岩石学报  2019, Vol. 35 Issue (6): 1924-1938, doi: 10.18654/1000-0569/2019.06.18   PDF    
江西永平铜矿床蚀变矿化分带、矿石组构及成矿过程
田明君1, 李永刚1, 苗来成2, 张宇3, 高婷婷1, 郭敬辉1, 薛俊召4, 何斌5     
1. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029;
2. 中国科学院矿产资源研究重点实验室, 北京 100029;
3. 河南省地质调查院, 郑州 450001;
4. 山东省地震工程研究院, 济南 250014;
5. 江西铜业集团有限公司, 南昌 330096
摘要:江西永平铜矿床位于江山-绍兴断裂带南缘、北武夷山燕山早期岩浆岩与海西期-印支期信江断裂坳陷带接合带,是一个伴生S-W-Pb-Zn多矿种的层状铜矿床。逆冲推覆构造控制着矿区内晚古生代地层、燕山期岩浆岩及矿体的空间分布,即基底周潭群逆冲推覆到晚古生界地层上,燕山早期黑云母花岗岩-花岗闪长岩、石英斑岩、花岗斑岩等沿逆冲推覆断面侵入,矿体呈层状产在矽卡岩化石炭系叶家湾组中。矿体围岩主要是石榴石矽卡岩、千枚状页岩及矽卡岩化大理岩。本文从矽卡岩分带、矿石组构等方面来刻画永平铜矿成矿精细过程。永平铜矿矿区的探采工程揭示,以火烧岗岩体为中心向外,蚀变矿物组合、石榴石颜色及矽卡岩的含矿性等表现出明显的分带规律,即从岩体到围岩有:石榴石→透辉石→硅灰石矽卡岩矿物分带;红色→棕色→绿色的石榴石颜色分带;矽卡岩含矿性先增加后降低,其中矿体主要在(红)棕色石榴石矽卡岩呈条带状或网脉状产出。矽卡岩型和变质砂页岩型矿石的矿石矿物组成均与硫化物-石英大脉(~10m)中矿石矿物组成相同或相似,均为黄铁矿-白钨矿-(方铅矿)-闪锌矿-黄铜矿,且生成顺序一致,说明矿区内不同类型的矿石是同一成矿热液体系在不同围岩类型及控矿构造中的产物。永平铜矿成矿过程可划分为石榴石、(磁)赤铁矿阶段、白钨矿阶段、铁铜硫化物阶段、铅锌硫化物阶段和碳酸盐阶段等六个阶段,其中石榴石阶段形成矽卡岩分带,在该阶段晚期形成磁黄铁矿-铁闪石-(黄铜矿)-石英块状矿石;(磁)赤铁矿阶段发育磁铁矿、赤铁矿;白钨矿阶段形成白钨矿及少量黑钨矿;铁铜硫化物阶段是铜硫矿主要矿化阶段,形成块状及脉状黄铜矿矿石;铅锌硫化物阶段是成矿晚期阶段;碳酸盐阶段代表原生成矿过程结束。
关键词: 矿石组构     矽卡岩分带     成矿过程     永平铜矿     华南    
Alteration and mineralization zoning, ore textures and ore-forming process of Yongping copper deposit, Jiangxi Province
TIAN MingJun1, LI YongGang1, MIAO LaiCheng2, ZHANG Yu3, GAO TingTing1, GUO JingHui1, XUE JunZhao4, HE Bin5     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Key Laboratory of Mineral Resources, Chinese Academy of Sciences, Beijing 100029, China;
3. Henan Institute of Geological Survey, Zhengzhou 450001, China;
4. Shandong Institute of Earthquake Engineering, Jinan 250014, China;
5. Jiangxi Copper Corporation Limited, Nanchang 330096, China
Abstract: Yongping copper deposit, associated with S-W-Pb-Zn mineralization, is located at the southern margin of the Jiangshan-Shaoxing suture and between the Yanshanian granite belt and the Hercynian-Indosinian depression in the northern Wuyi Mountains. Late Paleozoic stratigraphy, Yanshanian granite, and copper ore body is controlled by thrust napper structure, as the basement rocks of the Zhoutan Group thrusting on the Late Paleozoic strata, Early Yanshanian biotite granite-granodiorite, quartz porphyry, and granite porphyry intruding along weak planes of thrust, and stratiform ore bodies occurring within the skarnized Carboniferous Yejiawan Formation. The ore body occurred in garnet skarn, phyllitic shale and skarnized marble. This study deciphers the ore-forming episodes and metallogenic process of the deposit based on mineralization-alteration zonation and textures of the ores. Exploration and mining working faces indicate that the mineralization and alteration of the deposit is granite-centered. If taking one side into consideration, i.e., from the granite to the limestone wall rock, following zonation can be delineated:(1) skarn minerals vary from garnet, via diopside, to wollastonite; (2) the garnet varies in color from red, via brown, to green; (3) economic mineralization mainly occurring as banded and stock veins in the brown garnet skarn zone, leading to the ore grade increasing firstly and then decreasing. Metal mineral association of banded and stock veins in skarns, metasandstone-shales, and large sulfide-quartz veins (up to 10m wide) is identical, consisting mainly of pyrite, scheelite, galena, sphalerite and chalcopyrite, indicating that different types of ores in the Yongping copper deposit are products of the same hydrothermal mineralization system in diverse wall rocks and ore-controlling structures. According to mineral assemblages and ore textures, six metallogenic stages can be divided for the deposit, which are garnet, mag-hematite, scheelite, iron-copper sulfide, lead-zinc sulfide, and carbonate stages, respectively. Skarn zonation formed during garnet stage, and massive pyrrhotite-grunerite formed at late period of this stage; magnetite, hematite composed mag-hematite stage; scheelite stage dominate tungsten mineralization, occurring as quartz-scheelite stock and disseminated wolframite. Iron-copper sulfide stage is the main period of copper mineralization; lead-zinc and carbonate stage likely marks the late and end of the primary mineralization, respectively.
Key words: Ore texture     Skarn zonation     Ore-forming process     Yongping copper deposit     South China    

永平铜矿位于钦杭成矿带东段,是一个伴生S-W-Pb-Zn的高品位大型铜矿床。目前对于该矿床成因有两种认识:一种是热水喷流沉积矿床且经历后期热液叠加(张学书, 1992; 张祖海等, 1995; 徐克勤等, 1996; 倪培等, 2005; Gu et al., 2007; Pirajno, 2013);另一种是与燕山期岩浆作用有关的斑岩Mo-矽卡岩(W)Cu多金属矿床系列(毛景文等, 2009; 李晓峰等, 2007, 2013; Zhu et al., 2016)。前人对该区石炭系的沉积环境、花岗质岩体地球化学及年代学、矿田构造及矿床地球化学、成岩成矿流体等方面做过大量研究(刘讯, 1991; 何江, 1993; 徐跃通, 1996; 丁昕等, 2005; 倪培等, 2005; 李晓峰等, 2007; 罗平, 2005; 李二恒等, 2012; 吕赟珊等, 2012; Li et al., 2013; Zhu et al., 2016),但对矿区矿化蚀变分带、矽卡岩与岩体、矿体的关系等方面研究不足,矿石组构与成矿过程也未做过详细工作,而这些内容恰是研究成矿作用、划分矿床类型最重要、最基础的地质依据,也是深入认识矿床成因及成矿机理的关键。本文通过对江西永平铜矿床Ⅱ号主矿体露天采坑、井下钻孔等探采工程面进行详细野外调研,选择典型矿石,如富有成因争议的块状、似层状矿石,进行岩相学与矿相学鉴定、扫描电镜-能谱(SEM-EDS)微观组构观察等工作,确定永平铜矿矿化蚀变分带特征、矽卡岩与岩体和矿体时空关系、矿石组构特征,查明矿物共生组合及生成顺序,以此构建永平铜矿精细成矿过程模型,企冀为区域成矿学研究及矿产勘查开发提供重要参考。

