2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
俯冲带是地壳物质循环和地球内部能量交换的最主要场所,维持着地球内部和外部之间长期的物质-能量收支平衡,并最终影响地球表生圈层的宜居环境。大量研究表明板片在深俯冲-折返过程中释放的高压-超高压流体是物质和能量交换的关键介质(McCulloch and Gamble, 1991; Brenan et al., 1998; Manning, 2004; Hermann et al., 2006; Zheng et al., 2011)。这些流体由俯冲板片中含水矿物通过一系列变质反应分解形成,随后在俯冲板片内部发生运移和汇聚,并最终上升进入地幔楔(Peacock, 1990; Schmidt and Poli, 1998; Scambelluri and Philippot, 2001; Hacker et al., 2003; Spandler et al., 2003; Angiboust et al., 2014)。在流体运移的过程中,它将与流经的俯冲隧道内各类岩石发生不同程度的水/岩相互作用,并通过一系列的溶解-沉淀机制进行物质交换,从而不断改变岩石和流体自身的化学组成(Gao et al., 2007; Zhang et al., 2008; Beinlich et al., 2010; Guo et al., 2012, 2015a, 2019; John et al., 2012; Ague and Nicolescu, 2014; Angiboust et al., 2014; Xiao et al., 2015)。因此,俯冲带流体的形成、运移和交代作用不仅控制着板片/地幔楔部分熔融、中/深源地震活动和板片流变学性质(Davies, 1999; Hacker et al., 2003; Tatsumi and Eggins, 1995; Zheng et al., 2011; John et al., 2012; Song et al., 2014; Hu et al., 2017; Ni et al., 2017; Xia et al., 2019),也极大影响着地球内部的元素分配、化学分异和重要矿产资源形成(Scambelluri and Philippot, 2001; Sun et al., 2004; Hermann et al., 2006; Gao et al., 2007; Zhang et al., 2008; Zheng and Hermann, 2014; Xiao et al., 2015)。准确限定俯冲带变质流体的形成机制和条件、元素/同位素特征、运移方式/通道/尺度以及流体活动引发的物质迁移是正确认识俯冲带重要地质过程的关键。
由于形成构造环境和温压条件的特殊性,初始形成的深俯冲变质流体在地表条件下难以保存(Manning, 2004)。除了少量被封存在矿物中的原生流体包裹体之外(Andersen et al., 1993; Xiao et al., 2000; Fu et al., 2001; Klemd, 2004; Zhang et al., 2008; 肖益林等, 2018),人们很难获取俯冲带流体的直接样本。出露于高压-超高压变质地体的变质岩石是俯冲板片折返到地表的产物,这些变质岩石中发育的含水矿物为我们提供了一个了解俯冲隧道内流体活动的重要窗口。由于俯冲带变质岩石普遍经历了不同期次流体活动的叠加(Li et al., 2001; Zhang et al., 2002; Rubatto and Hermann, 2003; Zheng et al., 2007; Wu et al., 2009; 张泽明和沈昆, 2009; Guo et al., 2012, 2014; Sheng et al., 2012; Rubatto and Angiboust, 2015),选择能够完整记录不同阶段流体事件的含水矿物是准确限定俯冲带多期次流体起源、成分和行为的关键。
绿帘石族矿物是俯冲带变质岩石中一类常见的含水Ca-Al硅酸盐矿物(含水量约为2.0%)(Poli and Schmidt, 1995)。该类矿物既可以在基性岩、酸性岩、泥质岩、碳酸盐岩等多种成分体系中稳定(Brastad, 1985; Spandler et al., 2003; Mattinson et al., 2004; 梁金龙等, 2006; Liu et al., 2006; Gao et al., 2007; John et al., 2008; van der Straaten et al., 2008; Guo et al., 2012, 2016; Li et al., 2013),也常常发育在上述岩石的交代岩和变质脉体中(Brunsmann et al., 2000; Enami et al., 2004; Zhang et al., 2005, 2008; Guo et al., 2012, 2014; Brovarone et al., 2018)。在超高压榴辉岩中,柯石英包裹体的发现表明绿帘石可形成于超高压条件下(Hirajima et al., 1992; Zhang, 1992; 张泽明等, 2005; Guo et al., 2012)。此外,绿帘石族矿物独特的晶体结构特征使其可以显著富集各类微量元素,特别是二价大离子亲石元素(Sr和Pb)、稀土元素(REE)和过渡族金属元素(TME)等(Franz and Liebscher, 2004; Frei et al., 2004)。因此,绿帘石化学成分的变化可以非常敏锐地指示地质过程中流体成分的改变(Martin et al., 2011; Chen et al., 2012; Li et al., 2013; Guo et al., 2015a)。另外,绿帘石族矿物一般具有缓慢的体扩散速率,所以天然产出的绿帘石常常可以保留明显的成分环带(Choo, 2002; 梁金龙等, 2006; Guo et al., 2015b),这为我们认识不同期次流体活动提供了关键信息。
本文总结了近年来关于俯冲带变质绿帘石研究的最新进展以及该矿物在揭示俯冲带流体活动方面的重要应用,特别是在示踪流体源区,指示流体化学组成和结晶历史,限定流体氧逸度条件以及揭示水/岩交代效应和元素运移方式等方面的应用。阐明了绿帘石族矿物是一个记录俯冲带流体演化和元素迁移的理想矿物,在流体研究方面具有巨大潜力。
1 绿帘石晶体化学特征与稳定温压范围绿帘石族矿物(epidote-group minerals)的名称源自希腊语“epidosis”,含义是“增长”,指的是该类矿物晶形呈(棱)柱状,且(棱)柱的一面比另一面长(Haüy, 1801)。绿帘石族矿物的结构通式为:A1A2M1M2M3(Si2O7)(SiO4)O(OH),其中A1A2位置以配位数大于6的Ca2+为主(A1配位数是7~9,A2配位数是8~10),Fe2+和Mn2+可以取代A1位的Ca2+,而Pb2+、REE3+、Sr2+或U4+等元素可以取代A2位的Ca2+;M1M2M3主要以6次配位的Al3+为主,其中Fe3+可以取代M3位的Al3+,Cr3+、V3+或Ti4+可以取代M1M2M3位的Al3+(Deer et al., 1986; Enami et al., 2004)。尽管绿帘石族矿物端元组分的划分和命名非常复杂(Franz and Liebscher, 2004; Gottschalk, 2004),通常意义上的绿帘石是指单斜晶系的斜黝帘石[Ca2Al2FeSi3O12(OH)]-绿帘石[Ca2Al3Si3O12(OH)]固溶体以及斜黝帘石的斜方晶系同质异像体-黝帘石(Enami et al., 2004; Gatta et al., 2011)。在本文中,如不进行特殊说明,“绿帘石”一词都是指斜黝帘石-绿帘石固溶体和黝帘石。
大量实验岩石学表明,绿帘石的稳定温压范围非常宽广(Liou, 1973; Liou et al., 1983; Poli and Schmidt, 1998, 2004)。在CaO-Al2O3-SiO2-H2O(CASH)简单体系中,绿帘石的稳定温压范围为300~1200℃和0.1~7GPa。其稳定上限主要受控于三个变质反应,分别是:(a)Zo/Ep=Lws+Grt+Ky+Coe、(b)Zo/Ep=Grt+Ky+Coe+H2O和(c)Zo/Ep=Grt+Ky+melt+H2O,稳定下限主要受控于变质反应(d)An+Grt+Crn+H2O=Zo/Ep(图 1a)(矿物缩写参见Whitney and Evans, 2010)。同时,相对于水饱和体系,无水体系更有利于绿帘石在高温高压条件下稳定(Naney, 1983; Schmidt and Thompson, 1996; Skjerlie and Patiño Douce, 2002; Poli, 2016)。在含Fe体系(CaO-FeO-Al2O3-SiO2-H2O-O2,CFASHO)中,绿帘石的稳定性进一步受氧逸度条件的影响。高的氧逸度条件有利于绿帘石在更高的温压条件下保持稳定(Holdaway, 1972; Liou 1973; Liou et al., 1983)。在水饱和MORB体系中(fO2=NNO),绿帘石稳定的最大压力可达3GPa,最大温度可达700℃,其形成反应通常与硬柱石分解相关,反应式可表达为Lws+Fe-silicate(如Grt、Cpx等)=Ep+Ky+Coe/Qz+H2O(Poli and Schmidt, 2004; Wei et al., 2010; Guo et al., 2013),随着氧逸度的升高,基性岩岩石中绿帘石的稳定压力上限会进一步提高(图 1b)。在天然样品中,Zhang (1992)首次在苏鲁榴辉岩绿帘石中发现柯石英假象,推测绿帘石可在至少3.2GPa和850℃条件下稳定。随后大量的研究证明柯石英包裹体可存在绿帘石中(Hirajima et al., 1992; Zhang et al., 1995; Rolfo et al., 2000; Yao et al., 2000; Massonne and O’Brien, 2003; Mattinson et al., 2004; Guo et al., 2012, 2015a; Liu et al., 2015)。Sobolev and Shatsky (1990)和Zhang et al. (1997)进一步发现绿帘石甚至可以与含金刚石包裹体的石榴石平衡共生,推测其可以在金刚石稳定域存在。因此,实验模拟和天然样品观察均说明在俯冲带变质岩石中,绿帘石可以从俯冲起始阶段(绿片岩相条件)至深度大于90km条件下一直稳定存在。
