2. 北京大学地球与空间科学学院, 北京 100087;
3. 南京大学地球科学与工程学院, 南京 210023
2. School of Earth Sciences and Space Science, Peking University, Beijing 100087, China;
3. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
造山带隆升过程的研究对于了解大陆碰撞带的构造具有非常重要的意义。与造山带相关的盆地接收造山带物源的碎屑补给,因而可保存造山带隆升和剥蚀过程的信息(DeCelles et al., 1998; Grimmer et al., 2003; Malusà et al., 2011)。沉积岩的碎屑成分能用来追索沉积物源,进而约束造山带的隆升历史。然而,在碎屑物质从物源搬运至沉积区的过程中,会遭受物理化学过程,这将极大影响造山带演化历史的恢复(Cawood et al., 2000)。在碎屑岩中锆石对于物理和化学风化具有极强的抵抗力因而可用于物源研究,作为具有较大硬度的副矿物可以为大陆地壳演化提供有用的信息。与火成岩相比,对于缺乏标准化石的沉积岩一直缺乏精确的年龄约束(DeCelles et al., 1998)。经过近二十年的发展,单颗粒微区锆石LA-ICP-MS U-Pb测年技术已较为成熟,该技术已广泛应用于火成岩成岩年龄测定年龄、沉积物碎屑锆石定年等方面的研究。其中碎屑锆石的U-Pb定年不仅用于限定沉积岩形成时代的下限,而且结合锆石原位Hf同位素以及锆石微量元素分析技术,在物源示踪方面具有独特的优势,因此,该技术已成为造山带演化研究的重要手段(Federico et al., 2004;Cawood et al., 2012)。
松潘-甘孜地体位于青藏高原北部,介于羌塘地体、东昆仑地体和扬子陆块之间(图 1a),是在古特提斯洋盆闭合基础上三地体碰撞形成的印支期造山带(许志琴等, 1992)。在松潘-甘孜地体南缘木里地区, 三叠纪复理石岩层之下出露一系列由早期变质地层组成的江浪穹隆、长枪穹隆、踏卡穹隆、恰斯穹隆和唐央穹隆所构成的弧形展布的穹隆群(许志琴等, 1992)(图 1b)。长期以来穹隆核部云母石英片岩系的时代和归属一直存在多种认识:古元古代(李同柱等, 2016)、中元古代(颜丹平等, 1997)、新元古代晚期(代堰锫等, 2016)、前震旦纪(唐若龙, 1987)和奥陶纪(四川省地质局, 1974①)。本文利用LA-ICP-MS碎屑锆石测年和锆石原位Hf同位素分析技术,对松潘-甘孜地体木里地区的长枪穹隆核部的里伍群进行了系统的碎屑锆石年代学和物源分析,以期得到该穹隆核部地层单元形成的确切时代,进一步认识松潘甘孜地体的早期演化历史。
① 四川省地质局.1974. 1/20万金矿幅地调报告
位于青藏高原北部的松潘-甘孜地体是该区古特提斯构造单元的重要组成部分;其北以东昆仑-阿尼玛卿缝合带为界与东昆仑-柴达木地体相隔,西南部以金沙江缝合带与羌塘地体连接,东部以龙门山断裂带与扬子陆块的四川盆地为邻,是三大地体(陆块)汇聚和碰撞的产物(许志琴等, 1992; Roger et al., 2004)。
具有特殊的倒三角形几何学形态的松潘-甘孜地体,为一个由大量三叠纪复理石变质沉积岩组成的印支期增生造山楔(许志琴等, 1992; Yin and Harrison, 2000; Roger et al., 2004),并被228~195Ma花岗岩侵位(Zhang et al., 2006a, 2007; Xiao et al., 2007; Yuan et al., 2010)。经历大规模印支造山运动后的松潘-甘孜地体,受印度-亚洲碰撞远程效应的影响,自30Ma以来被NW-SE向的鲜水河左形走滑断裂分割成两部分:东北部的马尔康-丹巴亚地体和西南部的雅江-木里亚地体(许志琴等, 1992; Roger et al., 2004),致使南中国陆块西缘的古生代地层和新元古代结晶基底以穹隆群的形式出露在松潘-甘孜地体东缘和南缘,如丹巴穹隆群和木里穹隆群(许志琴等, 1992; Roger and Calassou, 1997)。
木里穹隆群出露于该区南缘,由一系列弧形展布的、以古生代及下覆地层为核部的穹窿所组成,自东向西依次为:踏卡穹隆、江浪穹隆、长枪穹隆、恰斯穹隆和唐央穹隆(图 1b)。木里穹隆群的前缘为向南突出的木里弧形逆冲断裂系,以及弧前盐源盆地沉积(许志琴等, 1992) (图 1b)。
长枪穹隆位于木里穹隆群中段,是其中最大的一个穹隆。其长约37.5km,宽约30km,近等轴状产出。长枪穹隆内部实际上由两个N-S向长轴椭圆形的次级穹隆组成(图 1c),其核部为里伍群的火山沉积碎屑岩群,向外依次为志留系、石炭系和二叠系,而最外侧为三叠系西康群。里伍群下段为一套含砾石英岩夹少量黑云母石英岩、绢云(二云)石英片岩;中-上段为一套绢云石英千枚岩、绢云千枚岩及黑云母石英岩组成,厚度达4000m以上,并发育沿主期面理侵入的斜长角闪岩脉。志留系由一套海相变基性火山岩与变硅质(泥)岩及少量碳质板岩组合组成;石炭系为一系列石英碎屑灰岩夹板岩、泥灰岩的岩石组合;二叠系则为海相的变基性火山岩(部分超基性)与大理岩、变硅质岩构成的喷发-沉积组合;三叠系西康群为巨厚的复理石砂板岩系地层(颜丹平等, 1997)。
2 分析测试方法锆石分选工作由河北省廊坊区域地质调查院矿物分选实验室完成。首先将样品粉碎至 < 500μm粒级,经清洗、烘干和筛选,进而采用磁选和重液分离技术分选出锆石颗粒。随后在双目镜下挑选出相对完整的锆石颗粒进行锆石制靶,随后进行锆石阴极发光CL影像采集。
锆石阴极发光影像是由北京锆年领航科技有限公司完成的。在测试前,先结合锆石阴极发光图像、透射光、反射光图像,随机选取合适的锆石颗粒进行锆石U-Pb年龄测定。样品XML7-1和XML7-4的LA-ICP-MS锆石原位定年和稀土元素分析均是在上谱分析科技有限公司完成测试的。分析仪器为安捷伦电感耦合等离子体质谱仪Agilent 7900和193nm准分子激光剥蚀系统(GeoLasProHD)联合构成的激光等离子质谱仪。分析时采用激光束斑直径32μm,频率5Hz,激光波长193nm,能量80mJ。采用标准锆石91500作为外标进行同位素比值校正,标样GJ-1用作同位素比值监控,标样NIST 610用作微量元素校正。以上样品均为国际标准物质,推荐值引自GeoRem(http://georem.mpch-mainz.gwdg.de/)。每10个样品点中插入2个91500标样,同时采用Gj-1作为外标。应用ICPMSDATACAL10程序进行锆石年龄数据处理。具体分析条件及流程详见文献Liu et al. (2008)。
锆石Lu-Hf同位素分析则是在中国地质调查局天津地质矿产研究所LA-MC-ICP-MS实验室完成的。锆石Lu-Hf同位素分析点位于U-Pb定年点原位,只是分析点稍大(图 2)。该实验室所使用的仪器为美国Thermo Fisher公司生产的NEPTUNE多接受电感耦合等离子体质谱仪,其离子光学通路采用能量聚焦和质量聚焦的聚焦标准。使用的激光器是美国ESI公司生产的NEW WAVE 193 nm FX ArF准分子激光器,波长为193nm,脉冲宽度小于4ns,束斑直径为35μm,输出频率为8~10Hz,能量为15J/cm2。详细的实验原理、分析技术和实验步骤参见吴福元等(2007)、耿建珍等(2011)。
