岩石学报  2019, Vol. 35 Issue (6): 1738-1756, doi: 10.18654/1000-0569/2019.06.07   PDF    
西藏革吉地区沙木罗组碎屑锆石年代学研究:物源及其对班公湖-怒江特提斯洋西段闭合时限的制约
刘文1, 吴建亮1, 雷传扬1,2, 王波1, 郎兴海2     
1. 四川省地质调查院, 成都 610081;
2. 成都理工大学, 成都 610059
摘要:班公湖-怒江特提斯洋盆的闭合时限对理解班公湖-怒江结合带的构造演化意义重大。本文采用碎屑锆石年代学的方法,分析了班公湖-怒江结合带西段革吉地区沙木罗组下段与沙木罗组上段的物源特征及差异,为班公湖-怒江特提斯洋盆西段的闭合时间提供了新的证据。研究结果表明沙木罗组下段碎屑锆石年龄分布于2586±26Ma~130±1.5Ma之间,显示出1个主峰年龄约165Ma,1个次峰年龄约240Ma。碎屑锆石年龄分6个组别,集中在2600~2400Ma、2000~1900Ma、1000~840Ma、500~400Ma、340~200Ma和200~130Ma,分别与新太古代克拉通汇聚事件、哥伦比亚超大陆相关的构造热事件、新元古代构造热事件、冈瓦纳大陆边缘安第斯型造山作用的岩浆活动事件、龙木错-双湖结合带岩浆活动事件和班公湖-怒江特提斯洋盆俯冲消减的岩浆活动事件一一对应。沙木罗组上段碎屑锆石年龄分布于2558±22Ma~101±1.0Ma之间,显示出1个主峰年龄约107Ma,2个次峰年龄分别约226Ma、150Ma。碎屑锆石年龄集中分布于1个年龄组为122~101Ma,记录了班公湖-怒江特提斯洋盆俯冲消减的岩浆活动。通过与潜在源区的年龄谱峰进行对比,沙木罗组下段物源区与南羌塘地块有良好的亲缘性,表明其沉积物物源主要为南羌塘地块,其中南羌塘岩浆弧可能为其主要贡献者。沙木罗组上段物源区与南羌塘地块和北拉萨地块均具有良好的亲缘性,其沉积物物源具有双源性,分别来源于南羌塘岩浆弧和北拉萨岩浆弧。沙木罗组下段和上段沉积物物源的差异性暗示它们形成的沉积环境和物源区不同。对比分析沙木罗组下段和上段岩石学、碎屑锆石形态学等特征,也揭示了类似的差异性。结合其他相关地质资料,认为班公湖-怒江特提斯洋盆在革吉地区的主体闭合时间约115~110Ma,其代表性岩浆事件为南羌塘地块和北拉萨地块的早白垩世岩浆弧,沙木罗组为班公湖-怒江特提斯洋盆由俯冲消减到闭合过程中的沉积产物。
关键词: 碎屑锆石     沙木罗组     闭合时限     班公湖-怒江结合带    
Detrital zircon geochronology of the Shamuluo Formation in Geji region of central Tibet: Provenance and evidence for the closure time of the Bangong Co-Nujiang Tethys Ocean
LIU Wen1, WU JianLiang1, LEI ChuanYang1,2, WANG Bo1, LANG XingHai2     
1. Sichuan Geological Survey, Chengdu 610081, China;
2. Chengdu University of Technology, Chengdu 610059, China
Abstract: The closure time of the Bangong Co-Nujiang Tethys Ocean is crucial to better understand the tectonic evolution of this suture zone. In this contribution, we carried out a systematic U-Pb analysis of detrital zircons to provide insights into the provenance of the lower and upper subunits of the Shamuluo Formation in Geji region of central Tibet, and the closure time of the Bangong Co-Nujiang Tethys Ocean. The dating results show that the concordant detrital zircon ages from the lower subunit of the Shamuluo Formation range from 2586±26Ma to 130±1.5Ma with a main peak at about 165Ma and a second peak at about 240Ma. Detrital zircon ages show six age clusters at 2600~2400Ma, 2000~1900Ma, 1000~840Ma, 500~400Ma, 340~200Ma and 200~130Ma respectively, representing craton convergent events in Late Archean, tectonothermal event related to the Columbia Supercontinent, tectonothermal event in new Proterozoic, magmatic activity event of Andean-type orogenic activity on the margin of the Gondwana Supercontinent, magmatic activity event of the Longmu Co-Shuanghu suture and magmatic activity event of the Bangong Co-Nujiang Tethys Ocean subduction correspondently. However, the concordant detrital zircon ages from the upper subunit of the Shamuluo Formation range from 2558±22Ma to 101±1.0Ma with a main peak at about 107Ma and two secondary peaks at about 226Ma and 150Ma. Detrital zircon ages show one age cluster at 122~101Ma which records the subduction of the Bangong Co-Nujiang Tethys Ocean. Compared with age spectrum from the adjacent regions, provenance of sediments from the lower subunit of the Shamuluo Formation shows close affinity to the South Qiangtang terrane, or more specifically the southern Qiangtang magmatic arc. Whereas those from the upper subunit of the Shamuluo Formation has a bidirectional provenance, showing close affinity to the southern Qiangtang magmatic arc and the North Lhasa magmatic arc respectively. The difference of their provenances indicates the different sedimentary environment and source area between the lower and upper subunit of the Shamuluo Formation. By comparison with results of sandstone petrology and detrital zircon morphology analysis, a similar difference between these two subunits has also been revealed. Combined with results from other studies, we propose that the closure time of the Bangong Co-Nujiang Tethys Ocean in Geji region is about 115Ma to 110Ma, during which extensive magmatism occurred in the southern Qiangtang magmatic arc and the North Lhasa magmatic arc, and as a result, the Shamuluo Formation is closely associated with the tectonic evolution of the Bangong Co-Nujiang Tethys Ocean from subduction to closure.
Key words: Detrital Zircon     Shamuluo Formation     closure time     Bangong Co-Nujiang suture    

班公湖-怒江结合带作为羌塘地块与拉萨地块的碰撞结合带,是一条规模巨大、地质构造复杂的构造带,其对探讨青藏高原特提斯洋构造演化具有重要意义(潘桂棠等,2006曲晓明等,2009)。近年来,班公湖-怒江特提斯洋盆的构造演化引起了众多学者的广泛关注,但一些基础地质问题目前仍存在许多争议,如洋盆打开时间、开始俯冲时间与俯冲极性、闭合时间等。目前,关于班公湖-怒江特提斯洋盆的开合时间,至少存在以下5种观点:(1)许志琴等(2006)认为班公湖-怒江特提斯洋盆晚三叠世开始俯冲,侏罗纪完成洋盆闭合及地体碰撞;(2)莫宣学和潘桂棠(2006)认为班公湖-怒江特提斯洋盆的打开时间不晚于晚三叠世,中侏罗世(约170Ma)开始双向俯冲,最终闭合于晚侏罗世(约159Ma)至早白垩世末(约99Ma);(3)Zhu et al.(2013)认为班公湖-怒江特提斯洋盆晚二叠世(约260Ma)开始向南俯冲,晚三叠世(约210Ma)开始南北双向俯冲,早白垩世早期(约140Ma)仅向南俯冲,至晚白垩世(约80Ma)完全闭合;(4)邱瑞照等(2004)认为班公湖-怒江特提斯洋盆中侏罗世开始向南俯冲,俯冲过程伴随洋内弧的形成和地幔橄榄岩、玻安岩、岛弧拉斑玄武岩的空间共生,洋盆最终在早白垩世末期封闭;(5)梁桑等(2017)认为班公湖-怒江特提斯洋盆西段早侏罗世开始北向俯冲,中侏罗世(约160Ma)达到峰期,晚侏罗世演化成南北双向俯冲,俯冲持续到早白垩世,直到晚白垩世洋盆彻底关闭。

与重大构造事件相关的沉积物中碎屑锆石可以记录地层沉积之前和同时期的岩浆事件,可用于示踪沉积物源区,进而探讨相关地区的构造演化(Wu et al., 2010Cawood et al., 2012)。前人在班公湖-怒江结合带的日土地区、改则地区以及班戈地区开展了沙木罗组碎屑锆石年代学的研究,认为沙木罗组物源主要来自于南羌塘地块(樊帅权等,2011Huang et al., 2017Li et al., 2017杨一凡,2017),但对沙木罗组下段与沙木罗组上段碎屑锆石年代学、物源的差异研究较少。本文通过对班公湖-怒江结合带西段革吉地区沙木罗组下段与沙木罗组上段碎屑锆石进行U-Pb定年,并与临近的潜在源区进行年龄对比分析,研究沙木罗组下段和沙木罗组上段的物源差异,为班公湖-怒江特提斯洋盆西段的闭合时间提供新的证据。

1 区域地质背景 1.1 概述

研究区位于西藏革吉县城北约70km处,大地构造位置处于班公湖-怒江结合带西段。自晚古生代以来,该区经历了大洋扩张、俯冲、弧-陆(弧)碰撞造山、高原隆升等多阶段多期次的构造演化过程,形成了以北西向构造为主体,多方向、多期次构造并存的复杂构造格局(图 1)。区内出露的地层为上三叠统-侏罗系东巧蛇绿岩群(T3JD.)、下-中侏罗统木嘎岗日岩群(J1-2M.)、上侏罗统-下白垩统沙木罗组(J3K1s)、下白垩统去申拉组(K1q)、古近系牛堡组(E1-2n)和美苏组(E2m)、新近系唢呐湖组(Ns)、第四系(Qh)。东巧蛇绿岩群构造变形强烈,主要出露超基性、基性岩块,呈透镜状产出。木嘎岗日岩群为一套复理石建造,主要为变质岩屑长石砂岩、粉砂质板岩。去申拉组为一套碎屑岩-火山岩建造,下部以碎屑岩为主,上部以基性火山岩为主,夹两层泥质硅质岩。牛堡组、唢呐湖组为一套碎屑岩建造。美苏组为一套基性-中性-酸性-酸碱性火山岩建造。区内受岩浆活动影响强烈,主要表现为白垩纪和古近纪中酸性侵入岩、古近纪火山岩,侵入岩呈岩基产出,火山岩呈层状产出。区内断裂较发育,以NW向为主,NNW向次之。NW向断裂断面总体南倾,倾角中等,为一系列逆冲断层,是班公湖-怒江特提斯洋盆南向俯冲留下的构造痕迹。NNW向断裂为右行走滑断裂,断裂切割了古近系,它们可能是碰撞造山期后走滑调整阶段的产物,将先期断裂切割错位,区域上形成北北西向走滑拉分盆地。