绿帘石的主量组分变化主要涉及M3结构位置的Fe3+-Al替换。因此,绿帘石主量元素变化通常用XFe[=Fe3+/(Al+Fe3+)]值(即Ps值)进行表征。通常情况下,绿帘石-斜黝帘石的XFe值变化范围为0.09至0.30,黝帘石的XFe值变化范围为0至0.06(Enami et al., 2004)。
全岩的Fe/Al比值是影响绿帘石中XFe值大小的一个关键因素。例如,变基性岩石中绿帘石XFe值明显高于变泥质岩石中绿帘石的XFe值。同时,两类岩石的全岩Fe/Al比值均与绿帘石XFe呈正相关(Miyashiro and Seki, 1958; Brunsmann et al., 2002; Potel et al., 2002)。此外,当岩石发生变质相转变时,其全岩Fe含量变化也直接影响绿帘石XFe值。例如在蓝片岩相向榴辉岩相转变过程中,榴辉岩和泥质岩中Fe含量的降低会导致其中发育的绿帘石XFe值明显降低(Oh et al., 1991; Spandler et al., 2003)。
此外,绿帘石XFe值还与温度、压力条件和氧逸度条件密切相关。大量研究表明,不同变质阶段生长的绿帘石具有明显不同的XFe值(Eide and Liou, 2000; Enami et al., 2004; Mattinson et al., 2004; 翟伟等, 2006; Guo et al., 2013, 2015a)。然而,不同样品中XFe值表现出不同的变化趋势。苏鲁青龙山和西大别红安榴辉岩中进变质绿帘石XFe值(0.21~0.30)明显高于超高压峰期绿帘石XFe值(0.03~0.19)(Eide and Liou, 2000; Mattinson et al., 2004; 梁金龙等, 2006)。相反,东大别港河和花凉亭榴辉岩中进变质绿帘石XFe值(0.08~0.15)却明显低于超高压峰期绿帘石XFe值(0.21~0.24)(Guo et al., 2013, 2015a)。这种变化差异表明绿帘石的XFe值可能不仅仅受变质温度、压力因素控制,还可能受其他因素,如氧逸度等影响。Holdaway (1972)和Liou (1973)通过实验证明绿帘石XFe值与俯冲带氧逸度条件呈正相关,即岩石氧化程度越高,绿帘石XFe越大。Guo et al. (2017b)也发现绿片岩相高XFe绿帘石的形成与高氧逸度流体渗透有关。
2.2 微量元素绿帘石可以显著富集多种微量元素,如大离子亲石元素(Sr和Pb)、锕系元素(Th和U)、稀土元素REE以及过渡族金属(Cr和V)等(Frei et al., 2004)。已有的研究表明绿帘石是俯冲带变质岩石中Sr、Pb、Th、U和轻稀土元素(LREE)的最主要载体(图 2a)(Brastad, 1985; Spandler et al., 2003; Gao et al., 2007; van der Straaten et al., 2008; Guo et al., 2012, 2016; Li et al., 2013)。图 2b, c分别展示典型榴辉岩和泥质片麻岩中造岩矿物对全岩微量元素的贡献(Spandler et al., 2003)。在榴辉岩中,超过95%的Sr、Pb、Th、U和LREE赋存在绿帘石中;泥质片麻岩中,LREE几乎全部赋存在绿帘石中(>90%),此外,全岩50%的Sr和25%的Pb赋存在绿帘石中。因此,绿帘石控制着变质作用过程中这些微量元素的分配和迁移。
Sr和Pb是绿帘石中最常见的微量元素。Sr2+与Ca2+的电价相同,同时Sr2+离子半径(1.36Å)略大于Ca2+(1.23Å),因此Sr2+易于取代绿帘石晶格中A2位置的Ca2+。相对于俯冲带变质岩中其他高压矿物,Sr在绿帘石中的相容性更大(DEp/other mineralSr>100)(Feineman et al., 2007)。在一些极端富Sr的高压岩石中绿帘石可含有高达16%的SrO(Miyajima et al., 2003)。此外,其他富Sr矿物的分解(如硬柱石、钙长石、榍石、磷灰石和方解石)也会促使新生绿帘石的Sr含量升高(Grapes and Watanabe, 1984; Guo et al., 2013)。
Pb在绿帘石中同样具有较高的相容性(DEp/other mineralPb>10)(Feineman et al., 2007)。Pb进入绿帘石的方式是取代A2位置的Ca2+。在一些极其富Pb的岩石中,绿帘石Pb含量可以很高,甚至达到主量元素级别。如Macedonia地区的云母片岩中发育多种富Pb矿物(如磁铅矿、钙砷铅矿和方铅矿等),与这些富Pb矿物同期生长的绿帘石PbO含量可以高达23%(Bermanec et al., 1994; Jančev and Bermanec, 1998)。
2.2.2 REEREE能够以不同置换反应进入绿帘石晶格,包括:(1)REE3+和碱金属元素置换A位的Ca2+,如REE3++Na+=2Ca2+;(2)REE3+和Fe2+置换A位的Ca2+和M位的Al3+,如REE3++Fe2+=Ca2++Al3+;(3)REE3+置换A位的Ca2+和Th4+(或U4+),如2REE3+=Ca2++Th4+/U4+;(4)REE3+和Fe3+置换A位的Fe2+和Th4+(或U4+),如REE3++Fe3+=Fe2++Th4+/U4+;(5)REE3+与Fe2+和F-置换A位Ca2+和M位Fe3+以及附加阴离子O2-,如REE3++2Fe2++F- =Ca2++2Fe3++O2-(Frei et al., 2004; Gieré and Sorensen, 2004)。
由于绿帘石和其他高压矿物(Grt、Cpx等)之间LREE的分配系数远大于1,而HREE的分配系数一般小于1(Sassi et al., 2000; Spandler et al., 2003),因此高压绿帘石一般具有LREE富集,HREE相对亏损的稀土元素配分模式(图 2a)。REE在绿帘石和流体之间的配分数据相对复杂。Feineman et al. (2007)发现2GPa和750~900℃下的DEp/fluidREE均大于1,且DEp/fluidLREE略大于DEp/fluidHREE,表明此温压条件下所有稀土元素均优先进入绿帘石。而Martin et al. (2011)发现3GPa和700℃条件下的DEp/fluidREE小于1,3GPa和850℃条件下的DEp/fluidREE大于1,表明温度条件对REE在绿帘石和流体中的分配影响较大,更高的温度有利于REE进入绿帘石。这一推断与Brunsmann et al. (2001)根据天然样品计算的结果相符(表 1、图 3)。
Cr3+与Al3+电价相同,离子半径相似,因此Cr3+易于取代M1位置的Al3+进入绿帘石晶格(Frei et al., 2004; Nagashima et al., 2019)。绿帘石一般包含10n×10-6~100n×10-6的Cr(Nagasaki and Enami, 1998; Brunsmann et al., 2000),但在一些特殊地质过程中,绿帘石也可以显著富集Cr2O3(最高可达16%)(Eskola, 1933; Grapes, 1981; Treloar, 1987a; Frei et al., 2004; Nagashima et al., 2006)。这些富Cr绿帘石的形成主要与基性/超基性岩蚀变释放的富Cr流体交代或早期富Cr矿物的分解有关(Grapes, 1981; Yang and Enami, 2003; Tumiati et al., 2005; Nagashima et al., 2006)。另外,即使在同一岩石样品中,绿帘石Cr含量也可以存在明显差异。如变基性岩中生长在铬铁矿周边的绿帘石比远离铬铁矿的绿帘石具有更高的Cr含量(Nagashima et al., 2006)。导致这一现象的原因可能是Cr在流体活动中迁移能力有限,难以在岩石中达到含量均一(Treloar, 1987b; Watenphul et al., 2014)。
V3+(0.64Å)的离子半径稍大于Cr3+(0.62Å),因此V3+主要取代Al3+进入配位数较大的M3位置(Nagashima et al., 2019)。V在绿帘石中具有很大的相容性(Frei et al., 2004),可以显著富集在绿帘石中。绿帘石V含量与原岩性质有关,如变花岗岩中绿帘石V含量为155×10-6~624×10-6(Spiegel et al., 2002),而变基性岩中绿帘石V含量为846×10-6~985×10-6(Spandler et al., 2003)。此外,后期富V流体的交代作用也会促使绿帘石V含量增加(Uher et al., 2008)。如出露于坦桑尼亚东北部片麻岩岩石中的“坦桑石”是一种由富V流体交代形成的宝石级绿帘石,其V2O3含量可以达到0.26%~0.53%(Malisa, 2003; Harris et al., 2014)。
