华南板块是中国大地构造单元中的重要组成部分,其北以鲜水河-广济断裂为界紧临秦岭-大别造山带, 南以哀牢山-松马缝合带为界紧临印支板块, 东接太平洋板块, 西以龙门山断裂为界紧临松潘-甘孜地块(Wang et al., 2013b)。虽然目前普遍认为,华南板块由扬子和华夏两大块体在新元古代拼合而成(图 1a),但其最终拼合时间与演化模式仍广受争议。近年来,不同学者对华南板块的形成与演化模式及其拼合时间提出了不同的观点:第一种观点为地幔柱模式,指出其最终拼合时间为880Ma(Li et al., 1999, 2002, 2003, 2008, 2009b;Li and Li, 2003);第二种观点为板片-俯冲模式,将最终拼合时间限定在825Ma(舒良树, 1993; Zhou et al., 2002, 2004;周金城等, 2008, 2014; Li et al., 2009a; Wang et al., 2014a; Zhao et al., 2018);第三种观点为板片-裂谷模式,指出880~860Ma为其最终拼合时间(Zheng et al., 2007, 2008, 2013);而持多岛弧-盆系统北西向幕式拼贴模式观点的学者认为江南地区新元古代最晚的弧后盆地关闭于~820Ma(Wang et al., 2013c, 2014b, 2018;Zhang et al., 2015, 2016;谭清立, 2017;谭清立等, 2017);第五种观点是双向俯冲模式,认为在~825Ma时古华南洋盆的关闭标志着扬子与华夏的最终拼合(Zhao, 2015);最近,Lin et al.(2018)提出了“阿巴拉契亚型”多块体威尔逊旋回模型,认为华南经历了从早新元古代元早期到中生代的4次拼贴事件。
江南造山带东段沿樟树墩-双溪坞一带的新元古代沉积-岩浆岩形成于955~880Ma,其形成环境被认为是活动大陆边缘(章邦桐等, 1990; Li and Li, 2003; Ye et al., 2007; Li et al., 2008, 2009b;陈志洪等, 2009a, b ; 高林志等, 2014a;陈辉等, 2016)。以往对江南造山带东段的研究主要聚焦于赣东北蛇绿岩、双溪坞群及沿樟树墩至浙东北双溪坞一带发育的岩浆岩,因此有学者认为扬子与华夏在东段的最终拼合时间为~880Ma(Li et al., 2002; Ye et al., 2007; Zhao et al., 2011;李献华等, 2012;周金城等, 2014;张玉芝等, 2015)。张玉芝等(2015)和Zhang and Wang (2016)则认为扬子与华夏在江南造山带各区段可能有着差异的拼合时间,其中中段的拼合时间在830~810Ma,明显晚于东段。近年来,陆续有学者在江山-绍兴断裂带、华夏板块东北缘与江南造山带之交的陈蔡群报道了879~838Ma的岩浆岩形成年龄,如Li et al. (2010)以SHRIMP锆石U-Pb法测得的变流纹岩原岩年龄为838±5Ma;高林志等(2014a)以同样的方法测得的含榴夕线黑云斜长片麻岩及含榴黑云斜长片麻岩原岩年龄分别为848±10Ma和845±9Ma;Yao et al.(2014, 2016)采用LA-ICP-MS锆石U-Pb测得的辉长岩和石英闪长岩的结晶年龄分别为879±10Ma和857±5Ma。目前陈蔡群原岩的形成环境也广受争议,有学者认为其形成于裂谷环境(Li et al., 2010; Shu et al., 2011),也有学者提出其形成于岛弧环境(孔祥生等, 1994)或与俯冲有关的背景(陈绍海等, 1999; Yao et al., 2014, 2016)。陈蔡群879~838Ma的岩浆活动明显晚于樟树墩-双溪坞一带955~880Ma岛弧岩浆活动。
以往对陈蔡群原岩的研究多聚焦于超基性-基性岩,而对中-酸性岩关注不多。特别是有着独特地质意义的埃达克岩关注较少。埃达克岩最早由Defant and Drummond (1990)提出,指SiO2含量大于56%、Al2O3含量大于15%、富Na低K、高Sr、低Y、Yb,来自于年轻(≤25Ma)俯冲大洋板片直接熔融形成的新生代岛弧火山岩。随后的研究发现,增厚下地壳铁镁质岩石的熔融、拆沉下地壳的熔融及幔源岩浆在加厚地壳底部岩浆库的结晶分异和混染等方式也能形成埃达克岩,其形成时代也不局限于新生代(王强等, 2001;张旗, 2008)。埃达克岩因其形成的特殊环境而造成出露较少,构造动力学意义重大而越来越被关注(王焰等, 2000)。目前华南仅少数地方发现有新元古代埃达克岩,如赣东北蛇绿岩中的埃达克型花岗岩(锆石U-Pb年龄为968±23Ma; 李武显和李献华, 2004)和平水地区埃达克质高镁闪长岩(锆石U-Pb年龄为932±7Ma; 陈志洪等, 2009a)。本次研究对陈蔡群中的花岗闪长岩开展了同位素年代学、全岩地球化学和Sr-Nd同位素研究。研究发现陈蔡花岗闪长岩的地球化学特征与埃达克岩相似。高硅埃达克岩是俯冲大洋板片部分熔融形成的玄武质熔体被地幔楔橄榄岩同化和交代的产物(Martin et al., 2005),是洋壳消减的直接证据。因此本文的研究成果将会为厘清陈蔡群原岩的形成环境提供重要参考,也会对限定扬子与华夏最终拼合时间和演化模式提供重要依据。
1 地质背景与样品描述江南造山带是扬子板块与华夏板块在新元古代的重要拼合带,沿线保留了一系列新元古代沉积和岩浆作用记录,是研究扬子与华夏两大块体在新元古代时期演化的地球动力学过程的理想场所。江山-绍兴断裂带是江南造山带东段与华夏板块分界带。浙西北陈蔡地区位于江山-绍兴断裂带东北缘,处于江南造山带与华夏板块的交接部位,区内出露的地层主要有陈蔡群、上侏罗统诸暨组和第四纪地层(图 1b)。其中,陈蔡群由孔祥生等(1994)划分和定义,指经受了中压角闪岩相区域动力-热液变质作用和多期褶皱变形的基-中性火山沉积岩系,主要由一套中深度变质的片麻岩、片岩、大理岩组成,局部地区形成各种混合岩及混合花岗岩,总厚度约为8494m,主要分布于浙江诸暨陈蔡、上虞章镇、龙泉、龙游溪口及岱山大衢岛等地,从上至下划分为徐岸组、下吴宅组、下河图组及捣臼湾组。捣臼湾组下部为斜长角闪岩夹二长浅粒岩;上部以二长变粒岩为主。下河图组由大理岩、石墨石英片岩等组成,局部见浅粒岩、二长变粒岩、斜长角闪岩和片麻岩等。下吴宅组岩性为灰、灰黑色辉石斜长角闪岩、角闪变粒岩、斜长角闪岩和黑云母二长变粒岩、斜长变粒岩等,原岩下部可能为中基性、中酸性火山岩和火山碎屑岩,上部可能为砂泥岩。徐岸组岩性以深灰、灰黑色夕线铁铝榴石变粒岩为主,局部为铁铝榴石黑云斜长片麻岩。上侏罗统诸暨组地层与陈蔡群呈断层接触和角度不整合接触,其岩性主要为流纹质凝灰岩、流纹岩斑岩夹沉积岩。新元古界里浦石英闪长岩体是区域内出露的最大岩体,与陈蔡群呈断层接触关系,前人在此获得了854±6Ma(LA-ICP-MS锆石U-Pb; Yao et al., 2016)和841±6Ma(SHRIMP锆石U-Pb; Li et al., 2010)的闪长岩结晶年龄,Yao et al. (2016)认为该岩体形成于汇聚板块边缘,并且是江南造山带的一部分,不属于华夏板块。新元古代花岗岩体和燕山期基性岩体在区域内零星出露,如图 1b所示。
本文研究的样品均采自浙江省诸暨市陈家宅村和石头坑村(13WY-139和13WY-141,其GPS坐标分别为29°41′16.1″N、120°25′59.8″E和29°41′51.1″N、120°28′08.3″E)。样品呈灰黑色,具块状、片麻状构造。显微镜下观察样品具碎裂组构(图 2a, b)和糜棱组构(图 2c, d)。在具碎裂组构的样品中(图 2a、b),矿物主要有半自形粒状-板状斜长石(见聚片双晶,65%~70%)、钾长石(5%~15%),两者呈定向排列并普遍发生绢云母化、泥化和因动力变质作用形成裂纹,粒径为0.1~2mm;他形粒状石英(10%~15%),具波状消光,粒径0.1~0.5mm;鳞片状自形黑云母(5%~10%),发育绿泥石化,晶形0.05mm×0.1mm左右;副矿物主要有锆石、磷灰石和磁铁矿等。在具糜棱组构的样品中(图 2c, d),碎斑占55%~65%,主要矿物有半自形粒状斜长石(发育聚片双晶,55%~65%)、歪长石(5%~15%),呈眼球状和透镜状,粒径为0.5~2mm;他形粒状、丝带状石英(20%~25%),具波状消光,粒径0.1~0.3mm。碎基占45%~55%,主要由细小的黑云母、斜长石、绢云母和绿泥石。其中斜长石和歪长石发生绢云母化(图 2b, c)和绿泥石化蚀变(图 2d)。石英在变形强烈的部分被定向拉长(图 2c)。副矿物主要有锆石、磷灰石和磁铁矿等。