图 1 研究区大地构造位置图及地质简图 (a)青藏高原大地构造格架图(据Zhang et al., 2004);(b)藏北大地构造格架图及岩浆岩分布图(底图据Huang et al., 2017Zhang et al., 2012Zhu et al., 2016);(c)研究区地质简图(据四川省地质调查院, 2003; 江西省地质调查研究院, 2004). KLSZ-昆仑结合带;JSSZ-金沙江结合带;LSSZ-龙木错-双湖结合带;BNSZ-班公湖-怒江结合带;YZSZ-雅鲁藏布江结合带. 1-第四系;2-唢呐湖组;3-美苏组;4-牛堡组;5-去申拉组;6-沙木罗组上段;7-沙木罗组下段;8-木嘎岗日岩群;9-东巧蛇绿岩群;10-渐新世正长花岗岩;11-晚白垩世正长花岗岩;12-晚白垩世花岗岩;13-早白垩世花岗闪长岩;14-早白垩世闪长岩;15-闪长玢岩脉;16-石英脉;17-石英二长闪长岩脉;18-区域上沙木罗组分布情况;19-角度不整合界线;20-性质不明断层;21-隐伏断层;22-平移断层;23-采样位置及编号;24-照片位置及编号 Fig. 1 Sketch tectonic map and geological map of the study area (a) sketch tectonic map of Tibetan Plateau (after Zhang et al., 2004); (b) sketch tectonic map of North Tibet and the distribution map of magmatic rocks (base map after Huang et al., 2017; Zhang et al., 2012; Zhu et al., 2016); (c) geological map of study area. KLSZ-Kunlun Suture Zone; JSSZ-Jinsa Suture Zone; LSSZ-Longmucuo-Shuanghu Suture Zone; BNSZ-Bangong Co-Nujiang Suture Zone; YZSZ-Yarlung Zangbo Suture Zone. 1-Quaternary; 2-Suonahu Fm.; 3-Meisu Fm.; 4-Niubao Fm.; 5-Qushenla Fm.; 6-the upper subunit of Shamuluo Fm.; 7-the lower subunit of Shamuluo Fm.; 8-Muggar Kangri Group; 9-Dongqiao ophiolite Group; 10-Oligocene syenogranite; 11-Late Cretaceous syenogranite; 12-Late Cretaceous granite; 13-Early Cretaceous granodiorite; 14-Early Cretaceous diorite; 15-diorite-porphyrite vein; 16-quartz vein; 17-quartz monzodiorite vein; 18-the distribution of Shamuluo Fm. in area; 19-angular unconformity; 20-unknown nature fault; 21-buried fault; 22-strike-slip fault; 23-sampling location; 24-photo location

① 四川省地质调查院. 2003. 1:25万革吉县幅地质图

② 江西省地质调查研究院. 2004. 1:25万日土县幅地质图

1.2 岩石学特征与沉积环境

笔者在研究区亚卓一带开展了沙木罗组野外实测剖面,剖面起点坐标:N81°20′30″、E33°00′00″,剖面基岩出露良好,顶界被第四系冲洪积物覆盖,底界被牛堡组角度不整合覆盖(图 2a)。根据对沙木罗组剖面的野外观察,该组整体受变形变质作用影响小,原岩结构构造清晰可见。据相邻岩层的不同岩性特征将沙木罗组细分为沙木罗组下段(J3K1s1)和沙木罗组上段(J3K1s2)。剖面特征简述如下:

图 2 实测剖面图、野外露头与岩石显微镜下特征 (a)实测地质剖面简图;(b)沙木罗组上段基本层序;(c)沙木罗组下段基本层序;(d、e)沙木罗组下段岩屑石英砂岩露头(照片位置见图 1);(f)沙木罗组上段长石岩屑杂砂岩露头(照片位置见图 1);(g)沙木罗组上段与下段整合接触(照片位置见图 1);(h)岩屑石英砂岩镜下照片(正交偏光);(i)长石岩屑杂砂岩镜下照片(正交偏光).1-第四系;2-牛堡组下段;3-沙木罗组上段;4-沙木罗组下段;5-砾岩;6-长石砂岩;7-岩屑石英砂岩;8-长石岩屑杂砂岩;9-粉砂质泥岩;10-泥岩;11-灰岩;12-安山质含角砾晶屑凝灰岩;13-取样位置及编号 Fig. 2 The measured section, outcrops and characters under microscope (a) the measured section; (b) basic sequence of the upper subunit of the Shamuluo Fm.; (c) basic sequence of the lower subunit of the Shamuluo Fm.; (d, e) outcrops of the lower subunit of the Shamuluo Fm.; (f) outcrops of the upper subunit of the Shamuluo Fm.; (g) conformable contacts; (h) lithic quartz sandstone by orthogonal polarization microscopic; (i) feldspathic lithic greywacke by orthogonal polarization microscopic. 1-Quaternary; 2-the lower subunit of the Niubao Fm.; 3-the upper subunit of the Shamuluo Fm.; 4-the lower subunit of the Shamuluo Fm.; 5-conglomerates; 6-feldspar sandstones; 7-lithic quartz sandstones; 8-feldspathic lithic greywackes; 9-silty mudstones; 10-mudstones; 11-limestones; 12-andesitic volcanic breccia-bearing crystal tuff; 13-sampling location

沙木罗组上段(J3K1s2),>1790.2m

未见顶,被第四系角度不整合覆盖

14.青灰色中-薄层状长石岩屑杂砂岩偶夹灰色泥岩,砂泥比约10:1~12:1,>701.2m

13.灰色粉砂质泥岩,103.3m

12.青灰色中层状长石岩屑杂砂岩偶夹深灰色-灰色泥岩,砂泥比约15:1,发育水平层理,871.1m

11.灰黑色薄层状板理化微晶灰岩,55.8m

10.灰色-杂色砾岩-青灰色中层状长石岩屑杂砂岩-深灰色-灰色泥岩组成的三元层序结构,三者比值约为4:7:1,58.8m

整合接触

沙木罗组下段(J3K1s1),>4413.1m

9.灰色安山质晶屑凝灰岩,276m

8.深灰色泥岩偶夹青灰色薄层状-透镜状岩屑石英砂岩,二者岩比约10:1~12:1,314.5m

7.青灰色中层状岩屑石英砂岩、青灰色薄层状岩屑石英砂岩、深灰色-灰色泥质不等厚韵律互层,发育水平层理,532.5m

6.深灰色泥岩夹青灰色薄层状岩屑石英砂岩,二者岩比约7:1~9:1,发育水平层理,849.6m

5.深灰色泥岩偶夹青灰色薄层状岩屑石英砂岩、灰色安山质晶屑凝灰岩,436.4m

4.灰色安山质火山角砾岩-灰色(含角砾)安山质晶屑凝灰岩-灰色安山岩(或灰色安山质沉凝灰岩)组成的火山喷发旋回(含17个喷发韵律),855.2m

3.深灰色-灰色泥岩夹青灰色中-薄层状岩屑石英砂岩,二者岩比约8:1,284.2m

2.深灰色泥岩偶夹灰色粉砂质泥岩,二者岩比约12:1~15:1,166.9m

1.深灰色泥岩偶夹青灰色薄层状岩屑石英砂岩,二者岩比约10:1。偶见石英脉,>697.8m

未见底,被牛堡组角度不整合覆盖。

沙木罗组下段整体上为深灰色-灰色泥岩夹青灰色中-薄层状岩屑石英砂岩的岩性组合,局部发育灰色安山质火山碎屑岩夹层,具类复理石建造,整体上代表斜坡相的深水沉积环境。基本层序可划分3类:(1)基本层序A,由青灰色中-薄层状岩屑石英砂岩与深灰色泥岩组成的二元层序结构组成,二者岩比约为1:3~1:12,具有较明显的下粗上细的正粒序,层序厚度约10~20m不等,为沙木罗组下段的主要层序;(2)基本层序B,由青灰色中层状岩屑石英砂岩、青灰色薄层状岩屑石英砂岩及深灰色泥岩组成的三元层序结构,具有较明显的下粗上细的正粒序,三者岩比约为3:5:8,层序厚度约8~25m不等;(3)基本层序C,由灰色粉砂质泥岩、深灰色泥岩组成的二元层序结构,二者岩比约为1:2,层序厚度约5~10m,该层序仅出露在沙木罗组下段的中部。

沙木罗组上段为青灰色中-薄层状长石岩屑杂砂岩夹深灰色泥岩、灰黑色微晶灰岩的岩性组合,底部发育一套灰色-杂色砾岩,总体上具分选差、快速堆积的特点,代表河口-滨海相的浅水沉积环境。基本层序可划分为3类:(1)基本层序A,由青灰色中层状长石岩屑杂砂岩、灰色粉砂质泥岩或泥岩组成的二元层序结构,具有较明显的下粗上细的正粒序,二者岩比约为6:1~8:1,层序厚度约7~15m不等,为沙木罗组上段的主要层序;(2)基本层序B,由青灰色中层状长石岩屑杂砂岩、青灰色薄层状长石岩屑杂砂岩与灰色-灰黑色泥岩组成的三元层序结构,三者岩比约8:3:1,层序厚度约2~8m不等;(3)基本层序C,由灰色-杂色砾岩、青灰色中层状长石岩屑杂砂岩、深灰色-灰色泥岩组成的三元层序结构,仅出露于沙木罗组上段底部,三者岩比约为4:7:1,层序厚度约20m。