2.2.4 其他重要元素除了上述元素,绿帘石同样富集锕系元素Th和U以及变价元素Mn。
Th4+和U4+电价较高,因此Th4+和U4+取代A位置的Ca2+进入绿帘石晶格时,通常伴随其他二价离子取代M位的Al3+。绿帘石Th和U含量主要与原岩性质有关。已有数据显示:变花岗岩和变泥质岩中绿帘石的Th和U含量较高,约是变基性岩中二者含量的10~20倍(Sorensen and Grossman, 1989; Finger et al., 1998; Spandler et al., 2003; Frei et al., 2004; Zack et al., 2004)。另外,后期熔/流体的交代作用以及富Th和U矿物(如独居石、褐帘石和磷钇矿等)的分解也可以导致绿帘石中Th和U含量发生显著改变(Finger et al., 1998; Guo et al., 2015a)。
Mn有两种价态:Mn2+和Mn3+,其中Mn2+与Ca2+电价相等,且Mn2+离子半径小于Ca2+,导致Mn2+易于取代Ca2+进入绿帘石中配位数较小的A1位置,而Mn3+优先取代绿帘石M3位置的Al3+(Frei et al., 2004)。因此Mn3+/Mn2+可能反映体系氧逸度条件(Armbruster et al., 2006)。Frei et al. (2004)总结发现不同岩石体系中绿帘石的Mn含量差异不明显,如变基性岩中绿帘石Mn2O3含量为0.02%~0.87%,而变质花岗岩中绿帘石Mn2O3含量为0.11%~0.43%。
3 绿帘石在俯冲带流体活动研究中的应用 3.1 示踪俯冲带(多阶段)流体源区准确限定俯冲带流体的源区是正确认识这些流体性质和行为的前提。然而,俯冲带岩石中变质流体的源区示踪一直是个难题。最主要的原因是这些岩石中的流体活动往往是幕式的,具有不同成因机制、形成时代和表现形式,如含水矿物生长、变质成脉和退变质阶段的水化作用等等(Santosh et al., 2010; Chen et al., 2012; Guo et al., 2012; Massonne, 2012; Wang et al., 2017)。这些变质流体既可以来自寄主岩石内部脱水(Li et al., 2004; Zheng et al., 2007, 2011; Wu et al., 2009; Guo et al., 2012; Zhao et al., 2016),也可以来自寄主岩石之外的其他源区(Austrheim, 1987; Franz et al., 2001; Svensen et al., 2001; John et al., 2008; Vrijmoed et al., 2013; Guo et al., 2019),还可以由内部流体和外部流体叠加形成(Spandler et al., 2011; Li et al., 2013; Guo et al., 2014, 2015b)。要了解俯冲带岩石中流体活动过程,就需要在俯冲带岩石中识别出各个期次的变质流体,并逐一确定这些不同期次流体的来源。
绿帘石通常具有较高的Sr(普遍高于1000×10-6),有利于进行原位微区的Sr同位素分析。同时绿帘石极低的Rb/Sr比值(通常 < 0.0001),使得实测的绿帘石87Sr/86Sr比值与其变质生长时的初始87Sr/86Sr比值十分接近,无须再进行初始比值的计算。Campos-Alvarez et al. (2010)利用飞秒LA-MC-ICP-MS对Sudbury火成杂岩体中的热液绿帘石进行了原位Sr同位素分析尝试,揭示了该岩体中至少存在三期不同来源的岩浆-热液流体活动。Guo et al. (2014)利用LA-MC-ICP-MS对超高压榴辉岩中不同期次绿帘石进行了原位微区Sr同位素测定(图 4),发现榴辉岩相绿帘石具有相同且均一的初始Sr同位素组成(87Sr/86Sr=0.70693~0.70720),并与全岩Sr同位素组成接近;相反,角闪岩相绿帘石具有更高且明显变化的初始Sr同位素组成(87Sr/86Sr=0.70894~0.71172),与榴辉岩的围岩片麻岩更接近。因此表明高压-超高压成脉流体来源于榴辉岩本身,而角闪岩相流体来源于外部片麻岩。绿帘石原位Sr同位素分析也被应用于多期复合高压脉体的流体源区识别(Guo et al., 2015a)和中-低压退变流体的源区识别(Guo et al., 2016, 2017b)。Bieseler et al. (2018)在研究洋壳经典剖面阿曼蛇绿岩时,发现位于蛇绿岩序列下部的辉长岩中发育新鲜绿帘石脉体,其利用TIMS测得脉体绿帘石的原位87Sr/86Sr比值为0.70429~0.70512,介于幔源岩浆(87Sr/86Sr=0.7032)和海水(87Sr/86Sr=0.7073)之间,表明绿帘石的形成与海底热液蚀变作用有关,为海洋-地壳相互作用提供可靠的岩石学证据。这些研究都表明绿帘石的原位Sr同位素分析是示踪流体源区的一个有效手段。
在了解流体源区基础上,准确限定这些流体形成的岩石学过程对理解流体的性质和行为同样重要。已有的研究表明俯冲板片中含水矿物的脱水分解是俯冲带自由流体的主要来源(Pawley, 1994; Schmidt and Poli, 1998; Hermann et al., 2006; Zheng et al., 2009, 2011)。硬柱石[CaAl2Si2O7(OH)2·H2O]是深俯冲板片中一个重要的含水矿物(含水量高达11.5%),其形成和分解将极大影响俯冲带流体活动、中/深源地震和板片流变学性质(Zack et al., 2004; Davis and Whitney, 2006; Teyssier et al., 2010; Brovarone and Beyssac, 2014)。准确判断硬柱石的出现对限定岩石变质P-T轨迹、流体活动和元素迁移具有重要指示意义。然而,硬柱石极易受折返阶段温度升高和流体渗透的影响而发生脱水分解(Whitney and Davis, 2006)。P-T-X(H2O)相图模拟表明在水不饱和的前提下,随着岩石体系水含量增加,硬柱石会逐渐失稳发生分解(魏春景和崔莹, 2011)。这些因素导致在自然界出露的岩石中硬柱石难以保存(Clarke et al., 2006; Wei and Clarke, 2011; Guo et al., 2013)。准确识别硬柱石早期是否存在是岩石学家面临的一大挑战。
在高压-超高压岩石中,绿帘石是硬柱石分解的一个常见产物(Schmidt and Poli, 1994, 1998; Castelli et al., 1998; Li et al., 2004; Wei et al., 2010),因此对疑似硬柱石分解形成的绿帘石研究是检验硬柱石出现的一个潜在突破口。El Korh et al. (2009)发现与硬柱石平衡共生的其他矿物(如绿帘石、榍石、磷灰石)具有较低的Sr和LREE含量,而由硬柱石分解形成的绿帘石的Sr和LREE含量明显升高。基于对不同期次绿帘石微量元素变化的认识,Guo et al. (2013)进一步提出质量平衡关系能够更准确地判断榴辉岩中早期是否存在硬柱石。他们在大别港河榴辉岩中识别出两期绿帘石:早期高压绿帘石包体和峰期超高压绿帘石变斑晶(图 5a-e),矿物成分分析显示高压绿帘石的Sr(990×10-6~1890×10-6)和LREE(La为60×10-6~110×10-6)含量远低于超高压绿帘石的Sr(7200×10-6~10300×10-6)和LREE(La为160×10-6~1300×10-6)含量(图 5f)。根据超高压绿帘石的体积含量,要求早期绿帘石的含量超过100%,因此,早期高压矿物组合中必然存在除绿帘石之外的一个更加富集Sr和LREE的矿物。根据基性岩体系相平衡模拟结果,在早期可能存在的所有(超)高压矿物中,只有硬柱石能够富集Sr和LREE。这一结果说明早期硬柱石一定存在。因此进变质低Sr和LREE绿帘石的出现可以作为榴辉岩中早期存在硬柱石的一个重要指示标志(Guo et al., 2013)。Li et al. (2013)在西南天山含硬柱石榴辉岩中发现与硬柱石平衡共生的蓝片岩相绿帘石包体Sr和LREE含量明显低于榴辉岩相绿帘石变斑晶Sr和LREE含量,指示硬柱石的分解的确可以引起新生绿帘石的Sr和LREE含量增加。
俯冲板片中含水矿物脱水释放的初始流体通常具有较低微量元素含量(Gao and Klemd, 2001; Spandler et al., 2003; Volkova et al., 2004)。这些流体在脱水位置不断的汇聚和迁移,并在运移过程中,与俯冲带隧道内流经的各类岩石发生不同程度的交代作用。在此过程中,流体将通过一系列的溶解-再沉淀机制(ICDP)不断改变岩石和流体自身的化学组成(Bebout, 2007; Gao et al., 2007; Zhang et al., 2008; Beinlich et al., 2010; Xiao et al., 2011, 2015; Guo et al., 2012; Klemd, 2012; Angiboust et al., 2014)。因此,水/岩相互作用是控制和影响流体化学特征的关键过程。
