岩石学报  2019, Vol. 35 Issue (6): 1647-1672, doi: 10.18654/1000-0569/2019.06.03   PDF    
龙木错地区泽错岩体演化历史及构造意义:来自地球化学和年代学的约束
韩帅1,2, 李海兵1, 潘家伟1, 卢海建1, 郑勇1, 刘栋梁1, 白明坤1,2, 张进江2     
1. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 北京大学地球与空间科学学院, 教育部造山带与地壳演化重点实验室, 北京 100871
摘要:沿大型断裂带出露的深成岩体记录并保存了形成时的大地构造活动及后期演化和变形的重要信息。为了更好地理解羌塘西部花岗岩的成因机制和演化历史,本文选取了龙木错断裂南部的泽错岩体进行地球化学、SHRIMP锆石U-Pb年代学及云母和钾长石40Ar/39Ar热年代学分析。全岩地球化学判别图显示花岗岩样品为高钾钙碱性系列至钙碱性系列和过铝质。矿物组合表明无角闪石且含白云母。以上特征均显示出明显的S型花岗岩趋势。锆石U-Pb年龄为123±1.7Ma至107±1.4Ma,表明岩浆侵位的时代为早白垩世,此时班公-怒江洋仍在向北俯冲。云母和钾长石40Ar/39Ar年龄及前人低温热年代学数据显示,侵位后岩体至少有四个阶段的冷却,包括120~90Ma、90~38Ma、38~26Ma和26~0Ma。第一阶段在侵位后10Myr内快速冷却至低于~320℃,而随后以相对较慢的速率冷却至~220℃。从90Ma到38Ma期间经历了较长时期极为缓慢的冷却,该阶段构造活动趋于静止,表明羌塘地体-拉萨地体碰撞应发生在90Ma之前。中新世受控于龙木错断裂左旋走滑的影响,最后一期的构造变形以东西向伸展为主,深成岩逐渐剥露至地表。龙木错断裂可能作为中新世以来高原物质向东运移西部边界的一条新的应力释放途径。
关键词: 泽错     S型花岗岩     地球化学     热年代学     演化历史     龙木错断裂    
Evolution history of the Chem Co pluton, Longmu Co region and its tectonic implications: Constraints from geochemistry and geochronology
HAN Shuai1,2, LI HaiBing1, PAN JiaWei1, LU HaiJian1, ZHENG Yong1, LIU DongLiang1, BAI MingKun1,2, ZHANG JinJiang2     
1. MNR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: Batholites exhumated from depth along large-scale fault zone can record and preserve important information for original tectonic activity and postdated evolution process. To better understand the genesis and evolution history of the granitoid intrusion in western Qiangtang, we select Chem Co pluton occurring to the south of Longmu Co fault and applied SHRIMP zircon U-Pb, geochemistry, mica and K-feldspar 40Ar/39Ar analysis. Major element geochemistry distinguishes that the Chem Co granite rocks are high-K alkaline to calc-alkaline series and peraluminous. Mineral modal shows that absent of amphibole but containing muscovite. All these characters suggest the distinctive evolution trend of S-type granite. Zircon U-Pb ages ranging from 123±1.7Ma to 107±1.4Ma show that the emplacement occurred in Early Cretaceous and suggest that the Bangong-Nujiang Ocean was still subducting northward during this period. Mica and K-feldspar 40Ar/39Ar ages together with previous low-temperature thermochronology data show that after the magmatic emplacement, this batholite has experienced at least four episodes of cooling, including 120~90Ma, 90~38Ma, 38~26Ma and 26~0Ma. The first stage was a fast cooling below~320℃ occurred within 10Myr after emplacement, with a subsequent relatively slower rate till~220℃. Then from 90Ma to 38Ma, this region underwent a relatively long period of slow cooling, during this stage tectonic activity tends to be stationary, which reveals that the Qiangtang and Lhasa terranes should collide predated 90Ma. During the Miocene, controlled by the Longmu Co fault left-lateral strike-slip, the last stage of regional deformation is dominated by E-W extension, with batholites gradually exhumated to the surface. The active Longmu Co fault may serve as a new pathway for stress relief during Miocene in response to plateau material escaping eastwards on its western boundary.
Key words: Chem Co     S-type granite     Geochemistry     Thermochronology     Evolution history     Longmu Co fault    