样品TDN1采自沙木罗组下段顶部,岩性为岩屑石英砂岩(图 2b, d)。青灰色,中-细粒砂状结构,中-薄层状构造。碎屑含量约占88%,其中粒径<0.1mm者约占10%,0.1~0.2mm者约占80%,0.2~0.3mm者约占10%,分选好。碎屑呈次圆状-圆状,磨圆好。碎屑由石英(85%)、长石(7%)和岩屑(8%)组成。石英表面干净,个别颗粒可见波状消光;长石以正长石为主,少量为斜长石,部分长石表面可见弱的粘土化;岩屑为硅质岩岩屑、泥质岩岩屑、板岩岩屑。填隙物含量约占12%,成分为绢云母、粘土、微粒石英、方解石、绿泥石和极少量金属矿物。岩石呈孔隙式胶结,颗粒支撑。岩屑石英砂岩碎屑成分以石英为主,含少量正长石、斜长石,推断其源区母岩为花岗岩类岩石。碎屑分选性、磨圆度好,说明经历了长距离的搬运改造,属于高能环境的产物,后被搬运至深水环境与泥质岩形成类复理石建造。

样品PM1N1采自沙木罗组上段底部,岩性为长石岩屑杂砂岩(图 2c, e)。青灰色,中-细粒砂状结构,中-薄层状构造。碎屑含量约占80%,其中粒径<0.1mm者约占20%,0.1~0.25mm者约占50%,0.25~0.5mm者约占25%,0.5~0.8mm者约占5%,分选差。碎屑呈次棱角状,磨圆差。碎屑由石英(65%)、岩屑(25%)、长石(10%)和少量云母(<1%)组成。石英有重结晶现象,个别颗粒具波状消光;岩屑为泥质岩岩屑、石英砂岩岩屑;长石为斜长石和正长石;云母为少量白云母碎片。填隙物含量约占20%,成分为方解石、重结晶的微粒石英、绿泥石、绢云母、褐铁矿。岩石为杂基支撑,基底式胶结。长石岩屑杂砂岩碎屑成分以石英、斜长石、正长石为主,推断其源区母岩为花岗岩类岩石。碎屑分选性、磨圆度均差,说明搬运距离短,在低能环境下与较多灰泥同时沉积,使其呈杂基支撑。

2 分析方法

本文研究的2件样品,编号分别为TDN1和PM1N1。单块新鲜岩石样品重约5kg,样品经机械破碎、淘洗、重砂分离、磁选、电选后在双目镜下手工挑选出碎屑锆石。将挑选出的锆石排列紧密、整齐,以环氧树脂固结充填制成2.54cm的锆石靶并进行抛光。对抛光完成的锆石靶进行透/反射光照相,并采用扫描电镜开展锆石阴极发光图像分析,研究锆石的内部结构,为合理选取点位进行U-Pb年代学分析准备工作。锆石U-Pb同位素定年在武汉上谱分析科技有限责任公司利用LA-ICP-MS分析完成。激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。在等离子体中心气流(Ar+He)中加入了少量氮气,以提高仪器灵敏度、降低检出限和改善分析精密度(Hu et al., 2008)。另外,激光剥蚀系统配置了一个信号平滑装置,即使激光脉冲频率低达1Hz,采用该装置后也能获得光滑的分析信号(Hu et al., 2012)。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008, 2010)完成。锆石微量元素含量利用多个USGS参考玻璃作为多外标、Si作内标的方法进行定量计算(Liu et al., 2010)。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5个样品点,分析2次91500。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正(Liu et al., 2010)。锆石标准91500的U-Th-Pb同位素比值推荐值据文献(Wiedenbeck et al., 1995)。锆石样品的U-Pb年龄谐和图绘制采用Isoplot/Ex_ver3完成(Ludwig,2000)。

3 测试结果 3.1 锆石特征

在透射光下大部分锆石呈无色-浅灰色,部分显示出浅红棕色,透明-半透明。锆石颗粒形态分为两类:第一类锆石颗粒呈次圆状-圆状,磨圆好,表明其经历了较长距离的搬运,粒径约100μm,其长宽比约1:1;第二类锆石颗粒形态较自形,呈长柱状,表明搬运距离较短,粒径约100~200μm,其长宽比约2:1~3:1。沙木罗组下段碎屑锆石(TDN1)形态以第一类锆石为主,见少量第二类锆石(图 3a);沙木罗组上段碎屑锆石(PM1N1)形态以第二类锆石为主,见极少量第一类锆石(图 3b)。与样品TDN1相比,PM1N1碎屑锆石粒径较大。2件样品碎屑锆石CL图像显示清晰的韵律环带,环带宽度不一,但相差不大,少数锆石颗粒具核边结构。样品TDN1碎屑锆石Th/U比值变化于0.1~1.5之间(表 1),样品PM1N1锆石Th/U比值变化于0.1~2.2之间(表 2),均≥0.1,暗示均为岩浆成因锆石(吴元保和郑永飞,2004)。

图 3 沙木罗组下段(a,样品TDN1)和上段(b, 样品PM1N1)部分碎屑锆石CL阴极发光图 Fig. 3 CL images of selected detrital zircon grains from the lower subunit (a, Sample TDN1) and the upper subunit (b, Sample PM1N1) of Shamuluo Fm.

表 1 沙木罗组下段碎屑锆石LA-ICP-MS U-Pb年龄(样品TDN1) Table 1 LA-ICP-MS U-Pb ages of detrital zircons from the lower subunit of the Shamuluo Fm.(Sample TDN1)

表 2 沙木罗组上段碎屑锆石LA-ICP-MS U-Pb年龄(样品PM1N1) Table 2 LA-ICP-MS U-Pb ages of detrital zircons from the upper subunit of the Shamuluo Fm.(Sample PM1N1)
3.2 锆石年龄组成特征

本次对沙木罗组下段(TDN1)和沙木罗组上段(PM1N1)碎屑锆石进行LA-ICP-MS U-Pb年代学测试,将年龄数据谐和度在90%~100%的视为有效数据。考虑到年轻锆石放射性成因207Pb积累较少,当锆石年龄<1000Ma时使用206Pb/238U年龄,当锆石年龄>1000Ma时使用207Pb/206Pb年龄。样品TDN1获得74组有效数据,年龄分布于2586±26Ma~130±1.5Ma之间(表 1),在6个年龄组集中,分别为:2600~2400Ma、2000~1900Ma、1000~840Ma、500~400Ma、340~200Ma、200~130Ma(图 4a)。最新锆石年龄为130Ma,限定沙木罗组下段的沉积年龄上限为早白垩世早期。其中有41组年龄分布于480~130Ma之间,占总数的55%。在年龄频谱图上显示出1个主峰年龄约165Ma,1个次峰年龄约240Ma(图 4a)。样品PM1N1获得73组有效数据,年龄分布于2558±22Ma~101±1.0Ma之间(表 2),在1个年龄组集中,为122~101Ma(图 4b)。最新锆石年龄为101Ma,将研究区沙木罗组上段沉积年龄下限限制在早白垩世晚期。其中有49组年龄分布于122~101Ma之间,占总数的67%。在年龄频谱图上显示出1个主峰年龄约107Ma,2个次峰年龄分别约226Ma、150Ma(图 4b)。

图 4 沙木罗组下段(a, 样品TDN1)和上段(b, 样品PM1N1)碎屑锆石U-Pb年龄谐和图与年龄频谱图 Fig. 4 U-Pb concordia and frequency plots of detrital zircon grains from the lower subunit (a, Sample TDN1) and the upper subunit (b, Sample PM1N1) of the Shamuluo Fm.
4 讨论 4.1 年龄频谱图分析

通过分析每个碎屑锆石样品的年龄频谱图,沙木罗组下段碎屑锆石的年龄数据主要在6个年龄组集中,分别为:2600~2400Ma、2000~1900Ma、1000~840Ma、500~400Ma、340~200Ma和200~130Ma,沙木罗组上段碎屑锆石的年龄数据主要分布于1个年龄组:122~101Ma。

4.1.1 新太古代

全球范围内,2780~2420Ma为新太古代超级事件时期(陆松年等,2016)。在2500Ma左右存在包括华北克拉通、瑞芬(西北欧)、北美以及其他相邻大陆克拉通在内的大规模拼合事件,伴随有大规模的火山-岩浆活动(Zhai et al., 2000)。此次全球拼合事件在西藏地区亦有与之相对应的构造热事件,年龄主要分布在3204±2Ma~2450±9Ma之间(Wang and Wang, 2001江军华等,2009何世平等,2013)。因此2600~2400Ma的锆石可能与全球新太古代克拉通汇聚拼合、地壳快速生长事件有关,该事件在羌塘地块和冈底斯地块均有表现,均具有~2500Ma的碎屑锆石记录。

4.1.2 古元古代

在1780~1920Ma地质历史时期,全球地体的增生和造山作用(包括超高温变质作用)形成了哥伦比亚超大陆(陆松年等,2016)。近年来在我国造山带内不断鉴别出古元古代构造热事件的地质记录,如华北克拉通东西陆块间1900~1800Ma的华北中部碰撞带(赵国春等,2002)、塔里木克拉通北缘~1850Ma的构造热事件(吴海林等,2012)和东昆仑造山带(东段)1600Ma的构造热事件(陈有炘,2015)。本次获得的古元古代碎屑锆石(2000~1900Ma)年龄组可能正是哥伦比亚超大陆事件的记录。