已有的研究表明绿帘石的形态、环带结构和微量元素成分可以很好地记录水/岩相互作用过程。John et al. (2008)发现西南天山蓝片岩中绿帘石具有相对均一的矿物成分,而榴辉岩相反应带中绿帘石显示了明显的溶蚀结构(corrosion structures)(图 5g, h)和变化的矿物成分,表明高压水/岩反应过程中流体部分溶解了绿帘石。Guo et al. (2012)通过对大别山港河含脉体榴辉岩剖面(约20cm)的研究,对超高压水/岩反应过程中绿帘石的行为进行了更加系统的调查。结果表明从远离脉体到靠近脉体,榴辉岩中绿帘石颗粒逐渐变小;绿帘石形态从自形逐渐变为他形;绿帘石含量逐渐降低直至在最靠近的脉体处(约1~2cm)完全消失(图 6、图 7a-h)。成分分析表明,远离脉体绿帘石的核部成分均匀,逐渐靠近脉体时,绿帘石核部显示补丁状结构(patchy texture),且绿帘石的Sr、Pb、Th、U和LREE含量逐渐降低(图 7)(Guo et al., 2015b)。这些结构形态和成分变化指示超高压水/岩反应过程中,流体溶解了绿帘石并导致微量元素进入流体相。
岛弧岩浆岩相对于亏损地幔楔具有明显高的Sr、Pb、Th、U和LREE,导致这一现象的主要原因是板片来源的流体携带上述元素进入了岛弧地幔源区(McCulloch and Gamble, 1991; John et al., 2004)。因此,高压-超高压变质条件下流体-绿帘石反应和溶解作用引发的微量元素迁移,对俯冲带关键元素的循环具有重要意义。
3.4 限定流体的氧逸度条件流体的氧逸度条件是控制流体性质和行为的一个重要物理化学参数。例如,在俯冲带背景下,较高的氧逸度条件可以显著提高流体对难/微溶元素(如TME)的溶解程度和活化迁移能力,进而影响岛弧玄武岩的地球化学特征(Tatsumi and Eggins, 1995; Frank et al., 2002; Mungall, 2002; Sun et al., 2004; Mengason et al., 2011)。此外,流体的氧逸度还深刻影响着成岩矿物的变质相关系、元素赋存状态和同位素分馏行为(Arculus, 1985; Frank et al., 2002; Mattinson et al., 2004; Cao et al., 2018; Guo et al., 2017b)。因此俯冲带流体氧逸度变化为理解深俯冲变质作用与岛弧岩浆活动具有重要意义。
绿帘石晶格的M3位置主要由Fe3+和Al3+占据,因此绿帘石Fe含量能够灵敏地反映与之平衡流体的氧逸度条件,特别是不同期次绿帘石Fe含量的变化可能记录变质演化过程中流体氧逸度的变化。Donohue and Essene (2000)根据反应式2Ca2FeAl2Si3O12(OH)(绿帘石)=2Ca2FeAl2Si3O12(石榴石)+H2O+1/2O2提出了一个普遍适用于石榴石-绿帘石平衡体系的氧逸度计。Mattinson et al. (2004)和Cao et al. (2011)根据绿帘石和石榴石平衡关系利用THERMOCALC程序分别对苏鲁榴辉岩中峰期变质流体氧逸度条件和北祁连榴辉岩中高压退变质流体氧逸度条件进行了约束(分别为ΔHM+2.5和ΔFMQ+(2-4))。Guo et al. (2017b)在大别变质地体的退变质脉体中发现铁钛氧化物被金红石+绿帘石+绿泥石组合取代结构,确定取代反应式为24Ilm+8An+8Qz+18H2O+O2=4Ep+4Dph (in Chl)+24Rt,认为该反应涉及铁钛氧化物中的Fe2+被氧化成Fe3+进入绿帘石中,游离出来的Ti结晶形成金红石。通过热力学模拟计算得出引发上述取代反应的绿片岩相退变质流体具有非常高的氧逸度条件(ΔFMQ+(2.5~4.5))。上述这些研究表明利用平衡矿物组合中绿帘石Fe的含量限定流体的氧逸度条件非常有效。
除Fe之外,绿帘石中的微量元素,如Mn、Ce和Eu,也能为流体的氧逸度条件提供重要信息(Grapes and Hoskin, 2004; Guo et al., 2016)。高的氧逸度条件有利于将流体中Mn2+、Eu2+和Ce3+分别氧化为Mn3+、Eu3+和Ce4+,其中Mn2+、Eu3+和Ce3+更容易取代绿帘石中A位置的Ca2+。因此,高氧逸度条件下结晶的绿帘石应具有高的Eu3+含量和较低的Mn3+和Ce4+含量。这一判别标准也与自然界的观察相吻合,如Guo et al.(2014, 2016)发现角闪岩相富Fe绿帘石(形成于高氧逸度条件下)具有明显的负Ce异常。
3.5 揭示流体结晶过程和脉体沉淀次序流体在运移和汇聚过程中,随着温度压力等物理条件的改变,一部分矿物相会从流体中结晶出来形成脉体。大量的研究发现同一岩体中可以存在矿物组合和全岩成分均不同的脉体,表明成脉过程可能具有多期次性(Zhang et al., 2008; El Korh et al., 2009; Verlaguet et al., 2011; Chen et al., 2012; Guo et al., 2015a)。因此,准确限定脉体的结晶过程,特别是查明脉体的沉淀次序对于理解流体的初始化学组分具有重要意义。
在流体结晶过程中,难溶元素(Cr、V和Ni等)通常在早期沉淀,并导致残余流体具有更高的流体活动元素含量(如Sr、Pb、Th、U和LREE)(Becker et al., 1999; Rubatto et al., 2001; Hermann et al., 2006; Gao et al., 2007; John et al., 2008; Huang et al., 2012)。绿帘石既可以富集较为活动的元素(如Sr和La),也可以富集一些难溶元素(如Cr和V)。因此,绿帘石微量元素地球化学特征可以为流体结晶过程提供关键约束。根据已有的实验结果(Martin et al., 2011),绿帘石与流体达到平衡时,轻稀土元素倾向于进入流体相,而Cr和V更倾向于进入绿帘石,并且Eu在绿帘石和流体之间的分配系数(DEp/fluidEu)值大于Sm(DEp/fluidSm)和Gd(DEp/fluidGd)在绿帘石和流体之间的分配系数。因此,绿帘石从流体中的结晶会导致残余流体中Cr含量和δEu值(=2EuN/(SmN+GdN))降低,相反轻稀土含量升高。所以,晚期结晶的绿帘石相对于早期结晶的绿帘石应具有更低的Cr含量和δEu值以及更高的轻稀土含量。
大别造山带花凉亭榴辉岩中发育的复合高压脉体是流体多期次结晶的典型范例。从脉体-榴辉岩的边界到脉体内部,依次出现绿帘石-绿辉石脉、绿帘石-石英脉和绿帘石-蓝晶石-石英脉。成分分析显示,上述脉体中绿帘石的Cr、V和δEu值逐渐降低(分别从115×10-6、363×10-6、1.11降低至7.1×10-6、38.1×10-6、0.51),而La含量逐渐升高(从2.72×10-6升高至1187×10-6),反映了绿帘石-绿辉石脉最早结晶,绿帘石-石英脉次之,绿帘石-蓝晶石-石英脉结晶最晚,这一推断与流体成分模拟计算出的不同演化阶段结晶矿物的成分变化一致(Guo et al., 2015a)。同样,Chen et al. (2012)在野寨榴辉岩同一脉体中发现两种不同结构的绿帘石,其中高LREE的绿帘石具有负Eu异常(0.73~0.95),而低LREE的绿帘石具有正Eu异常(1.03~1.42),这一化学成分特征暗示前者可能形成于更早期的结晶过程。
4 结语及展望本文系统论述和总结了俯冲带变质绿帘石在揭示俯冲带流体活动应用中的主要优势:(1)绿帘石稳定温压范围十分宽广,因此能记录板片在深俯冲-折返过程中多阶段的流体演化历史;(2)绿帘石在俯冲带多种岩石体系(特别是交代岩石和脉体)中可以广泛存在;(3)绿帘石的主量元素替代关系简单(Fe3+-Al替代),能够指示平衡流体的氧逸度条件;(4)绿帘石是微量元素(特别是Sr、Pb、Th、U、Cr、V和LREE)的良好“容器”,其成分变化可以记录不同地质过程中(如水/岩反应过程和结晶过程)流体成分变化和元素迁移;(5)绿帘石具有非常低的Rb/Sr比值,适宜开展原位微区Sr同位素分析和流体源区示踪。
尽管俯冲带变质岩中绿帘石研究已经取得很多进展,但仍存在以下一些问题亟待解决:(1)目前绿帘石的研究主要集中在俯冲带富水流体活动,对于绿帘石在部分熔融和超临界流体活动中的行为认识非常有限。最近的研究发现含绿帘石的多相固相包裹体(熔体/超临界流体的结晶产物)广泛存在于高压-超高压岩石中(Korsakov and Hermann, 2006; Gao et al., 2012; Chen et al., 2014; Liu et al., 2018),暗示绿帘石的形成与岩石部分熔融和随后的结晶分异过程密切相关。因此有必要开展熔体和超临界流体中绿帘石行为的研究;(2)虽然绿帘石相对富集Nd,但其Nd的绝对含量通常低于激光原位同位素分析的最低含量要求(约500×10-6)。因此,目前对绿帘石Nd原位微区同位素分析及应用仅限于REE含量较高的绿帘石(如褐帘石)(Romer and Xiao, 2005; Guo et al., 2017a)。随着分析技术的提高,如果能够实现绿帘石激光原位Nd同位素分析,那么绿帘石原位Sr-Nd-(Pb)多元同位素分析的联合应用可能会提供更丰富和准确的流体源区信息;(3)除本文主要论述的绿帘石外,绿帘石族矿物还存在许多复杂的类质同象和同质异像体,如褐帘石、红帘石、钒铬绿帘石等等,它们也常常产出于俯冲带高压-超高压岩石中(Liu et al., 1999, 2003; Hermann, 2002; Bonazzi and Menchetti, 2004; Romer and Xiao, 2005; Uher et al., 2008; Zhang et al., 2008)。对这些特殊绿帘石的系统研究,可能为了解俯冲带不同种类元素循环提供重要信息。
致谢 感谢杨岳衡研究员在绿帘石地球化学分析方面给予的大力支持。感谢陈仁旭教授和张聪副研究员审阅了全文并提出建设性的意见。
谨以此文祝贺叶大年院士八十华诞,愿先生健康长寿!