本研究采集了长枪穹隆核部里伍群中2个云母石英片岩样品(XML7-1、XML7-4),位于长枪穹隆核部茶地沟附近,GPS点位分别为:28°7′57″N、101°25′39″E、H2291m和28°7′43″N、101°25′52″E、H1918m(采样位置见图 1c)。
3.1 里伍群云母石英片岩的锆石U-Pb年龄样品XML7-1采自木里长枪穹隆核部里伍群的黑云母石英片岩。阴极发光图像显示锆石粒度大小不一(100~200μm)。锆石外形呈长柱状、不规则浑圆状。部分锆石磨圆中等,小部分锆石磨圆不明显。CL图中大部分锆石均存在清晰的震荡环带(图 2),仅有少量具有核幔结构或者内部环带不明显的锆石。碎屑锆石的Th/U比值在0.04~3.54之间,绝大数> 0.1(表 1),碎屑锆石震荡环带清晰,表明其为典型的岩浆成因锆石(Hoskin and Schaltegger, 2003)(图 2)。其余小部分的碎屑锆石无明显的环带结构且具有明显的核幔结构,在CL图中呈补丁状或者斑杂状,并且具有较小的Th/U比值(表 1),显示出变质成因锆石的特征(Hoskin and Schaltegger, 2003)。还有一些锆石颗粒有着较弱的分带和较高的Th/U比值,这很可能指示该类锆石具有岩浆锆石成因而后期发生了重结晶。碎屑锆石原位稀土元素分析结果见表 2,其稀土元素配分模式图中(图 3a, c, e),大多数锆石明显富集HREE、正Ce异常(Ce/Ce*=18.91~344.3)和负Eu异常(Eu/Eu*=0.01~0.50),这一特征是典型的岩浆锆石的REE配分模式。而新元古代和古元古代的部分碎屑锆石则呈现出不明显的Ce异常(0.99~14.76)、弱的或者无明显的负Eu异常(0.60~0.86),HREE较为平坦(图 3c, e),CL图像中具有明显的核幔结构。这部分锆石虽Th/U比值大于0.1,但其REE配分模式暗示其变质锆石的成因。
该样品中80颗碎屑锆石中共产生78个有效谐和U-Pb年龄,具体见207Pb/235U- 206Pb/238U谐和图(图 4)以及表 1。整体年龄值变化范围较大,从476Ma到3158Ma,数据点主要集中于476~1103Ma。谐和度大于85%且锆石年龄大于1.0Ga采用207Pb/206Pb年龄,而锆石年龄小于1.0Ga则使用206Pb/238U年龄来统计锆石年龄频率分布图(图 4)。从年龄频率分布图中显示有三个明显的年龄谱峰,分别为:476±5.7~604±5.0Ma (峰值516±3.7Ma)、719±7.6~820±8.5Ma (峰值737±7.0Ma)和916±6.9~994±12.1Ma (峰值933±9.6Ma)。分别占锆石总数的25%、18%和16%。
样品XML7-4是采自长枪穹隆核部二云母石英片岩,阴极发光图像显示锆石粒度大小不一,直径90~250μm,外形呈长柱状和不规则浑圆状,磨圆较好。大部分锆石颗粒存在清晰的震荡环带(图 2),且Th/U比值在0.19~5.53之间;同时,其锆石稀土元素配分模式图(图 3b, d, f)显示该类锆石明显富集HREE、正Ce异常(19.13~609.4)和负Eu异常(0.02~0.53),以上特征均表明这些锆石为岩浆成因(Hoskin and Schaltegger, 2003)。另外少部分颗粒具有核幔结构或者内部环带不明显,并具有较小的Th/U比值(图 5),且其稀土元素特征不具明显的Ce异常(1.12~16.8)、弱的或者无明显的负Eu异常(0.55~1.06)(图 3d, f),故而,此类锆石应为变质锆石来源或与热液相关成因(Hoskin and Schaltegger, 2003)。
该样品中80颗碎屑锆石中,去除谐和度小于85%的3个数据,有效数据为77个(表 1)。碎屑锆石U-Pb年龄范围为:476~3583Ma,且年龄主要集中在476~1008Ma。同样,锆石年龄统计采用与上述样品一致标准:>1.0Ga使用207Pb/206Pb年龄,而 < 1.0Ga使用206Pb/238U年龄。锆石U-Pb年龄频率分布图(图 4)指示该样品主要存在三个明显的谱峰,分别为:476±6.6~549±6.2Ma (峰值590Ma)、715±8.5~973±9.5Ma (峰值744Ma)和2351±34.0~2550±34.1Ma (峰值910 Ma),各占锆石总数的19%、37%和14%。
3.2 锆石Hf同位素对2件样品中U-Pb年龄谐和度大于85%的锆石进行Lu-Hf同位素分析,共分析点数为137个,Lu-Hf同位素分析区域在原锆石U-Pb定年的原位进行,分析结果见表 3和图 6。
进行Lu-Hf分析的碎屑锆石年龄大概可分为三组:476~600Ma、715~1000Ma和2.4~2.6Ga。碎屑锆石年龄在476~600Ma之间的锆石有37颗,占锆石总数的23.8%,其εHf(t)值介于+8.4~-27.6,二阶段模式年龄在896~3200Ma之间,表明这一时间段内的碎屑锆石来源于古老地壳熔融和新生地壳的混合物。碎屑锆石年龄在715~1000Ma之间的锆石Hf测试了52颗,占锆石总数的38%,其εHf(t)值跨度较大,介于+14.1~-24.2,其模式年龄按照εHf(t)值可分为两组,60%的εHf(t)值介于-0.1~-40.2,二阶段模式年龄介于1807~3663Ma,代表了其起源于古太古代-太古宙陆壳物质的再循环,是陆壳物质部分熔融的产物;其中40%的εHf(t)值介于1.0~11.9,一阶段模式年龄介于946~1390Ma,代表了中元古代新生地壳物质组分的加入,并且模式年龄接近结晶年龄,仅仅只比结晶年龄老了0.2~0.7Ga。碎屑锆石年龄在2.4~2.6Ga之间的碎屑锆石有12颗,占锆石总数的12.5%,εHf(t)从-7.28至+3.4,εHf(t)值为负值的二阶段模式年龄介于3.2~3.4Ga,εHf(t)值为正值的一阶段模式年龄介于2.8~2.9Ga。
4 讨论松潘甘孜地体南缘的长枪穹隆核部里伍群2件变沉积岩样品的碎屑锆石年龄谱中显出4个特征年龄峰:分别为516Ma、740Ma、884Ma和2.5Ga(图 7)。下面将结合样品碎屑锆石年代学数据和Hf同位素组成,以及已有的区域地层数据,综合讨论长枪穹隆核部里伍群的沉积时代、早古生代碎屑锆石物源和新元古代碎屑锆石物源及其构造意义。
关于里伍群沉积时代,前人利用不同方法进行讨论,但认识却存在很大差异。早期,唐若龙(1987)认为其与该区的恰斯群相当,同属前震旦纪。四川地质矿产局(1991)通过K-Ar法测定里伍群地层中2个角闪岩脉的年龄,并认为里伍群的沉积时代至少应为中元古代。随后,颜丹平等(1997)通过U-Pb法测定里伍群5颗碎屑锆石,在不一致曲线上得到上下交点年龄分别为1437Ma和525Ma,并认为前者可能相当于成岩年龄而后者代表主变质期年龄;同时,结合对里伍群中的斜长角闪岩全岩的Sm-Nd法测定,认为里伍群的成岩时代很可能为中元古代。众所周知,由于K-Ar同位素封闭温度低而且体系不够稳定,以及Sm-Nd等时线往往较实际偏老(李曙光和安诗超, 2014),而由于里伍群整体变质程度低,锆石不应发生熔融,产生同期变质锆石;而且测试的锆石颗粒较少,难以形成统计规律,故前人所取得的年龄数据不能有效约束里伍群的沉积时代。最近,代堰锫等(2016)对穹隆北侧甲坝岩组角闪岩脉进行LA-ICP-MS锆石U-Pb定年,结果表明其结晶年龄为2211±49Ma,说明甲坝岩组的形成时代可能为古元古代,推测穹隆核部里伍群的年龄可能更老。由于代堰锫等(2016)仅测试了6颗来自甲坝岩组角闪岩脉的锆石,测试数据较少,这些老的锆石颗粒很可能是岩脉的侵入过程中捕获的围岩锆石,要精确限定岩脉的成岩结晶年龄一般需要大量锆石年龄数据支持。而李同柱等(2016)对里伍群碎屑锆石进行LA-ICP-MS U-Pb年龄测试,测年结果介于2521~262Ma,其中262Ma(仅有1个颗粒)被认为是热液锆石年龄,最年轻一组的206Pb/238U加权平均年龄为552.8±5.7Ma,认为里伍群形成于552.8±5.7Ma之后,即形成于新元古代晚期。