锆石的分选与制靶在河北省廊坊市河北省欣航测绘院进行。采用常规的重力和磁选方法进行锆石分选,然后在双目镜下挑选出晶型完好、相对大颗粒的锆石粘贴在环氧树脂上,对其进行抛光至露出一半,以便于锆石阴极发光(CL)分析。CL分析在中山大学广东省地质过程与矿产资源探查重点实验室的Carl Zeiss CL阴极荧光装置上进行。锆石U-Pb同位素年龄测定在中国科学院广州地球化学研究所同位素地球化学国家重点实验室型号为Resonetics RESOlution M-50-HR+Neptune Plus的LA-ICP-MS完成,激光剥蚀束斑直径24μm,频率为4HZ。采用91500和GJ作为标样。详细步骤参考文献Xia et al. (2011)。年龄数据的处理和谐和图的生成采用软件Isoplot (version 2.49) (Ludwig, 2001)和ICPMSDataCal 8.4 (Liu et al., 2008)进行。
全岩主量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室测定,仪器采用帕纳科公司制造的Axios(PW4400)型X射线荧光光谱仪(XRF),分析精度在1%~3%之间,详细分析步骤见文献李献华等(2002)。全岩微量元素的分析测试在中国科学院地球化学研究所矿床地球化学国家重点实验室的电感耦合等离子体体质谱仪(Bruker M90 ICP-MS)上完成,大部分元素测试的相对误差优于10%,实验步骤详见Qi et al. (2000)。
Sr-Nd同位素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室型号为Neptune Plus的MC-ICP-MS进行,实验流程见梁细荣等(2003)和Li et al. (2004)。87Sr/86Sr和143Nd/144Nd比值的校正值分别为0.1194和0.7219。采用的Sr同位素标样为NBS987溶液,87Sr/86Sr比值为0.710246±7(2σ);Nd同位素的标样为JNDi-1溶液,143Nd/144Nd比值为0.512084±5(2σ)。
3 分析结果 3.1 LA-ICP-MS锆石年龄本文对花岗闪长岩样品13WY-139B-5(29°41′16.1″N、120°25′59.8″E)和13WY-141A(29°41′51.1″N、120°28′08.3″E)进行了LA-ICP-MS锆石U-Pb定年。
从样品13WY-139B-5的锆石CL图像(图 3)可以看出,其具有典型的振荡韵律环带结构,因此为岩浆成因锆石。锆石呈短柱状到长柱状,长宽比约为21~31,颗粒大小约为50~150μm。选取了25个点进行测年,选择的点多位于振荡韵律环带上(图 3)。所测得的锆石Th含量变化于154×10-6~364×10-6,U含量介于169×10-6~280×10-6之间,Th/U比值变化范围为0.63~1.19(表 1)。所测得的22个点中,除点4和点22偏离主群外,其余点均位于谐和曲线上或附近且比较集中,形成一个集群,其谐和度为93%~99%,23个点的206Pb/238U表观年龄为830~846Ma,206Pb/238U加权平均年龄为838±5Ma (MSWD=0.2),该年龄代表了该花岗闪长岩样品的形成年龄,指示其形成于新元古代。
从样品13WY-141A选取了22个点进行LA-ICP-MS锆石U-Pb测年(表 1)。锆石CL图像(图 3)显示具典型振荡韵律环带,锆石呈短柱状,长宽比11~31,粒径30~150μm,Th/U介于0.40~0.95,为典型的岩浆成因锆石。22个点位于谐和曲线上,且较为集中,其206Pb/238U表观年龄集中于824~854Ma,206Pb/238U加权平均年龄为836±4Ma (MSWD=0.5)(图 3、表 1),为其形成年龄,亦表明其形成于新元古代。
3.2 地球化学特征选取了7个代表性样品进行全岩主微量元素分析,分析结果见表 2。实验测得的7个岩石样品的SiO2含量在63.38%~68.97%之间。Al2O3(15.30%~16.70%)、Na2O(3.74%~6.24%)含量较高,K2O(1.30%~2.57%)含量较低,K2O/Na2O比值的范围为0.17~0.64。全碱含量(K2O+Na2O)介于5.82%~7.32%,为中钾钙碱性系列。铝饱和指数(A/CNK)为1.01~1.54,属过铝质。样品的εNd(t)为高正值(见下文),因此陈蔡花岗闪长岩为钙碱性过铝质花岗闪长岩。MgO含量较低,介于0.64%~1.99%(Mg#(Mg#=Mg2+/(Mg2++Fe2+))为35~50),P2O5(0.10%~0.15%)含量较低。在哈克图解(图 4)中,TiO2、MgO、FeOT、P2O5含量随SiO2的增加而减少。由于样品受到蚀变影响,因此使用Zr/TiO2-SiO2图解(图 5a)进行分类投图。在该图解中,样品落入花岗闪长岩区域;在QAP图解(图 5b)中,样品均落入花岗闪长岩区域,与野外和镜下观察相一致。
样品的稀土(REE)总量低(ΣREE=52.40×10-6~126.4×10-6)。球粒陨石标准化REE配分图解呈右倾的形式,轻稀土(LREE)较重稀土(HREE)富集((La/Yb)N=8.44~19.1),LREE及中稀土(MREE)陡倾,重稀土平坦((La/Sm)N=3.39~7.22,(Sm/Dy)N=2.26~2.67,(Gd/Yb)N=1.06~1.41)(图 6a)。无明显的铕异常,δEu为0.86~1.37。在原始地幔标准化微量元素蛛网图上(图 6b),高场强元素(HFSE)Nb、Ta和Ti呈明显的负异常,Zr和Hf呈正异常;大离子亲石元素(LILE)Rb、Ba、K、Sr及LREE相对富集。
对样品13WY-139B-8和13WY-141A进行了全岩Sr-Nd同位素测试。样品的(87Sr/86Sr)i比值较低,为0.7015~0.7022。(143Nd/144Nd)i比值较高,为0.511777~0.511881,εNd(t=838Ma)为+4.10~+6.13,Nd模式年龄(tDM)为0.99~1.16Ga(表 3)。
样品的烧失量(LOI)变化于1.67%~3.76%,结合岩石薄片显微镜照片,说明岩石遭受了中低程度的热液变质作用,因此必须评估岩石的地球化学元素是否发生迁移。在LOI与易发生迁移的K2O、Na2O、CaO等氧化物及Rb、Ba、Sr等微量元素的双变量图解中,K2O、Na2O、CaO及LILE(如Rb、Ba和Sr)与LOI表现出或正或负的相关关系(图 7),说明这些氧化物和LILE在岩石遭受蚀变的过程中发生了迁移,因此它们不适用于岩石成因分析。而HFSE和REE等不易发生迁移的元素的含量则相对恒定(图略),因此主要使用这些元素用于岩石成因分析。
典型埃达克岩的地球化学特征包括:SiO2≥56%,Al2O3≥15%,低K2O、高Na2O,Sr≥400×10-6,Y≤18×10-6,Yb≤1.8×10-6,Sr/Y≥20,Eu异常不明显(Defant and Drummond, 1990;王强等, 2001;张旗等, 2002; Castillo, 2012)。陈蔡花岗闪长岩的SiO2含量介于65.21%~68.97%之间;K2O/Na2O比值为0.17~0.67。除13WY-139B-8的Sr含量低于400×10-6外,其余均高于400×10-6,平均457×10-6;样品Y含量均低于18×10-6,平均11.12×10-6;Yb含量介于0.77×10-6~1.67×10-6,平均1.19×10-6;Sr/Y比值最小为26,最大为80,平均47;δEu=0.86~1.37。从Sr/Y与SiO2的关系可以看出,陈蔡花岗闪长岩的地球化学特征与埃达克岩类似。在Sr/Y-Y图解(图 8a)和(La/Yb)N-(Yb)N图解(图 8b)上,样品均落入埃达克岩区域。
目前提出的埃达克岩成因模式主要有:(1)俯冲板片熔体与地幔楔橄榄岩的相互作用(如Rapp et al., 1999; Carmichael, 2002; Martin et al., 2005; Macpherson et al., 2006; Tang et al., 2010);(2)加厚玄武质下地壳的部分熔融(Atherton and Petford, 1993; Rudnick, 1995; Petford and Atherton, 1996; Chung et al., 2003; Condie, 2005; Wang et al., 2005, 2007b;王强等, 2006;王智慧等, 2016);(3)拆沉下地壳的部分熔融(Kay and Kay, 1993; Rudnick, 1995; Xu et al., 2002; Gao et al., 2004; Wang et al., 2006, 2007a);(4)俯冲陆壳的部分熔融(Wang et al., 2008);(5)玄武质岩浆的低压分离结晶和同化混染(Castillo et al., 1999; Li et al., 2009a)。