4.1.3 新元古代

陆松年(2002)获得了柴达木盆地北缘英云闪长片麻岩、奥长花岗片麻岩、眼球状花岗闪长质片麻岩的锆石U-Pb年龄分别为987±93Ma、1021±41Ma、917±21Ma,代表了片麻岩原岩的结晶年龄,是汇聚过程的产物,这与李怀坤等(1999)在柴达木盆地北缘获得的奥长花岗岩(1020±41Ma)、英云闪长岩(802.7±7.3Ma)锆石U-Pb年龄基本一致。Wu et al.(2006)在皖南花岗闪长岩中获得882±16Ma的锆石U-Pb年龄,认为在900Ma左右存在一次弧陆碰撞事件。羌塘地体戈木日群中存在~1000Ma的热事件,指示该时期羌塘结晶基底构造热事件的存在(Wang,2000)。由此可见,在新元古代(约1000~800Ma)可能存在一次汇聚地质热事件,晚于典型的格林威尔造山事件(1190~980Ma)(Rivers,1997),但要确切了解该次热事件的地质构造意义,有待进一步的研究工作。因此,本次获得的1000~840Ma年龄组可能是该次构造热事件的记录。

4.1.4 早古生代

前人在喜马拉雅地区报道了大量早古生代岩浆事件的年代学信息,年龄集中在499.2±3.9Ma~460±11Ma(刘文灿等,2004许志琴等,2005Gehrels et al., 2006Cawood et al., 2007张泽明等,2008时超等,2010)。冈底斯地区存在507±10Ma~488±4.2Ma的岩浆活动事件记录(李才等,2008计文化等,2009解超明等,2010)。羌塘地区亦存在早古生代岩浆事件,年龄集中在476.6±4.8Ma~464.5±4.8Ma之间(胡培远等,2010Zhao et al., 2014郑艺龙等,2015)。柴达木盆地周缘出露有结晶年龄或变质年龄在460±8Ma~428±1Ma的花岗岩(张建新等,2003孟繁聪等,2005)。在滇西地区存在498.5±4.6Ma~461.5±7.3Ma的岩浆活动事件记录(Liu et al., 2009刘琦胜等,2012)。以上年代数据分布在507~428Ma之间,明显区别于泛非造山事件(570~520Ma)(Cawood and Buchan, 2007)。Cawood et al. (2007)认为随着冈瓦纳超大陆的汇聚拼合、俯冲作用的结束,在超大陆边缘开始了原特提斯洋向冈瓦纳大陆北缘俯消减的安第斯型造山作用。因此,本次获得的500~400Ma年龄组可能是冈瓦纳大陆边缘安第斯型造山作用的记录。

4.1.5 晚古生代-中生代

对于340~200Ma年龄组而言,该年龄组具有1个240Ma的主峰和2个310Ma、210Ma的次峰。在班公湖-洞错-丁青一带,MOR型蛇绿岩的年龄分布于254±28Ma~191±22Ma之间,代表班怒洋盆张开的年龄(邱瑞照等,2004强巴扎西等,2009黄启帅等,2012),与王玉净等(2002ab),与丁青蛇绿岩中获得的硅质岩放射虫年龄一致,指示三叠纪为班公湖-怒江特提斯洋的海底扩张期, 考虑到与洋底扩张事件相关的岩浆活动多属于基性-超基性岩浆活动,相应的锆石记录一般较少。在研究区北部的龙木错-双湖结合带西段,受龙木错-双湖-澜沧江洋俯冲闭合的影响,发育大规模岩浆活动事件,年龄集中在晚泥盆世至晚三叠世(约375~200Ma),具有时间跨度大、多期次活动的特征,记录了龙木错-双湖-澜沧江洋从初始俯冲到闭合造山不同演化阶段的岩浆活动信息(吴浩,2016),这些岩浆岩可以是班公湖-怒江特提斯洋海相地层的潜在物源区。本次获得的340~200Ma年龄组可能是龙木错-双湖结合带岩浆活动事件的记录。

4.1.6 中生代

沙木罗组下段碎屑锆石中生代年龄组分布于200~130Ma之间,沙木罗组上段则分布于122~101Ma之间。对于200~130Ma年龄组而言,随着班公湖-怒江特提斯洋盆的俯冲消减,侏罗纪时期在南羌塘地块和班公湖-怒江结合带内部发育有岛弧型岩浆岩,南羌塘岛弧岩浆岩形成时代分布于185~150Ma之间(Guynn et al., 2006曲晓明等,2009杜德道等,2011Li et al., 2014Liu et al., 2014a, 2017),班公湖-怒江结合带内部岛弧岩浆岩形成于159~142Ma之间(曲晓明等,2009杜德道等,2011)。在侏罗纪末-白垩纪初期(约135.9Ma),羌塘地块沿中央隆起发育了一次构造热事件,导致了都古尔片麻岩的韧性变形(李才等,2000)。在沙木罗组下段沉积时这些岛弧岩浆岩遭受风化剥蚀成为了沙木罗组下段的陆源碎屑岩区,碎屑锆石200~130Ma年龄组是侏罗纪-早白垩纪岩浆事件的记录。对于沙木罗组上段122~101Ma年龄组,在白垩纪南羌塘地块和北拉萨地块均经历了强烈的岩浆活动,南羌塘岩浆弧形成于126~100Ma (Liu et al., 2017),北拉萨岩浆弧形成于137~109Ma (Zhu et al., 2011, 2016Zhang et al., 2012)。本次野外工作中,项目组在北拉萨地块阿翁错复式岩体中解体出闪长岩(120.4±1.1Ma)、花岗闪长岩(114.7±1.4Ma)、黑云母钾长花岗岩(109.0±1.0Ma)、黑云母二长花岗岩(103.0±1.3Ma)等早白垩世中酸性侵入体。因此,沙木罗组上段122~101Ma年龄组是早白垩世南羌塘岩浆弧和北拉萨岩浆弧岩浆活动事件的记录。

4.2 源区分析

研究区大地构造位置处于班公湖-怒江结合带西段,从研究区所处的大地构造位置来看,沙木罗组的潜在物源区为南羌塘地块和北拉萨地块。前人研究表明,南羌塘地块碎屑锆石具有2550Ma、1950Ma、950Ma、600~530Ma、250~220Ma的峰值年龄(Pullen et al., 2008, 2011Dong et al., 2011Gehrels et al., 2011),北拉萨地块碎屑锆石具有2550Ma、1700Ma、1450Ma、1000~800Ma、500Ma的峰值年龄(Guynn et al., 2006Li et al., 2014Liu et al., 2014a, 2017)。近年来,前人在班怒带两侧的南羌塘地块和北拉萨地块不断筛分和鉴别出了中生代侵入岩(Guynn et al., 2006Zhu et al., 2011, 2016Zhang et al., 2012Li et al., 2014Liu et al., 2014a, 2017)。通过对已有的岩体测年数据统计分析可知,南羌塘地块发育有侏罗纪-早白垩世的岩浆弧,存在两个岩浆主活动期,分别约185~150Ma、130~100Ma,其中150~130Ma为岩浆活动间歇期,北拉萨地块发育有早白垩世岩浆弧,岩浆主活动期约110Ma(图 5)。

图 5 碎屑锆石年龄对比图 数据来源:南羌塘地块(Dong et al., 2011Pullen et al., 2008, 2011Gehrels et al., 2011);改则县木嘎岗日岩群和沙木罗组(Li et al., 2017);北拉萨地块(Leier et al., 2007Gehrels et al., 2011);南羌塘岩浆弧(Guynn et al., 2006Li et al., 2014Liu et al., 2014a, 2017);北拉萨岩浆弧(Zhang et al., 2012Zhu et al., 2011, 2016和项目组研究成果) Fig. 5 Comparison of age probability density plots of detrital zircon grains between studied strata and adjacent terranes Data sources: South Qiangtang terrane (Dong et al., 2011; Pullen et al., 2008, 2011; Gehrels et al., 2011); Muggargangri Group and Shamuluo Fm. in Gaize County (Li et al., 2017); North Lhasa terrane (Leier et al., 2007; Gehrels et al., 2011); southern Qiangtang magmatic arc (Guynn et al., 2006; Li et al., 2014; Liu et al., 2014a, 2017); North Lhasa magmatic arc (Zhang et al., 2012; Zhu et al., 2011, 2016 and our research results)

沙木罗组下段碎屑锆石165Ma的主峰年龄与南羌塘岩浆弧约185~150Ma的峰值年龄基本一致,并与南羌塘地块的碎屑锆石具有相似的年龄分布,具有2550Ma、1950Ma、950Ma、440Ma、240Ma的峰值年龄(图 5),表明沙木罗组下段的物源区与南羌塘地块有良好的亲缘关系,即南羌塘地块为沙木罗组下段提供了物源。考虑到班公湖-怒江特提斯洋盆的演化存在双向俯冲的特点(莫宣学和潘桂棠,2006Zhu et al., 2013梁桑等,2017),在班公湖-怒江结合带西段狮泉河一带包含三条俯冲带:北面的一条位于班公湖至日土县城一带;中间的一条位于狮泉河-改则一线的北侧,是班怒带的主俯冲带;南面的一条位于改则县南约20km的拉果错湖北岸,呈北西西-南东东向延伸(王保弟等2007Wang et al., 2008曲晓明等,2010)。由北至南,三条俯冲带开始俯冲的时间是不同的,中侏罗世晚期(165.5±1.9Ma、166.4±2.0Ma)班公湖-日土和狮泉河两条俯冲带同时向北俯冲(曲晓明等,2009),早白垩世(约134.07±0.77Ma)拉果错俯冲带开始向南俯冲(杜德道,2012)。我们大致可以认为,在班公湖-怒江结合带西段中侏罗世晚期(约165Ma)南羌塘地块发育活动大陆边缘,在早白垩世(约134Ma)北拉萨地块也发育活动大陆边缘。研究区大地构造位置位于班公湖-怒江结合带主俯冲带的南侧,本次获得沙木罗组下段碎屑锆石最新年龄为130Ma,与研究区班公湖-怒江特提斯洋盆向南俯冲的时间大致一致,沙木罗组下段2550Ma、950Ma的峰值年龄分别与北拉萨地块2550Ma、1000~800Ma左右的峰值年龄相对应,虽然峰值较弱,可能说明了北拉萨地块为沙木罗组下段提供了物源,但由于南向俯冲启动较晚,贡献极其有限。研究区沙木罗组下段碎屑锆石与Li et al.(2017)在改则地区报道的沙木罗组碎屑锆石具有相似的峰值年龄特征,而与木嘎岗日岩群碎屑锆石峰值年龄特征明显不同(图 5)。