本研究测试的146颗碎屑锆石中,我们获得了一组(8粒)具有良好清晰震荡环带且锆石的Th/U为0.38~1.16,稀土配分图中(图 3a, b)具有陡峭重稀土富集((Lu/Gd)N=84.46~246.7)、Ce正异常(41.62~276.5)和Eu负异常(0.13~0.35)的特点,明显是岩浆锆石来源。该组锆石年龄范围为476~480Ma之间,加权平均年龄为478±7.4Ma,应代表里伍群的最大沉积年龄。因此我们认为作为长枪穹隆乃至松潘甘孜地块最古老的沉积地层之一的里伍群,其沉积时代上限不是古元古代也非中元古代,而应为早奥陶纪。
4.2 早古生代碎屑锆石物源分析罗迪尼亚超大陆于新元古代晚期(约825Ma)开始发生裂解,进入拉张裂谷阶段,在750~600Ma罗迪尼亚超大陆解体(Li et al., 2008)。其中西伯利亚板块、劳伦板块和波罗的板块构成北方板块群,而非洲板块、南极板块、阿拉伯板块、印度板块、南美板块和澳大利亚板块在新元古代末期-早古生代拼合成为冈瓦纳大陆,连接这些陆块分别为东非造山带(570~520Ma)、Pinjarra造山带(560~520Ma)、Brasiliano造山带(570~520Ma)、Kuunga造山带(560~530Ma)和Damara/Zambezi造山带(560~510Ma),这些造山带相互连接交叉构成了泛非造山系(Cawood et al., 2007)。在冈瓦纳大陆拼合过程中,冈瓦纳大陆北缘的原特提斯洋向南俯冲,于470~530Ma形成了类似于安第斯型的造山带,它被称之为北印度造山带(Cawood et al., 2007)。
北印度造山带作为冈瓦纳大陆北缘安第斯型造山带的一部分(Cawood et al., 2007)受到广泛关注。前人通过对青藏高原北缘和东南缘前寒武系岩石的年代学、地球化学和沉积学的研究,在喜马拉雅、拉萨、羌塘、腾冲和保山地体中确认了早古生代地层不整合现象(Stöcklin, 1980; Funakawa, 2001; Gehrels et al., 2003)、早古生代早期变质事件(Argles et al., 1999; 许志琴等, 2005; Foster et al., 2000)以及大量早古生代与弧有关岩浆岩(Godin et al., 2001; Marquer et al., 2000; 许志琴等, 2005)。这一系列证据表明喜马拉雅、拉萨、羌塘、腾冲和保山地体在早古生代早期应位于冈瓦纳大陆北缘岩浆弧位置。本研究区在大地构造上位于拉萨、羌塘地块和腾冲、保山地块的接合部,同样应属北印度造山带的区域范围。我们所取得的早古生代碎屑锆石的年龄介于470~560Ma(图 7),该时段正是冈瓦纳大陆拼合以及北印度造山带形成的泛非运动时期(Cawood and Nemchin, 2000; DeCelles et al., 2000; Fergusson et al., 2001; Myrow et al., 2003; Fergusson et al., 2007; Horton et al., 2008)。结合前人对于里伍群这套沉积-火山变质岩系地球化学的研究工作所得出的认识――里伍群变质岩系的原岩是一套主动大陆边缘含火山质的砂泥质海相沉积地层(李同柱等, 2010),我们认为里伍群可能是泛非期北印度造山带前缘的弧前盆地。
本研究中年轻的锆石组(476~560Ma)有30颗锆石,占锆石总数的23%,其εHf(t)值介于+8.4~-27.6,其中具有负εHf(t)值的锆石有24颗,对应的二阶段模式年龄介于1642~3200Ma,表明绝大多数锆石原岩起源于古老地壳陆壳岩石的再循环(是陆壳物质部分熔融的产物)。而在喜马拉雅带内,存在东西长达1000km侵位于530~490Ma的过铝质花岗岩,被认为是在印度大陆北缘早古生代造山作用下形成的(许志琴等, 2005; Cawood et al., 2007):如,拉萨地体也出露有U-Pb年龄为507Ma的八宿同卡正片麻岩(李才等, 2008)、U-Pb年龄为470~532Ma的安多正片麻岩(Xu et al., 1985; 解超明等, 2010; Guynn at al., 2012)、U-Pb年龄为496Ma的米林正片麻岩(董昕等, 2009)等;羌塘地体中,蜈蚣山花岗片麻岩锆石核部U-Pb年龄为464Ma (胡培远等, 2010)、都故尔山花岗岩U-Pb年龄为476~471 Ma (Pullen et al., 2011)等;此外,保山、腾冲地块中龙江片麻岩锆石边部的U-Pb年龄为502~518Ma (蔡志慧等, 2013)等。以上证据表明,拉萨、羌塘、腾冲和保山地块中大量发育了早古生代花岗岩和同时期与弧岩浆有关的火山岩(图 8),很可能为里伍群提供物质来源。
进一步对比周缘板块变/沉积岩碎屑锆石年龄谱峰,如华夏板块新元古界碎屑锆石、冈瓦纳大陆北缘早古生代碎屑锆石以及西澳珀斯盆地奥陶系碎屑锆石年龄谱,本研究样品的泛非期锆石年龄与冈瓦纳大陆北缘早古生代碎屑锆石年龄谱与其有着极大的相似性(图 9)。而扬子板块内,我们收集到了扬子板块东南缘的泥盆纪砂岩碎屑锆石中记录了470~410Ma的年龄峰(Yao et al., 2012),除此之外扬子板块泛非造山作用几乎鲜见报道(Duan et al., 2011),由此可能说明泛非造山事件对扬子板块影响较小。综上所述,结合本研究和区域碎屑锆石年龄谱和Hf同位素特征对比,以及前人对周缘板块的泛非期岩浆岩锆石年代学、同位素地球化学、沉积地球化学和区域沉积、构造变质事件的研究成果,我们认为里伍群的泛非期碎屑锆石物源可能来自冈底斯北缘泛非期造山带,并且与冈瓦纳大陆北缘诸多地块具有良好的亲缘关系。
