Xia BD and Liang XW. 2002. Mesozoic-Paleogene sedimentary facies and paleogeography of Tibet, western China: Tectonic implications. Geological Journal, 37(3): 217-246 DOI:10.1002/(ISSN)1099-1034
Zhang KJ. 2004. Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth and Planetary Science Letters, 229(1-2): 73-89 DOI:10.1016/j.epsl.2004.10.030
Zhang KJ, Xia BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116(9-10): 1202-1222
Zhang KJ, Zhang YX, Tang XC and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114(3-4): 236-249 DOI:10.1016/j.earscirev.2012.06.001
Zhao TP, Zhou MF, Zhao JH, Zhang KJ and Chen W. 2008. Geochronology and geochemistry of the c. 80Ma Rutog granitic pluton, northwestern Tibet: Implications for the tectonic evolution of the Lhasa Terrane. Geological Magazine, 145(6): 845-857 DOI:10.1017/S0016756808005025
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
Zhu DC, Wang Q, Cawood PA, Zhao ZD and Mo XX. 2017. Raising the Gangdese mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223 DOI:10.1002/2016JB013508
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
柳小明, 高山, 袁洪林, Hattendorf B, Gunther D, 陈亮, 胡圣红. 2002. 193nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析. 岩石学报, 18(3): 408-418.
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. DOI:10.3321/j.issn:1005-2321.2004.04.004
宋鸿林, 张长厚, 王根厚. 2013. 构造地质学. 北京: 地质出版社.
唐菊兴, 宋扬, 王勤, 林彬, 杨超, 郭娜, 方向, 杨欢欢, 王艺云, 高轲, 丁帅, 张志, 段吉琳, 陈红旗, 粟登逵, 冯军, 刘治博, 韦少港, 贺文, 宋俊龙, 李彦波, 卫鲁杰. 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663-690. DOI:10.3975/cagsb.2016.06.03
王成善, 朱利东, 刘志飞. 2004. 青藏高原北部盆地构造沉积演化与高原向北生长过程. 地球科学进展, 19(3): 373-381. DOI:10.3321/j.issn:1001-8166.2004.03.005
杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张志, 李玉彬. 2014. 西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究. 矿床地质, 33(6): 1287-1305. DOI:10.3969/j.issn.0258-7106.2014.06.009