作为板块汇聚拼合的典型案例,青藏高原发育了一系列独特的地质景观,也为研究块体之间的俯冲碰撞、增生以及后碰撞效应提供了一个得天独厚的天然实验室(Tapponnier et al., 1986, 2001; Dewey et al., 1988; Harrison et al., 1992; Hodges, 2000; 许志琴等, 2006; Pan et al., 2012; Qin et al., 2018)。虽然学者们普遍认为青藏高原现今的高海拔和巨厚地壳是印度/欧亚大陆碰撞的结果(Yin and Harrison, 2000; Ding et al., 2005; Xiong et al., 2018),然而新生代之前的构造运动对早期高原的建立和形成过程的影响同样是地学界讨论的一个热点。沿古缝合带或活动断裂出露的深成岩是反映板块俯冲和后期构造演化的理想载体。岩浆岩中复杂的成分变化可以反映俯冲过程,地幔的内在非均质性,岩浆分馏以及地壳增生等诸多信息(Gutscher et al., 2000a, b; Collins and Richards, 2008)。而热年代学对于破译来自地壳深部岩石的冷却历史和折返过程则起到至关重要的作用。

大型走滑断层在调节陆内变形以及碰撞后高原的生长和扩展中起着极为关键的作用(Tapponnier and Molnar, 1976; Wei et al., 2013)。龙木错断裂位于羌塘地体最西北部,向西与喀喇昆仑断裂对接,这两条大型陆内走滑断裂的形成和演化共同控制着青藏高原新生代构造格局的建立(图 1a)。了解龙木错地区的构造-岩浆活动对于理解青藏高原西部大地构造背景和变形历史具有重大意义。该地区岩浆岩的研究较少,只有Leloup et al. (2012)报道过龙木错淡色花岗岩的锆石U-Pb年龄为116.9Ma,并认为其形成于班公怒江洋向北俯冲的弧后伸展环境,同时利用钾长石MDD模拟得出在早新生代(65~60Ma)岩体经历过一期快速冷却,认为该事件与印度/欧亚板块碰撞有关。另外Van Buer et al. (2015)曾报道过龙木错断裂与喀喇昆仑断裂交汇处的调节断层——Angmong正断层下盘侵入在中高级变质岩中的花岗脉体的年龄为13.7±0.2Ma,并认为下盘岩体的剥露发生在该时期之后,从而将花岗脉体的年龄作为羌塘地体E-W向伸展开始的时间。此外,前人对龙木错断裂晚第四纪以来走滑速率的计算结果表明,利用地质地貌错断与宇宙成因核素定年得到的速率(< 3mm/yr, Chevalier et al., 2017)小于利用InSAR获得的速率(4~10mm/yr, Wright et al., 2004),而与GPS得到的结果(2.7~3.2mm/yr, Loveless and Meade, 2011)更为近似。然而,由于缺乏详实的构造-地层解析以及研究区其它岩体的年代学、地球化学数据,给人们认识龙木错地区的岩浆活动和大地构造过程带来诸多限制。

图 1 青藏高原及周边地区构造简图(a, 据Liu et al., 2018修改)和研究区地质简图(b, 据成都地质矿产研究所, 2005; 据江西省地质调查院, 2005; Van Buer et al., 2015修改) JSSZ=金沙江缝合带;BNSZ=班公-怒江缝合带;IYSZ=印度-雅鲁藏布缝合带;KKF=喀喇昆仑断裂;KF=喀拉喀什断裂;LGCF=龙木错-郭扎错断裂带;ATF=阿尔金断裂 Fig. 1 Schematic tectonic map of the Tibetan Plateau and adjacent region (a, modified after Liu et al., 2018) and simplified geological map of the study area (b, modified after Van Buer et al., 2015) JSSZ=Jinsha suture zone; BNSZ=Bangong-Nujiang suture zone; IYSZ=Indus-Yarlung suture zone; KFF= Karakoram fault; KF=Karakax fault; LGCF=Longmu Co-Guozha Co fault; ATF=Altyn Tagh fault