新元古代碎屑锆石呈现出两个年龄峰,分别为740Ma和884Ma。其中40%的碎屑锆石年龄介于715~1000Ma之间,其εHf(t)值介于+14.0~-24.2,其模式年龄按照εHf(t)值可分为两个部分,其中60%的εHf(t)值介于-0.1~-40.2,二阶段模式年龄介于1807~3663Ma,代表了其起源于古太古代-太古宙陆壳物质的再循环,是陆壳物质部分熔融的产物,同时,该组锆石多数为半自形-他形(图 2),暗示其物源经历了一定距离的搬运;其中40%的εHf(t)值介于1.0~11.9,一阶段模式年龄介于946~1390Ma,代表了中元古代新生地壳物质组分的加入,并且模式年龄接近结晶年龄,仅仅只比结晶年龄老了0.2~0.7Ga,锆石形态多为自形-半自形(图 2)。此外,在锆石稀土元素配分图中(图 3c, d),锆石稀土元素可分为三类,第一类呈现陡峭的重稀土富集((Lu/Gd)N=13.5~807.3),强烈的Ce正异常(1.95~509.6)和Eu的负异常(0.1~0.86),并且此时间段内的碎屑锆石具有相对较高的Th/U (0.20~2.48)和较为明显的震荡环带(图 2),指示岩浆锆石的成因;第二类(重稀土富集、强烈的Eu的负异常但Ce的正异常非常不明显)和第三类(强烈的Ce正异常和Eu的负异常、但HREE较为平坦)仅有少量存在,可能指示其为变质锆石成因。总之,该时段碎屑锆石绝大多数为岩浆锆石,少量变质锆石。岩石学研究表明在扬子板块西缘康滇地轴、攀西-汉南一带以及松潘-甘孜地体丹巴地区中存在大量新元古代酸性和少量的基性-超基性侵入岩,包括花岗岩、花岗闪长岩、英云闪长花岗岩以及少量的基性-超基性岩(Li et al., 2002, 2003a, b; Zhou et al., 2006b; 杜利林等, 2006; Sun and Zhou, 2008; Zhao and Zhou, 2008; Dong et al., 2012; 王生伟等, 2013)。例如汉南820~746Ma基性-超基性侵入体(Zhao and Zhou, 2009)、碧口890~870Ma基性-中性侵入体(Xiao et al., 2007)、860Ma的关刀山闪长岩体(Sun and Zhou, 2008)、西昌磨盘山782Ma的埃达克质岩体、860Ma的高家村基性岩体(Sun and Zhou, 2008)、740Ma的辉长岩侵入体(Zhao and Zhou, 2007)以及攀枝花的760Ma大田埃达克质岩体(Zhao and Zhou, 2008)等。由此可见,这些岩石年龄大多数侵位时代为710~1000Ma。岩浆锆石年龄统计数据显示(图 10),新元古代扬子板块西北缘以及松潘-甘孜的丹巴地区的岩浆侵位时间是680~860Ma,岩浆作用存在两个活动峰期,分别是757.2Ma和831.6Ma。该年龄段内的锆石的εHf(t)值介于+6~+14,表明有着大量的新生地壳物质的贡献,一阶段模式年龄主要集中在0.9~1.1Ga (Chen et al., 2016),与本次研究所获得的εHf(t)正值数据和对应的模式年龄极为相似。此外,扬子板块西缘还存在大量714~1000Ma的火山碎屑变沉积岩系。例如950~900Ma的西乡玄武岩(Ling et al., 2003)和846~776Ma的碧口火山岩(Yan et al., 2004)等。以上证据表明扬子板块西缘存在710~1000Ma的火山岩浆活动。在扬子板块西缘的变沉积地层以及松潘-甘孜地体中也存在着类似的年龄峰组成,例如Wang et al.(2012a)报道了昆明震旦系澄江组碎屑锆石U-Pb年龄和Hf同位素数据,同样存在0.85~0.75Ga年龄峰;Sun et al. (2009)报道了盐边群中存在860~1000Ma的峰值;Chen et al. (2016)报道了松潘-甘孜地体丹巴盐井群中存在高度自形的717~799Ma锆石。而且在松潘-甘孜地体长枪穹隆以北30km的江浪穹隆核部里伍群中同样有763Ma和920Ma的碎屑锆石年龄峰(李同柱等, 2016)。同时结合锆石稀土元素分析结果,我们认为扬子地台西缘新元古代的岩浆活动为里伍群的潜在物源区。
样品中同样存在大量的εHf(t)为负值的碎屑锆石,表明有古元代甚至太古宙古老地壳重熔物质的加入。研究区以东的扬子陆块的湖北宜昌地区出露少量太古代岩石,可能为该组分碎屑锆石提供物源。同时,其古元古代-太古宙的二阶段模式年龄接近江南造山带中火山岩和捕获锆石的模式年龄(Xiang and Shu, 2010;Xin et al., 2017),结合半自形/他形的锆石形态(图 2;指示物源可能经历了一定距离的搬运),因此,我们推测江南造山带也可能是εHf(t)为负值的碎屑锆石源区之一。
综上所述,本次研究中的碎屑锆石年龄谱(图 7)显示新元古代碎屑锆石的物源主要来自于扬子板块西缘弧岩浆带和江南造山带。
4.4 古元古代的构造信息华北板块和扬子板块之间有两个显著的不同点,就是扬子板块并未见有2.4~2.5Ga的侵入岩,而这一时期岩浆活动却广泛分布于华北克拉通(Gao et al., 2004;Tang et al., 2007; Zhai and Santosh, 2011)。因此,有学者认为扬子板块不存在类似于华北板块太古宙-古元古代的结晶基底(杜利林等, 2007; 耿元生等, 2007a; 耿元生和陆松年2014)。但近年来也陆续出现相关报道,如:扬子板块西缘的西昌崆岭群中发现了太古宙年龄(2.9~3.2Ga),宜昌南部锦山钾镁煌斑岩中捕虏自形锆石中存在~2.5Ga的U-Pb年龄(Zhang et al., 2006a; Zheng et al., 2006; Liu et al., 2008; Wang et al., 2010)。虽然上述少量结果尚不能完全确定扬子板块之下太古宙-古元古代变质基底的存在性,但至少指示了在~2.5Ga扬子板块存在一次重要的地壳改造事件。另外,现有的年代学数据表明不同大陆上的古元古代地壳增生事件发生时间略有不同。北美、西格林兰岛、南非和西澳地壳增生事件主要发生在2.8~2.6Ga (Anhaeusser and Walraven, 1999; Rosing et al., 2001; Griffin et al., 2004),而华北、塔里木、印度和南极洲东部则发生在2.6~2.45Ga (Kröner et al., 1988; Mondal et al., 2002; Hokada et al., 2003)。在研究区以北的江浪穹隆海底沟附近以及邻近钻孔ZK3012的煌斑岩捕虏岩浆锆石中同样存在2784~2494Ma的年龄(张惠华等, 2016)。本研究中也发现了2.3~2.55Ga的锆石组分(占12.5%),εHf(t)从-7.3至+3.4,εHf(t)值为负值的二阶段模式年龄介于3.2~3.4Ga,εHf(t)值为正值的一阶段模式年龄介于2.8~2.9Ga,指示研究区盆地接收来自古元古代记录地壳增生事件的锆石,虽不能明确这些锆石来自扬子基底,但也为进一步确认扬子板块是否存在太古宙-古元古代的结晶基底的问题提供一个研究方向,当然针对该问题仍需大量深入工作。
5 结论(1) 长枪穹隆核部里伍群变沉积岩的锆石年龄谱显示明显的4个年龄峰:516Ma、740Ma、884Ma和2.5Ga。最年轻的锆石U-Pb年龄(476~480Ma)指示长枪穹隆核部里伍群变质原岩的沉积时代不早于~476Ma。结合前人的研究成果,我们认为长枪穹隆核部里伍群变质原岩的沉积时代可能是早奥陶世,而非中元古代或者新元古代晚期。
(2) 本研究首次报道了松潘-甘孜地块的沉积地层中来自冈瓦纳北缘的泛非期碎屑锆石年龄记录,表明松潘甘孜地块与冈瓦纳大陆北缘诸多地块具有良好的亲缘关系。
(3) 长枪穹隆核部里伍群新元古代物源主要来自于扬子板块西缘新元古代弧岩浆带,也可能存在江南造山带的物质贡献。
致谢 本研究的野外工作获得了四川省雅砻江矿业股份有限公司的大力支持和中国地质科学院地质研究所赵中宝博士的鼎力相助;南京大学地球科学与工程学院邱检生教授、舒良树教授、李广伟副教授和中国地质科学院地质研究所高利娥副研究员对文章提出了宝贵的修改意见;在此一并表示衷心感谢!