由大陆下地壳部分熔融形成的埃达克岩具有富K低Na的特征,而陈蔡花岗闪长岩的Na2O含量明显高于K2O(王强等, 2001;张旗, 2008);由古老下地壳部分熔融形成的埃达克岩具有富集的Sr-Nd同位素特征(王强等, 2001;张旗, 2008),而陈蔡花岗闪长岩的(87Sr/86Sr)i为0.7015~0.7022,εNd(t)为+4.10~+6.13,表现为亏损的Sr-Nd同位素特征,因此其不可能来源于加厚或拆沉大陆下地壳和古老下地壳的部分熔融。新生的加厚玄武质地壳相变为榴辉岩并拆沉至软流圈发生部分熔融,当经过地幔橄榄岩时与橄榄岩反应,最终形成埃达克岩。这种成因的埃达克岩具有高Mg(Mg#>50)的特征,陈蔡花岗闪长岩的Mg#与之不符,因此也不可能来源于新生的玄武质地壳(Huang et al., 2007)。此外,由新生下地壳部分熔融形成的埃达克岩通常形成于碰撞造山环境或后碰撞环境(如Huang et al., 2007;刘建峰等, 2013),然而陈蔡地区并未发现在新元古代时期由碰撞造山引起的强烈构造变形,其广泛的区域动力变质作用主要发生在早古生代(如Li et al., 2010;胡艳华等, 2011; Yao et al., 2014;高林志等, 2014b)。Wang et al. (2014a)推测扬子与华夏板块的最终拼合可能并非由碰撞造山引起,而是江南地区在860~830Ma期间存在的弧后盆地的关闭导致了统一的华南板块的形成。Wang et al.(2013c, 2014b)更认为华南内部都未在新元古代发生碰撞造山,而是武夷-云开(1000~920Ma)弧后盆地、双溪坞弧后盆地(970~890Ma)及江南弧后盆(860~830Ma)的幕式关闭导致了扬子与华夏地块的逐步拼合。
也有学者指出,一些碰撞造山带的埃达克岩可能形成于俯冲陆壳的部分熔融,其最突出的地球化学特征包括K2O含量高于3%和εNd(t)值低于-3(Wang et al., 2008)。陈蔡花岗闪长岩的K2O含量变化于1.09%~2.57%,εNd(t)为高正值。区域构造演化背景也不支持该地区在该时期存在陆-陆俯冲,因此其来源也不可能是俯冲陆壳的部分熔融。
陈蔡花岗闪长岩也不可能来源于玄武质岩浆的分离结晶与同化混染,因为:(1)在La/Yb-La图解(图 9a)中,样品的变化趋势与玄武质岩浆的分离结晶趋势不相符,而更符合部分熔融的变化趋势;(2)在Zr/Sm-SiO2图解(图 9b)中,除样品13WY-139B-8的Zr/Sm比值异常高外,其余样品的Zr/Sm比值与SiO2正相关,符合部分熔融趋势;(3)La/Sm比值与La含量的正相关关系(图 9c)说明源区的部分熔融对微量元素比值的影响比分离结晶更为重要(图 9c);(4)在Nb/La-SiO2图解(图 9d)中,Nb/La比值及SiO2含量的变化趋势也与玄武质岩浆的分离结晶及同化混染过程存在差异。
因此陈蔡花岗闪长岩最可能由俯冲玄武质板片熔体被地幔楔橄榄岩同化和交代而成,证据如下:
(1) 陈蔡花岗闪长岩具有高Na2O、低K2O的地球化学特征及低(87Sr/86Sr)i、高εNd(t)的同位素特征,与俯冲板片部分熔融形成的太平洋新生代岛弧埃达克岩的特征相似。
(2) Martin et al. (2005)将埃达克岩分为两类:高硅埃达克岩(HSA,SiO2>60%);低硅埃达克岩(LSA,SiO2 < 60%)。高硅埃达克岩具有低MgO(0.5%~4%)、低CaO+Na2O (< 11%)和低Sr(< 1100×10-6)含量的特征,而低硅埃达克岩的MgO为4%~9%、CaO+Na2O>10%、Sr>1000×10-6)。Rapp et al. (1999)提出“e=有效的玄武质板片熔体/地幔橄榄岩”的概念,当e大于1时,玄武质板片熔体在经过地幔楔时交代地幔橄榄岩后形成高硅埃达克岩;当e小于1时,地幔楔橄榄岩发生部分熔融形成的熔体被消耗怠尽的板片熔体改造,形成低硅埃达克岩。岩石学实验表明,玄武质和榴辉质岩发生部分熔融形成的熔体的SiO2含量为56%~72%(图 10; Defant and Drummond, 1993)。陈蔡花岗闪长岩的SiO2和MgO含量分别为63.38%~68.97%和0.64%~1.99%,CaO+Na2O为6.47%~8.64%,与高硅埃达克岩的特征相似。在低硅埃达克岩和高硅埃达克岩图解(图 11)上,样品均投入到高硅埃达克岩区域。在MgO-SiO2图解(图 10)中,样品落入俯冲洋壳形成的埃达克岩的范围,MgO与地幔混染的演化趋势相近。在相同SiO2含量的情况下,俯冲洋壳形成的埃达克岩MgO含量高于实验玄武质熔体,这是俯冲大洋板片熔体在经过地幔楔时交代地幔橄榄岩的结果(Rapp et al., 1999; Martin et al., 2005)。岩石学实验研究表明,在玄武质熔体中加入10%的橄榄岩可使Mg#从44增加到55(Rapp et al., 1999),陈蔡花岗闪长岩样样品的Mg#为35~50,表明其源区只有少量橄榄岩加入到俯冲板片熔体之中。
(3) 现有的诸多区域构造背景研究成果表明,陈蔡地区在新元古代可能确实存在洋壳俯冲消减:如Yao et al. (2014)对陈蔡群角闪片麻岩和变辉长岩的全岩地球化学研究表明其形成与俯冲作用有关;陈迪云和徐伟昌(1993)指出,陈蔡群变质岩原岩成岩环境类似于活动大陆边缘;孔祥生等(1994)认为其形成于岛弧环境,陈蔡岛弧地体与双溪坞陆弧地体的碰撞导致了陈蔡群岩石的变质变形;陈绍海等(1999)的研究认为陈蔡群斜长角闪岩形成于洋内俯冲或洋陆俯冲环境。
陈蔡花岗闪长岩亏损HREE(YbN=4.52~9.84)和低Y含量的特征暗示源区有石榴子石残留。高Sr、Eu异常不明显,说明源区无斜长石残留。MREE较HREE富集,指示源区无角闪石残留。Nb、Ta、Ti明显负异常,说明源区可能有钛铁矿物、金红石的残留。因此,源区残留相主要为石榴子石+金红石,指示发生部分熔融的压力>1.5GPa,深度为50~80km(Xiong, 2006;康磊等, 2016)。
4.2 构造启示陈蔡群开始于海底拉斑玄武岩的喷发,以碳酸盐岩和砂泥质岩沉积结束,指示大洋岛弧的形成环境(浙江省地质矿产局, 1996)。本文及前人在陈蔡群的锆石微区定年研究未见继承锆石,说明其原岩在形成的过程中少有陆壳的参与,因此也支持其形成于洋内环境(Li et al., 2010; Yao et al., 2014, 2016;高林志等, 2014a, b )。位于江山-绍兴断裂北西盘,与陈蔡群呈近似对称分布的双溪坞群及其同期的岛弧岩浆岩形成于活动大陆边缘,其岩浆活动时限为955~880Ma(如章邦桐等, 1990; Ye et al., 2007; Li et al., 2008, 2009b;陈志洪等, 2009a, b ; 高林志等, 2014a;陈辉等, 2016)。如前所述,孔祥生等(1994)认为双溪群与陈蔡群的形成过程中在时空上联系紧密,因此厘清两者联系是破解陈蔡花岗闪长岩成岩过程的关键密码。江南造山带东段不整合于双溪坞群之上的地层为河上镇群,由下到上划分为骆家门组、虹赤村组和上墅组。Wang et al. (2013a)在河上镇群骆家门组碎屑锆石获得的最大沉积年龄为863Ma;侵位于上墅组的石耳山花岗岩年龄为779±11Ma(Li et al., 2003)、花岗斑岩年龄为783±18Ma(薛怀民等, 2010)。取骆家门组最大沉积年龄为河上镇群上限年龄,石耳山花岗斑岩年龄为河上镇群下限年龄,则河上镇群形成于863~783Ma。因此双溪坞陆弧地体的形成时限为955~865Ma。目前在陈蔡群报道的最老的新元古代年龄为879±10Ma(Yao et al., 2014),因此陈蔡地区的洋壳俯冲可能开始于879Ma,远晚于双溪坞群开始活动的时间。结合孔祥生等(1994)提出的演化模式,我们认为扬子板块与华夏板块之间的古洋壳向双溪坞陆弧地体之下俯冲的过程中,俯冲洋壳在50~80km深处发生部分熔融形成熔体,熔体在经过地幔楔时交代地幔橄榄岩,最终形成高硅埃达克质花岗闪长岩。陈蔡花岗闪长岩的原岩形成时间为838~836Ma,暗示此时俯冲消减仍在进行,扬子与华夏仍未最终碰撞。江南造山带西段和中段位于晋宁期不整合面之下的双桥山群及其相当地层和同期火山-侵入岩形成于880~825Ma,而晋宁期不整合面之上的板溪群及其相当地层和同期火山-侵入岩形成于820~780Ma(如周金城等, 2014)。因此扬子与华夏在江南西段和中段的最终拼合可能发生于825~820Ma。最近,笔者在侵入于陈蔡群捣臼湾组的花岗闪长片麻岩获得了816±5Ma(MSWD=0.9,n=16)和803±7Ma(MSWD=1.1,n=6)的LA-ICP-MS锆石U-Pb年龄,其原岩的形成可能与陈蔡地区的新元古代弧后盆地的关闭有关(作者未刊出资料),因此扬子与华夏在江南东段的最终拼合时间可能为~820Ma,说明江南各区段的拼合时间较为一致。