① 成都地质矿产研究所.2005. 1:250000松西区幅、温泉区幅地质图

② 江西省地质调查院.2005. 1:250000日吐区幅、喀钠区幅地质图

同位素热年代学是研究构造热演化的最常用工具之一。不同封闭温度的各种矿物组合可以作为时间温度计,对岩体侵位时间、冷却历史和折返过程提供更精确的限定。本文对泽错地堑主断层下盘的花岗岩体进行了锆石U-Pb定年、黑云母、白云母和钾长石40Ar/39Ar定年、全岩地球化学分析、岩相学以及岩石成因学研究,以确定岩浆的来源及大地构造背景,并揭示龙木错地区长期以来的构造-岩浆演化过程及其在高原生长中发挥的作用。

1 地质背景

泽错岩体位于羌塘地体最西部,北侧紧邻龙木错缝合带/断裂,是该地区出露的规模最大的侵入体,东西长约45km,南北最宽处可达20km。西侧是喀喇昆仑右旋走滑断裂,南部是班公-怒江缝合带(图 1)。泽错岩体出露在泽错正断层的下盘,断层平均走向为N15°,地貌特征极为清晰。沿着下盘的断臂山底部,断层三角面清晰可见。泽错湖泊位于裂谷西侧的上盘,作为新生代形成的半地堑,内部填充了较厚的冲积扇和湖相沉积物(图 2b)。研究区及外围出露的主要岩石地层单元从奥陶-泥盆到新近纪均有分布,其中晚石炭至早二叠世沉积-沉积变质岩分布最为广泛,主要成分包括含硅质岩、石英岩和灰岩夹层、粉砂质泥岩和砂质板岩等。从晚二叠到新近纪,地层被平行不整合分为三个序列,表明在沉积间断期地层没有发生明显的变形。

图 2 剖面图显示由西向东多组正断层及下盘剥露的花岗岩体和上覆第四纪沉积 图 2b中黄色实心圆圈为采样点,剖面位置见图 1b Fig. 2 From west to east, geological sections show normal faults and footwall granite pluton exposed to the surface, with overlying Quaternary sedimentation Solid yellow circles in Fig. 2b show the sampling points. Sections location in Fig. 1b

喀喇昆仑断裂位于青藏高原西南缘,长约1200km,卫星影像上清楚可见一条狭窄的北西-南东向负地形,从布伦口、红其拉甫,经扎西至冈仁波齐一带(李海兵等, 2006)。以喀喇昆仑断裂为界,以西受帕米尔构造结不断向北楔入并产生强烈的地壳缩短的影响,形成了一系列弧形分布的逆冲断裂和向北凸出的弧形构造(Matte et al., 1996);以东则发育多条走滑断裂和斜向逆冲断裂(Cowgill, 2010)。在过去的15年中,沿喀喇昆仑断裂进行了多项活动构造和地貌科学考察,主要是为了限定第四纪的滑移速率并研究其发震行为(Chevalier et al., 2012)。这些测量的时间尺度大约在几万年至二十万年以内,填补了现今GPS数据与早期以地质历史尺度为主的时间间隔,并记录了多次地震周期中的断层行为。龙木错-郭扎错断裂在34.5°N/78°E处与喀喇昆仑断裂相接,并共同构成一条27km宽的压扭性双重构造,将该断裂分成了两个截然不同的地貌单元(Raterman et al., 2007)。在双重构造的西北部,喀喇昆仑断裂深陷于狭窄的峡谷中,为压扭性,其分支断裂表现出逆冲或走滑性质。相反,断裂在双重构造的中部和东南部则表现为张扭性,通常由两条或多条平行断层组成,有明显的右旋性质。断层迹线沿着浅而宽的沟谷,以断层三角面为边界,表明有垂向滑移(Armijo et al., 1986; Matte et al., 1996; Chevalier et al., 2005, 2012)。喀喇昆仑断裂在本段最明显位移量即错断班公湖的41~45km,而在与龙木错断裂结合点以北的40km长的部分,从卫星照片和野外观察都没有看到出明显的右旋位移,断层被第四纪的黄土、河流和冰川沉积物覆盖。有些学者认为龙木错-郭扎错断层的活动是由于第四纪中期以来,喀喇昆仑断裂北部(与龙木错断裂结合点)的活动性不强引起的,因而将喀喇昆仑断裂本段及以南部分和龙木错-郭扎错断裂定义为第四纪时期内的共轭走滑断裂体系(Robinson, 2009)。