1 区域地质

永平铜矿床位于扬子地块和华夏地块拼接带南缘、钦杭成矿带东段,武夷山花岗岩与信江晚古生代盆地接触带上(图 1)。该区北部紧邻江山-绍兴-东乡断裂;赣东北断裂从本区北部穿过。本区出露的最老岩石是蓟县系周潭岩群,是一套经历了高绿片岩相-低角闪岩相变质,且发生强烈构造置换、变质分异及混合岩化的变质岩系,为该区前寒武纪基底。周潭岩群的岩石类型主要为片麻岩、斜长黑云母片岩、石榴石-夕线石片岩、石英片岩、斜长变粒岩和斜长角闪岩等,其原岩形成年龄为830~820Ma,且经历~440Ma加里东期变质作用(余达淦等, 1999; 王孝磊等, 2013)。该区从晚石炭世开始接受沉积,发育有晚古生界石炭系-二叠系、中生界三叠系-侏罗系-白垩系及新生界盖层,其中晚古生界盖层多发生褶皱及叠覆(董越, 2015)。晚古生界石炭系为潮坪-碳酸盐台地环境下形成的砂岩夹碳酸盐地层,而二叠系属浅海碳酸盐-近海陆缘沉积建造,下二叠统栖霞组-茅口组为碳酸盐沉积,上二叠统乐平组-大隆组为海陆交互相砂页岩含煤地层(江西省地质局, 1982);三叠系-白垩系由早期泻湖至内陆湖泊相碳酸盐-泥岩-砂岩沉积过渡到晚期陆相火山岩系沉积,如三叠系主体岩性为砂页岩、页岩,而上侏罗统打鼓顶组岩性则为火山角砾岩、凝灰岩(ca.152~160Ma; 狄永军等, 2013; Yan et al., 2016),下白垩统鹅湖岭组为火山碎屑岩夹中酸性熔岩(ca.131~139Ma; Su et al., 2013; Yan et al., 2016),上白垩统转变为山麓及河湖相陆相红色岩系(罗平, 2010),反映了该区中生代早期隆升海退,中期陆相火山作用,晚期陆内剥蚀的沉积演化史。

① 江西省地质局. 1982.上饶幅1:20万区域地质调查报告

图 1 永平铜矿床大地构造位置(a, 据张克信等, 2015修改)及区域地质简图(b, 据全国地质资料馆, 2016; 杨明桂等, 2002, 2015等绘制) 断裂带:F1-(歙县)-黄山-景德镇-(宜丰)断裂带;F2-竹亭-赋春深断裂带;F3-乐安江深断裂;F4-赣东北深断裂;F5-(绍兴-江山)-广丰-东乡-(萍乡)断裂带;F6-横峰-萧山断裂带;F7-乐平-上饶断裂带;F8-信江大断裂带;F9-鹰潭-安远断裂带;F10-洪门-湖石断裂带;F11-永平-寻乌断裂带;F12-驿前-黄岗山断裂带.矿床:1-德兴铜矿;2-葛源铌钽矿;3-铁砂街铜多金属矿;4-长寿源银铅锌矿;5-永平铜矿;6-石涵钼矿;7-龙头岗铜多金属矿;8-王坞钼矿;9-船坑铜矿;10-铜山铜矿;11-梨子坑铅锌矿;12-蔡家坪铅锌矿;13-生米坑铅锌矿;14-冷水坑银铅锌矿 Fig. 1 Schematic map of tectonic location (a, modified after Zhang et al., 2015) and regional geological map (a, modified after Yang et al., 2002, 2015) of Yongping copper deposit Sutures and fault: F1-(Shexian)-Huangshan-Jingdezhen-(Yifeng) suture; F2-Zhuting-Fuchun deep fault; F3-Leanjiang fault; F4-GanDongbei deep fault; F5-(Shaoxing-jiangshan)-Guangfeng-Dongxiang-(Pingxiang) suture; F6-Hengfeng-Xiaoshan fault; F7-Leping-Shangrao fault; F8-Xinjiang fault; F9-Yingtan-Anyuan fault; F10-Hongmen-Hushi fault; F11-Yongping-Xunwu fault; F12-Yiqian-Huanggangshan fault. Ore deposit: 1-Dexing copper deposit; 2-Geyuan Nb-Ta deposit; 3-Tieshajie copper polymetallic deposit; 4-Changshouyuan sliver-lead-zinc deposit; 5-Yongping copper deposit; 6-Shihan molybdenite deposit; 7-Longtougang copper polymetallic deposit; 8-Wangwu molybdenite deposit; 9-Chuankeng copper deposit; 10-Tongshan copper deposit; 11-Lizikeng lead-zinc deposit; 12-Caijiaping lead-zinc deposit; 13-Shengmikeng lead-zinc deposit; 14-Lengshuikeng sliver-lead-zinc deposit

① 全国地质资料馆.2016.全国1:50万在线地质图

区内侵入岩以加里东期和燕山期为主。加里东期岩体以慈竹、金溪岩体为代表,岩性为黑云母斜长花岗岩、白云母花岗岩、黑云母花岗闪长岩等,具高K,低CaO、Sr,A/CNK>1等特征,锆石LA-ICP-MS U-Pb年龄为~440Ma(黄标等, 1993; 张芳荣等, 2009; 邱检生等, 2015)。燕山期侵入岩又分早、晚两期,其中燕山早期岩体主要在武夷山地区以岩基状出露,德兴铜厂处以小岩株产出,岩性为高钾钙碱性花岗闪长岩、黑云母花岗岩等,侵位年龄173~155Ma(Hou et al., 2013; Liu et al., 2012; 李晓峰等, 2007; 丁昕等, 2005);燕山晚期岩体在江山-绍兴断裂两侧发育,以冷水坑、生米坑-篁碧、灵山-三清山、鹅湖-卧龙岗岩体为代表(图 1b),岩性以碱性花岗岩为主,多属A型花岗岩,锆石LA-ICP-MS U-Pb年龄为ca.144~121Ma(Wang et al., 2013; Su et al., 2013; Zhou et al., 2013; 郭博然等, 2013)。

NNE-NE、NW及近EW向三组断裂为区内主要构造(图 1b),其中以近EW向广丰-东乡断裂(F5,江-绍断裂部分)、NEE-NNE向赣东北深大断裂(F4)、NNE-NE向鹰潭-安远断裂(F9)和永平-寻乌断裂(F11)及NW向信江大断裂(F8)等为代表。永平铜矿发育在近EW向广丰-东乡断裂与NNE向永平-寻乌断裂交叉部位。沿北武夷岩体与信江晚古生代盆地边缘发育永平铜矿、龙头岗铜铅锌矿、船坑-铜山铜矿、梨子坑铅锌矿、冷水坑银铅锌矿等矿床。这些矿床多与燕山早期(ca.170~155Ma)花岗闪长岩、花岗斑岩有关(李晓峰等, 2007, 2013; 毛景文等, 2009; Wang et al., 2013; Wu et al., 2015)。

2 矿区地质特征

元古界周潭群为永平铜矿区基底;古生界石炭系叶家湾组、二叠系栖霞组、龙潭组等是该区晚古生代盖层(图 2)。周潭群岩性为片岩、片麻岩、变粒岩及混合岩等(余达淦等, 1999; 江西省地质局, 1982),其原岩是一套浅海相类复理石建造。石炭系叶家湾组是矿区主要的赋矿地层,其底部为砂岩,中上部为一套以浅海相为主的灰岩、泥灰岩和长英质碎屑岩等沉积建造;栖霞组为厚层结晶灰岩、含燧石硅质灰岩;龙潭组岩性则为页岩夹粉砂岩。其中叶家湾组在矿区内多发生矽卡岩化,以矽卡岩与灰岩、变质砂页岩互层出现,仅在矿体上盘残留少量未(弱)蚀变岩层。受印支-燕山早期逆冲推覆作用影响,晚古生界夹在周潭群之间(图 2b, c)。天排山倒转背斜是矿区主要褶皱,其背斜轴近南北向,轴面东倾,轴部由混合岩组成,向北收敛;背斜两翼为石炭-二叠系。矿区主要断层为打字坪-火烧岗逆掩断层、天排山逆断层(F1,F2图 2)。花岗闪长岩、花岗斑岩及石英斑岩沿断裂带及两侧构造薄弱带贯入,形成近南北向展布的岩墙、岩脉(图 2a),其中十字头处似斑状黑云母花岗岩-花岗闪长岩岩株与矿床形成关系密切。三类岩石均为高钾钙碱性花岗岩,成岩时代为162~156Ma(Zhang et al., 2018; Li et al., 2013; 丁昕等, 2005; 李晓峰等, 2007; 朱碧等, 2008)。矿体分布在两条断裂带内及断裂间的蚀变石炭系中(图 2b, c)。

图 2 永平铜矿区地质简图及剖面图(据江西912地质队, 1970) (a)永平铜矿床地质简图;(b) Ⅱ矿带纵剖面图AA’;(c) 4号勘探线剖面图BB’ Fig. 2 Geological sketch map (a) and profiles (b, c) of Yongping copper deposit