Ague JJ and Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355-360 DOI:10.1038/ngeo2143 |
Andersen T, Austrheim H, Burke EAJ and Elvevold S. 1993. N2 and CO2 in deep crustal fluids:Evidence from the Caledonides of Norway. Chemical Geology, 108(1-4): 113-132 DOI:10.1016/0009-2541(93)90320-I |
Angiboust S, Pettke T, De Hoog JCM, Caron B and Oncken O. 2014. Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. Journal of Petrology, 55(5): 883-916 DOI:10.1093/petrology/egu010 |
Arculus RJ. 1985. Oxidation status of the mantle:Past and present. Annual Review of Earth and Planetary Sciences, 13: 75-95 DOI:10.1146/annurev.ea.13.050185.000451 |
Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan YM and Pasero M. 2006. Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18(5): 551-567 DOI:10.1127/0935-1221/2006/0018-0551 |
Austrheim H. 1987. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, 81(2-3): 221-232 DOI:10.1016/0012-821X(87)90158-0 |
Bebout GE. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3-4): 373-393 DOI:10.1016/j.epsl.2007.05.050 |
Becker H, Jochum KP and Carlson RW. 1999. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chemical Geology, 160(4): 291-308 DOI:10.1016/S0009-2541(99)00104-7 |
Beinlich A, Klemd R, John T and Gao J. 2010. Trace-element mobilization during Ca-metasomatism along a major fluid conduit:Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochimica et Cosmochimica Acta, 74(6): 1892-1922 DOI:10.1016/j.gca.2009.12.011 |
Bermanec V, Armbruster T, Oberhänsli R and Zebec V. 1994. Crystal chemistry of Pb-and REE-rich piemontite from Nezilovo, Macedonia. Schweizerische Mineralogische und Petrographische Mitteilungen, 74: 321-328 |
Bieseler B, Diehl A, Jöns N, Lucassen F and Bach W. 2018. Constraints on cooling of the lower ocean crust from Epidote veins in the Wadi Gideah Section, Oman ophiolite. Geochemistry, Geophysics, Geosystems, 19(11): 4195-4217 DOI:10.1029/2018GC007679 |
Bonazzi P and Menchetti S. 2004. Manganese in monoclinic members of the epidote group:Piemontite and related minerals. Reviews in Mineralogy and Geochemistry, 56(1): 495-552 DOI:10.2138/gsrmg.56.1.495 |
Brastad K. 1985. Sr metasomatism, and partition of Sr between the mineral phases of a meta-eclogite from Bjørkedalen, West Norway. Tschermaks Mineralogische und Petrographische Mitteilungen, 34(2): 87-103 DOI:10.1007/BF01081554 |
Brenan JM, Ryerson FJ and Shaw HF. 1998. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction:Experiments and models. Geochimica et Cosmochimica Acta, 62(19-20): 3337-3347 DOI:10.1016/S0016-7037(98)00224-5 |
Brovarone AV and Beyssac O. 2014. Lawsonite metasomatism:A new route for water to the deep earth. Earth and Planetary Science Letters, 393: 275-284 DOI:10.1016/j.epsl.2014.03.001 |
Brovarone AV, Chu X, Martin L, Ague JJ, Monié P, Groppo C, Martinez I and Chaduteau C. 2018. Intra-slab COH fluid fluxes evidenced by fluid-mediated decarbonation of lawsonite eclogite-facies altered oceanic metabasalts. Lithos, 304-307: 211-229 DOI:10.1016/j.lithos.2018.01.028 |
Brunsmann A, Franz G, Erzinger J and Landwehr D. 2000. Zoisite-and clinozoisite-segregations in metabasites (Tauern Window, Austria) as evidence for high-pressure fluid-rock interaction. Journal of Metamorphic Geology, 18(1): 1-21 DOI:10.1046/j.1525-1314.2000.00233.x |
Brunsmann A, Franz G and Erzinger J. 2001. REE mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu. Geochimica et Cosmochimica Acta, 65(4): 559-570 DOI:10.1016/S0016-7037(00)00544-5 |
Brunsmann A, Franz G and Heinrich W. 2002. Experimental investigation of zoisite-clinozoisite phase equilibria in the system CaO-Fe2O3-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 143(1): 115-130 DOI:10.1007/s00410-001-0335-4 |
Campos-Alvarez NO, Samson IM, Fryer BJ and Ames DE. 2010. Fluid sources and hydrothermal architecture of the Sudbury Structure:Constraints from femtosecond LA-MC-ICP-MS Sr isotopic analysis of hydrothermal epidote and calcite. Chemical Geology, 278(3-4): 131-150 DOI:10.1016/j.chemgeo.2010.09.006 |
Cao MJ, Qin KZ, Li GM, Evans NJ, McInnes BIA, Li JX and Zhao JX. 2018. Oxidation state inherited from the magma source and implications for mineralization:Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Mineralium Deposita, 53(3): 299-309 DOI:10.1007/s00126-017-0739-3 |
Cao Y, Song SG, Niu YL, Jung H and Jin ZM. 2011. Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China. Journal of Metamorphic Geology, 29(7): 699-720 DOI:10.1111/j.1525-1314.2011.00937.x |
Castelli D, Rolfo F, Compagnoni R and Xu ST. 1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhujiachong eclogite, Dabie Shan, China. Island Arc, 7(1-2): 159-173 DOI:10.1046/j.1440-1738.1998.00185.x |
Chen RX, Zheng YF and Hu ZC. 2012. Episodic fluid action during exhumation of deeply subducted continental crust:Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen. Lithos, 155: 146-166 DOI:10.1016/j.lithos.2012.08.023 |
Chen YX, Zheng YF, Gao XY and Hu ZC. 2014. Multiphase solid inclusions in zoisite-bearing eclogite:Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision. Lithos, 200-201: 1-21 DOI:10.1016/j.lithos.2014.04.004 |
Choo CO. 2002. Complex compositional zoning in epidote from rhyodacitic tuff, Bobae sericite deposit, Southeastern Korea. Journal of Mineralogy and Geochemistry, 177(2): 181-197 |
Clarke GL, Powell R and Fitzherbert JA. 2006. The lawsonite paradox:A comparison of field evidence and mineral equilibria modelling. Journal of Metamorphic Geology, 24(8): 715-725 DOI:10.1111/jmg.2006.24.issue-8 |
Davies JH. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398(6723): 142-145 DOI:10.1038/18202 |
Davis PB and Whitney DL. 2006. Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24(9): 823-849 |
Deer WA, Howie RA and Zussman J. 1986. Rock-Forming Minerals, Vol 1B, Disilicates and Ring Silicates. 2nd Edition. New York: Longman, 1-629
|
Donohue CL and Essene EJ. 2000. An oxygen barometer with the assemblage garnet-epidote. Earth and Planetary Science Letters, 181(3): 459-472 DOI:10.1016/S0012-821X(00)00219-3 |
Eide EA and Liou JG. 2000. High-pressure blueschists and eclogites in Hong'an:A framework for addressing the evolution of high-and ultrahigh-pressure rocks in central China. Lithos, 52(1-4): 1-22 DOI:10.1016/S0024-4937(99)00081-X |
El Korh A, Schmidt ST, Ulianov A and Potel S. 2009. Trace element partitioning in HP-LT metamorphic assemblages during subduction-related metamorphism, Ile de Groix, France:A detailed LA-ICPMS study. Journal of Petrology, 50(6): 1107-1148 DOI:10.1093/petrology/egp034 |
Enami M, Liou JG and Mattinson CG. 2004. Epidote minerals in high P/T metamorphic terranes:Subduction zone and high-to ultrahigh-pressure metamorphism. Reviews in Mineralogy and Geochemistry, 56(1): 347-398 DOI:10.2138/gsrmg.56.1.347 |
Eskola PE. 1933. On the chrome minerals of Outokumpu. Bulletin de la Comission Gèologique de Finlande, 103: 26-44 |
Feineman MD, Ryerson FJ, DePaolo DJ and Plank T. 2007. Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition. Chemical Geology, 239(3-4): 250-265 DOI:10.1016/j.chemgeo.2007.01.008 |
Finger F, Broska I, Roberts MP and Schermaier A. 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83(3-4): 248-258 DOI:10.2138/am-1998-3-408 |
Frank MR, Candela PA, Piccoli PM and Glascock MD. 2002. Gold solubility, speciation, and partitioning as a function of HCL in the brine-silicate melt-metallic gold system at 800℃ and 100MPa. Geochimica et Cosmochimica Acta, 66(21): 3719-3732 DOI:10.1016/S0016-7037(01)00900-0 |
Franz G and Liebscher A. 2004. Physical and chemical properties of the epidote minerals:An introduction. Reviews in Mineralogy and Geochemistry, 56(1): 1-81 DOI:10.2138/gsrmg.56.1.1 |
Franz L, Romer RL, Klemd R, Schimd R, Oberhänsli R, Wagner T and Dong SW. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3): 322-346 DOI:10.1007/s004100000233 |
Frei D, Liebscher A, Franz G and Dulski P. 2004. Trace element geochemistry of epidote minerals. Reviews in Mineralogy and Geochemistry, 56(1): 553-605 DOI:10.2138/gsrmg.56.1.553 |
Fu B, Touret JLR and Zheng YF. 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). Journal Metamorphic Geology, 19(5): 531-547 DOI:10.1046/j.0263-4929.2001.00327.x |
Gao J and Klemd R. 2001. Primary fluids entrapped at blueschist to eclogite transition:Evidence from the Tianshan meta-subduction complex in northwestern China. Contributions to Mineralogy and Petrology, 142(1): 1-14 |
Gao J, John T, Klemd R and Xiong XM. 2007. Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974-4996 DOI:10.1016/j.gca.2007.07.027 |
Gao XY, Zheng YF and Chen YX. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen:Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology, 30(2): 193-212 DOI:10.1111/jmg.2012.30.issue-2 |