龙木错断裂(LMC)从构造行迹上可以看作金沙江缝合带的西延部分,而某些学者更倾向于认为它是阿尔金断裂的最新分支(Chevalier et al., 2017)。龙木错断裂走向N70°~85°E,连接南部的喀喇昆仑断裂与北部的喀拉喀什断裂,三者共同围成了一个三角形的区域——甜水海地体。断裂向北东方向延伸,发育一系列左阶雁行状排列的次级断层并组成两段主要的断裂——郭扎错断裂和阿什库勒断裂。北部约100km的阿什库勒断裂包括许多左旋伸展-走滑断层,沿阿尔金断裂向外散开。这三条主要断裂绵延600多千米,共同组成龙木错-郭扎错断裂系统,并于36°N/83°E处并入阿尔金断裂(Tapponnier and Molnar, 1977; Armijo et al., 1986; Peltzer et al., 1989; Avouac and Tapponnier, 1993)。而目前对于龙木错缝合带的性质也存在许多争议。从构造位置和地层分布特征上看,龙木错断裂是北部甜水海地体和南部羌塘地块的分界线,其两侧则出露完全不同的地层单元(Chevalier et al., 2017)(图 1b)。这个观点认为甜水海地体与东部的松潘-甘孜地体属于同一个陆块,而龙木错缝合带则与向南倾的金沙江缝合带作为一个整体(Roger et al., 2003)。然而,由于缺少超基性岩,对龙木错地区与形成于古生代的金沙江缝合带之间的亲缘关系也有待进一步考证(Leloup et al., 2012)。另一种观点则认为龙木错缝合带与东边的双湖缝合带共同组成了三叠纪的碰撞造山带,即南北羌塘次陆块的分界,代表了古特提斯洋的闭合(李才等, 2006; Pan et al., 2012)。还有一部分学者否认龙木错-双湖缝合带的真实存在性,认为这仅仅是金沙江洋壳向北俯冲形成的增生杂岩在陆内的折返(Kapp et al., 2000; Pullen et al., 2011)。

班公-怒江缝合带不仅是一个重要的构造边界和成矿带(Hou et al., 2015),在深部也具有明显的地球物理反射特征(Haines et al., 2003),被认为是中特提斯洋(班公-怒江洋)俯冲和闭合的部位(Guynn et al., 2006; Kapp et al., 2005; Li et al., 2015, 2016)。这条地质长廊自西向东绵延1400km,可分为三段:西段,班公错-改则;中段,东巧-安多;东段,丁青-怒江(Dewey et al., 1988; Yin and Harrison, 2000)。岩相上主要由增生杂岩和相关的蛇绿岩岩片组成,年龄跨度从190Ma到108Ma不等(Wang et al., 2008; Zhang et al., 2012)。而对羌塘地体上花岗岩年代学的考察主要集中在西段(100~168Ma, Liu et al., 2012; Schneider et al., 2003),此外还包括中段和东段的部分地区,如东巧地区(如康日岩体117~129Ma)和安多地区(112~185Ma, Guynn et al., 2006; Liu et al., 2010, 2014)等。