沙木罗组上段碎屑锆石具1个主峰年龄(107Ma)和2个次峰年龄(226Ma、150Ma)。其中,107Ma的主峰值年龄既与南羌塘岩浆弧130~100M的峰值年龄一致,又与北拉萨岩浆弧110Ma的峰值年龄吻合,150Ma的次峰值年龄与南羌塘岩浆弧185~150Ma的峰值年龄一致,226Ma的次峰值年龄与南羌塘地块碎屑锆石250~220Ma的峰值年龄基本一致(图 5),说明沙木罗组上段与南羌塘地块和北拉萨地块均具有良好的亲缘关系。前文已论述班公湖-怒江特提斯洋盆在早白垩世(约134Ma)具有双向俯冲的特点,在南羌塘地块和北拉萨地块均发育同时期岩浆弧(图 1b),沙木罗组上段碎屑锆石主峰年龄为107Ma,据此我们可以推断沙木罗组上段物源来自于南羌塘岩浆弧和北拉萨岩浆弧。

以上证据表明,研究区沙木罗组下段与沙木罗组上段物源存在明显的差异性,沙木罗组下段与南羌塘地块有良好的亲缘性,到沙木罗组上段沉积时则表现出与南羌塘地块和北拉萨地块均具有良好的亲缘关系。沙木罗组下段与上段的这种物源差异反映了班公湖-怒江特提斯洋盆的演化过程,沙木罗组下段沉积时洋盆较宽阔且主要表现为北向俯冲,南羌塘地块活动大陆边缘隆起区遭受风化剥蚀为沙木罗组下段提供物源,北拉萨地块可能正处于被动大陆边缘向活动大陆边缘的转换阶段,隆起区相对较少,物源贡献极其有限;沙木罗组上段沉积时,具双向俯冲特点的洋盆已进入最后的萎缩期(或趋于闭合),南羌塘岩浆弧和北拉萨岩浆弧的隆起区风化剥蚀产物均可搬运至沙木罗组上段的沉积区,致使沙木罗组上段物源具有双源性的特征。值得注意的是,从野外实测剖面来看,沙木罗组整体受变形变质作用影响小,主体为一套类浊积岩相砂-泥沉积组合。本次论文的出发点是寻求沙木罗组上段和下段物源的差异,为班公湖-怒江特提斯洋盆西段的闭合时间提供新的证据,于是在沙木罗组下段的上部和沙木罗上段的下部等关键部位采集了相关样品,两件样品均位于剖面的中部,而在沙木罗组的顶部和底部暂时没有采集样品。对于厚度超过4000m的地层,其物源区供给,沉积速率和古地理位置等在不同层位会有不同程度的变化。若需探讨整个沙木罗组沉积物物源变化特征,本次采集的两件样品远远不够,有待后续进一步的研究工作。

4.3 班公湖-怒江特提斯洋盆西段的闭合时限

班公湖-怒江特提斯洋盆闭合时间由东向西存在穿时性。尹安(2001)认为晚侏罗世拉萨地块与羌塘地块首先在安多附近发生碰撞,至晚白垩世早期二者在狮泉河及更西的地方也发生碰撞。范建军等(2013)通过对班怒带洋岛玄武岩年代学研究认为,班公湖-怒江特提斯洋盆由东向西闭合时间分别为120±1.4Ma~116.6±0.81Ma、107.8±8.1Ma、96.0±1.1Ma。但基于研究手段和研究对象的不同,对班公湖-怒江特提斯洋盆西段的闭合时间观点不一,争论甚多。岩浆岩方面,酸性侵入岩年代学研究表明,日土地区班公湖-怒江特提斯洋盆闭合时间在118~116Ma左右(郑有业等,2008王艺云等,2017)。亦有学者认为,108Ma之前班公湖-怒江特提斯洋盆(中段和西段)仍未完全闭合,直至108~100Ma之间洋盆才最终消亡(陈国荣等,2004孙立新,2005朱弟成等,2006Bao et al., 2007杜德道,2012吴浩等,2014Fan et al., 2015Wu et al., 2015范建军,2016)。Liu et al.(2014b)在狮泉河地区发现了早白垩世蛇绿岩(103.8Ma),说明在早白垩世晚期洋盆仍未闭合。地层方面,Kapp et al.(2003)据地层的接触关系,认为狮泉河地区班公湖-怒江特提斯洋盆的闭合时间在晚侏罗世-早白垩世之间,即145Ma左右。班公湖地区上白垩统竟柱山组角度不整合于蛇绿混杂岩之上以及竟柱山组底部砾岩的ESR年龄、古地磁年龄指示班公湖-日土地区班公湖-怒江特提斯洋盆闭合时间在100Ma左右(Liu et al., 2014a李华亮等,2016)。

本次通过对沙木罗组上段和沙木罗组下段的岩石学特征与沉积环境、碎屑锆石形态学与年代学的研究,对班公湖-怒江特提斯洋盆的闭合时间取得了新的认识。岩石学特征研究表明,沙木罗组下段岩性为泥岩夹岩屑石英砂岩,形成于斜坡相的深水环境,岩屑石英砂岩碎屑成分成熟度较高,经历了长距离的搬运改造;沙木罗组上段岩性为长石岩屑杂砂岩偶夹泥岩,形成于河口-滨海相的浅水环境,长石岩屑杂砂岩碎屑分选性、磨圆度均差,搬运距离短,为低能环境的产物。物源分析表明,沙木罗组下段物源主要来自于南羌塘地块,沙木罗组上段物源具有双源性,为南羌塘岩浆弧和北拉萨岩浆弧。沙木罗组下段和上段物源的差异性暗示它们形成沉积环境和物源区的不同,从下段至上段反应由宽阔洋盆向残余海盆的演化过程。碎屑锆石形态学研究表明,沙木罗组下段碎屑锆石颗粒主要呈次圆状-圆状,磨圆好,经历了较长距离的搬运,最新年龄为130Ma,可以限定沙木罗组下段的沉积年龄上限为早白垩世早期;沙木罗组上段碎屑锆石颗粒形态较自形,呈长柱状,搬运距离近,最新年龄为101Ma,可以将沙木罗组上段的沉积年龄下限限定为早白垩世晚期。以上证据表明,沙木罗组下段沉积时班公湖-怒江特提斯洋盆仍具一定规模,陆源碎屑经长距离搬运至斜坡深水环境沉积成岩;沙木罗组上段沉积时洋盆已进入最后的萎缩期(或趋于闭合),残余海盆水体浅且窄,陆源碎屑经短距离搬运至低能浅水环境沉积成岩。考虑到沙木罗组上段碎屑锆石的最新峰值年龄为107Ma,在南羌塘地块和北拉萨地块均表现有同时期的岩浆活动,主活动期年龄分别为115Ma、110Ma(图 5),之后一直到沙木罗组上段开始沉积为止(约101Ma),碎屑锆石记录的年龄信息反应岩浆活动程度呈减弱趋势。因此,我们认为班公湖-怒江特提斯洋盆在革吉地区的主体闭合时间可能为115~110Ma左右,代表性岩浆事件为南羌塘地块和北拉萨地块的早白垩世岩浆弧(南羌塘岩浆弧和北拉萨岩浆弧),沙木罗组上段底部的杂色砾岩为该次主体构造-热事件山体快速隆升、快速剥蚀的沉积响应,由沙木罗组下段到沙木罗组上段的沉积代表班公湖-怒江特提斯洋盆由俯冲消减到闭合的地质过程。

5 结论

(1) 沙木罗组下段碎屑锆石年龄分布于2586±26Ma~130±1.5Ma之间,显示出1个主峰年龄约165Ma,1个次峰年龄约240Ma,年龄分6个组别集中,分别为2600~2400Ma、2000~1900Ma、1000~840Ma、500~400Ma、340~200Ma、200~130Ma,分别对应新太古代克拉通汇聚事件、哥伦比亚超大陆相关的构造热事件、新元古代构造热事件、冈瓦纳大陆边缘安第斯型造山作用的岩浆活动事件、龙木错-双湖结合带岩浆活动事件和班公湖-怒江特提斯洋盆俯冲消减的岩浆活动事件。

(2) 沙木罗组上段碎屑锆石年龄分布于2558±22Ma~101±1.0Ma之间,显示出1个主峰年龄约107Ma,2个次峰年龄分别约226Ma、150Ma,年龄集中分布于1个年龄组122~101Ma,代表了班公湖-怒江特提斯洋盆俯冲消减的岩浆活动事件。

(3) 沙木罗组下段与南羌塘地块有良好的亲缘性,沉积物物源主要来源于南羌塘岩浆弧。沙木罗组上段与南羌塘地块和北拉萨地块均具有良好的亲缘性,其物源具有双源性,来源于南羌塘岩浆弧和北拉萨岩浆弧。

(4) 班公湖-怒江特提斯洋盆在革吉地区的主体闭合时间约115~110Ma,代表性岩浆事件为南羌塘地块和北拉萨地块的早白垩世岩浆弧(南羌塘岩浆弧和北拉萨岩浆弧),沙木罗组为班公湖-怒江特提斯洋盆由俯冲消减到闭合过程中的沉积产物。

致谢      在野外地质调查和样品采集过程中,项目组成员提供了极大的帮助,匿名审稿老师及编辑部老师提出了建设性意见和细致的修改,在此表示衷心的感谢!