5 结论(1) 江南东段陈蔡群中的花岗闪长岩测得的锆石LA-ICP-MS 206Pb/238U加权平均年龄为838±4Ma、836±4Ma,表明其形成于新元古代。
(2) 江南东段陈蔡群中的花岗闪长岩具有高硅埃达克岩的地球化学特征,系扬子板块与华夏板块之间的古洋壳向双溪坞陆弧地体俯冲的过程中,俯冲的大洋板片熔体在经过地幔楔时被地幔楔橄榄岩同化和交代的产物。暗示在836Ma时洋壳仍在消减,扬子与华夏仍未最终拼合。
(3) 扬子板块与华夏板块在江南造山带各区段可能有着一致的拼合时间,约在825~820Ma。
致谢 感谢两位匿名审稿专家对论文提出的建议性意见和建议。Zhang YH研究员对本文的野外工作给予了大力指导,刘汇川和甘成势博士对论文思路提出了中肯的意见,张乐老师等为本文的分析测试给予了热情的帮助,在此表示感谢。
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0 |
Bureau of Geology and Mineral Resources of Zhejiang Province (BGMRZ). 1996. Stratgraphy (lithostratic) of Zhejiang Province. Wuhan: China University of Geosciences Press (in Chinese)
|
Carmichael IS. 2002. The andesite aqueduct: Perspectives on the evolution of intermediate magmatism in west-central (105~99°W) Mexico. Contributions to Mineralogy and Petrology, 143(6): 641-663 DOI:10.1007/s00410-002-0370-9 |
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51 DOI:10.1007/s004100050467 |
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316 DOI:10.1016/j.lithos.2011.09.013 |
Chen DY and Xu WC. 1993. The geochemical study of metamorphic conditions and tectonic settings for metamorphic rocks of Chencai Group, Zhejiang, China. Journal of Mineralogy and Petrology, 13(2): 29-36 (in Chinese with English abstract) |
Chen H, Ni P, Chen RY, Lv ZC, Pang ZS, Wang GG and Yuan HX. 2016. Chronology and geological significance of spillite-keratophyre in Pingshui Formation, Northwest Zhejiang Province. Geology in China, 43(2): 410-418 (in Chinese with English abstract) |
Chen SH, Zhou XH, Li JL, Chen HL and Bao CM. 1999. Geochemistry of the amphibolites from Chencai Group, Zhejiang Province: Implications for the tectonic settings. Scientia Geologica Sinica, 34(2): 154-165 (in Chinese with English abstract) |
Chen ZH, Guo KY, Dong YG, Chen R, Li LM, Liang YH, Li CH, Yu XM, Zhao L and Xing GF. 2009a. Possible Early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry. Science in China (Series D), 52(7): 925-939 DOI:10.1007/s11430-009-0071-6 |
Chen ZH, Xing GF, Guo KY, Dong YG, Chen R, Zeng Y, Li LM, He ZY and Zhao L. 2009b. Petrogenesis of keratophyes in the Pingshui Group, Zhejiang: Constraints from zircon U-Pb ages and Hf isotopes. Chinese Science Bulletin, 54(9): 1570-1578 |
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1 |
Condie KC. 2005. TTGs and adakites: Are they both slab melts?. Lithos, 80(1-4): 33-44 DOI:10.1016/j.lithos.2003.11.001 |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0 |
Defant MJ and Drummond MS. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550 DOI:10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2 |
Gao LZ, Ding XZ, Liu YX, Zhang CH, Zhang H, Huang ZZ, Xu XM and Zhou ZY. 2014a. SHRIMP zircon U-Pb dating of Neoproterozoic Chencai Complex in Jiangshan- Shaoxing fault zone and its implications. Geological Bulletin of China, 33(5): 641-648 (in Chinese with English abstract) |
Gao LZ, Zhang H, Ding XZ, Liu YX, Zhang CH, Huang ZZ, Xu XM and Zhou ZY. 2014b. SHRIMP zircon U-Pb dating of the Jiangshan-Shaoxing faulted zone in Zhejiang and Jiangxi. Geological Bulletin of China, 33(6): 763-775 (in Chinese with English abstract) |
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162 |
Hu YH, Gu MG, Xu Y, Yu SQ, Wang JE and He Y. 2011. The confirmation of the age of Caledonian Chencai Group in Zhuji area of Zhejiang Province and its geological significance. Geological Bulletin of China, 30(11): 1661-1670 (in Chinese with English abstract) |