班公-怒江洋中西部的闭合时间和闭合方式长期以来都是一个备受争议的话题。晚侏罗和早白垩世沉积地层之间的不整合、蛇绿岩和深海复理石沉积(陈国荣等, 2004; Zhu et al., 2016),以及大量早白垩世中酸性岩浆活动(Li et al., 2014, 2015, 2016; Zhu et al., 2016; Liu et al., 2017)让许多学者认为洋盆的关闭发生在早白垩世之前。但也有学者认为班公-怒江洋在白垩纪早期仍在发育,其闭合时代为白垩纪晚期。该观点主要基于一些早白垩世代表海洋环境的蛇绿岩、洋岛物质以及放射虫硅质岩的存在(Bao et al., 2007; Fan et al., 2014, 2015; Liu et al., 2014; Zhang et al., 2014),这也引发了学术界对班公-怒江洋闭合模式的重新探讨。而在南羌塘地体和北拉萨地体上发育的蛇绿岩和岩浆岩同样引起了人们对俯冲模式的争论,包括班公-怒江洋的向北俯冲(Zhang et al., 2012),向南俯冲(潘桂棠等, 2006; Zhu et al., 2013),以及双向俯冲(Hao et al., 2016; Zhu et al., 2016)等。因此,对班公-怒江特提斯洋的张开、俯冲或封闭的时间以及俯冲极性尚未达成共识。

此外,研究区多处出露岩浆岩,主要包括花岗岩和多条小型辉绿玢岩脉,侵入到石炭至二叠纪的岩石序列中。花岗岩体大多出露在局部发育的地堑下盘,由西向东大致沿龙木错断裂走向排列。地形地貌特征上,以正断层为界,下盘多表现为陡峭的断面山,而上盘则发育深浅不等的第四纪盆地,且地形起伏较为平坦。其中,西Angmong断裂下盘出露高级变质岩以及侵入其中的新生代花岗岩,上盘为新生代花岗岩;而东Angmong断裂则将下盘的新生代花岗岩与上盘的中生代花岗岩分隔开来。前人研究认为这些深成岩是由新生代活动的正断层剥露至地表,且断层向下延伸逐渐变为低角度(Van Buer et al., 2015; 图 2a)。

2 样品与测试方法分析

野外考察中可见,泽错正断层下盘岩体的特征比较单一,主要由较老的片麻岩和侵入的灰白色黑云母二长花岗岩、灰黑色黑云母花岗岩组成,局部地区可见辉绿岩脉侵入到花岗岩围岩中(图 3d)。普遍侵入的中细粒花岗岩脉宽度从几厘米至数米不等,而花岗岩本身又被弥散的白色长英质或淡色花岗岩脉体侵入,形成网状结构(图 3c)。花岗岩和侵入其中的脉体主要为等粒结构,与围岩接触面未见快速冷却形成的反应边或纹理(图 3b),表明花岗岩和长英质脉体结晶期间始终处于高温环境下。而在后期变形历史中,变质围岩同样也维持在较高的温度。在海拔5650m以下,浅色的花岗岩普遍侵入到暗色的片麻岩中,整体色调偏黑褐色;5650m以上,岩体主要为黑云母二长花岗岩构成,整体色调偏灰白。本文沿着横穿断层下盘的垂直剖面(32°10′32″N、88°07′52″E)至(32°10′32″N、88°07′52″E)进行采样,高程跨度约1000m(图 2b)。

图 3 泽错岩体野外照片 (a)泽错花岗岩野外照片;(b)花岗岩侵入片麻岩围岩;(c)花岗岩/长英质脉侵入花岗岩岩围岩;(d)辉绿岩侵入花岗岩围岩 Fig. 3 Field photos of Chem Co pluton (a) field photo of Chem Co granites; (b) granite intruding into gneiss surrounding rock; (c) granite/felsic dykes intruding into granite surrounding rock; (d) diabase intruding into granite surrounding rock