参考文献
Bao PS, Xiao XC, Su L and Wang J. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongco ophiolite in Tibet. Science in China (Series D), 50(5): 660-671 DOI:10.1007/s11430-007-0045-5
Cawood PA and Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3-4): 217-256 DOI:10.1016/j.earscirev.2007.03.003
Cawood PA, Johnson MRW and Nemchin AA. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255(1-2): 70-84 DOI:10.1016/j.epsl.2006.12.006
Cawood PA, Hawkesworth CJ and Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875-878 DOI:10.1130/G32945.1
Chen GR, Liu HF, Jiang GW, Zeng QG, Zhao SR and Zhang XG. 2004. Discovery of the Shamuluo Formation in the central segment of the Bangong Co-Nujiang River suture zone, Tibet. Geological Bulletin of China, 23(2): 193-194 (in Chinese with English abstract)
Chen YX. 2015. The composition, geological evolution of Pre-Cambrain metamorphic rocks in east region of East Kunlun orgenic belt. Ph. D. Dissertation. Xi'an: Chang'an University: 1-167
Dong CY, Li C, Wan YS, Wang W, Wu YW, Xie HQ and Liu DY. 2011. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet:Constraint on tectonic affinity and source regions. Science China (Earth Sciences), 54(7): 1034-1042 DOI:10.1007/s11430-010-4166-x
Du DD, Qu XM, Wang GH, Xin HB and Liu ZB. 2011. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet:Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica, 27(7): 1993-2002 (in Chinese with English abstract)
Du DD. 2012. Geochemical characteristics and implications for tectonic settings of the middle segment and western segment of Bangong Lake-Nu River suture, the Tibet Plateau. Master Degree Thesis. Beijing: China University of Geosciences: 1-52 (in Chinese)
Fan JJ, Li C, Hu PY, Wang M, Wu YW, Xie CM and Xu W. 2013. The characteristics of Zhonggang Ocean Island in Gaiz area, Tibet: Evidence on the closure of the Nujiang Suture Zone-Bangong. In: 2013's National Symposium on Petrology and Geodynamics. Guangzhou: Zhongshan University Press, 475-476 (in Chinese with English abstract)
Fan JJ, Li C, Xie CM, Wang M and Chen JW. 2015. The evolution of the Bangong-Nujiang Neo-Tethys Ocean:Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics, 655: 27-40 DOI:10.1016/j.tecto.2015.04.019
Fan JJ. 2016. Reconstructing the late Mesozoic closing process of the middle and western segments of the Bangong-Nujiang Ocean in space and time. Ph. D. Dissertation. Changchun: Jilin University: 1-211
Fan SQ, Shi RD, Ding L and Zhang GK. 2011. Constraints of provenance from detrital zircon of Upper Jurassic-Lower Cretaceous Formation in Bangong Co area. Chinese Journal of Geology, 43(3): 847-864 (in Chinese with English abstract)
Gao SB, Zheng YY, Wang JS, Zhang Z and Yang C. 2011. The geochronology and geochemistry of intrusive rocks in Bange area:Constraints on the evolution time of the Bangong Lake-Nujiang ocean basin. Acta Petrologica Sinica, 27(7): 1973-1982 (in Chinese with English abstract)
Gehrels GE, DeCelles PG, Ojha TP and Upreti BN. 2006. Geologic and U-Th-Pb geochronologic evidence for Early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geological Society of America Bulletin, 118(1-2): 185-198 DOI:10.1130/B25753.1
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016 DOI:10.1029/2011TC002868
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G and Ding L. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508
Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ and Zhang YQ. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594): 263-285 DOI:10.1098/rsta.1988.0129
He SP, Li RS, Wang C, Zhang HF, Ji WH, Yu PS, Gu PY and Shi C. 2013. Discovery of the Paleoproterozoic Terrane in Lhasa Block, Qinghai-Tibet Plateau. Earth Science (Journal of China University of Geosciences), 38(3): 519-528 (in Chinese with English abstract)
Hu PY, Li C, Su L, Li CB and Yu H. 2010. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau:Age records of Pan-African movement and Indo-China movement. Geology in China, 37(4): 1050-1061 (in Chinese with English abstract)
Hu ZC, Gao S, Liu YS, Hu SH, Chen HH and Yuan HL. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101 DOI:10.1039/b804760j
Hu ZC, Liu YS, Gao S, Xiao SQ, Zhao LS, Günther D, Li M, Zhang W and Zong KQ. 2012. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78: 50-57 DOI:10.1016/j.sab.2012.09.007
Huang QS, Shi RD, Ding BH, Liu DL, Zhang XR, Fan SQ and Zhi XC. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract)
Huang TT, Xu JF, Chen JL, Wu JB and Zeng YC. 2017. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:Insights from detrital zircons. International Geology Review, 59(2): 166-184 DOI:10.1080/00206814.2016.1218801
Ji WH, Chen SJ, Zhao ZM, Li RS, He SP and Wang C. 2009. Discovery of the Cambiran volcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance. Geological Bulletin of China, 28(9): 1350-1354 (in Chinese with English abstract)
Jiang JH, Wang RJ, Qu XM and Xin HB. 2009. Provenance nature and basement background of nickel-sulfide-bearing ultrabasic rocks in Bangong Lake island arc zone, Tibet. Mineral Deposits, 28(6): 793-802 (in Chinese with English abstract)
Jiang X, Zhao ZD, Zhu DC, Zhang FQ, Dong GC, Mo XX and Guo TY. 2010. Zircon U-Pb geochronology and Hf isotopic geochemistry of Jiangba, Bangba, and Xiongba granitoids in western Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2155-2164 (in Chinese with English abstract)
Kapp JLD, Harrison TM, Kapp P, Grove M, Lovera OM and Ding L. 2005a. Nyainqentanglha Shan:A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research, 110: B08413 DOI:10.1029/2004JB003330
Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JH. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029 DOI:10.1029/2001TC001332
Kapp P, Yin A, Harrison TM and Ding L. 2005b. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8): 865-878
Leier AL, Kapp P, Gehrels GE and DeCelles PG. 2007. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Research, 19(3): 361-378 DOI:10.1111/bre.2007.19.issue-3
Li C, Wang TW, Yang DM, He ZH and Ren YS. 2000. Isotopic chronology of duguer granitic gneiss of central Qiangtang, Tibet. Journal of Changchun University of Science and Technology, 30(2): 105-109 (in Chinese with English abstract)
Li C, Xie RW, Sha SL and Dong YS. 2008. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China. Geological Bulletin of China, 27(1): 64-68 (in Chinese with English abstract)
Li HK, Lu SN, Zhao FQ, Li HM, Yu HF and Zheng JK. 1999. Geochronological framework of the Neoproterozoic major geological events in the northern margin of the Qaidam basin. Geoscience, (2): 224-225 (in Chinese with English abstract)
Li HL, Gao C, Li ZH, Zhang Z, Peng ZM and Guan JL. 2016. Age and tectonic significance of Jingzhushan Formation in Bangong Lake area, Tibet. Geotectonica et Metallogenia, 40(4): 663-673 (in Chinese with English abstract)
Li JX, Li GM, Qin KZ and Xiao B. 2008. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet:Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24(3): 531-543 (in Chinese with English abstract)
Li JX, Qin KZ, Li GM, Richards JP, Zhao JX and Cao MJ. 2014. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications. Lithos, 198-199: 77-91 DOI:10.1016/j.lithos.2014.03.025
Li S, Ding L, Guilmette C, Fu JJ, Xu Q, Yue YH and Henrique-Pinto R. 2017. The subduction-accretion history of the Bangong-Nujiang Ocean:Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics, 702: 42-60 DOI:10.1016/j.tecto.2017.02.023
Liang S, Zhou T, Li DW, Chen C, Hao HJ, Hu WY and Li HL. 2017. Timing of southward subduction of Meso-Tethys in Bangong Lake:Constraints from supra-subduction zone (SSZ)-type gabbro. Geotectonica et Metallogenia, 41(5): 989-1000 (in Chinese with English abstract)
Liao LG, Cao SH, Xiao YB, Ouyang KG, Hu ZR and Feng GS. 2005. The delineation and significance of the continental-margin volcanic-magmatic arc zone in the northern part of the Bangong-Nujiang suture zone. Sedimentary Geology and Tethyan Geology, 25(1-2): 163-170 (in Chinese with English abstract)
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD and Ding L. 2014a. Subduction of the Bangong-Nujiang Ocean:Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2): 188-206 DOI:10.1002/gj.v49.2