Anhaeusser CR and Walraven F. 1999. Episodic granitoid emplacement in the western Kaapvaal Craton: Evidence from the Archaean Kraaipan granite-greenstone terrane, South Africa. Journal of African Earth Sciences, 28(2): 289-309 |
Argles TW, Prince CI, Foster GL and Vance D. 1999. New garnets for old Cautionary tales from young mountain belts. Earth and Planetary Sciences Letters, 172(3-4): 301-309 DOI:10.1016/S0012-821X(99)00209-5 |
Baig MS, Lawrence RD and Snee LW. 1988. Evidence for Late Precambrian to Early Cambrian orogeny in Northwest Himalaya, Pakistan. Geological Magazine, 125(1): 83-86 DOI:10.1017/S0016756800009390 |
Bhanot VB, Goel AK, Singhv P and Kawatras R. 1975. Rb-Sr radiometric studies for the Dalhousie and Rohtang area. Current Science, 44(7): 219-220 |
Bureau of Geology and Mineral Resources of Sichuan Provinc. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House: 1-680 (in Chinese)
|
Cai ZH, Xu ZQ, Duan XD, Li HQ, Cao H and Huang XM. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau. Acta Petrologica Sinica, 29(6): 2123-2140 (in Chinese with English abstract) |
Cawood PA and Nemchin AA. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134(3-4): 209-234 DOI:10.1016/S0037-0738(00)00044-0 |
Cawood PA, Johnson MRW and Nemchin AA. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255(1-2): 70-84 DOI:10.1016/j.epsl.2006.12.006 |
Cawood PA, Hawesworth CJ and Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875-878 DOI:10.1130/G32945.1 |
Chen FK, Li XH, Wang XL, Li QL and Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194 DOI:10.1007/s00531-006-0146-y |
Chen Q, Sun M, Long XP, Zhao GC and Yuan C. 2016. U-Pb ages and Hf isotopic record of zircons from the Late Neoproterozoic and Silurian-Devonian sedimentary rocks of the western Yangtze Block: Implications for its tectonic evolution and continental affinity. Gondwana Research, 31: 184-199 DOI:10.1016/j.gr.2015.01.009 |
Chen YL, Luo ZH, Zhao JX, Li ZH, Zhang HF and Song B. 2005. Petrogenesis and dating of the Kangding complex, Sichuan Province. Science in China (Series D), 48(5): 622-634 DOI:10.1360/03yd0312 |
Dai YP, Zhang HH, Zhu YD, Shen ZW, Li TZ and Ma D. 2016. Review on Jianglang dome and Liwu-type Cu-rich deposit in the western margin of Yangtze Block. Journal of Earth Sciences and Environment, 38(1): 67-78 (in Chinese with English abstract) |
DeCelles PG, Gehrels GE, Quade J, Ojha TP, Kapp PA and Upreti BN. 1998. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geological Society of America Bulletin, 110(1): 2-21 DOI:10.1130/0016-7606(1998)110<0002:NFBDEU>2.3.CO;2 |
DeCelles PG, Gehrels GE, Quade J, Lareau B and Spurlin M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288(5465): 497-499 DOI:10.1126/science.288.5465.497 |
DeCelles PG, Carrapa B and Gehrels GE. 2007. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology, 35(4): 323-326 |
Dong ML, Dong GC, Mo XX, Zhu DC, Nie F, Xie XF, Wang X and Hu ZC. 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications. Acta Petrologica Sinica, 28(5): 1453-1464 (in Chinese with English abstract) |
Dong X, Zhang ZM, Wang JL, Zhao GC, Liu F, Wang W and Yu F. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 25(7): 1678-1694 (in Chinese with English abstract) |
Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF and Zhang GW. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274 DOI:10.1016/j.precamres.2011.12.007 |
Du LL, Geng YS, Yang CH, Wang XS, Ren LD, Zhou XW, Wang YB and Yang ZS. 2006. The stipulation of Neoproterozoic TTG in western Yangtze block and its significance. Acta Petrologica et Mineralogica, 25(4): 273-281 (in Chinese with English abstract) |
Du LL, Geng YS, Yang CH, Wang XS, Zhou XW, Ren LD, Wang YB and Yang ZS. 2007. New understanding on Kangding Group on western margin of Yangtze Blcok: Evidence from geochemistry and chronology. Acta Geologica Sinica, 81(11): 1562-1577 (in Chinese with English abstract) |
Duan L, Meng QR, Zhang CL and Liu XM. 2011. Tracing the position of the South China block in Gondwana: U-Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research, 19(1): 141-149 DOI:10.1016/j.gr.2010.05.005 |
Federico L, Capponi G, Crispini L and Scambelluri M. 2004. Exhumation of alpine high pressure rocks: Insights from petrology of eclogite clasts in the Tertiary Piedmontese basin (Ligurian Alps, Italy). Lithos, 74(1-2): 21-40 DOI:10.1016/j.lithos.2003.12.001 |
Fergusson CL, Carr PF, Fanning CM and Green TJ. 2001. Proterozoic-Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacific-Gondwana signatures. Australian Journal of Earth Sciences, 48(6): 857-866 DOI:10.1046/j.1440-0952.2001.00904.x |
Fergusson CL, Henderson RA, Fanning CM and Withnall IW. 2007. Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: Implications for the tectonic history of the East Gondwana continental margin. Journal of the Geological Society, 164(1): 215-225 DOI:10.1144/0016-76492005-136 |
Foster GL. 2000. The pre-Neogene thermal history of the Nanga Parbat Haramosh Massif and the NW Himalaya. Ph. D. Dissertation. United Kingdom: The Open University
|
Funakawa S. 2001. Lower Paleozoic Tethys sediments from the Kathmandu nappe, Phulchauki area, central Nepal. Journal of Nepal Geological Society, 25: 123-134 |
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162 |
Garzanti E, Casnedi R and Jadoul F. 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sedimentary Geology, 48(3-4): 237-265 DOI:10.1016/0037-0738(86)90032-1 |
Gehrels GE, Decells PG, Martin A, Ojha TP, Pinhassi G and Upreti BN. 2003. Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt. GSA Today, 13(9): 4-9 DOI:10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2 |
Gehrels GE, DeCelles PG, Ojha TP and Upreti BN. 2006. Geologic and U-Th-Pb geochronologic evidence for Early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geological Society of America Bulletin, 118(2006): 185-198 |
Gehrels GE, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): 1-27 |
Geng JZ, Li HK, Zhang J, Zhou YH and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract) |
Geng YS, Yang CH, Wang XS, Ren LD, Du LL and Zhou XW. 2007a. Age of crystalline basement in western margin of Yangtze Terrane. Geological Journal of China Universities, 13(3): 429-441 (in Chinese with English abstract) |
Geng YS, Yang CH, Du LL, Wang XS, Ren LD and Zhou XW. 2007b. Chronology and tectonic environment of the Tianbaoshan Formation: New evidence from zircon SHRIMP U-Pb age and geochemstry. Geological Review, 53(4): 556-563 (in Chinese with English abstract) |
Geng YS and Lu SN. 2014. Advances in the study of Precambrian chronostratigraphy in China: A review. Earth Science Frontiers, 21(2): 102-118 (in Chinese with English abstract) |
Godin L, Parrish RR, Brown RL and Hodges KV. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20(5): 729-747 DOI:10.1029/2000TC001204 |
Griffin WL, Belousova EA, Shee SR, Pearson NJ and O'Reilly SY. 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282 DOI:10.1016/j.precamres.2003.12.011 |