Huang H, Gao S, Hu ZC, Liu XM and Yuan HL. 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning: Implication for delamination of newly formed lower crust. Science in China (Series D), 50(12): 1773-1786 DOI:10.1007/s11430-007-0121-x |
Kang L, Xiao PX, Gao XF, Xi RG and Yang ZC. 2016. Chronology, geochemistry and petrogenesis of monzonitic granite and quartz diorite in Mangai area: Its inspiration to Early Paleozoic tectonic-magmatic evolution of the southern Altyn Tagh. Acta Petrologica Sinica, 32(6): 1731-1748 (in Chinese with English abstract) |
Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177-189 DOI:10.1016/0040-1951(93)90295-U |
Kong XS, Bao CM and Gu MG. 1994. Discussion for main geological features and tectonic evolution of Chencai Group in Zhuji district, Zhejiang Province. Geology of Zhejiang, 10(1): 15-29 (in Chinese with English abstract) |
Li JW, Zhao XF, Zhou MF, Ma CQ, de Souza ZS and Vasconcelos P. 2009a. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409 DOI:10.1007/s00410-008-0341-x |
Li WX and Li XH. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: Geochemical and Nd isotopic evidence. Precambrian Research, 122(1-4): 29-44 DOI:10.1016/S0301-9268(02)00206-1 |
Li WX and Li XH. 2004. Adakitic granites within the NE Jiangxi ophiolites, South China- geochemical and Nd isotopic evidence. Geological Journal of China Universities, 10(2): 199-208 (in Chinese with English abstract) |
Li XH. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57 DOI:10.1016/S0301-9268(99)00020-0 |
Li XH, Liu Y, Tu XL, Hu GQ and Zeng W. 2002. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract) |
Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y and Wingate MTD. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma?. Precambrian Research, 122(1-4): 45-83 DOI:10.1016/S0301-9268(02)00207-3 |
Li XH, Liu DY, Sun M, Li WX, Liang XR and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231 DOI:10.1017/S0016756803008823 |
Li XH, Li WX, Li ZX and Liu Y. 2008. 850~790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341-357 DOI:10.1016/j.lithos.2007.04.007 |
Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF and Yang YH. 2009b. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117-128 DOI:10.1016/j.precamres.2009.07.004 |
Li XH, Li WX and He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract) |
Li ZX, Li XH, Zhou HW and Kinny P D. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163-166 |
Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL and Bao C. 2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793 DOI:10.1130/B30021.1 |
Liang XR, Wei GJ, Li XH and Liu Y. 2003. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract) |
Lin SF, Xing GF, Davis DW, Yin CQ, Wu ML, Li LM, Jiang Y and Chen ZY. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319-322 |
Liu JF, Chi XG, Zhao Z, Hu ZC and Chen JQ. 2013. Zircon U-Pb age and petrogenetic discussion on Jianshetun adakite in Balinyouqi, Inner Mongolia. Acta Petrologica Sinica, 29(3): 827-839 (in Chinese with English abstract) |
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004 |
Ludwig, KR. 2001. Users Manual for Isoplot/Ex Rev. 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. 2001
|
Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593 DOI:10.1016/j.epsl.2005.12.034 |
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24 |
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9 |
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521 DOI:10.1093/petrology/37.6.1491 |
Qi L, Hu J and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513 DOI:10.1016/S0039-9140(99)00318-5 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356 |