Liu DL, Shi RD, Ding L, Huang QS, Zhang XR, Yue YH and Zhang LY. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet:Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157-172 DOI:10.1016/j.gr.2015.04.007
Liu QS, Ye PS and Wu ZH. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province. Geological Bulletin of China, 31(2-3): 250-257 (in Chinese with English abstract)
Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T and Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36(2-3): 168-182 DOI:10.1016/j.jseaes.2009.05.004
Liu WC, Wan XJ, Liang DY, Li GB, Zhou ZG, Gao DZ and Zhang XX. 2004. New achievements and main progress in geological survey of the Gyangzê and Yadong sheets. Geological Bulletin of China, 23(5-6): 444-450 (in Chinese with English abstract)
Liu WL, Xia B, Zhong Y, Cai JX, Li JF, Liu HF, Cai ZR and Sun ZL. 2014b. Age and composition of the Rebang Co and Julu ophiolites, central Tibet:Implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447 DOI:10.1080/00206814.2013.873356
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinhai Plateau. Beijing: Geological Publishing House: 1-125 (in Chinese with English abstract)
Lu SN, Hao GJ and Xiang ZQ. 2016. Precambrian major geological events. Earth Science Frontiers, 23(6): 140-155 (in Chinese with English abstract)
Ludwig KR. 2000. Decay constant errors in U-Pb concordia-intercept ages. Chemical Geology, 166(3-4): 315-318 DOI:10.1016/S0009-2541(99)00219-3
Meng FC, Zhang JX and Yang JS. 2005. Tectono-thermal event of post-HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China:Isotopic and geochemical evidence of granite and gneiss. Acta Petrologica Sinica, 21(1): 45-56 (in Chinese with English abstract)
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract)
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
Pullen A, Kapp P, Gehrels GE, Vervoort JD and Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354
Pullen A, Kapp P, Gehrels GE, Ding L and Zhang Q. 2011. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure. Geological Society of America Bulletin, 123(3-4): 585-600 DOI:10.1130/B30154.1
Qiangba ZX, Xie YW, Wu YW, Xie CM, Li QL and Qiu JQ. 2009. Zircon SIMS U-Pb dating and its significance of cumulate gabbro from Dengqen ophiolite, eastern Tibet, China. Geological Bulletin of China, 28(9): 1253-1258 (in Chinese with English abstract)
Qiu RZ, Zhou S, Deng JF, Li JF, Xiao QH and Cai ZY. 2004. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet:With a discussion of the age of the Bangong Co-Nujiang ophiolite belt. Geology in China, 31(3): 262-268 (in Chinese with English abstract)
Qu XM and Xin HB. 2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geological Bulletin of China, 25(7): 792-799 (in Chinese with English abstract)
Qu XM, Wang RJ, Xin HB, Zhao YY and Fan XT. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica, 38(6): 523-535 (in Chinese with English abstract)
Qu XM, Xin HB, Zhao YY, Wang RJ and Fan XT. 2010. Opening time of Bangong Lake Middle Tethys oceanic basin of the Tibet Plateau:Constraints from petro-geochemistry and zircon U-Pb LAICPMS dating of mafic ophiolites. Earth Science Frontiers, 17(3): 53-63 (in Chinese with English abstract)
Rivers T. 1997. Lithotectonic elements of the Grenville Province:Review and tectonic implications. Precambrian Research, 86(3-4): 117-154 DOI:10.1016/S0301-9268(97)00038-7
She HQ, Li JW, Ma DF, Li GM, Zhang DQ, Feng CY, Qu WJ and Pan GT. 2009. Molybdenite Re-Os and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications. Mineral Deposits, 28(6): 737-746 (in Chinese with English abstract)
Shi C, Li RS, He SP, Wang C, Pan SJ, Liu Y and Gu PY. 2010. LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance. Geological Bulletin of China, 29(12): 1745-1753 (in Chinese with English abstract)
Sun LX. 2005. Late Jurassic-Cretaceous sedimentary response to collision process in middle Bangonghu-Nujiang Suture. Ph. D. Dissertation. Beijing: China University of Geosciences: 1-124
Wang BD, Xu JF, Zeng QG, Kang ZQ, Chen JL and Dong YH. 2007. Geochemistry and genesis of Lhaguo Tso ophiolite in south of Gerze area, Center Tibet. Acta Petrologica Sinica, 23(6): 1521-1530 (in Chinese with English abstract)
Wang GZ and Wang CS. 2001. Disintegration and age of basement metamorphic rocks in Qiangtang, Tibet, China. Science China (Earth Sciences), 44(S1): 86-93 DOI:10.1007/BF02911975
Wang JP. 2000. Geological features of the eastern sector of the Bangong Co-Nujiang River suture zone:Tethyan evolution. Acta Geologica Sinica, 74(2): 229-235
Wang WL, Aitchison JC, Lo CH and Zeng QG. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1-2): 122-138 DOI:10.1016/j.jseaes.2007.10.022
Wang YJ, Wang JP and Pei F. 2002a. A Late Triassic radiolarian fauna in the dingqing ophiolite belt, Xizang (Tibet). Acta Micropalaeontologica Sinica, 19(4): 323-336 (in Chinese with English abstract)
Wang YJ, Wang JP, Liu YM, Li QS and Pei F. 2002b. Characteristics and age of the dingqing ophiolite in Xizang (Tibet) and their geological significance. Acta Micropalaeontologica Sinica, 19(4): 417-420 (in Chinese with English abstract)
Wang YY, Tang JX, Hu WZ, Ding S, Huang DR and Hu ZH. 2017. Geochronology and geochemistry of Cretaceous acid intrusive rocks in the northeast Ritu, Tibet:Constraints on the closure time of Middle Tethys oceanic basin in Bangong Lake-Nujiang. Journal of Chengdu University of Technology (Science & Technology Edition), 44(1): 109-119 (in Chinese with English abstract)
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23 DOI:10.1111/ggr.1995.19.issue-1
Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13-25 DOI:10.1016/j.chemgeo.2009.12.007
Wu H, Li C, Hu PY, Zhang HY and Li J. 2014. The discovery of Early Cretaceous bimodal volcanic rocks in the Dachagou area of Tibet and its significance. Geological Bulletin of China, 33(11): 1804-1814 (in Chinese with English abstract)
Wu H, Li C, Xu MJ and Li XK. 2015. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97: 51-66 DOI:10.1016/j.jseaes.2014.10.014
Wu H. 2016. Multiple stages of magmatism from~375Ma to~200Ma in central Qiangtang, Tibet:Constraints on subduction and the timing of closure of the Longmu Co-Shuanghu-Lancangjiang Ocean. Ph. D. Dissertation. Changchun: Jilin University: 1-191
Wu HL, Zhu WB, Shu LS, Zheng BH, He JW and Luo M. 2012. Records of the assemblage event of Columbia supercontinent in the northern Tarim Craton. Geological Journal of China Universities, 18(4): 686-700 (in Chinese with English abstract)
Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM and Wu FY. 2006. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212 DOI:10.1016/j.precamres.2006.01.012
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122
Xie CM, Li C, Su L, Wu YW, Wang M and Yu H. 2010. LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China. Geological Bulletin of China, 29(12): 1737-1744 (in Chinese with English abstract)
Xu ZQ, Yang JS, Liang FH, Qi XX, Liu FL, Zeng LS, Liu DY, Li HB, Wu CL, Shi RD and Chen SY. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1-12 (in Chinese with English abstract)
Xu ZQ, Yang JS, Li HB, Zhang JX, Zeng LS and Jiang M. 2006. The Qinghai-Tibet plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract)
Yang YF. 2017. Bangong Lake of Tibet-Shamuluo Formation of the middle and western part of the Nu River suture zone in Upper Jurassic-Lower Cretaceous Zircon U-Pb age and tectonic significance. Master Degree Thesis. Beijing: China University of Geosciences: 1-61
Yin A. 2001. Geologic evolution of the Himalayan-Tibetan orogen in the context of Phanerozoic continental growth of Asia. Acta Geoscientia Sinica, 22(3): 193-230 (in Chinese with English abstract)
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.): 219-232
Zhang JX, Meng FC, Wan YS, Yang JS and Dong GA. 2003. Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam:Zircon U-Pb SHRIMP age evidence. Geological Bulletin of China, 22(6): 397-404 (in Chinese with English abstract)
Zhang KJ, Xia BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116(9): 1202-1222 DOI:10.1130/B25388.1
Zhang KJ, Zhang YX, Tang XC and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth Science Reviews, 114(3-4): 236-249 DOI:10.1016/j.earscirev.2012.06.001
Zhang ZM, Wang JL, Shen K and Shi C. 2008. Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1627-1637 (in Chinese with English abstract)