Grimmer JC, Ratschbacher L, McWilliams M, Franz L, Gaitzsch I, Tichomirowa M, Hacker BR and Zhang YQ. 2003. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology, 197(1-4): 87-110 DOI:10.1016/S0009-2541(02)00321-2 |
Guo JQ, You ZP, Yang J, Shen WZ, Xu SJ and Wang RC. 1998. Studying on the U Pb dating of zircon in Tianwan and Pianlugang bodies from Shimian area, West Sichuan. Journal of Mineralogy and Petrology, 18(1): 91-94 (in Chinese with English abstract) |
Guynn J, Kapp P, George GE and Ding L. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. Journal of Asian Earth Sciences, 43(1): 23-50 |
Hodges KV, Parrish RR and Searle MP. 1996. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15(6): 1264-1291 DOI:10.1029/96TC01791 |
Hokada T, Misawa K, Shiraishi K and Suzuki S. 2003. Mid to late Archaean (3.3~2.5Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica. Precambrian Research, 127(1-3): 215-228 DOI:10.1016/S0301-9268(03)00188-8 |
Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini A, Fakhari MD and Zamanzadeh SM and Grove M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451(1-4): 97-122 DOI:10.1016/j.tecto.2007.11.063 |
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027 |
Hu PY, Li C, Su L, Li CB and Y H. 2010. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai Tibet Plateau: Age records of Pan-African Movement and Indo-China Movement. Geology in China, 37(4): 1050-1061 (in Chinese with English abstract) |
Huang Y, Hao JX, Bai L, Deng GB, Zhang GX and Huang WJ. 2012. Stratigraphic and petrologic response to Late Pan-African Movement in Shidian area, western Yunnan Province. Geological Bulletin of China, 31(2-3): 306-313 (in Chinese with English abstract) |
Jäger E, Bhandari AK and Bhanot VB. 1971. Rb-Sr age determinations on biotites and whole rock samples from the Mandi and Chor granites, Himachal Pradesh, India. Ecologae Geologica Helvetia, 64(3): 521-527 |
Ji WH, Chen SJ, Zhao ZM, Li RS, He SP and Wang C. 2009. Discovery of the Cambiran volcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance. Geological Bulletin of China, 28(9): 1350-1354 (in Chinese with English abstract) |
Kröner A, Compston W, Zhang GW, Guo AL and Todt W. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16(3): 211-215 |
Kumar R, Shah AN and Bingham DK. 1978. Positive evidence of a Precambrian tectonic phase in central Nepal, Himalaya. Journal of the Geological Society of India, 19: 519-522 |
Lee J, Hacker BR, Dinklage WS, Wang Y, Gans P, Calver A, Wan JL, Chen WJ and Blythe AE and McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19(5): 872-895 DOI:10.1029/1999TC001147 |
Li C, Dong YS, Zhai QG, Wang LQ, Yan QR, Wu YW and He TT. 2008. Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence from SHRIMP U-Pb dating and its tectonic implications. Acta Petrologica Sinica, 24(1): 31-36 (in Chinese with English abstract) |
Li C, Wu YW, Wang M and Yang HT. 2010. Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau: Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdese area, Tibet, China. Geological Bulletin of China, 29(12): 1733-1736 (in Chinese with English abstract) |
Li SG and An SC. 2014. Isotope geochronology of metamorphic rocks: Rb-Sr and Sm-Nd systematics. Earth Science Frontiers, 21(3): 246-255 (in Chinese with English abstract) |
Li TZ, Feng XL, Zhang HH, Tang GL, Wu ZB and Xia XB. 2010. Geochemical characteristics of the ore-bearing rock series and genesis of the Liwu copper deposit, Sichuan Province. Geology and Prospecting, 46(5): 921-930 (in Chinese with English abstract) |
Li TZ, Dai YP, Zhou Q, Zhang HH, Feng XL, Ma D and Shen ZW. 2016. Formation age and tectonic setting of the Liwu Group at the core of Jianglang dome in the western margin of Yangtze Block. Acta Geologica Sinica, 90(10): 2551-2566 (in Chinese with English abstract) |
Li XH, Zhou HW, Chung SL, Ding SJ, Liu Y, Lee CY, Ge WC, Zhang YM and Zhang RJ. 2002. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. The Island Arc, 11: 193-205 DOI:10.1046/j.1440-1738.2002.00365.x |
Li XH, Li ZX, Zhou HW, Liu Y, Liang XR and Li WX. 2003a. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance. Science in China (Series D), 46(S1): 73-83 |
Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodina. Precambrian Research, 122(1-4): 85-109 DOI:10.1016/S0301-9268(02)00208-5 |
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA and Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210 DOI:10.1016/j.precamres.2007.04.021 |
Liang D, Qing RM, Cheng LZ and Xiao ML. 2011. Tracing the position of the South China block in Gondwana: U-Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research, 19(1): 141-149 DOI:10.1016/j.gr.2010.05.005 |
Ling WL, Gao S, Zhang BR, Li HM, Liu Y and Cheng JP. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: Implications for amalgamation and break-up of the Rodina Supercontinent. Precambrian Research, 122(1-4): 111-140 DOI:10.1016/S0301-9268(02)00222-X |
Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson MI, Feng GY, Wang T and Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36(2-3): 168-182 DOI:10.1016/j.jseaes.2009.05.004 |
Liu SQ, Ye PS and Wu ZH. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province. Geological Bulletin of China, 31(2): 250-257 (in Chinese with English abstract) |
Liu WC, Liang DY, Wang KY, Zhou ZG, Li GB and Zhang XX. 2002. Discovery of the Ordovician in the Kangmar area, southern Tibet and its geological significance. Earth Science Frontiers, 9(4): 247-248 (in Chinese with English abstract) |
Liu XM, Gao S, Diwu CR and Ling WL. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421-468 |
Malusà MG, Faccenna C, Garzanti E and Polino R. 2011. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth and Planetary Science Letters, 310(1-2): 21-32 DOI:10.1016/j.epsl.2011.08.002 |
Marquer D, Chawla H and Challandes N. 2000. Pre-Alpine high-grade metamorphism in High Himalaya crystalline sequences: Evidence from Lower Palaeozoic Kinnar Kailas granite and surrounding rocks in the Sutlej Valley (Himachal Pradesch, India). Eclogae Geologicae Helvetiae, 93(2): 207-220 |
Mehta PK. 1975. Rb-Sr dating of the Crystalline rocks of the Kulu-Manali belt, NW Himalaya: Its implications for Himalayan tectogenesis. Dehradun: Wadia Inst. Himalayan Geol., 6th Seminar, 10-11
|
Miller C, Thöni M, Frank W, Grasemann B, Klötzli U, Guntli P and Draganits E. 2001. The Early Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement. Geological Magazine, 138(3): 237-251 DOI:10.1017/S0016756801005283 |
Mondal MEA, Goswami JN, Deomurari MP and Sharma KK. 2002. Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research, 117(1-2): 85-100 DOI:10.1016/S0301-9268(02)00078-5 |
Myrow PM, Hughes NC, Paulsen TS, Willlams IS, Parcha SK, Thompson KR, Bowring SA and Peng SC and Ahluwalia AD. 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 212(3-4): 433-441 DOI:10.1016/S0012-821X(03)00280-2 |
Pullen A, Kapp P, Gehrels GE, Ding L and Zhang QH. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. GSA Bulletin, 123(3-4): 585-600 DOI:10.1130/B30154.1 |