Rudnick RL. 1995. Making continental crust. Nature, 378(6557): 571-578 DOI:10.1038/378571a0 |
Shu LS, Zhou GQ, Shi YS and Yin Y. 1994. Study of the high pressure metamorphic blueschist and its Late Proterozoic age in the eastern Jiangnan belt. Chinese Science Bulletin, 39(14): 1200-1204 |
Shu LS, Faure M, Yu JH and Jahn BM. 2011. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263-276 DOI:10.1016/j.precamres.2011.03.003 |
Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1): 1-33 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Tan QL. 2017. Neoproterozoic magmatism in NE Zhejiang Province and its tectonic implications. Ph. D. Dissertation. Guangzhou: Sun Yat-sen University (in Chinese with English summary)
|
Tan QL, Wang YJ, Zhang YZ, Li SB, Zhou YZ and Wang YK. 2017. Taohong Diorite from Pingshui Region in eastern Jiangnan Orogen: Evidence for Early Neoproterozoic oceanic crust subduction. Earth Science, 42(2): 173-190 (in Chinese with English abstract) |
Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Jia XH and Jiang ZQ. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300 DOI:10.1016/j.chemgeo.2010.08.012 |
Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Oxford Press
|
Wang D, Wang XL, Zhou JC and Shu XJ. 2013a. Unraveling the Precambrian crustal evolution by Neoproterozoic conglomerates, Jiangnan Orogen: U-Pb and Hf isotopes of detrital zircons. Precambrian Research, 233: 223-236 DOI:10.1016/j.precamres.2013.05.005 |
Wang Q, Xu JF and Zhao ZH. 2001. The summary and comment on research on a new kind of igneous rock-adakite. Advance in Earth Sciences, 16(2): 201-208 (in Chinese with English abstract) |
Wang Q, McDermott F, Xu JF, Bellon H and Zhu YT. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 33(6): 465-468 DOI:10.1130/G21522.1 |
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144 DOI:10.1093/petrology/egi070 |
Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F and Bai ZH. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the Northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract) |
Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007a. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636 DOI:10.1016/j.gca.2007.03.008 |
Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF and Chu ZY. 2007b. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2): 42-64 DOI:10.1016/j.chemgeo.2006.08.013 |
Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F and Chu ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171 DOI:10.1016/j.epsl.2008.04.034 |
Wang XL, Zhou JC, Griffin WL, Zhao GC, Yu JH, Qiu JS, Zhang YJ and Xing GF. 2014a. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171 DOI:10.1016/j.precamres.2013.12.023 |
Wang Y, Zhang Q and Qian Q. 2000. Adakite: Geochemical characteristics and tectonic significances. Scientia Geologica Sinica, 35(2): 251-256 (in Chinese with English abstract) |
Wang YJ, Fan WM, Zhang GW and Zhang YH. 2013b. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305 DOI:10.1016/j.gr.2012.02.019 |
Wang YJ, Zhang AM, Cawood PA, Fan WM, Xu JF, Zhang GW and Zhang YZ. 2013c. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an Early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Research, 231: 343-371 DOI:10.1016/j.precamres.2013.03.020 |
Wang YJ, Zhang YZ, Fan WM, Geng HY, Zou HP and Bi XW. 2014b. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses. Precambrian Research, 249: 144-161 DOI:10.1016/j.precamres.2014.05.003 |
Wang YJ, Gan CS, Tan QL, Zhang YZ, He HY, Qian X and Zhang YH. 2018. Early Neoproterozoic (~840Ma) slab window in South China: Key magmatic records in the Chencai Complex. Precambrian Research, 314: 434-451 DOI:10.1016/j.precamres.2018.06.002 |