① 江西912地质队. 1970.永平铜矿勘查报告

矿区内蚀变作用主要与火烧岗-十字头岩体有关。蚀变类型主要为矽卡岩化、绢云母化、硅化、绿帘石化、硫化、泥化、赤铁矿化等。矽卡岩主要为外矽卡岩,少量为内矽卡岩。矿体走向近南北(图 2a),沿矿体走向自火烧岗向两侧、沿倾向由中部向下,矽卡岩化、矿化强度减弱;磁铁矿、磁黄铁矿、黄铁矿及矽卡岩矿物减少,而闪锌矿、方铅矿增多。根据矿化层位、控矿构造、矿石及围岩蚀变等因素可将矿床自上而下分七个矿带(表 1),其中Ⅱ矿带规模最大,铜金属量占全区72%以上。矿体以似层状为主,透镜状次之,不同矿带产状各异,其中主矿带倾角为20°~30°。矿石品位变化较大,上部氧化带Cu品位可达1.12%,其余矿体品位在0.66%~0.95%,平均0.73%。

表 1 永平铜矿各矿体特征(据江西912地质队, 1970) Table 1 Characteristics of orebodies of Yongping copper deposit
3 蚀变矿化分带

火烧岗-北矿坑露头剖面及Ⅱ号主矿体井下坑内钻剖面表明矿区矽卡岩分带性明显,且矽卡岩化程度与靠近主岩体的远近、岩枝大小,以及围岩成分有关。

3.1 火烧岗剖面

火烧岗处可见岩体-矽卡岩-围岩分带剖面(图 3b),出露石英-辉钼矿脉、萤石-石膏脉、花岗闪长岩硅化-绢云母化、矽卡岩分带等多种地质现象。火烧岗处由北向南,即对应岩体-矽卡岩-围岩方向变化规律:①蚀变类型由硅化、绢云母化,向矽卡岩化、碳酸盐化转变,局部夹强蚀变石英砂岩,可见无矿石英网脉穿插于石英砂岩中;②含矿性由钼矿化向铜矿化转变,且铜矿化从岩体到围岩矿化强度先升后降,石英-黄铁矿-黄铜矿脉多产在红棕色-棕色矽卡岩中;③矽卡岩由红色致密块状向浅绿色块状变化,石榴石颜色由红色向棕色、绿色变化。其中红色矽卡岩中可见残留的强碳酸盐化花岗质岩枝。

图 3 永平铜矿矿坑矽卡岩分带实测平面剖面图 (a)底图引自谷歌地图(2018);(b)火烧岗处岩体-矽卡岩分带;(c)北矿坑坑底蚀变分带.Ccp-黄铜矿;Moly-辉钼矿;Py-黄铁矿;Qz-石英 Fig. 3 Flat profile map of Yongping copper deposit (a) base map of modified after Google Earth (2018); (b) measured zonation of Huoshaogang from granite to wall-rock; (c) section at the bottom of north pit. Ccp-chalcopyrite; Moly-molybdenite; Py-pyrite; Qz-quartz
3.2 北矿坑坑底剖面

该剖面是火烧岗剖面向北延伸部分,整体呈现红(棕)色致密块状石榴石矽卡岩-含脉棕色石榴石矽卡岩-绿色石榴石矽卡岩-白色大理岩到黑色灰岩的岩性变化(图 3c中1-15),岩石从致密块状矽卡岩变为多孔状矽卡岩,说明岩石孔隙度增加;其中红棕色石榴石矽卡岩中见少量脉体浸染状矿化;棕色矽卡岩局部夹变质砂页岩、绿色透辉绿帘石榴石矽卡岩(图 3c中3, 4)、大理岩及石英岩,发育大量黄铁矿细脉、石英-绿帘石-黄铁矿-黄铜矿脉及弥散状黄铁矿-石英矿石(图 3c中3,7),并穿插有几厘米到两米不等的花岗闪长质岩脉(图 3c中4,9);岩脉两侧角岩化明显,且发育石英-绿帘石-黄铁矿脉;靠近围岩处,沿宽~10m花岗闪长岩株形成以岩株为中心的红色-棕色-绿色石榴石颜色分带(图 3c中5-11);在远端绿色石榴石矽卡岩中发育浸染状镜铁矿,以及灰绿色含冷凝边花岗斑岩脉(图 3c中12),该岩脉从边部向内部矿物粒度增加,可见石英斑晶。白色-浅灰色褪色大理岩局部可见发育流体逃逸构造的团块状红色-绿色石榴石及硅灰石矽卡岩、含燧石铁锰氧化物大理岩;围岩为栖霞组黑色大理岩化灰岩,部分灰岩有重结晶现象,发育擦痕。部分无矿矽卡岩推覆在大理岩化灰岩上。

3.3 井下水平钻揭示的矽卡岩分带

ZK100-13钻孔岩芯岩性变化为:混合岩(图 4b1)-硅质带-块状矿石-层纹状矿石(图 4b2)-变质砂页岩-红棕色石榴石矽卡岩(图 4b3)-棕色石榴石矽卡岩(图 4b4)-变质砂页岩(图 4b5)-绿色石榴石矽卡岩(图 4b6)-白色大理岩-灰岩-混合岩。在混合岩及矽卡岩中发育有石英-辉钼矿细脉或辉钼矿薄膜及晚期方解石-萤石-石膏脉;块状矿石主要发育在混合岩与叶家湾组接触带(F2)上部,向上石英-硫化物脉先增多后减少。棕色矽卡岩中脉体主要为黄铁矿脉、黄铁矿-石英-黄铜矿脉、石英-黄铁矿-绿帘石脉及萤石-方解石脉(图 4b3, 4)。

图 4 Ⅱ号主矿体井下坑内钻实测剖面(岩芯直径50mm) (a) 8线剖面图(江西912地质队,1970);(b)井下坑内钻实测剖面, b1-b6为剖面中代表性岩石与矿化蚀变:b1,含石英-辉钼矿(Qz-Moly)脉硅化混合岩;b2,块状黄铁矿-黄铜矿-石英(Py-Ccp-Qz)矿石;b3,含黄铜矿-黄铁矿-石英-方解石-萤石(Ccp-Py-Qz-Cc-Fl)脉的红棕色石榴石矽卡岩;b4,含黄铁矿-黄铜矿-石英(Py-Ccp-Qz)脉和石英-黄铁矿-方解石(Qz-Py-Cc)脉棕色石榴石矽卡岩;b5,角岩;b6,含萤石-方解石(Fl-Cc)脉绿色石榴石矽卡岩.Cc-方解石;Grt-石榴石;Hem-赤铁矿;Sph-闪锌矿 Fig. 4 Horizontal drilling section of No.Ⅱ main orebody (diameter of core is 50mm) (a) section of Line 8; (b) underground drilling section of ZK100-13, (b1-b6) typical alteration and mineralization core sample: b1-Qz-Moly veins and silicification in migmatite; b2-massive Py-Ccp-Qz ore; b3-Ccp-Py-Qz-Cc-Fl vein in redish brown garnet skarn; b4-Py-Ccp-Qz and Qz-Py-Cc veins in brown garnet skarn; b5-hornfel; b6-fluorite-calcite vein in green garnet skarn. Cc-calcite; Grt-garnet; Hem-hematite; Sph-sphalerite
3.4 矽卡岩分带及与矿化的关系

野外调研显示矿体与矽卡岩关系密切,呈现“有矽卡岩可能有矿,无矽卡岩贫矿或无矿”的规律,且永平铜矿存在以火烧岗岩体为中心的分带现象及含矿性变化,从岩体到围岩方向存在以下规律:(1)石榴石→透辉石→硅灰石的矽卡岩矿物分带;(2)红色→棕红色→棕色→绿色石榴石颜色分带;(3)含矿性先增加后降低;矿体主要发育在棕色矽卡岩中,少量产在红色矽卡岩、棕绿色石榴石矽卡岩、矽卡岩化大理岩中。

4 矿石类型与组构

永平铜矿矿石类型以矽卡岩型、变质砂页岩型为主,矽卡岩化大理岩型、大理岩型、花岗岩型等次之;其中矽卡岩型矿石按岩性又可分为透辉石石榴石矽卡岩型、绿帘石透辉石榴石矽卡岩型等。矿石构造类型多样,以脉状-网脉状、块状-团块状、似层(纹)状及浸染状、条带状为主,其中块状、似层状矿石成因富有争议,下文详细描述二者矿石结构。

脉状-网脉状构造该类矿石主要产自(红)棕色-棕色矽卡岩中(图 4b3, 4),少量产于变质砂岩及大理岩化灰岩中。脉体主要为成矿期石英-黄铁矿脉(0.1~2cm)、黄铁矿-石英脉(1~10cm)、石英-绿帘石-黄铁矿-白钨矿-方解石-黄铜矿-闪锌矿脉(2~3cm)、石英-黄铁矿-白钨矿-磁铁矿脉(~2cm)、石英-赤铁矿脉(~2cm)、石英脉(0.2~2m),成矿晚期石英-闪锌矿-黄铜矿-方铅矿脉(0.5~3cm)等,其中石英-闪锌矿-黄铜矿-方铅矿脉穿切以上其他类型脉体。另有一类脉状矿体(~10m宽)在弱蚀变石炭系灰岩中与石英斑岩相邻产出,为黄铁矿-闪锌矿-黄铜矿-磁黄铁矿-石英大脉。该矿脉矿石有明显的多期成矿形成的矿物“条带”(图 5h),且被晚期方解石脉穿切。