Qi XX, Li HQ, Li TF, Cai ZH and Yu CL. 2010. Zircon SHRIMP U-Pb dating for garnet-rich granite veins in high-pressure granulites from the Namche Barwa complex, eastern syntaxis of the Himalayas, and the relationship with exhumation. Acta Petrologica Sinica, 26(3): 975-984 (in Chinese with English abstract) |
Roger F and Calassou S. 1997. U-Pb geochronology on zircon and isotope geochemistry (Pb, Sr and Nd) of the basement in the Songpan-Garze fold belt (China). Comptes Rendus de l'Académie des Sciences: Series IIA: Earth and Planetary Science, 324(10): 819-826 |
Roger F, Malavielle J, Leloup H, Calassou S and Xu ZQ. 2004. Timing of granite emplacement and cooling in the Songpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5): 465-481 DOI:10.1016/S1367-9120(03)00089-0 |
Rosing MT, Nutman AP and Lofqvist L. 2001. A new fragment of the early earth crust: The Aasivik terrane of West Greenland. Precambrian Research, 105(2-4): 115-128 DOI:10.1016/S0301-9268(00)00107-8 |
Schärer U and Allègre CJ. 1983. The Palung granite (Himalaya): High resolution U-Pb systematics in zircon and monazite. Earth and Planetary Science Letters, 63(3): 423-432 |
Shen WZ, Ling HF, Xu SJ, Zhou XM, Zhao ZF and Guo JQ. 2000. Geochemical Characteristics and genesis of some Neoproterozoic granitoids in the northern part of the western margin of the Yangtze Block. Geological Review, 46(5): 512-519 (in Chinese with English abstract) |
Song SG, Ji JQ, Wei CJ, Su L, Zheng YD, Song B and Zhang LF. 2007. Early Paleozoic granite in Nujiang River of Northwest Yunnan in southwestern China and its tectonic Implications. Chinese Science Bulletin, 52(17): 2402-2406 DOI:10.1007/s11434-007-0301-2 |
Spencer CJ, Harris RA and Dorais MJ. 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U-Pb and Hf isotopes in zircons. Gondwana Research, 22(1): 26-35 DOI:10.1016/j.gr.2011.10.004 |
Stöcklin J. 1980. Geology of Nepal and its regional frame. Journal of the Geological Society, 137: 1-34 DOI:10.1144/gsjgs.137.1.0001 |
Sun WH and Zhou MF. 2008. The ~860Ma, Cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: Implications for the origin of Neoproterozoic magmatism. The Journal of Geology, 116(3): 238-253 |
Sun WH, Zhou MF, Gao JF, Yang YH, Zhao XF and Zhao JH. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99-126 DOI:10.1016/j.precamres.2009.03.010 |
Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82 DOI:10.1016/j.precamres.2006.09.001 |
Tang RL. 1987. Characteristics of Muli-Yanyuan nappe structure and metallogenic relationship between gold, copper, lead and zinc. Acta Geologica Sichuan, 7(2): 3-9 (in Chinese with English abstract) |
Valdiya KS. 1995. Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambrian Research, 74(1-2): 35-55 DOI:10.1016/0301-9268(95)00004-O |
Visonà D, Rubatto D and Villa IM. 2010. The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the Greater Himalayan Crystallines of central-eastern Himalaya. Journal of Asian Earth Sciences, 38(1-2): 14-25 |
Wang LJ, Griffin WL, Yu JH and O'Reilly SY. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 177(1-2): 131-144 DOI:10.1016/j.precamres.2009.11.008 |
Wang LJ, Yu JH, Griffin WL and O'Reilly SY. 2012a. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research, 222-223: 368-385 DOI:10.1016/j.precamres.2011.08.001 |
Wang SW, Liao ZW, Sun XM, Zhou BG, Guo Y, Jiang XF, Zhu HP, Sun ZM, Luo MJ, Ma D, Shen ZW and Zhang H. 2013. Discussion on the mechanism of Grenvillian orogenic movement in Southwest Yangtze Block, from the age and geochemistry of Caiyuanzi granite, Huidong, Sichuan Province, SW China. Acta Geologica Sinica, 87(1): 55-70 (in Chinese with English abstract) |
Wang XX, Zhang JJ, Santosh M, Liu J, Yan SY and Guo L. 2012b. Andean-type orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic tectonics along the Indian margin of Gondwana. Lithos, 154(1): 248-262 |
Wiesmayr G, Grasemann B, Draganits E, Frank W, Fritz H and Miller C. 1998. The main pre-Himalayan and Himalayan deformation phases in the Pin valley (Spiti, Tethyan Himalaya, NW India). 13th Himalaya-Karakorum-Tibet Workshop. Geological Bulletin of the University of Peshawar, Special Issue, 31: 212-213 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract) |
Xiang L and Shu LS. 2010. Pre-Devonian tectonic evolution of the eastern South China Block: Geochronological evidence from detrital zircons. Earth Sciences, 53(10): 1427-1444 |
Xiao L, Zhang HF, Ni PZ, Xiang H and Liu XM. 2007. LA-ICP-MS U-Pb zircon geochronology of early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze Block, South China: Implication for tectonic evolution. Precambrian Research, 154(3-4): 221-235 DOI:10.1016/j.precamres.2006.12.013 |
Xie CM, Li C, Su L, Wu YW, Wang M and Yu H. 2010. LA-ICP-MS U-Pb dating of zircon from granite gneiss in the Amdo area, northern Tibet, China. Geological Bulletin of China, 29(12): 1737-1744 (in Chinese with English abstract) |
Xin YJ, Li JH, Dong SW, Zhang YQ, Wang WB and Sun HS. 2017. Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820~800Ma magmatic rocks. Precambrian Research, 294: 91-110 DOI:10.1016/j.precamres.2017.03.018 |
Xu RH, Schärer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. The Journal of Geology, 93(1): 41-57 |
Xu ZQ, Hou LW and Wang ZX. 1992. Orogenic Processes of the Songpan-Ganze Orogenic Belt of China. Beijing: Geological Publishing House: 1-190 (in Chinese with English abstract)
|
Xu ZQ, Yang JS, Liang FH, Qi XX, Liu FL, Zeng LS, Liu DY, Li HB, Wu CL, Shi RD and Chen SY. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1-12 (in Chinese with English abstract) |
Yan DP, Song HL and Fu ZR. 1997. The Metamorphic Core Complex Belt on the Western Margin of the Yangtze Block. Beijing: Geological Publishing House: 1-94 (in Chinese with English abstract)
|
Yan QR, Hanson AD, Wang ZQ, Druschke PA, Yan Z, Wang T, Liu DY, Song B, Jian P, Zhou H and Jiang CF. 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze Plate, China: Implications for Rodina reconstruction. International Geology Review, 46(9): 817-832 DOI:10.2747/0020-6814.46.9.817 |
Yang CH, Geng YS, Du LL, Ren LD, Wang XS, Zhou XW and Yang ZS. 2009. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implication. Geology in China, 36(3): 647-657 (in Chinese with English abstract) |
Yang J, Gao S, Chen C, Tang YY, Yuan HL, Gong HJ, Xie SW and Wang JQ. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660-2673 DOI:10.1016/j.gca.2009.02.007 |
Yang XJ, Jia XC, Xiong CL, Bai XZ, Huang BX, Luo G and Yang CB. 2012. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance. Geological Bulletin of China, 31(2): 264-276 (in Chinese with English abstract) |
Yao JL, Shu LS, Santosh M and Li JY. 2012. Precambrian crustal evolution of the South China Block and its relation to supercontinent history: Constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite. Precambrian Research, 208-211: 19-48 DOI:10.1016/j.precamres.2012.03.009 |
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211 |
Yu JH, O'Reilly SY, Wang LJ, Griffin WL, Zhang M, Wang RC, Jiang SY and Shu LS. 2008. Where was South China in the Rodina supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1-2): 1-15 DOI:10.1016/j.precamres.2008.03.002 |