Zhao GC, Sun M and Wilde SA. 2002. Reconstruction of a pre-Rodinia supercontinent:New advances and perspectives. Chinese Science Bulletin, 47(19): 1585-1588
Zhao ZB, Bons PD, Wang GH, Liu Y and Zheng YL. 2014. Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics, 623: 52-66 DOI:10.1016/j.tecto.2014.03.016
Zheng YL, Wang GH, Guo ZW, Liang X, Yuan GL, Wang HD, Huang B and He YD. 2015. The record of the Pan-African and the Indosinian tectono-thermal event in Qiangtang terrane, northern Tibet:Evidence from geochemical characteristics and U-Pb geochronology of the metamorphic complex in Ejiumai area. Acta Petrologica Sinica, 31(4): 1137-1152 (in Chinese with English abstract)
Zheng YY, Xu RK, Zhang GY, Shan L, Liang JW, Qi JH, Chen YF, Zhang YK and Wu QJ. 2008. The feature of geochemistry, chronology and tectonic significance of Sangong granite series of Ritu invasion batholish in Tibet. Acta Petrologica Sinica, 24(2): 368-376 (in Chinese with English abstract)
Zhong HM, Tong JS, Lu RK and Xia J. 2006. Geochemical characteristics and tectonic setting of peraluminous granite in the Songxi area, Rutog County, Tibet, China. Geological Bulletin of China, 25(1-2): 183-188 (in Chinese with English abstract)
Zhong HM, Xia J, Qiu JQ, Tong JS and Lu RK. 2007. Discovery of an Early Cretaceous shoshonitic pluton in Yinligou, northwestern Qiangtang, Tibet, China-evidence from geochemical data and zircon U-Pb ages. Geological Bulletin of China, 26(4): 427-432 (in Chinese with English abstract)
Zhu DC, Pan GT, Mo XX, Wang LQ, Zhao ZD, Liao ZL, Geng QR and Dong GC. 2006. Identification for the Mesozoic OIB-type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9): 1312-1328 (in Chinese with English abstract)
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
Zhu XP, Chen HA, Ma DF, Huang HX, Li GM, Li YB and Li YC. 2011. Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance. Acta Petrologica Sinica, 27(7): 2159-2164 (in Chinese with English abstract)
陈国荣, 刘鸿飞, 蒋光武, 曾庆高, 赵守仁, 张相国. 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(2): 193-194. DOI:10.3969/j.issn.1671-2552.2004.02.015
陈有炘. 2015.东昆仑造山带(东段)前寒武纪变质岩系物质组成及构造演化.博士学位论文.西安: 长安大学, 1-167
杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993-2002.
杜德道. 2012.西藏班公湖-怒江缝合带(中段和西段)的花岗岩地球化学特征及其构造环境.硕士学位论文.北京: 中国地质大学, 1-52
范建军, 李才, 胡培远, 王明, 吴彦旺, 解超明, 许伟. 2013.西藏改则地区仲岗洋岛的特征-兼论班公湖-怒江缝合带的闭合时限.见: 2013年全国岩石学与地球动力学研讨会.广州: 中山大学出版社, 475-476
范建军. 2016.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建.博士学位论文.长春: 吉林大学, 1-211
樊帅权, 史仁灯, 丁林, 张国凯. 2011. 碎屑锆石对班公湖地区晚侏罗世-早白垩世沉积物源的制约. 地质科学, 43(3): 847-864. DOI:10.3969/j.issn.0563-5020.2011.03.019
高顺宝, 郑有业, 王进寿, 张众, 杨成. 2011. 西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973-1982.
何世平, 李荣社, 王超, 张宏飞, 计文化, 于浦生, 辜平阳, 时超. 2013. 青藏高原拉萨地块发现古元古代地体. 地球科学-中国地质大学学报, 38(3): 519-528.
胡培远, 李才, 苏犁, 李春斌, 于红. 2010. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年:泛非与印支事件的年代学记录. 中国地质, 37(4): 1050-1061. DOI:10.3969/j.issn.1000-3657.2010.04.019
黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约. 岩石矿物学杂志, 31(4): 465-478. DOI:10.3969/j.issn.1000-6524.2012.04.001
计文化, 陈守建, 赵振明, 李荣社, 何世平, 王超. 2009. 西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义. 地质通报, 28(9): 1350-1354. DOI:10.3969/j.issn.1671-2552.2009.09.026
江军华, 王瑞江, 曲晓明, 辛洪波. 2009. 西藏班公湖岛弧带含硫化镍超基性岩的源区性质与基底背景. 矿床地质, 28(6): 793-802. DOI:10.3969/j.issn.0258-7106.2009.06.008
姜昕, 赵志丹, 朱弟成, 张凤琴, 董国臣, 莫宣学, 郭铁鹰. 2010. 西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学. 岩石学报, 26(7): 2155-2164.
李才, 王天武, 杨德明, 和钟铧, 任云生. 2000. 西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究. 长春科技大学学报, 30(2): 105-109. DOI:10.3969/j.issn.1671-5888.2000.02.001
李才, 谢尧武, 沙绍礼, 董永胜. 2008. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年. 地质通报, 27(1): 64-68. DOI:10.3969/j.issn.1671-2552.2008.01.005
李怀坤, 陆松年, 赵风清, 李惠民, 于海峰, 郑健康. 1999. 柴达木北缘新元古代重大地质事件年代格架. 现代地质, (2): 224-225.
李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663-673.
李金祥, 李光明, 秦克章, 肖波. 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约. 岩石学报, 24(3): 531-543.
梁桑, 周涛, 李德威, 陈超, 郝海健, 胡维云, 李华亮. 2017. 班公湖中特提斯洋向南俯冲的时限——来自SSZ型辉长岩的制约. 大地构造与成矿学, 41(5): 989-1000.
廖六根, 曹圣华, 肖业斌, 欧阳克贵, 胡肇荣, 冯国胜. 2005. 班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义. 沉积与特提斯地质, 25(1-2): 163-170.
刘琦胜, 叶培盛, 吴中海. 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征. 地质通报, 31(2-3): 250-257.
刘文灿, 万晓樵, 梁定益, 李国彪, 周志广, 高德臻, 张祥信. 2004. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 444-450.
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社: 1-125.
陆松年, 郝国杰, 相振群. 2016. 前寒武纪重大地质事件. 地学前缘, 23(6): 140-155.
孟繁聪, 张建新, 杨经绥. 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据. 岩石学报, 21(1): 45-56.
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. DOI:10.3321/j.issn:1005-2321.2006.06.007
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
强巴扎西, 谢尧武, 吴彦旺, 解超明, 李秋立, 邱军强. 2009. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义. 地质通报, 28(9): 1253-1258. DOI:10.3969/j.issn.1671-2552.2009.09.013
邱瑞照, 周肃, 邓晋福, 李金发, 肖庆辉, 蔡志勇. 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代. 中国地质, 31(3): 262-268. DOI:10.3969/j.issn.1000-3657.2004.03.004
曲晓明, 辛洪波. 2006. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境. 地质通报, 25(7): 792-799. DOI:10.3969/j.issn.1671-2552.2006.07.004
曲晓明, 王瑞江, 辛洪波, 赵元艺, 樊兴涛. 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523-535. DOI:10.3321/j.issn:0379-1726.2009.06.002
曲晓明, 辛洪波, 赵元艺, 王瑞江, 樊兴涛. 2010. 西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果. 地学前缘, 17(3): 53-63.
佘宏全, 李进文, 马东方, 李光明, 张德全, 丰成友, 屈文俊, 潘桂棠. 2009. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义. 矿床地质, 28(6): 737-746. DOI:10.3969/j.issn.0258-7106.2009.06.003
时超, 李荣社, 何世平, 王超, 潘术娟, 刘银, 辜平阳. 2010. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 29(12): 1745-1753. DOI:10.3969/j.issn.1671-2552.2010.12.003
孙立新. 2005.班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应.博士学位论文.北京: 中国地质大学, 1-124
王保弟, 许继峰, 曾庆高, 康志强, 陈建林, 董彦辉. 2007. 西藏改则地区拉果错蛇绿岩地球化学特征及成因. 岩石学报, 23(6): 1521-1530. DOI:10.3969/j.issn.1000-0569.2007.06.026
王玉净, 王建平, 裴放. 2002a. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群. 微体古生物学报, 19(4): 323-336.
王玉净, 王建平, 刘彦明, 李秋生, 裴放. 2002b. 西藏丁青蛇绿岩特征、时代及其地质意义. 微体古生物学报, 19(4): 417-420.
王艺云, 唐菊兴, 胡为正, 丁帅, 黄东荣, 胡正华. 2017. 西藏日土白垩纪酸性侵入岩年代学及地球化学特征——对班公湖-怒江中特提斯洋盆闭合时限的制约. 成都理工大学学报(自然科学版), 44(1): 109-119. DOI:10.3969/j.issn.1671-9727.2017.01.13
吴浩, 李才, 胡培远, 张红雨, 李娇. 2014. 藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义. 地质通报, 33(11): 1804-1814. DOI:10.3969/j.issn.1671-2552.2014.11.016
吴浩. 2016.青藏高原羌塘中部375~200Ma多期次岩浆作用——对龙木错-双湖-澜沧江洋俯冲闭合的制约.博士学位论文.长春: 吉林大学, 1-191
吴海林, 朱文斌, 舒良树, 郑碧海, 何景文, 罗梦. 2012. Columbia超大陆聚合事件在塔里木克拉通北缘的记录. 高校地质学报, 18(4): 686-700. DOI:10.3969/j.issn.1006-7493.2012.04.009
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
解超明, 李才, 苏黎, 吴彦旺, 王明, 于红. 2010. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年. 地质通报, 29(12): 1737-1744. DOI:10.3969/j.issn.1671-2552.2010.12.002
许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21(1): 1-12.
许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
杨一凡. 2017.西藏班公湖-怒江缝合带中西段上侏罗统-下白垩统沙木罗组锆石U-Pb年龄及其构造意义.硕士学位论文.北京: 中国地质大学, 1-61
尹安. 2001. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193-230. DOI:10.3321/j.issn:1006-3021.2001.03.001
张建新, 孟繁聪, 万渝生, 杨经绥, 董国安. 2003. 柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404. DOI:10.3969/j.issn.1671-2552.2003.06.004
张泽明, 王金丽, 沈昆, 石超. 2008. 环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据. 岩石学报, 24(7): 1627-1637.
赵国春, 孙敏, Wilde SA. 2002. 早-中元古代Columbia超级大陆研究进展. 科学通报, 47(18): 1361-1364. DOI:10.3321/j.issn:0023-074X.2002.18.001
郑艺龙, 王根厚, 郭志文, 梁晓, 袁国礼, 王寒冻, 黄波, 何亚东. 2015. 藏北羌塘泛非和印支事件的记录:来自俄久卖变质杂岩地球化学与锆石U-Pb年代学的证据. 岩石学报, 31(4): 1137-1152.
郑有业, 许荣科, 张刚阳, 陕亮, 梁积伟, 齐建宏, 陈悦丰, 张有奎, 吴清杰. 2008. 西藏日土岩基三宫岩石序列地球化学、年代学及构造意义. 岩石学报, 24(2): 368-376.
钟华明, 童劲松, 鲁如魁, 夏军. 2006. 西藏日土县松西地区过铝质花岗岩的地球化学特征及构造背景. 地质通报, 25(1-2): 183-188.
钟华明, 夏军, 邱军强, 童劲松, 鲁如魁. 2007. 西藏羌塘地块西北部银利沟早白垩世钾玄质侵入岩的发现——来自地球化学和锆石U-Pb年龄的证据. 地质通报, 26(4): 427-432. DOI:10.3969/j.issn.1671-2552.2007.04.008
朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006. 青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境. 地质学报, 80(9): 1312-1328. DOI:10.3321/j.issn:0001-5717.2006.09.008
祝向平, 陈华安, 马东方, 黄瀚霄, 李光明, 李玉彬, 李玉昌. 2011. 西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义. 岩石学报, 27(7): 2159-2164.