Wang ZH, Yang H, Ge WC, Bi JH, Zhang YL and Xu WL. 2016. Discovery and geological significance of the Eocene granodiorites in the Sanjiang basin, NE China: Evidence from zircon U-Pb chronology, geochemistry and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 32(6): 1823-1838 (in Chinese with English abstract) |
Xia XP, Sun M, Geng HY, Sun YL, Wang YJ and Zhao GC. 2011. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS. Journal of Analytical Atomic Spectrometry, 26(9): 1868-1871 DOI:10.1039/c1ja10116a |
Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945-948 DOI:10.1130/G22711A.1 |
Xu JF, Castillo PR, Li XH, Yu XY, Zhang BR and Han YW. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters, 198(3-4): 323-337 DOI:10.1016/S0012-821X(02)00536-8 |
Xue HM, Ma F, Song YQ and Xie YP. 2010. Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks. Acta Petrologica Sinica, 26(11): 3215-3244 (in Chinese with English abstract) |
Yao JL, Shu LS, Santosh M and Xu ZQ. 2014. Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: Zircon U-Pb ages, Hf isotope and whole-rock geochemistry from the Chencai Group. Journal of the Geological Society, 171(2): 281-297 DOI:10.1144/jgs2013-036 |
Yao JL, Shu LS, Cawood PA and Li JY. 2016. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan Orogenic belt in South China. Precambrian Research, 275: 265-277 DOI:10.1016/j.precamres.2016.01.023 |
Ye MF, Li XH, Li WX, Liu Y and Li ZX. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2): 144-156 DOI:10.1016/j.gr.2006.09.001 |
Zhang BT, Ling HF, Shen WZ, Liu JS, Yang JD and Tao XC. 1990. Sm-Nd isochronic age of spilite-keratophyre of Shuangxiwu Group in Xiqiu, Shaoxing, Zhejiang Province. Journal of Nanjing University (Earth Science), 2: 9-14 (in Chinese with English abstract) |
Zhang Q, Wang Y, Liu W and Wang YL. 2002. Adakite: Its characteristics and implication. Geological Bulletin of China, 21(7): 431-435 (in Chinese with English abstract) |
Zhang Q. 2008. Adakite research: Retrospect and prospect. Geology in China, 35(1): 32-39 (in Chinese with English abstract) |
Zhang YZ, Wang YJ, Guo XF, Gan CS, Xing XW and Song JJ. 2015. Geochronology and geochemistry of Cihua Neoproterozoic high-Mg andesites in Jiangnan Orogen and their tectonic implications. Earth Science (Journal of China University of Geosciences), 40(11): 1781-1795 (in Chinese with English abstract) DOI:10.3799/dqkx.2015.159 |
Zhang YZ and Wang YJ. 2016. Early Neoproterozoic (~840Ma) arc magmatism: Geochronological and geochemical constraints on the metabasites in the central Jiangnan Orogen. Precambrian Research, 275: 1-17 DOI:10.1016/j.precamres.2015.11.006 |
Zhao GC. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Research, 27(3): 1173-1180 DOI:10.1016/j.gr.2014.09.004 |
Zhao JH, Zhou MF, Yan DP, Zheng JP and Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299-302 DOI:10.1130/G31701.1 |
Zhao JH, Zhang SB and Wang XL. 2018. Neoproterozoic geology and reconstruction of South China. Precambrian Research, 309: 1-5 DOI:10.1016/j.precamres.2018.02.004 |
Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX and Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96(1-2): 127-150 DOI:10.1016/j.lithos.2006.10.003 |
Zheng YF, Wu RX, Wu YB, Zhang SB, Yuan HL and Wu FY. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383 DOI:10.1016/j.precamres.2008.01.004 |
Zheng YF, Xiao WJ and Zhao GC. 2013. Introduction to tectonics of China. Gondwana Research, 23(4): 1189-1206 DOI:10.1016/j.gr.2012.10.001 |
Zhou JC, Wang XL, Qiu JS and Gao JF. 2004. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: Arc or plume magmatism?. Geochemical Journal, 38(2): 139-152 DOI:10.2343/geochemj.38.139 |