图 5 永平铜矿代表性块状、似层状、条带状矿石 (a)退变质矽卡岩中块状、脉状矿石空间关系示意图;(b)块状磁黄铁矿矿石中穿插的石英-白铁矿-黄铜矿脉;(c)脉状石英-白铁矿-黄铜矿矿石;(d)白铁矿-黄铜矿-磁黄铁矿硫化物异质环带及略定向磁黄铁矿-黄铁矿-黄铜矿矿石(Ⅲ类);(e)石英-白铁矿-黄铜矿-铁闪石脉状矿石(Ⅲ类);(f)脉状及层纹状变质砂岩型矿石;(g)条带状变质砂页岩型矿石;(h)硫化物-石英大脉中似层状矿石;(i)晚期石英-硫化物脉叠加在早期强蚀变石榴石矽卡岩上. Di-透辉石;Ep-绿帘石;Gru-铁闪石;Mrc-白铁矿;Mt-磁铁矿;Po-磁黄铁矿;Sch-白钨矿;Skarn-矽卡岩 Fig. 5 Typical massive, stratiform-like, and banded ore in Yongping copper deposit (a) spatial relationship of massive ore and vein ore in retrograde skarn; (b) massive pytthotite ore with Qz-Mrc-Ccp vein; (c) Qz-Mrc-Ccp vein; (d) Mrc-Ccp-Po sulfide zonal texture and Weak directional Po-Py-Ccp ore; (e) Qz-Mrc-Ccp-Gru massive ore; (f) vein and lamellar metasandstone ore; (g) stripped meta-shale ore; (h) stratidform-like ore in Qz-Sulfides large vein; (i) late Qz vein superposed on retrograde skarn. Di-diopside; Ep-epidote; Gru-grunerite; Mrc-marcasite; Mt-magnetite; Po-pyrrhotite; Sch-scheelite

块状-团块状构造矿石该类矿石主要发育在叶家湾组下部与F2接触带、棕色石榴石矽卡岩、绿-棕色石榴石矽卡岩。矿石类型分别为黄铜矿-黄铁矿-石英(Ⅰ类;图 4b2)、磁铁矿-黄铁矿-黄铜矿(Ⅱ类)、磁黄铁矿-白铁矿-黄铜矿-铁闪石矿石(Ⅲ类;图 5b)。其中Ⅲ类矿石中矿物以磁黄铁矿、铁闪石为主(图 6e),并含少量辉石、石英等,且多被后期石英-白铁矿-黄铜矿脉穿切(图 5b),矿物具有弱的分带现象(图 5a, d图 6d),局部可见白铁矿核-黄铜矿幔-磁黄铁矿边的硫化物异质环带结构(图 5b, d;下文)。石英-白铁矿-黄铜矿脉体中仍残留Ⅲ类块状矿石的部分结构,但磁黄铁矿均转变为白铁矿(图 5e图 6h),石英颗粒定向,波状消光发育(图 6g),黄铜矿沿着白铁矿和石英集合体裂隙充填(图 6g, i)。

图 6 永平铜矿典型矿石结构显微图片 (a-c)矽卡岩型矿石典型结构;(d-i)块状矿石中典型结构,d-f对应图 5dg-i对应图 5e;(j-l)似层状矿石典型结构,对应图 5h. (a)磁铁矿交代黄铁矿,并被方铅矿交代呈骸晶状,黄铜矿交代黄铁矿、磁铁矿、方铅矿,部分充填在石榴石环带及裂隙中;(b)黄铜矿交代半自形白铁矿、磁铁矿,并有少量闪锌矿出溶;(c)黄铜矿与白钨矿呈包含结构;(d) Ⅲ类块状矿石白铁矿-黄铜矿-磁黄铁矿硫化物异质环带,黄铁矿与黄铜矿组成的压力影构造;脉体两侧对称产出白铁矿、黄铜矿;(e)铁闪石与磁黄铁矿交生结构;(f)被黄铜矿及石英交代呈港湾状的白铁矿,黑钨矿内包裹有磁黄铁矿,并被后期黄铜矿交代,黄铜矿可见放射状铁闪石;(g)黄铁矿与铁闪石被石英交代,黄铜矿沿裂隙充填在石英集合体裂隙中并交代黄铁矿,左下图中石英定向分布并发育波形消光;(h)白铁矿周围棕褐色铁闪石蚀变为无色含铝铁闪石,且伴生黄铜矿;(i)白铁矿-黄铜矿-闪锌矿依次交代,铁闪石在黄铜矿中呈放射状集合体;(j)似层状矿石中黄铁矿-方铅矿-闪锌矿-黄铜矿矿物组合,后者依次交代前者;(k)黄铁矿裂隙中针铁矿,闪锌矿、黄铜矿交代方铅矿;(l)黄铜矿呈胶状及细脉状交代黄铁矿、磁黄铁矿及闪锌矿. (a、b、d、f、j、l)为反光镜下图片;(c、i、k)为背散射图片;(e、g、h)为透光镜下图片,其中(g)左下为正交偏光镜下图片.Geo-针铁矿; Gn-方铅矿;Wol-黑钨矿 Fig. 6 Representative ore textures in Yongping copper deposit under the microscope (a-c) typical textures in skarn ore; (d-i) typical textures in massive ore, (d-f) corresponding to Fig. 5e; (j-l) typical textures in stratidform-like ore, corresponding to Fig. 5h. (a) sulfides and magnetite filling in fractures and girdle in garnet, show sequence as pyrite, magnetite, galena, and chalcopyrite; (b) chalcopyrite replaces subhedral magnetite and pyrite, note exsolution of sphalerite in chalcopyrite; (c) chalcopyrite replaces scheelite; (d) heterogeneous sulfides zonal in type Ⅰ massive ore, pressure shadow structure composed of pyrite and chalcopyrite, symmetry of pyrite and chalcopyrite along vein; (e) intergrowths of pyrrhotite and grunerite; (f) embayment marcasite replaced by chalcopyrite and quartz, pyrrhotite surrounded by wolframite, and replaced by chalcopyrite with radial grunerite; (g) pyrite and grunerite replaced by quartz in type Ⅱ massive ore, chalcopyrite filling along fractures of undulatory extinction quartz aggregates (below left); (h) dark brown grunerite were altered into colorless Al-grunerite, with formation of chalcopyrite; (i) formation sequence of marcasite, chalcopyrite and sphalerite, with radial grunerite in chalcopyrite; (j) formation sequence of pyrite, galen, sphalerite and chalcopyrite in stratidform-like ore; (k) chalcopyrite replace galena and pyrite with goethite formed in fractures; (l) colloidal chalcopyrite replace pyrite, pyrrhotite and sphalerite. (a, b, d, f, j, l) are under reflected light; (c, i, k) are backscattered images; (e, g, h) are under transmitted light, image below left (g) are under orthogonals lens. Goe-goethite; Gn-galena; Wol-wolframite

似层(纹)状构造在变质砂页岩中发育,有时呈蜷曲层纹状(图 5f, g)。另外,在硫化物石英(多期次)大脉(~10m)中也发育该类矿石,表现为晚期的胶状黄铜矿呈似层状产于早期的闪锌矿-黄铁矿脉中(图 5h)。

条带状构造在变质砂岩(图 5f, g)及退变质矽卡岩(图 5i)中发育。条带边部石英重结晶,并发育浸染状黄铁矿(图 5g),脉体中矿物为黄铁矿-白钨矿-闪锌矿-方铅矿-石英-方解石。

矿石结构以热液交代结构为主,结晶结构次之。结晶结构如红色矽卡岩中充填在石榴石晶间空隙及晶内裂隙中呈海绵陨铁状黄铜矿(图 6a, b)和半自形黄铁矿和磁铁矿(图 6b)、石英硫化物脉中的半自形黄铁矿(图 6c)及块状矿石中半自形磁黄铁矿(图 6e)。交代结构在各类矿石中广泛发育,如黄铜矿交代黄铁矿、磁铁矿、白钨矿、方铅矿、闪锌矿等和闪锌矿交代方铅矿、黄铁矿等呈交代残余结构、溶蚀结构(图 6a, c, f-h, j-l);闪锌矿交代黄铁矿、黄铜矿呈溶蚀结构(图 6i)、“黄铜矿病变”结构;针铁矿、闪锌矿沿黄铁矿裂隙交代呈胶状黄铁矿假象(图 6k)等。