对样品进行野外和手标本观察和薄片鉴定,均为块状构造,除样品ZC16-6为似斑状结构外(斑晶为钾长石和石英)(图 4c),其余样品均为中到细粒的等粒结构(图 3a),主要区别在于粒径大小。样品ZC16-11和ZC16-16在手标本上只能识别出石英,其余样品可观察到石英、长石和黑云母的矿物组合(图 3a)。镜下观察岩石的矿物成分比较一致,主要由碱性长石(~20%),斜长石(15%~20%),石英(60%~75%),黑云母(~8%)和少量白云母(~2%)组成,无角闪石,大多数样品具典型的花岗结构(图 4d)。少数样品呈片麻状结构。斜长石可见明显的聚片双晶,钾长石可见卡式双晶。有些样品的矿物生长分为两期,其中第一期为花岗岩结晶过程中形成的大颗粒石英、长石和云母等;第二期主要表现为长石晶体在其内部形成长英质或云母的重结晶矿物,并且有微弱的定向排列(图 4a)。有些样品在局部石英颗粒通过亚晶粒旋转或晶界迁移发生动态重结晶。第一期的石英、长石和云母颗粒多见港湾状结构(图 4e),有些地方出现以石英、斜长石微晶和黑云母组成的细长熔体条带,表明岩石在后期经历过初始熔融。被花岗岩侵入的花岗片麻岩围岩的变形特征主要包括钾长石、黑云母围绕石英颗粒发生旋转应变变形,发育塑性流动和S-C组构,以及云母鱼的弯曲(图 4f)。此外,局部可见斜长石部分风化为绢云母以及钾长石的钠黝帘石化(图 4b)。实验选取了样品中的8件具有代表性的花岗岩进行地球化学分析,3件进行SHRIMP锆石U-Pb测年,3件进行白云母、黑云母40Ar/39Ar定年,以及2件进行钾长石40Ar/39Ar定年。

图 4 代表性的岩石样品显微照片 (a、b、d、e)中到细粒等粒结构花岗岩,斜长石可见聚片双晶,钾长石可见卡式双晶;(c)似斑状结构,斑晶为钾长石和石英;(f)花岗片麻岩围岩样品片麻状构造.矿物名称缩写:Qtz-石英;Pl-斜长石;Kfs-钾长石;Bt-黑云母;Ms-白云母 Fig. 4 Microphotographs of representative rock samples showing the mineral assemblages and texture Abbreviated minerals are: Qtz-quartz; Pl-plagioclase; Kfs-K-feldspar; Bt-biotite; Ms-muscovite
2.1 全岩地球化学

分析在中国地质科学院国家地质实验测试中心进行。用X射线荧光光谱XRF(X-ray fluorescence spectroscopy)法,借助光谱仪Axios PW 4400进行全岩氧化物测试。先将样品碾磨至200目大小,进行粉末称重。然后加热(约1000℃)3小时除去吸附水,称重,加热前后质量差值即为烧失量(LOI)。之后将样品与四硼酸锂(Li2B4O7)以一定比例混合后放于铂金坩埚中加热(1050℃)20分钟,冷却后测试主量元素。

用等离子质谱PE300D对稀土元素和微量元素进行测试。取全岩粉末20~25mg,进行称重。之后与1mL的HNO3和1mL的HF一起置入溶样罐,并使用超声波震荡将其混合均匀。然后放置再电热板上用150℃加热蒸干,再加入1mL的HNO3和1mL的HF放入烤箱内以200℃加热48小时,使粉末彻底溶解。将溶样罐取出并置于电热板以150℃蒸至近干,再加入2mL的HNO3和3mL的蒸馏水,再次置于烤箱中以200℃加热48小时,取出后定容50mL。定容溶液使用电感耦合等离子质谱仪(X-Series)进行微量元素稀土元素的分析。有关激光ICP-MS测试的详细步骤和方法参考高剑峰等(2003)。分析结果见表 1

表 1 全岩主量(wt%)、微量(×10-6)元素地球化学分析 Table 1 Whole-rock major (wt%) and trace element (×10-6) for the Cretaceous Chem Co pluton
2.2 锆石U-Pb测年