Gatta GD, Merlini M, Lee Y and Poli S. 2011. Behavior of epidote at high pressure and high temperature:A powder diffraction study up to 10GPa and 1, 200K. Physics and Chemistry of Minerals, 38(6): 419-428 DOI:10.1007/s00269-010-0415-y |
Gieré R and Sorensen SS. 2004. Allanite and other REE-rich epidote-group minerals. Reviews in Mineralogy and Geochemistry, 56(1): 431-493 DOI:10.2138/gsrmg.56.1.431 |
Gottschalk M. 2004. Thermodynamic properties of zoisite, clinozoisite and epidote. Reviews in Mineralogy and Geochemistry, 56(1): 83-124 DOI:10.2138/gsrmg.56.1.83 |
Grapes RH. 1981. Chromian epidote and zoisite in kyanite amphibolite, Southern Alps, New Zealand. American Mineralogist, 66: 974-975 |
Grapes RH and Watanabe T. 1984. Al-Fe3+ and Ca-Sr2+ epidotes in metagreywacke-quartzofeldspathic schist, Southern Alps, New Zealand. American Mineralogist, 69: 490-498 |
Grapes RH and Hoskin PWO. 2004. Epidote group minerals in low-medium pressure metamorphic terranes. Reviews in Mineralogy and Geochemistry, 56(1): 301-345 DOI:10.2138/gsrmg.56.1.301 |
Guo HH, Xiao YL, Xu LJ, Sun H, Huang J and Hou ZH. 2017a. Origin of allanite in gneiss and granite in the Dabie orogenic belt, Central East China. Journal of Asian Earth Sciences, 135: 243-256 DOI:10.1016/j.jseaes.2016.12.017 |
Guo S, Ye K, Chen Y, Liu JB, Mao Q and Ma YG. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145-167 DOI:10.1016/j.lithos.2011.11.008 |
Guo S, Ye K, Wu TF, Chen Y, Yang YH, Zhang LM, Liu JB, Mao Q and Ma YG. 2013. A potential method to confirm the previous existence of lawsonite in eclogite:The mass imbalance of Sr and LREEs in multistage epidote (Ganghe, Dabie UHP terrane). Journal of Metamorphic Geology, 31(4): 415-435 DOI:10.1111/jmg.2013.31.issue-4 |
Guo S, Ye K, Yang YH, Chen Y, Zhang LM, Liu JB, Mao Q and Ma YG. 2014. In situ Sr isotopic analyses of epidote:Tracing the sources of multi-stage fluids in ultrahigh-pressure eclogite (Ganghe, Dabie terrane). Contributions to Mineralogy and Petrology, 167(2): 975 DOI:10.1007/s00410-014-0975-9 |
Guo S, Chen Y, Ye K, Su B, Yang YH, Zhang LM, Liu JB and Mao Q. 2015a. Formation of multiple high-pressure veins in ultrahigh-pressure eclogite (Hualiangting, Dabie terrane, China):Fluid source, element transfer, and closed-system metamorphic veining. Chemical Geology, 417: 238-260 DOI:10.1016/j.chemgeo.2015.10.006 |
Guo S, Ye K, Cheng NF, Chen Y, Su B and Liu JB. 2015b. Metamorphic P-T trajectory and multi-stage fluid events of vein-bearing UHP eclogites from the Dabie terrane:Insights from compositional zonations of key minerals. International Geology Review, 57(9-10): 1077-1102 DOI:10.1080/00206814.2014.930719 |
Guo S, Yang YH, Chen Y, Su B, Gao YJ, Zhang LM, Liu JB and Mao Q. 2016. Grainscale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane):Implications for the origin and flow behavior of retrograde fluids during slab exhumation. Lithos, 266-267: 383-405 DOI:10.1016/j.lithos.2016.10.014 |
Guo S, Tang P, Su B, Chen Y, Ye K, Zhang LM, Gao YJ, Liu JB and Yang YH. 2017b. Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane):A mineralogical record of fluid-induced oxidation processes in exhumed UHP slabs. American Mineralogist, 102(11): 2268-2283 DOI:10.2138/am-2017-6120 |
Guo S, Zhao KD, John T, Tang P, Chen Y and Su B. 2019. Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones:Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China). Geochimica et Cosmochimica Acta, 253: 159-200 DOI:10.1016/j.gca.2019.03.013 |
Hacker BR, Peacock SM, Abers GA and Holloway SD. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. Journal of Geophysical Research, 108(B1): 2030 |
Harris C, Hlongwane W, Gule N and Scheepers R. 2014. Origin of tanzanite and associated gemstone mineralization at Merelani, Tanzania. South African Journal of Geology, 117(1): 15-30 DOI:10.2113/gssajg.117.1.15 |
Haüy RJ. 1801. Traité de Minérologie. Chez Louis Libraire, Paris, 102-113
|
Hermann J. 2002. Allanite:Thorium and light rare earth element carrier in subducted crust. Chemical Geology, 192(3-4): 289-306 DOI:10.1016/S0009-2541(02)00222-X |
Hermann J, Spandler C, Hack A and Korsakov AV. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones. Lithos, 92(3-4): 399-417 DOI:10.1016/j.lithos.2006.03.055 |
Hirajima T, Zhang R, Li J and Cong B. 1992. Petrology of the nyböite-bearing eclogite in the Donghai area, Jiangsu Province, eastern China. Mineralogical Magazine, 56(382): 37-46 DOI:10.1180/minmag.1992.056.382.05 |
Holdaway MJ. 1972. Thermal stability of AI-Fe epidote as a function of fO2 and Fe content. Contributions to Mineralogy and Petrology, 37(4): 307-340 DOI:10.1007/BF00371011 |
Hu HY, Dai LD, Li HP, Hui KS and Sun WQ. 2017. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones. Journal of Geophysical Research:Solid Earth, 122: 2751-2762 DOI:10.1002/2016JB013767 |
Huang J, Xiao Y, Gao Y, Hou Z and Wu W. 2012. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones:Constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen, Central-Eastern China. Journal of Metamorphic Geology, 30(8): 821-842 DOI:10.1111/jmg.2012.30.issue-8 |
Jančev S and Bermanec V. 1998. Solid solution between epidote and hancockite from Nezilovo, Macedonia. Geologia Croatica, 51(1): 23-26 |
John T, Scherer EE, Haase KM and Schenk V. 2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab:Trace element and Lu-Hf-Sm-Nd isotope systematics. Earth and Planetary Science Letters, 227(3-4): 441-456 DOI:10.1016/j.epsl.2004.09.009 |
John T, Klemd R, Gao J and Garbe-Schönberg CD. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1-24 DOI:10.1016/j.lithos.2007.09.005 |
John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T and Seitz HM. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5(7): 489-492 DOI:10.1038/ngeo1482 |
Klemd R. 2004. Fluid inclusions in epidote minerals and fluid development in epidote-bearing rocks. Reviews in Mineralogy and Geochemistry, 56(1): 197-234 DOI:10.2138/gsrmg.56.1.197 |
Klemd R. 2012. Metasomatism during high-pressure metamorphism: Eclogites and blueschist-facies rocks. In: Harlov DE and Austrheim H (eds.). Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. Berlin Heidelberg: Springer-Verlag, 351-413
|
Korsakov AV and Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth and Planetary Science Letters, 241(1-2): 104-118 DOI:10.1016/j.epsl.2005.10.037 |
Li JL, Gao J, John T, Klemd R and Su W. 2013. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits:Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326-362 DOI:10.1016/j.gca.2013.06.023 |
Li XP, Zheng YF, Wu YB, Chen FK, Gong B and Li YL. 2004. Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443-470 DOI:10.1007/s00410-004-0616-9 |
Li YL, Zheng YF, Fu B, Zhou JB and Wei CS. 2001. Oxygen isotope composition of quartz-vein in ultrahigh-pressure eclogite from Dabieshan and implications for transport of high-pressure metamorphic fluid. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 695-704 DOI:10.1016/S1464-1895(01)00120-X |
Liang JL, Sun XM, Xu L, Zhai W, Tang Q and Liang YH. 2006. Geochemistry of epidotes in HP-UHP metamorphic rocks from Chinese Continental Scientific Drilling (CCSD) Project and Qinglongshan area:An indicator of partial melting during continental slab exhumation. Acta Petrologica Sinica, 22(7): 1845-1854 (in Chinese with English abstract) |
Liou JG. 1973. Synthesis and stability relations of epidote, Ca2Al2FeSi3O12(OH). Journal of Petrology, 14(3): 381-413 DOI:10.1093/petrology/14.3.381 |
Liou JG, Kim HS and Maruyama S. 1983. Prehnite-epidote equilibria and their petrologic applications. Journal of Petrology, 24(4): 321-342 DOI:10.1093/petrology/24.4.321 |
Liu FL, Gerdes A, Liou JG, Xue HM and Liang FH. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China:Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569-589 DOI:10.1111/jmg.2006.24.issue-7 |
Liu PL, Wu Y, Chen Y, Zhang JF and Jin ZM. 2015. UHP impure marbles from the Dabie Mountains:Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280-297 DOI:10.1016/j.lithos.2014.11.018 |
Liu PL, Zhang JF, Massonne HJ and Jin ZM. 2018. Polyphase solid-inclusions formed by interactions between infiltrating fluids and precursor minerals enclosed in garnet of UHP rocks from the Dabie Shan, China. American Mineralogist, 103(10): 1663-1673 DOI:10.2138/am-2018-6395 |
Liu XC, Dong SW, Xue HM and Zhou JX. 1999. Significance of allanite-(Ce) in granitic gneisses from the ultrahigh-pressure metamorphic terrane, Dabie Shan, central China. Mineralogical Magazine, 63(4): 579-586 DOI:10.1180/minmag.1999.063.4.10 |