硫化物异质环带结构该结构是指由两种及以上矿物组成的矿石环带(曹毅等, 2016)。在Ⅲ类块状矿石即磁黄铁矿-白铁矿-黄铜矿-铁闪石矿石中发育,其中核部白铁矿呈旋转碎斑(图 6d),幔部与边部可见黄铜矿交代白铁矿、磁黄铁矿呈港湾状、孤岛状(图 6f);磁黄铁矿集合体局部可见退变三角边结构;早期铁闪石呈棕色短柱状与磁黄铁矿呈交生结构(图 6e),后蚀变为针状、毛刺状被包裹在黄铜矿内(图 6f, h-i)。

以上矿石组构显示,赋矿围岩矽卡岩、变质砂页岩明显早于矿石矿物的形成,而不同围岩类型中矿石矿物组成和生成顺序大致相同。块状矿石(Ⅲ类)中矿物生成顺序为棕绿色石榴石→铁闪石和磁黄铁矿→黑钨矿→白铁矿(Po→Mrc相变)→铜-锌硫化物→方解石;石英硫化物大脉中矿物生成顺序为粗粒黄铁矿→白钨矿→方铅矿→磁黄铁矿、闪锌矿→黄铜矿;含脉矽卡岩矿石中矿物生成顺序为绿棕色石榴石→透辉石→粗粒半自形黄铁矿→白钨矿→绿帘石→铜锌硫化物;浸染状矿石中矿物生成顺序为石榴石→黄铁矿→磁铁矿→方铅矿→黄铜矿、闪锌矿。另有晚期石英-方铅矿-闪锌矿脉切穿以上矿体。

5 成矿期及成矿阶段

结合围岩蚀变分带特征、野外脉体穿插关系及矿石组构以及田明君等(2014)关于矽卡岩矿物的研究,可将永平铜矿成矿过程划分两期六阶段(表 2图 7)。两期分别为矽卡岩期和热液期,其中矽卡岩期可划分石榴石阶段和(磁)赤铁矿(早期)阶段热液期可划分为(磁)赤铁矿(晚期)阶段、白钨矿阶段、铁铜硫化物阶段、铅锌硫化物阶段和碳酸盐阶段(表 2)。其中,(磁)赤铁矿阶段属于矽卡岩期与热液期的过渡阶段,但与石榴石阶段一样也属于成矿前阶段,白钨矿至铅锌硫化物阶段为成矿阶段,碳酸盐阶段为成矿后阶段。

表 2 永平铜矿主要矿物生成顺序及成矿期、成矿阶段划分 Table 2 Sequence of major minerals and metallogenic periods and stages in Yongping copper deposit

图 7 永平铜矿成矿过程模型 (a)矽卡岩分带及与矿化的空间关系;(b)块状矿石;(c)浸染状矿石;(d)含白钨矿-黄铁矿-绿帘石-石英脉矿石;(e)变质砂页岩中条带状矿石 Fig. 7 Model of ore-forming process in Yongping copper deposit (a) alteration and mineralization zoning in deposit; (b) massive ore; (c) disseminated skarn ore; (d) scheelite-pyrite-epidote vein skarn ore; (e) banded ore in meta-sandshale

石榴石阶段是矽卡岩分带形成阶段,石榴石、透辉石及硅灰石等矿物及相应的矽卡岩、大理岩等(图 7a)均在该阶段出现,且随着双交代进行,在接触带外侧岩石孔隙度因灰岩向矽卡岩转变体积减小而使岩石渗透率、孔隙度增大,从而为后期成矿热液提供流体通道和沉淀场所。

(磁)赤铁矿阶段以铁氧化物形成为特征,如赤铁矿、磁铁矿,以及少量石英、黄铁矿。该阶段早期以赤铁矿、磁铁矿形式存在于矽卡岩与大理岩接触前锋处;晚期热液阶段以磁铁矿、赤铁矿出现在部分矿化脉体中,磁铁矿发育较少,赤铁矿发育广泛。其中磁铁矿与白钨矿和硫化物共生(图 6b),且形成早于二者;赤铁矿多以包体形式存在石榴石中、以热液矿物或者蚀变产物存在石英-硫化物脉及蚀变晕(图 4b3)及强蚀变矽卡岩(图 5i)中。

白钨矿阶段是钨酸盐矿物的形成阶段。在该阶段早期,局部发育铁闪石、磁黄铁矿(图 6e),与之共生的钨酸盐矿物为黑钨矿(图 6f),而在该阶段晚期,形成的钨酸盐矿物则为白钨矿(图 5c图 6c),多与萤石、方解石、绿帘石及石英等共生,局部也可出现少量方铅矿。

铁-铜硫化物阶段是铜-硫矿化的主要形成阶段,也是主成矿阶段,以发育大量黄铁矿、黄铜矿及少量白铁矿、闪锌矿、石英、绿泥石和绢云母等为特征。

铅锌硫化物阶段以形成大量的闪锌矿、方铅矿、石英及少量黄铜矿为特征,属成矿晚期阶段。

碳酸盐阶段为成矿后阶段,以方解石、萤石、石膏、葡萄石及绢云母等大量出现为标志。

6 成矿过程

永平地区逆冲推覆构造形成于燕山早期(170~155Ma),推覆方向为南东向北西(董越, 2015),是伊泽那崎板块向欧亚板块俯冲挤压引起的(董越, 2015; 解国爱等, 2013)。岩体流体包裹体面(吕赟珊等, 2012)、矿区断层擦痕(解国爱等, 2013; 本文)、矿石中硫化物环带压力影结构(图 6d)、石英颗粒定向且波状消光发育(图 6g)等表明该逆冲推覆构造控制矿区内岩体及矿体的形成,且在成岩成矿过程中一直处于活动状态。蚀变矿化分带、野外穿插关系、矿石组构显示矽卡岩化是一种继承性关系,即矽卡岩化热液与成矿热液侵入通道相同,后者晚于前者,矿化富集在矽卡岩的局部地段。矿石组构显示似层状矿石是热液沿近平行的小裂隙交代早期矿物形成;矽卡岩型矿石、变质砂页岩矿石细脉中矿石矿物组合及生成顺序一致,且可与石英-硫化物大脉类比,均为黄铁矿-白钨矿-黄铜矿-方铅矿及闪锌矿(图 7d, e),说明不同类型的矿石是同一成矿热液系统在不同围岩中的产物。流体包裹体测温数据表明矿床形成压力可能为3.7~1.62km(未发表数据; 陈军军等, 2016);S-O-H同位素表明成矿物质主要来源于岩浆,成矿流体早期以岩浆水为主,晚期有大气降水的加入(未发表数据; Zhou et al., 2016; 陈军军等, 2016)。综上,我们建立以下成矿过程模型:

永平地区燕山期早期在古太平洋板块俯冲作用下发生逆冲推覆作用,促使深部岩浆房中岩浆沿薄弱面贯入,在深部(3.7~4.5km; 陈军军等, 2016)与石炭系叶家湾组发生强烈双交代,形成从岩体到围岩的石榴石-透辉石-硅灰石矿物分带及石榴石矽卡岩、透辉石矽卡岩、远端韵律状石榴石矽卡岩、变质砂页岩等主要赋矿围岩(图 7a)。在持续的挤压及逆冲剪切作用下,矿区抬升(~3~1.9km)并形成大量近平行裂隙和局部大滑脱面;随后大量岩浆出溶的成矿热液沿构造裂隙及矽卡岩中孔隙运移,在水岩反应、流体混合作用下,随温度、氧逸度、硫逸度改变,在矽卡岩形成磁黄铁矿-铁闪石-黄铜矿块状矿石(图 7b)、浸染状矿石(图 7c)和脉状矿石(图 7d);在变质砂岩中形成条带状黄铁矿-石英-白钨矿-黄铜矿脉状矿石(图 7e),在滑脱构造裂隙中形成黄铁矿-石英-闪锌矿-白钨矿-黄铜矿大脉。主成矿期后,方解石脉、萤石-石膏脉在各矿石中呈脉状叠加或穿切各类矿石。

7 对矿床成因的启示意义

层状矿体是永平铜矿床的一个重要特征,这是前人将其归属为层控矿床或喷流沉积矿床的主要原因(张学书, 1992; 张祖海等, 1995; Gu et al., 2007)。详细的蚀变矿化野外调研、典型矿石组构研究说明永平矿区矽卡岩与火烧岗-十字头岩体关系密切,且形成以岩体为中心的蚀变矿化分带现象(图 7a),与典型矽卡岩型铜矿分带一致(Meinert et al., 2005)。层状矿体,尤其是似层状矿石、条带状矿石主要受控于成矿过程中的剪切作用面及围岩岩性界面,而不是受沉积层理控制,亦即说明矿体并不是在沉积过程中形成的。矽卡岩化大理岩、硫化物石英脉、矽卡岩矿石中发育叶碲铋矿、硫铋铅矿、硫铜铋矿等(定立等, 2013, 2014; 田明君等, 2014)的特征,与其它矽卡岩型铜-金矿床相同或相似,如罗马尼亚Neogene金矿、印度尼西亚Big Gossan矽卡岩型铜金矿、北衙金矿、鸡冠嘴铜金矿等(Cook and Ciobanu, 2004; Prendergast et al., 2005; Cook et al., 2007; Zhou et al., 2016; 张伟等, 2016)。此外,矿石中硫化物交代结构发育广泛,矿床形成过程中热液交代作用强烈。因此,永平铜矿床并不是层控或喷流沉积型铜矿床,而是受逆冲推覆构造、地层、岩体联合控制的“层状”矽卡岩型铜矿床。