Zhou JC, Wang XL and Qiu JS. 2008. Is the Jiangnan Orogenic belt a Grenvillian Orogenic belt: Some problems about the Precambrian geology of South China. Geological Journal of China Universities, 14(1): 64-72 (in Chinese with English abstract) |
Zhou JC, Wang XL and Qiu JS. 2014. Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogen. Beijing: Science Press (in Chinese)
|
Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67 DOI:10.1016/S0012-821X(01)00595-7 |
陈迪云, 徐伟昌. 1993. 浙江陈蔡群变质岩变质条件及构造环境的地球化学探讨. 矿物岩石, 13(2): 29-36. |
陈辉, 倪培, 陈仁义, 吕志成, 庞振山, 王国光, 袁慧香. 2016. 浙西北平水铜矿细碧角斑岩成岩年龄及其地质意义. 中国地质, 43(2): 410-418. DOI:10.3969/j.issn.1000-3657.2016.02.004 |
陈绍海, 周新华, 李继亮, 陈汉林, 包超民. 1999. 浙江陈蔡群斜长角闪岩的地球化学特征及其大地构造背景探讨. 地质科学, 34(2): 154-165. |
陈志洪, 郭坤一, 董永观, 陈荣, 李龙明, 梁一鸿, 李春海, 俞锡明, 赵玲, 邢光福. 2009a. 江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动:来自锆石LA-ICP-MS年代学和地球化学的证据. 中国科学(D辑), 39(7): 994-1008. |
陈志洪, 邢光福, 郭坤一, 董永观, 陈荣, 曾勇, 李龙明, 贺振宇, 赵玲. 2009b. 浙江平水群角斑岩的成因:锆石U-Pb年龄和Hf同位素制约. 科学通报, 54(5): 610-617. |
高林志, 丁孝忠, 刘燕学, 张传恒, 张恒, 黄志忠, 许兴苗, 周宗尧. 2014a. 江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 33(5): 641-648. |
高林志, 张恒, 丁孝忠, 刘燕学, 张传恒, 黄志忠, 许兴苗, 周宗尧. 2014b. 江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据. 地质通报, 33(6): 763-775. |
胡艳华, 顾明光, 徐岩, 余盛强, 王加恩, 贺跃. 2011. 浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义. 地质通报, 30(11): 1661-1670. DOI:10.3969/j.issn.1671-2552.2011.11.002 |
康磊, 校培喜, 高晓峰, 奚仁刚, 杨再朝. 2016. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因――对阿尔金南缘早古生代构造-岩浆演化的启示. 岩石学报, 32(6): 1731-1748. |
孔祥生, 包超民, 顾明光. 1994. 浙江诸暨地区陈蔡群主要地质特征及其构造演化探讨. 浙江地质, 10(1): 15-29. |
李武显, 李献华. 2004. 赣东北蛇绿岩中的埃达克型花岗岩――地球化学和Nd同位素证据. 高校地质学报, 10(2): 199-208. DOI:10.3969/j.issn.1006-7493.2004.02.006 |
李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294. DOI:10.3321/j.issn:0379-1726.2002.03.010 |
李献华, 李武显, 何斌. 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解――观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. DOI:10.3969/j.issn.1007-2802.2012.06.002 |
梁细荣, 韦刚健, 李献华, 刘颖. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91-96. DOI:10.3321/j.issn:0379-1726.2003.01.013 |
刘建峰, 迟效国, 赵芝, 胡兆初, 陈军强. 2013. 内蒙古巴林右旗建设屯埃达克岩锆石U-Pb年龄及成因讨论. 岩石学报, 29(3): 827-839. |
舒良树, 周围庆, 施央申, 殷俊. 1993. 江南造山带东段高压变质蓝片岩及其地质时代研究. 科学通报, 38(20): 1879-1882. DOI:10.3321/j.issn:0023-074X.1993.20.024 |
谭清立. 2017.浙东北地区新元古代岩浆作用及其构造意义.博士学位论文.广州: 中山大学
|
谭清立, 王岳军, 张玉芝, 李庶波, 周永智, 王玉琨. 2017. 江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据. 地球科学, 42(2): 173-190. |
王强, 许继锋, 赵振华. 2001. 一种新的火成岩――埃达克岩的研究综述. 地球科学进展, 16(2): 201-208. DOI:10.3321/j.issn:1001-8166.2001.02.010 |
王强, 赵振华, 许继峰, Wyman DA, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11-30. |
王焰, 张旗, 钱青. 2000. 埃达克岩(adakite)的地球化学特征及其构造意义. 地质科学, 35(2): 251-256. DOI:10.3321/j.issn:0563-5020.2000.02.016 |
王智慧, 杨浩, 葛文春, 毕君辉, 张彦龙, 许文良. 2016. 东北三江盆地始新世花岗闪长岩的发现及其地质意义:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素证据. 岩石学报, 32(6): 1823-1838. |
薛怀民, 马芳, 宋永勤, 谢亚平. 2010. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束. 岩石学报, 26(11): 3215-3244. |
章邦桐, 凌洪飞, 沈渭洲, 刘继顺, 杨杰东, 陶仙陪. 1990. 浙江绍兴西裘双溪坞群细碧-角斑岩的Sm-Nd等时年龄. 南京大学学报(地球科学), 2: 9-14. |
张旗, 王焰, 刘伟, 王元龙. 2002. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435. DOI:10.3969/j.issn.1671-2552.2002.07.012 |
张旗. 2008. 埃达克岩研究的回顾和前瞻. 中国地质, 35(1): 32-39. |
张玉芝, 王岳军, 郭小飞, 甘成势, 邢晓婉, 宋菁菁. 2015. 江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义. 地球科学-中国地质大学学报, 40(11): 1781-1795. |
浙江省地质矿产局. 1996. 浙江省岩石地层. 武汉: 中国地质大学出版社.
|
周金城, 王孝磊, 邱检生. 2008. 江南造山带是否格林威尔期造山带?关于华南前寒武纪地质的几个问题. 高校地质学报, 14(1): 64-72. DOI:10.3969/j.issn.1006-7493.2008.01.007 |
周金城, 王孝磊, 邱检生. 2014. 江南造山带新元古代构造-岩浆演化. 北京: 科学出版社.
|