Liu XC, Jahn BM, Dong SW, Li HM and Oberhänsli R. 2003. Neoproterozoic granitoid did not record ultrahigh-pressure metamorphism from the southern Dabieshan of China. The Journal of Geology, 111(6): 719-732 DOI:10.1086/378336 |
Malisa EPJ. 2003. Trace elements characterization of the hydrothermally deposited tanzanite and green grossular in the Merelani-Lelatema shear zone, northeastern Tanzania. Tanzania Journal of Science, 29(1): 45-60 |
Manning CE. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223(1-2): 1-16 DOI:10.1016/j.epsl.2004.04.030 |
Martin LAJ, Wood BJ, Turner S and Rushmer T. 2011. Experimental measurements of trace element partitioning between lawsonite, zoisite and fluid and their implication for the composition of arc magmas. Journal of Petrology, 52(6): 1049-1075 DOI:10.1093/petrology/egr018 |
Massonne HJ and O'Brien PJ. 2003. The Bohemian massif and the NW Himalaya. In:Carswell DA, Compagnoni R and Rolfo F (eds.). Ultrahigh Pressure Metamorphism. European Mineralogical Union Notes in Mineralogy, 5:145-188
|
Massonne HJ. 2012. Formation of amphibole and clinozoisite-epidote in eclogite owing to fluid infiltration during exhumation in a subduction channel. Journal of Petrology, 53(10): 1969-1998 DOI:10.1093/petrology/egs040 |
Mattinson CG, Zhang RY, Tsujimori T and Liou JG. 2004. Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China:P-T-fO2 estimates and the significance of the epidote-talc assemblage in eclogite. American Mineralogist, 89(11-12): 1772-1783 DOI:10.2138/am-2004-11-1224 |
McCulloch MT and Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374 DOI:10.1016/0012-821X(91)90029-H |
Mengason MJ, Candela PA and Piccoli PM. 2011. Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt:Impact of sulfide segregation on arc magma evolution. Geochimica et Cosmochimica Acta, 75(22): 7018-7030 DOI:10.1016/j.gca.2011.08.042 |
Miyajima H, Matsubara S, Miyawaki R and Hirokawa K. 2003. Niigataite, CaSrAl3(Si2O7)(SiO4)O(OH):Sr-analogue of clinozoisite, a new member of the epidote group from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan. Journal of Mineralogical and Petrological Sciences, 98(3): 118-129 DOI:10.2465/jmps.98.118 |
Miyashiro A and Seki Y. 1958. Enlargement of the composition field of epidote and piemontite with rising temperature. American Journal of Science, 256(6): 423-430 DOI:10.2475/ajs.256.6.423 |
Mungall JE. 2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918 DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 |
Nagasaki A and Enami M. 1998. Sr-bearing zoisite and epidote in ultra-high pressure (UHP) metamorphic rocks from the Su-Lu provinces, eastern China:An important Sr reservoir under UHP conditions. American Mineralogist, 83(3-4): 240-247 DOI:10.2138/am-1998-3-407 |
Nagashima M, Akasaka M and Sakurai T. 2006. Chromian epidote in omphacite rocks from the Sambagawa metamorphic belt, central Shikoku, Japan. Journal of Mineralogical and Petrological Sciences, 101(4): 157-169 DOI:10.2465/jmps.101.157 |
Nagashima M, Nishio-Hamane D, Nakano N and Kawasaki T. 2019. Synthesis and crystal chemistry of mukhinite, V-analogue of clinozoisite on the join Ca2Al3Si3O12(OH)-Ca2Al2VSi3O12(OH). Physics and Chemistry of Minerals, 46(1): 63-76 |
Naney MT. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283(10): 993-1033 DOI:10.2475/ajs.283.10.993 |
Ni HW, Zheng YF, Mao Z, Wang Q, Chen RX and Zhang L. 2017. Distribution, cycling and impact of water in the Earth's interior. National Science Review, 4(6): 879-891 DOI:10.1093/nsr/nwx130 |
Oh CW, Liou JG and Maruyama S. 1991. Low-temperature eclogites and eclogitic schists in Mn-rich metabasites in Ward Creek, California:Mn and Fe effects on the transition between blueschist and eclogite. Journal of Petrology, 32(2): 275-302 DOI:10.1093/petrology/32.2.275 |
Pawley AR. 1994. The pressure and temperature stability limits of lawsonite:Implications for H2O recycling in subduction zones. Contributions to Mineralogy and Petrology, 118(1): 99-108 |
Peacock SA. 1990. Fluid processes in subduction zones. Science, 248(4953): 329-337 DOI:10.1126/science.248.4953.329 |
Poli S and Schmidt MW. 1995. H2O transport and release in subduction zones:Experimental constraints on basaltic and andesitic systems. Journal of Geophysical Research:Solid Earth, 100(B11): 22299-22314 DOI:10.1029/95JB01570 |
Poli S and Schmidt MW. 1998. The high-pressure stability of zoisite and phase relationships of zoisite-bearing assemblages. Contributions to Mineralogy and Petrology, 130(2): 162-175 DOI:10.1007/s004100050357 |
Poli S and Schmidt MW. 2004. Experimental subsolidus studies on epidote minerals. Epidotes. Reviews in Mineralogy and Geochemistry, 56(1): 171-195 DOI:10.2138/gsrmg.56.1.171 |
Poli S. 2016. Melting carbonated epidote eclogites:Carbonatites from subducting slabs. Progress in Earth and Planetary Science, 3: 27 DOI:10.1186/s40645-016-0105-6 |
Potel S, Schmidt ST and de Capitani C. 2002. Composition of pumpellyite, epidote and chlorite from New Caledonia:How important are metamorphic grade and whole-rock composition?. Schweizerische Mineralogische und Petrographische Mitteilungen, 82(1): 229-252 |
Rolfo F, Compagnoni R, Xu ST and Jiang LL. 2000. First report of felsic whiteschist in the ultrahigh-pressure metamorphic belt of Dabie Shan, China. European Journal of Mineralogy, 12(4): 883-898 DOI:10.1127/0935-1221/2000/0012-0883 |
Romer RL and Xiao YL. 2005. Initial Pb-Sr(-Nd) isotopic heterogeneity in a single allanite-epidote crystal:Implications of reaction history for the dating of minerals with low parent-to-daughter ratios. Contributions to Mineralogy and Petrology, 148(6): 662-674 DOI:10.1007/s00410-004-0630-y |
Rubatto D, Williams IS and Buick IS. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140(4): 458-468 DOI:10.1007/PL00007673 |
Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187 DOI:10.1016/S0016-7037(02)01321-2 |
Rubatto D and Angiboust S. 2015. Oxygen isotope record of oceanic and high-pressure metasomatism:A P-T-time-fluid path for the Monviso eclogites (Italy). Contributions to Mineralogy and Petrology, 170(5-6): 44 DOI:10.1007/s00410-015-1198-4 |
Santosh M, Tsunogae T, Shimizu H and Dubessy J. 2010. Fluid characteristics of retrogressed eclogites and mafic granulites from the Cambrian Gondwana suture zone in southern India. Contributions to Mineralogy and Petrology, 159(3): 349-369 DOI:10.1007/s00410-009-0431-4 |
Sassi R, Harte B, Carswell DA and Yujing H. 2000. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology, 139(3): 298-315 DOI:10.1007/s004100000133 |
Scambelluri M and Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55(1-4): 213-227 DOI:10.1016/S0024-4937(00)00046-3 |
Schmidt MW and Poli S. 1994. The stability of lawsonite and zoisite at high pressures:Experiments in CASH to 92kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth and Planetary Science Letters, 124(1-4): 105-118 DOI:10.1016/0012-821X(94)00080-8 |
Schmidt MW and Thompson AB. 1996. Epidote in calc-alkaline magmas:An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. American Mineralogist, 81(3-4): 462-474 DOI:10.2138/am-1996-3-420 |
Schmidt MW and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4): 361-379 DOI:10.1016/S0012-821X(98)00142-3 |
Sheng YM, Zheng YF, Chen RX, Li QL and Dai MN. 2012. Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages, O-Hf isotopes and trace elements. Lithos, 136-139: 126-144 DOI:10.1016/j.lithos.2011.06.012 |
Skjerlie KP and Patiño Douce AE. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2GPa:Implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43(2): 291-314 DOI:10.1093/petrology/43.2.291 |
Sobolev NV and Shatsky VS. 1990. Diamond inclusions in garnets from metamorphic rocks:A new environment for diamond formation. Nature, 343(6260): 742-746 DOI:10.1038/343742a0 |
Song SG, Niu YL, Su L, Wei CJ and Zhang LF. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta, 130: 42-62 DOI:10.1016/j.gca.2014.01.008 |
Sorensen SS and Grossman JN. 1989. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone:Catalina Schist, southern California. Geochimica et Cosmochimica Acta, 53(12): 3155-3177 DOI:10.1016/0016-7037(89)90096-3 |
Spandler C, Hermann J, Arculus R and Mavrogenes J. 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies:Implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, 146(2): 205-222 DOI:10.1007/s00410-003-0495-5 |
Spandler C, Pettke T and Rubatto D. 2011. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps:Implications for fluid flow in subduction zones. Journal of Petrology, 52(6): 1207-1236 DOI:10.1093/petrology/egr025 |
Spiegel C, Siebel W, Frisch W and Berner Z. 2002. Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators:Implications for the reconstruction of the exhumation history of the Central Alps. Chemical Geology, 189(3-4): 231-250 DOI:10.1016/S0009-2541(02)00132-8 |