该类型矿床(亦可称之为“永平式”铜矿床)在华南分布较多,如九瑞地区城门山、铜陵地区冬瓜山、江西永平、广东大宝山等铜矿。近年来研究表明以上铜矿床均受燕山期逆冲推覆作用、岩浆作用、泥盆系-石炭系地层等控制(余心起等, 2008; 邱俊挺等, 2011; 王鹏程等, 2012; 吕良冀, 2014; 董越, 2015),说明燕山期推覆构造、岩浆作用及古生代碳酸盐地层等条件组合,有利于“永平式”铜矿床的形成。

8 结论

(1) 永平铜矿存在以火烧岗岩体为中心的分带现象及含矿性变化,从岩体到围岩方向存在以下规律:靠近岩体一侧石榴石含量远大于辉石含量,向围岩方向辉石含量增加,末端出现硅灰石矽卡岩;石榴石颜色有红色→棕红色→棕色→绿色的变化趋势;矽卡岩含矿性先增加后降低。矿体主要集中在红棕色、棕色矽卡岩中,少量在红色矽卡岩中。

(2) 脉体穿插关系及矿石组构显示铁闪石-磁黄铁矿块状矿石最早形成,其次是各类脉状矿石。似层状矿石是热液沿近平行的小裂隙交代早期矿物形成;矽卡岩型矿石、变质砂页岩矿石细脉中矿石矿物组合及生成顺序一致,且可与石英-硫化物大脉类比,均为黄铁矿-白钨矿-(方铅矿)-闪锌矿-黄铜矿-闪锌矿,说明不同类型的矿石是同一成矿热液系统在不同围岩中的产物。

(3) 永平铜矿成矿过程可划分为石榴石、(磁)赤铁矿阶段、白钨矿阶段、铁铜硫化物阶段、铅锌硫化物阶段和碳酸盐阶段等六个阶段,其中石榴石阶段属于矽卡岩期,后四个阶段属热液期,而(磁)赤铁矿阶段则属于矽卡岩与热液成矿作用的过渡阶段。

(4) 永平铜矿是受逆冲推覆构造、地层、岩体联合控制的“层状矽卡岩型”铜矿床,而不是层控型或喷流沉积型铜矿床。

致谢      野外工作中得到江西铜业集团永平铜矿生产技术科相关人员的帮助;审稿过程中两位匿名审稿人提出了很多宝贵意见;稿件受理过程中,俞良军副主编对本文耐心地审稿校对;在此一并表示感谢。