Yuan C, Zhou MF, Sun M, Zhao YJ, Wilde S, Long XP and Yan DP. 2010. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4): 481-492 DOI:10.1016/j.epsl.2010.01.005 |
Yuan HY, Zhou Q, Ding J, Zhang HH, Li TZ, Liang J, Tang GL and Wang CN. 2017. U-Pb Geochronological studies on detrital zircon in Jianglang Group, western Sichuan Province, China. Acta Mineralogica Sinica, 37(3): 296-304 (in Chinese with English abstract) |
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005 |
Zhang HF, Zhang L, Harris N, Jin LL and Yuan HL. 2006a. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1): 75-88 DOI:10.1007/s00410-006-0095-2 |
Zhang HF, Parrish R, Zhang L, Xu WC, Yuan HL, Gao S and Crowley QG. 2007. A-Type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97(3-4): 323-335 DOI:10.1016/j.lithos.2007.01.002 |
Zhang HH, Dai YP, Hu ZD, Zhou Q, Li TZ, Shen ZW and Ma D. 2016. Geochemical characteristics and zircon U-Pb dating of lamprophyres in the Jianglang dome, western Sichuan. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 663-673 (in Chinese with English abstract) |
Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006b. Zircon U-Pb age and Hf isotope evidence for 3. 8Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71 |
Zhang ZM, Wang JL, Shen K and Shi C. 2008. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1627-1637 (in Chinese with English abstract) |
Zhang ZQ, Zhang GW, Tang SH, Zhang QD and Wang JH. 2001. Geochronology of the Hannan intrusive complex to adjoin the Qinling orogen and its rapid cooling reason. Chinese Science Bulletin, 46(8): 685-689 DOI:10.1007/BF03182837 |
Zhao JH and Zhou MF. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27-47 DOI:10.1016/j.precamres.2006.09.002 |
Zhao JH and Zhou MF. 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos, 104(1-4): 231-248 DOI:10.1016/j.lithos.2007.12.009 |
Zhao JH and Zhou MF. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168 DOI:10.1016/j.lithos.2008.09.017 |
Zheng JP, Griffin WL, O'Reilly SY, Zhang M, Pearson N and Pan YM. 2006. Widespread Archean basement beneath the Yangtze Craton. Geology, 34(6): 417-420 DOI:10.1130/G22282.1 |
Zhou GZ, Liu WC and Liang DY. 2004. Discovery of the Ordovician and its basal conglomerate in the Kangmar area, southern Tibet: With a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas. Geological Bulletin of China, 23(7): 656-663 (in Chinese with English abstract) |
Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67 DOI:10.1016/S0012-821X(01)00595-7 |
Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH and Sun M. 2006a. The Yanbian terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precambrian Research, 144(1-2): 19-38 DOI:10.1016/j.precamres.2005.11.002 |
Zhou MF, Yan DP, Wang CL, Qi L and Kennedy A. 2006b. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300 DOI:10.1016/j.epsl.2006.05.032 |
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL and Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328(18): 290-308 |
蔡志慧, 许志琴, 段向东, 李化启, 曹汇, 黄学猛. 2013. 青藏高原东南缘滇西早古生代早期造山事件. 岩石学报, 29(6): 2123-2140. |
代堰锫, 张惠华, 朱玉娣, 沈战武, 李同柱, 马东. 2016. 扬子陆块西缘江浪穹窿及"里伍式"富铜矿床研究进展与问题. 地球科学与环境学报, 38(1): 67-78. |
董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 谢许峰, 王霞, 胡兆初. 2012. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义. 岩石学报, 28(5): 1453-1464. |
董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学. 岩石学报, 25(7): 1678-1694. |
杜利林, 耿元生, 杨崇辉, 王新社, 任留东, 周喜文, 王彦斌, 杨铸生. 2006. 扬子地台西缘新元古代TTG的厘定及其意义. 岩石矿物学杂志, 25(4): 273-281. DOI:10.3969/j.issn.1000-6524.2006.04.002 |
杜利林, 耿元生, 杨崇辉, 王新社, 周喜文, 任留东, 王彦斌, 杨铸生. 2007. 扬子地台西缘康定群的再认识:来自地球化学和年代学证据. 地质学报, 81(11): 1562-1577. DOI:10.3321/j.issn:0001-5717.2007.11.011 |
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. DOI:10.3969/j.issn.1671-2552.2011.10.004 |
耿元生, 杨崇辉, 王新社, 任留东, 杜利林, 周喜文. 2007a. 扬子地台西缘结晶基底的时代. 高校地质学报, 13(3): 429-441. |
耿元生, 杨崇辉, 杜利林, 王新社, 任留东, 周喜文. 2007b. 天宝山组形成时代和形成环境-锆石SHRIMP U-Pb年龄和地球化学证据. 地质论评, 53(4): 556-563. |
耿元生, 陆松年. 2014. 中国前寒武纪地层年代学研究的进展和相关问题. 地学前缘, 21(2): 102-118. |
郭建强, 游再平, 杨军, 沈渭洲, 徐士进, 王汝成. 1998. 川西石棉地区田湾与扁路岗岩体的锆石U-Pb定年. 矿物岩石, 18(1): 91-94. |
胡培远, 李才, 苏犁, 李春斌, 于红. 2010. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年――泛非与印支事件的年代学记录. 中国地质, 37(4): 1050-1061. DOI:10.3969/j.issn.1000-3657.2010.04.019 |
黄勇, 郝家栩, 白龙, 邓贵标, 张国祥, 黄文俊. 2012. 滇西施甸地区晚泛非运动的地层学和岩石学响应. 地质通报, 31(2-3): 306-313. |
计文化, 陈守建, 赵振明, 李荣社, 何世平, 王超. 2009. 西藏冈底斯构造带申扎带寒武系火山岩的发现及其地质意义. 地质通报, 28(9): 1350-1354. DOI:10.3969/j.issn.1671-2552.2009.09.026 |
解超明, 李才, 苏黎, 吴彦旺, 王明, 于红. 2010. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年. 地质通报, 29(12): 1737-1744. DOI:10.3969/j.issn.1671-2552.2010.12.002 |
李才, 董永胜, 翟庆国, 王立全, 阎全人, 吴彦旺, 何彤彤. 2008. 青藏高原羌塘早古生代蛇绿岩堆晶辉长岩的锆石SHRIMP定年及其意义. 岩石学报, 24(1): 31-36. |
李才, 吴彦旺, 王明, 杨韩涛. 2010. 青藏高原泛非-早古生代造山事件研究重大进展――冈底斯地区寒武系和泛非造山不整合的发现. 地质通报, 29(12): 1733-1736. DOI:10.3969/j.issn.1671-2552.2010.12.001 |
李曙光, 安诗超. 2014. 变质岩同位素年代学: Rb-Sr和Sm-Nd体系. 地学前缘, 21(3): 246-255. |
李同柱, 冯孝良, 张惠华, 唐高林, 吴振波, 夏祥标. 2010. 四川里伍铜矿含矿岩系地球化学特征及成因分析. 地质与勘探, 46(5): 921-930. |
李同柱, 代堰锫, 周清, 张惠华, 冯孝良, 马东, 沈战武. 2016. 扬子西缘江浪穹窿核部里伍岩群的形成时代及构造背景. 地质学报, 90(10): 2551-2566. DOI:10.3969/j.issn.0001-5717.2016.10.002 |
刘琦胜, 叶培盛, 吴中海. 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征. 地质通报, 31(2): 250-257. DOI:10.3969/j.issn.1671-2552.2012.02.007 |
刘文灿, 梁定益, 王克友, 周志广, 李国彪, 张祥信. 2002. 藏南康马地区奥陶系的发现及其地质意义. 地学前缘, 9(4): 247-248. DOI:10.3321/j.issn:1005-2321.2002.04.026 |
戚学祥, 李化启, 李天福, 蔡志慧, 于春林. 2010. 东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRIMP U-Pb定年及其与折返作用. 岩石学报, 26(3): 975-984. |
沈渭洲, 凌洪飞, 徐士进, 周新民, 赵子福, 郭建强. 2000. 扬子板块西缘北段新元古代花岗岩类的地球化学特征和成因. 地质论评, 46(5): 512-519. DOI:10.3321/j.issn:0371-5736.2000.05.010 |
四川省地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社: 1-680.
|
宋述光, 季建清, 魏春景, 苏犁, 郑亚东, 宋彪, 张立飞. 2007. 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义. 科学通报, 52(8): 927-930. DOI:10.3321/j.issn:0023-074X.2007.08.013 |
唐若龙. 1987. 木里-盐源推覆构造特征与金铜、铅锌的成矿关系. 四川地质学报, (2): 5-11. |
王生伟, 廖震文, 孙晓明, 周邦国, 郭阳, 蒋小芳, 朱华平, 孙志明, 罗茂金, 马东, 沈战武, 张海. 2013. 会东菜园子花岗岩的年龄、地球化学――扬子地台西缘格林威尔造山运动的机制探讨. 地质学报, 87(1): 55-70. DOI:10.3969/j.issn.0001-5717.2013.01.006 |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社: 1-190.
|
许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21(1): 1-12. |
颜丹平, 宋鸿林, 傅昭仁. 1997. 扬子地台西缘变质核杂岩带. 北京: 地质出版社: 1-94.
|
杨崇辉, 耿元生, 杜利林, 任留东, 王新社, 周喜文, 杨铸生. 2009. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义. 中国地质, 36(3): 647-657. DOI:10.3969/j.issn.1000-3657.2009.03.011 |
杨学俊, 贾小川, 熊昌利, 白宪洲, 黄柏鑫, 罗改, 杨朝碧. 2012. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 31(2): 264-276. DOI:10.3969/j.issn.1671-2552.2012.02.009 |
袁华云, 周清, 丁俊, 张惠华, 李同柱, 梁金, 唐高林, 王昌南. 2017. 川西江浪组碎屑锆石U-Pb年代学研究. 矿物学报, 37(3): 296-304. |
张惠华, 代堰锫, 胡智丹, 周清, 李同柱, 沈战武, 马东. 2016. 川西江浪穹窿煌斑岩地球化学特征及锆石U-Pb定年. 矿物岩石地球化学通报, 35(4): 663-673. DOI:10.3969/j.issn.1007-2802.2016.04.007 |
张泽明, 王金丽, 沈昆, 石超. 2008. 环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迎巴瓦岩群的岩石学和年代学证据. 岩石学报, 24(7): 1627-1637. |
周志广, 刘文灿, 梁定益. 2004. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系. 地质通报, 23(7): 656-663. |