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978 DOI:10.1038/nature02972 |
Svensen H, Jamtveit B, Banks DA and Austrheim H. 2001. Halogen contents of eclogite facies fluid inclusions and minerals:Caledonides, western Norway. Journal of Metamorphic Geology, 19(2): 165-178 |
Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Cambridge, MA: Blackwell Science
|
Teyssier C, Whitney DL, Toraman E and Seaton NCA. 2010. Lawsonite vorticity and subduction kinematics. Geology, 38(12): 1123-1126 DOI:10.1130/G31409.1 |
Treloar PJ. 1987a. Chromian muscovites and epidotes from Outokumpu, Finland. Mineralogical Magazine, 51(62): 593-599 |
Treloar PJ. 1987b. The Cr-minerals of Outokumpu:Their chemistry and significance. Journal of Petrology, 28(5): 867-886 DOI:10.1093/petrology/28.5.867 |
Tumiati S, Godard G, Martin S, Nimis P, Mair V and Boyer B. 2005. Dissakisite-(La) from the Ulten zone peridotite (Italian Eastern Alps):A new end-member of the epidote group. American Mineralogist, 90(7): 1177-1185 DOI:10.2138/am.2005.1710 |
Uher P, Kováčik M, Kubiš M, Shtukenberg A and Ozdín D. 2008. Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93(1): 63-73 DOI:10.2138/am.2008.2470 |
van der Straaten F, Schenk V, John T and Gao J. 2008. Blueschist-facies rehydration of eclogites (Tian Shan, NW-China):Implications for fluid-rock interaction in the subduction channel. Chemical Geology, 255(1-2): 195-219 DOI:10.1016/j.chemgeo.2008.06.037 |
Verlaguet A, Goffé B, Brunet F, Poinssot C, Vidal O, Findling N and Menut D. 2011. Metamorphic veining and mass transfer in a chemically closed system:A case study in Alpine metabauxites (western Vanoise). Journal of Metamorphic Geology, 29(3): 275-300 DOI:10.1111/jmg.2011.29.issue-3 |
Volkova NI, Frenkel AE, Budanov VI and Lepezin GG. 2004. Geochemical signatures for eclogite protolith from the Maksyutov Complex, South Urals. Journal of Asian Earth Sciences, 23(5): 745-759 DOI:10.1016/S1367-9120(03)00128-7 |
Vrijmoed JC, Austrheim H, John T, Hin RC, Corfu F and Davies GR. 2013. Metasomatism in the ultrahigh-pressure Svartberget garnet-speridotite (Western Gneiss Region, Norway):Implications for the transport of crust-derived fluids within the mantle. Journal of Petrology, 54(9): 1815-1848 DOI:10.1093/petrology/egt032 |
Wang SJ, Wang L, Brown M, Piccoli PM, Johnson TE, Feng P, Deng H, Kitajima K and Huang Y. 2017. Fluid generation and evolution during exhumation of deeply subducted UHP continental crust:Petrogenesis of composite granite-quartz veins in the Sulu belt, China. Journal of Metamorphic Geology, 35(6): 601-629 DOI:10.1111/jmg.2017.35.issue-6 |
Watenphul A, Schmidt C and Jahn S. 2014. Cr(Ⅲ) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126: 212-227 DOI:10.1016/j.gca.2013.10.054 |
Wei CJ, Li YJ, Yu Y and Zhang JS. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology, 28(6): 647-666 DOI:10.1111/(ISSN)1525-1314 |
Wei CJ and Clarke GL. 2011. Calculated phase equilibria for MORB compositions:A reappraisal of the metamorphic evolution of lawsonite eclogite. Journal of Metamorphic Geology, 29(9): 939-952 DOI:10.1111/jmg.2011.29.issue-9 |
Wei CJ and Cui Y. 2011. Metamorphic evolution during subduction and exhumation of crust:Evidence from phase equilibria modelling for high-and ultrahigh-pressure eclogites. Acta Petrologica Sinica, 27(4): 1067-1074 (in Chinese with English abstract) |
Whitney DL and Davis PB. 2006. Why is lawsonite eclogite so rare? Metamorphism and preservation of lawsonite eclogite, Sivrihisar, Turkey. Geology, 34(6): 473-476 DOI:10.1130/G22259.1 |
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187 DOI:10.2138/am.2010.3371 |
Wu YB, Gao S, Zhang HF, Yang SH, Liu XC, Jiao WF, Liu YS, Yuan HL, Gong HJ and He MC. 2009. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. American Mineralogist, 94(2-3): 303-312 DOI:10.2138/am.2009.3042 |
Xia QK, Liu J, Kovács I, Hao YT, Li P, Yang XZ, Chen H and Sheng YM. 2019. Water in the upper mantle and deep crust of eastern China:Concentration, distribution and implications. National Science Review, 6(1): 125-144 DOI:10.1093/nsr/nwx016 |
Xiao YL, Hoefs J, van den Kerkhof AM, Fiebig J and Zheng YF. 2000. Fluid history of UHP metamorphism in Dabie Shan, China:A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139(1): 1-16 |
Xiao YL, Hoefs J, Hou ZH, Simon K and Zhang ZM. 2011. Fluid/rock interaction and mass transfer in continental subduction zones:Constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contributions to Mineralogy and Petrology, 162(4): 797-819 DOI:10.1007/s00410-011-0625-4 |
Xiao YL, Sun H, Gu HO, Huang J, Li WY and Liu L. 2015. Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations. Science China (Earth Sciences), 58(9): 1457-1476 DOI:10.1007/s11430-015-5149-8 |
Xiao YL, Yu CL, Wand YY and Lu YG. 2018. Metamorphism and fluid inclusions: An overview and prospectives. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 424-440 (in Chinese with English abstract) |
Yang JJ and Enami M. 2003. Chromian dissakisite-(Ce) in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: Implications for Cr incorporation in epidote-group minerals and recycling of REE into the Earth's mantle. American Mineralogist, 88(4): 604-610 DOI:10.2138/am-2003-0414 |
Yao YP, Ye K, Liu JB, Cong BL and Wang QC. 2000. A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, eastern China. Lithos, 52(1-4): 109-120 DOI:10.1016/S0024-4937(99)00087-0 |
Zack T, Rivers T, Brumm R and Kronz A. 2004. Cold subduction of oceanic crust: Implications from a lawsonite eclogite from the Dominican Republic. European Journal of Mineralogy, 16(6): 909-916 DOI:10.1127/0935-1221/2004/0016-0909 |
Zhai W, Sun XM, Liang JL, Xu L, Tang Q, Liang YH and Su LW. 2006. Chemical compositions and fluid inclusions of epidotes in Qinglongshan ultrahigh pressure metamorphic eclogite, North Jiangsu Province, China. Acta Petrologica Sinica, 22(7): 2029-2038 (in Chinese with English abstract) |
Zhang HF, Gao S, Zhong ZQ, Zhang BR, Zhang L and Hu SH. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186(3-4): 281-299 DOI:10.1016/S0009-2541(02)00006-2 |
Zhang RY. 1992. Petrogenesis of high pressure metamorphic rocks in the Su-Lu and Dianxi regions, China. Ph. D. Dissertation. Kyoto: Kyoto University, 1-176
|
Zhang RY, Hirajima T, Banno S, Cong B and Liou JG. 1995. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, Eastern China. Journal of Metamorphic Geology, 13(6): 659-675 DOI:10.1111/jmg.1995.13.issue-6 |
Zhang RY, Liou JG, Ernst WG, Coleman RG, Sobolev NV and Shatsky VS. 1997. Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology, 15(4): 479-496 DOI:10.1111/j.1525-1314.1997.00035.x |
Zhang ZM, Xiao YL, Liu FL, Liou JG and Hoefs J. 2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81(1-4): 189-207 DOI:10.1016/j.lithos.2004.10.002 |
Zhang ZM, Zhang JF, You ZD and Sheng K. 2005. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrologica Sinica, 21(2): 257-270 (in Chinese with English abstract) |
Zhang ZM, Shen K, Sun WD, Liu YS, Liou JG, Shi C and Wang JL. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200-3228 DOI:10.1016/j.gca.2008.04.014 |
Zhang ZM and Shen K. 2009. Fluids from the deeply continental subduction zone and the metamorphic chemical geodynamics. Acta Geoscientia Sinica, 30(1): 5-20 (in Chinese with English abstract) |
Zhao YJ, Wu YB, Liu XC, Gao S, Wang H, Zheng JP and Yang SH. 2016. Distinct zircon U-Pb and O-Hf-Nd-Sr isotopic behaviour during fluid flow in UHP metamorphic rocks: Evidence from metamorphic veins and their host eclogite in the Sulu Orogen, China. Journal of Metamorphic Geology, 34(4): 343-362 DOI:10.1111/jmg.2016.34.issue-4 |
Zheng YF, Gao TS, Wu YB, Gong B and Liu XM. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267-283 DOI:10.1111/jmg.2007.25.issue-2 |
Zheng YF. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166(4): 763-782 DOI:10.1144/0016-76492008-016R |
Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342-374 DOI:10.1016/j.earscirev.2011.04.004 |
Zheng YF and Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1): 93 DOI:10.1186/1880-5981-66-93 |
梁金龙, 孙晓明, 徐莉, 翟伟, 汤倩, 梁业恒. 2006. CCSD及青龙山HP-UHP变质岩中绿帘石地球化学及其对板块折返过程的示踪. 岩石学报, 22(7): 1845-1854. |
魏春景, 崔莹. 2011. 地壳俯冲与折返过程的变质作用演化:来自高压-超高压榴辉岩相平衡模拟的证据. 岩石学报, 27(4): 1067-1074. |
肖益林, 余成龙, 王洋洋, 陆一敢. 2018. 变质作用与流体包裹体:进展与展望. 矿物岩石地球化学通报, 37(3): 424-440. |
翟伟, 孙晓明, 梁金龙, 徐莉, 汤倩, 梁业恒, 苏丽薇. 2006. 青龙山超高压变质榴辉岩绿帘石化学成分与流体包裹体特征. 岩石学报, 22(7): 2029-2038. |
张泽明, 张金凤, 游振东, 沈昆. 2005. 苏鲁造山带超高压变质作用及其P-T-t轨迹. 岩石学报, 21(2): 257-270. |
张泽明, 沈昆. 2009. 大陆俯冲带的深部流体及变质化学地球动力学——以苏鲁超高压变质带为例. 地球学报, 30(1): 5-20. DOI:10.3321/j.issn:1006-3021.2009.01.003 |