参考文献
Cao Y, Du YS, Pang ZS, Ren CL, Du YL, Xiao FQ, Zhou GB and Chen LJ. 2016. Sulfide zonal texture and its geological significance of ores from the Dongguashan copper (gold) deposit in Tongling, Anhui Province, China. Acta Petrologica Sinica, 32(2): 334-350 (in Chinese with English abstract)
Chen JJ, Cao DH, Yang XL, Qiu CR, Wang XJ and Kan YS. 2016. Fluid inclusions and sulfur isotope of the Yongping copper-polymetallic deposit in Jiangxi Province. Acta Geoscientica Sinica, 37(2): 163-173 (in Chinese with English abstract)
Cook NJ and Ciobanu CL. 2004. Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts, Romania:Paragenesis and genetic significance. Mineralogical Magazine, 68(2): 301-321 DOI:10.1180/0026461046820188
Cook NJ, Ciobanu CL, Wagner T and Stanley CJ. 2007. Minerals of the system Bi-Te-Se-S related to the tetradymite archetype:Review of classification and compositional variation. The Canadian Mineralogist, 45(4): 665-708
Di YJ, Xu YG, Wu GG, Zhang D, Xiao MZ, Lai SH, Yu XQ, Qin ST, Yan PC, Gong Y and Qin XF. 2013. The formation era of nappe structure in Lengshuikeng Ag-Pb-Zn ore field, Jiangxi:Constraints from geochronology. Earth Science Frontiers, 20(4): 340-349 (in Chinese with English abstract)
Ding L, Zhao YY, Liu Y, Wang ZQ, Luo P, Wang YQ and Sha JS. 2013. Facieology and mineragraphy characteristics of drilling ZK725 in Hujiashan on Yongping copper deposit peripheral area, Jiangxi and their significance. Acta Geologica Sinica, 87(11): 1715-1730 (in Chinese with English abstract)
Ding L, Liu Y, Zhao YY, Wang ZQ and Sha JS. 2014. Petrographic and mineragraphic characteristics of Yongping copper polymetallic ore deposit in Jiangxi Province and their significance. Journal of Jilin University (Earth Science Edition), 44(3): 796-816 (in Chinese with English abstract)
Ding X, Jiang SY, Ni P, Gu LX and Jiang YH. 2005. Zircon SIMS U-Pb geochronology of host granitoids in Wushan and Yongping copper deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383-389 (in Chinese with English abstract)
Dong Y. 2015. Thrust nappe structure tectonics in Yongping-Shitang area, and analysis of ore-controlling structure of the Longtougang deposit, north eastern Jiangxi. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English summary)
Gu LX, Zaw K, Hu WX, Zhang KJ, Ni P, He JX, Xu YT, Lu JJ and Lin CM. 2007. Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geology Reviews, 31(1-4): 107-138 DOI:10.1016/j.oregeorev.2005.01.002
Guo BR, Liu SW, Yang PT, Wang ZQ, Luo P, Wang YQ, Luo GH and Wang W. 2013. Petrology, geochemistry and petrogenesis of Wolonggu granites and Tongchang granodioritic porphyries:Constraints on copper metallogenic geological settings in northeastern Jiangxi Province. Geological Bulletin of China, 32(7): 1035-1046 (in Chinese with English abstract)
He J. 1993. Metallogenic geochemistry and genesis study on Yongping copper ore deposit of Jiangxi Province. Mineral Resources and Geology, 7(33): 1-7 (in Chinese with English abstract)
Hou ZQ, Pan XF, Li QY, Yang ZM and Song YC. 2013. The giant Dexing porphyry Cu-Mo-Au deposit in East China:Product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita, 48(8): 1019-1045 DOI:10.1007/s00126-013-0472-5
Huang B, Xu KQ, Sun MZ and Liu G. 1993. Features and Collisional mountain building environment of metasomatic transformation type granitic rocks in middle Wuyi Mountains. Acta Petrologica Sinica, 9(4): 388-400 (in Chinese with English abstract)
Li EH, Liu JR, Ni P, Cai YT, Zhao KD, Ye CL and Zhu XT. 2012. Geochemistry and sedimentary environment of the Late Carboniferous siliceous cherts from Yanshan County, Jiangxi Province. Geological Journal of China Universities, 18(4): 735-744 (in Chinese with English abstract)
Li XF, Watanabe Y and Qu WJ. 2007. Textures and geochemical characteristics of granitic rocks in the Yongping climax-type Cu-Mo deposit, Jiangxi, southeastern China, and their alteration, mineralization and tectonic regime. Acta Petrologica Sinica, 23(10): 2353-2365 (in Chinese with English abstract)
Li XF, Watanabe Y and Yi XK. 2013. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province, Southeast China. Resource Geology, 63(3): 288-312 DOI:10.1111/rge.12009
Li XF, Hu RZ, Hua RM, Ma DS, Wu LY, Qi YQ and Peng JT. 2013. The Mesozoic syntexis type granite-related Cu-Pb-Zn mineralization in South China. Acta Petrologica Sinica, 29(12): 4037-4050 (in Chinese with English abstract)
Liu X and Huang Z. 1991. Discussion on the development processes of the tectonic structure of Yongping copper deposit, Jiangxi Province. Mineral Resources and Geology, 5(25): 416-422 (in Chinese)
Liu X, Fan HR, Santosh M, Hu FF, Yang KF, Li QL, Yang YH and Liu YS. 2012. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic:Implication for the formation of the Dexing porphyry copper deposit, southeastern China. Lithos, 150: 85-100 DOI:10.1016/j.lithos.2012.05.018
Luo P. 2005. Metallogenetic regularities and prediction of copper-lead-zinc-silver mineralization in the area of Chenfang-Yongping, Yanshan County, Jiangxi Province. Master Degree Thesis. Wuhan: China University of Geosciences (in Chinese with English summary)
Luo P. 2010. Research on metallogenic regularities and prospecting orientation of copper polymetal mineral resources in the northern Wuyi reigion of Jiangxi Province. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
Lü LJ. 2014. Discussions on features of mesozoic thrust-fault belts and relationship between thrust-fault belts and magmatism in southwestern Fujian and adjacent regions. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
Lü YS, Zhu XT, Cai YT and Xie GQ. 2012. Fluid inclusion planes for the Huoshaogang granite in the Yongping copper deposit, Jiangxi, eastern China. Journal of Nanjing University (Natural Sciences), 48(3): 316-327 (in Chinese with English abstract)
Mao JW, Xie GQ, Chen YB and Chen YC. 2009. Mineral deposit models of mesozoic ore deposits in South China. Geological Review, 55(3): 347-354 (in Chinese with English abstract)
Meinert LD, Dipple GM and Nicolescu S. 2005. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume. Littleton, Colorado, USA: Society of Economic Geologists, 299-336 https://wenku.baidu.com/view/5ee3adfdaef8941ea76e05ec.html
Ni P, Tian JH, Zhu XT, Ling HF, Jiang SY and Gu LX. 2005. Fluid Inclusions studies on footwall stringer system mineralization of Yongping copper deposit, Jiangxi Province, China. Acta Petrologica Sinica, 21(5): 1339-1346 (in Chinese with English abstract)
Pirajno F. 2013. The Geology and Tectonic Settings of China's Mineral Deposits. Dordrecht: Springer: 127-157
Prendergast K, Clarke GW, Pearson NJ and Harris K. 2005. Genesis of pyrite-Au-As-Zn-Bi-Te zones associated with Cu-Au skarns:Evidence from the Big Gossan and Wanagon gold deposits, Ertsberg district, Papua, Indonesia. Economic Geology, 100(5): 1021-1050 DOI:10.2113/gsecongeo.100.5.1021
Qiu JS, Yang ZL, Xing GF, Yu MG, Zhao JL and Wang RQ. 2015. A comparison study between Caledonian and Yanshanian granites from Xiongjiashan molybdenum deposit in Jinxi County, Jiangxi Province, and its implications to metallogenesis. Acta Petrologica Sinica, 31(3): 656-674 (in Chinese with English abstract)
Qiu JT, Yu XQ, Wu GG, Qu WJ, Di YJ, Zhang D, Luo P and Du AD. 2011. Research on the nappe structure and its relevance to the mineralization in the Huangbi deposit, North Wuyi, Southeast China. Earth Science Frontiers, 18(5): 243-255 (in Chinese with English abstract)
Su HM, Mao JW, He XR and Lu R. 2013. Timing of the formation of the Tianhuashan Basin in northern Wuyi as constrained by geochronology of volcanic and plutonic rocks. Science China (Earth Sciences), 56(6): 940-955 DOI:10.1007/s11430-013-4610-9
Tian MJ, Li YG, Wan HZ, Zhang Y and Gao TT. 2014. Characteristics of skarn minerals in Yongping copper deposit, Jiangxi Province, and geological significances. Acta Petrologica Sinica, 30(12): 3741-3758 (in Chinese with English abstract)
Wang CM, Zhang D, Wu GG, Xu YG, Carranza EJM, Zhang YY, Li HK and Geng JZ. 2013. Zircon U-Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China:Implications for a continental arc to intra-arc rift setting. Journal of Earth System Science, 122(3): 809-830
Wang PC, Li SZ, Liu X, Yu S, Liu B, Suo YH, Xue YC and An HT. 2012. Yanshanian fold-thrust tectonics and dynamics in the Middle-Lower Yangtze River area, China. Acta Petrologica Sinica, 28(10): 3418-3430 (in Chinese with English abstract)
Wang XL, Yu JH, Shu XJ, Tang CH and Xing GF. 2013. U-Pb geochronology of detrital zircons from the para-metamorphic rocks of the Zhoutan Group, central Jiangxi Province. Acta Petrologica Sinica, 29(3): 801-811 (in Chinese with English abstract)
Wu SH, Mao JW, Xie GQ, Geng JZ and Xiong BK. 2015. Geology, geochronology, and Hf isotope geochemistry of the Longtougang skarn and hydrothermal vein Cu-Zn deposit, North Wuyi area, southeastern China. Ore Geology Reviews, 70: 136-150 DOI:10.1016/j.oregeorev.2015.04.012
Xie GA, Wang ZX, Zhang QL, Lü YS and Zou X. 2013. A study of the palaeotectonic stress fields and tectonic evolution in Yongping copper deposit, Jiangxi Province. Advances in Earth Science, 28(5): 608-617 (in Chinese with English abstract)
Xu KQ, Wang HN, Zhou JP and Zhu JC. 1996. A discussion on the exhalative sedimentary massive sulfide deposits of South China. Geological Journal of China Universities, 2(2): 241-256 (in Chinese with English abstract)
Xu YT. 1996. The characteristics of genetical geochemistry of cherts in Yongping copper deposit, Jiangxi Province. Geotectonica et Metallogenia, 20: 20-28 (in Chinese with English abstract)
Yan X, Jiang SY and Jiang YH. 2016. Geochronology, geochemistry and tectonic significance of the Late Mesozoic volcanic sequences in the northern Wuyi Mountain volcanic belt of South China. Gondwana Research, 37: 362-383 DOI:10.1016/j.gr.2015.08.016
Yang MG, Wang FN and Zeng Y. 2002. The ore-forming environment and its process in Northeast Jiangxi. Resources Survey & Environment, 23(2): 122-129 (in Chinese with English abstract)
Yang MG, Wu FG, Song ZR and Lü SJ. 2015. North Jiangxi:A geological window of South China. Acta Geologica Sinica, 89(2): 222-233 (in Chinese with English abstract)
Yu DG, Ai GY, Huang GF and Liu PH. 1999. Isotopic age features and their geological implication of the Zhoutan Group in Jiangxi. Acta Geoscientia Sinica, 20(2): 195-200 (in Chinese with English abstract)
Yu XQ, Wu GG, Zhang D, Di YJ, Dai YP and Qiu JT. 2008. Thrust nappe structure and its ore-controlling effects in the North Wuyi area, China. Geological Bulletin of China, 27(10): 1667-1677 (in Chinese with English abstract)
Zhang FR, Shu LS, Wang DZ, Yu JH and Shen WZ. 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China. Earth Science Frontiers, 16(1): 248-260 (in Chinese with English abstract)
Zhang KX, Pan GT, He WH, Xiao QH, Xu YD, Zhang ZY, Lu SN, Deng JF, Feng YM, Li JY, Zhao XM, Xing GF, Wang YH, Yin FG, Hao GJ, Zhang CJ, Zhang J and Gong YM. 2015. New division of tectonic-strata superregion in China. Earth Science (Journal of China University of Geosciences), 40(2): 206-233 (in Chinese with English abstract) DOI:10.3799/dqkx.2015.016
Zhang W, Wang HQ, Deng XD, Hu H and Li JW. 2016. Mineralogy of the Au-Ag-Bi-Te-Se assemblages in the Jiguanzui Cu-Au skarn deposit, Daye District, southeastern Hubei Province. Acta Petrologica Sinica, 32(2): 456-470 (in Chinese with English abstract)
Zhang XS. 1992. Discussion on genesis of Yongping copper deposit. Mineral Exploration, 1(1): 26-34 (in Chinese)
Zhang Y, Shao YJ, Liu QQ, Chen HY, Quan W and Sun AX. 2018. Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China:An example from the Yongping Cu deposit. Journal of Geochemical Exploration, 186: 281-297 DOI:10.1016/j.gexplo.2018.01.006
Zhang ZH, Tang XH, Hao L and Zhu TH. 1995. The metallogenic model of submarine volcanic spouting hydrothermal sedimentary copper deposit, Jiangxi. Geology of Jiangxi, 9(2): 83-92 (in Chinese with English abstract)
Zhou HY, Sun XM, Fu Y, Lin H and Jiang LY. 2016. Mineralogy and mineral chemistry of Bi-minerals:Constraints on ore genesis of the Beiya giant porphyry-skarn gold deposit, southwestern China. Ore Geology Reviews, 79: 408-424 DOI:10.1016/j.oregeorev.2016.06.008
Zhou J, Jiang YH, Xing GF, Zeng Y and Ge WY. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383 DOI:10.1080/00206814.2013.774199
Zhu B, Jiang SY, Ding X, Jiang YH, Ni P and Gu LX. 2008. Hydrothermal alteration and petrogenesis of granites in the Yongping copper deposit, Jiangxi Province:Constraints from mineral chemistry, element geochemistry, and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 24(8): 1900-1916 (in Chinese with English abstract)
Zhu XT, Ni P, Wang GG, Cai YT, Chen H and Pan JY. 2016. Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China. Journal of Geochemical Exploration, 171: 55-70 DOI:10.1016/j.gexplo.2016.01.018
曹毅, 杜杨松, 庞振山, 任春雷, 杜轶伦, 肖福权, 周贵斌, 陈林杰. 2016. 安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义. 岩石学报, 32(2): 334-350.
陈军军, 曹殿华, 杨昔林, 邱昌容, 王训军, 阚迎松. 2016. 江西永平铜多金属矿床流体包裹体及硫同位素研究. 地球学报, 37(2): 163-173.
狄永军, 徐贻赣, 吴淦国, 张达, 肖茂章, 来守华, 余心起, 秦思婷, 闫鹏程, 龚勇, 秦晓峰. 2013. 江西冷水坑银铅锌矿田推覆构造的形成时代:来自年代学的约束. 地学前缘, 20(4): 340-349.
定立, 赵元艺, 刘妍, 王宗起, 罗平, 王永庆, 沙俊生. 2013. 江西永平铜矿外围护架山钻孔ZK725岩矿相学特征及意义. 地质学报, 87(11): 1715-1730.
定立, 刘妍, 赵元艺, 王宗起, 沙俊生. 2014. 江西永平铜多金属矿床岩相学、矿相学特征及其意义. 吉林大学学报(地球科学版), 44(3): 796-816.
丁昕, 蒋少涌, 倪培, 顾连兴, 姜耀辉. 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383-389. DOI:10.3969/j.issn.1006-7493.2005.03.009
董越. 2015.江西永平-石塘推覆构造及龙头岗矿区控矿构造分析.硕士学位论文.北京: 中国地质大学 江西永平-石塘推覆构造及龙头岗矿区控矿构造分析
郭博然, 刘树文, 杨朋涛, 王宗起, 罗平, 王永庆, 罗国辉, 王伟. 2013. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约. 地质通报, 32(7): 1035-1046. DOI:10.3969/j.issn.1671-2552.2013.07.009
何江. 1993. 永平铜矿床成矿地球化学及成因分析. 矿产与地质, 7(33): 1-7.
黄标, 徐克勤, 孙明志, 刘刚. 1993. 武夷山中段加里东早期交代改造型花岗岩类的特点及形成的碰撞造山环境. 岩石学报, 9(4): 388-400. DOI:10.3321/j.issn:1000-0569.1993.04.008
李二恒, 刘家润, 倪培, 蔡逸涛, 赵葵东, 叶春林, 朱筱婷. 2012. 江西铅山晚石炭世硅质岩地球化学特征与沉积环境. 高校地质学报, 18(4): 735-744. DOI:10.3969/j.issn.1006-7493.2012.04.014
李晓峰, Watanabe Y, 屈文俊. 2007. 江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义. 岩石学报, 23(10): 2353-2365. DOI:10.3969/j.issn.1000-0569.2007.10.004
李晓峰, 胡瑞忠, 华仁民, 马东升, 武丽艳, 齐有强, 彭建堂. 2013. 华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征. 岩石学报, 29(12): 4037-4050.
刘讯, 黄震. 1991. 江西永平铜矿田构造发育过程的初步探讨. 矿产与地质, 5(25): 416-422.
罗平. 2005.江西铅山县陈坊-永平地区铜铅锌银成矿规律与成矿预测.硕士学位论文.武汉: 中国地质大学 http://cdmd.cnki.com.cn/article/cdmd-10491-2006053474.htm
罗平. 2010.江西北武夷地区铜多金属矿成矿规律及找矿方向研究.博士学位论文.北京: 中国地质大学 http://cdmd.cnki.com.cn/Article/CDMD-11415-1011035540.htm
吕良冀. 2014.闽西南及邻区中生代推覆构造特征及其与岩浆活动关系探讨.博士学位论文.北京: 中国地质大学 http://cdmd.cnki.com.cn/Article/CDMD-11415-1014234001.htm
吕赟珊, 朱筱婷, 蔡逸涛, 解国爱. 2012. 江西永平铜矿火烧岗岩体中流体包裹体面研究. 南京大学学报(自然科学), 48(3): 316-327.
毛景文, 谢桂青, 程彦博, 陈毓川. 2009. 华南地区中生代主要金属矿床模型. 地质论评, 55(3): 347-354. DOI:10.3321/j.issn:0371-5736.2009.03.005
倪培, 田京辉, 朱筱婷, 凌洪飞, 蒋少涌, 顾连兴. 2005. 江西永平铜矿下盘网脉状矿化的流体包裹体研究. 岩石学报, 21(5): 1339-1346.
邱检生, 杨泽黎, 邢光福, 余明刚, 赵姣龙, 王睿强. 2015. 江西金溪熊家山钼矿床加里东期与燕山期花岗岩对比及其对成矿作用的启示. 岩石学报, 31(3): 656-674.
邱骏挺, 余心起, 吴淦国, 屈文俊, 狄永军, 张达, 罗平, 杜安道. 2011. 北武夷篁碧矿区逆冲推覆构造及其与钼、铅-锌成矿作用关系. 地学前缘, 18(5): 243-255.
田明君, 李永刚, 万浩章, 张宇, 高婷婷. 2014. 江西永平铜矿矽卡岩矿物特征及其地质意义. 岩石学报, 30(12): 3741-3758.
王鹏程, 李三忠, 刘鑫, 余珊, 刘博, 索艳慧, 薛友辰, 安慧婷. 2012. 长江中下游燕山期逆冲推覆构造及成因机制. 岩石学报, 28(10): 3418-3430.
王孝磊, 于津海, 舒徐洁, 唐成虎, 邢光福. 2013. 赣中周潭群副变质岩碎屑锆石U-Pb年代学. 岩石学报, 29(3): 801-811.
解国爱, 王宗秀, 张庆龙, 吕赟珊, 邹旭. 2013. 江西永平铜矿区古构造应力场与构造演化. 地球科学进展, 28(5): 608-617.
徐克勤, 王鹤年, 周建平, 朱金初. 1996. 论华南喷流-沉积块状硫化物矿床. 高校地质学报, 2(2): 241-256.
徐跃通. 1996. 江西永平地区石炭纪硅质岩成因地球化学特征及沉积环境. 大地构造与成矿, 20: 20-28.
杨明桂, 王发宁, 曾勇. 2002. 赣东北地区的成矿环境与成矿作用. 资源调查与环境, 23(2): 122-129. DOI:10.3969/j.issn.1671-4814.2002.02.007
杨明桂, 吴富江, 宋志瑞, 吕少俊. 2015. 赣北:华南地质之窗. 地质学报, 89(2): 222-233.
余达淦, 艾桂银, 黄国夫, 刘平辉. 1999. 江西周潭群同位素年龄特征及其地质意义. 地质学报, 20(2): 195-200.
余心起, 吴淦国, 张达, 狄永军, 代堰陪, 邱俊挺. 2008. 北武夷地区逆冲推覆构造的特征及其控矿构造. 地质通报, 27(10): 1667-1677. DOI:10.3969/j.issn.1671-2552.2008.10.009
张芳荣, 舒良树, 王德滋, 于津海, 沈渭洲. 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 248-260. DOI:10.3321/j.issn:1005-2321.2009.01.027
张克信, 潘桂棠, 何卫红, 肖庆辉, 徐亚东, 张智勇, 陆松年, 邓晋福, 冯益民, 李锦轶, 赵小明, 邢光福, 王永和, 尹福光, 郝国杰, 张长捷, 张进, 龚一鸣. 2015. 中国构造-地层大区划分新方案. 地球科学-中国地质大学学报, 40(2): 206-233.
张伟, 王宏强, 邓晓东, 胡浩, 李建威. 2016. 鄂东南地区鸡冠嘴铜金矿床Au-Ag-Bi-Te-Se矿物学研究与金银富集机理. 岩石学报, 32(2): 456-470.
张学书. 1992. 江西永平铜矿矿床成因探讨. 有色金属矿产与勘查, 1(1): 26-34.
张祖海, 汤新红, 郝琳, 朱天和. 1995. 江西海底火山喷流-热水沉积铜矿床成矿模式. 江西地质, 9(2): 83-92.
朱碧, 蒋少涌, 丁昕, 姜耀辉, 倪培, 顾连兴. 2008. 江西永平铜矿区花岗岩热液蚀变与岩石成因:矿物化学、元素地球化学和Sr-Nd-Hf同位素制约. 岩石学报, 24(8): 1900-1916.