阴极发光图像使用CAMECASX-50电镜,加速电压为15kV,在中国地质科学院地质研究所北京离子探针中心电子探针研究室进行拍摄。在中国地质科学院地质研究所北京离子探针中心SHRIMP-Ⅱ上,对锆石样品进行测试。一次离子流O2-强度约为3.5~5.0nA,束斑直径约为23μm。分析流程和原理详见Compston et al. (1984)。每个样品点的表层Pb清洗时间为130~180s,经五次扫描测定各同位素质量峰来确定年龄。在分析中使用标样SL13(U=238×10-6, Williams, 1998)和M257(U含量质量分数840×10-6, Nasdala et al., 2008)来确定U的含量。应用标准锆石TEMORA1(206Pb/238U年龄417Ma, Black et al., 2003)确定U-Th-Pb同位素比,进行年龄矫正。有关SHRIMP测试的详细步骤和仪器调节参考宋彪等(2002)李洪奎等(2011)的相关文献。

每测三个点都要进行一次标样校正。分析不确定性的统计量引用1σ水平,而加权均值年龄的误差为95%置信区间。按照Andersen (2002)提出的方法进行Pb的校正。使用ISOPLOT 3.0软件计算U-Pb均值年龄(Ludwig, 2001)。每一个测试点的锆石U-Pb同位素数据和误差见表 2

表 2 泽错岩体锆石U-Pb年龄SHRIMP测试结果表 Table 2 Zircon age data acquired by SHRIMP methods for the Chem Co pluton
2.3 云母40Ar/39Ar测年

黑云母和白云母提纯分离后,送往密歇根大学进行蒸馏水清洗、包装并在铝箔中进行辐照。样品包裹在纯铝箔中并在安大略省汉密尔顿麦克马斯特大学核反应堆的8B处的mc57包裹中进行照射,辐照功率为70MW/hr。以标准角闪石MMhb-1用作中子通量监测器,年龄为520.4Ma (Samson and Alexander, 1987)。然后用Coherent Innova 5W连续氩离子激光器对所有样品进行逐渐加热,直至完全熔化。将样品加载到2mm直径的孔中并在每个激光功率设定下脱气30秒。

用VG1200S质谱仪测量Ar同位素,其质谱仪的总发射量为150A,并配备以模拟模式运行的Daly检测器。每天使用大气中的氩~4×10-9ccSTP进行质量检测。熔合系统每五步进行一次熔合,从而计算氩同位素36Ar到40Ar的损失量(分别为~2×10-14、~3×10-14、~1×10-14、~3×10-14、2×10-12ccSTP)。37Ar和39Ar用同样的方法进行校正,排除来自K,Ca,Cl核反应以及36Cl衰变产生的36Ar等部分的干扰。通过年龄计算不确定性,以及每个信号的分析误差。年龄精准度大于1.5%,分析数据见表 3

表 3 云母40Ar/39Ar同位素测年 Table 3 Micas 40Ar/39Ar dating
2.4 钾长石40Ar/39Ar测年

钾长石在俄勒冈州立大学测试。将样品包裹在铜箔中并装入具有FCT-3黑云母通量监测标准的真空石英瓶中(28.04±0.12Ma; Renne et al., 1998),然后放入TRIGA反应器中以1MW功率照射6小时。在Noble Gas质谱实验室用10W连续CO2激光器进行增量加热氩气提取。将样品设置在50℃至125℃的增量步频下加热,从400℃加热至1400℃。用Zr-Al吸气剂完成气体净化。氩同位素用配有电子倍增器的MAP-215/50质谱仪分12个循环进行分析。每隔三到五个样品常规测量空白,以便校正来自提取系统的Ar贡献。通过假设初始大气压40Ar/36Ar比率(尼尔值)等于295.5来计算各个温度步骤的坪年龄(Steiger and Jäger, 1977)。分析数据见表 4

表 4 钾长石40Ar/39Ar同位素测年 Table 4 K-feldspar 40Ar/39Ar dating
3 实验结果 3.1 全岩主微量元素特征

样品整体高硅,SiO2含量为66.30%~80.74%;贫镁和钙,MgO含量0.14%~1.88%,Mg#指数[Mg#=100×Mg2+/(Mg2++TFe2+)]的范围为30.8~45.0,CaO含量0.45%~3.71%;富铝,Al2O3含量9.03%~15.11%。在A/CNK-A/NK图解中,大部分的样品都落入过铝质区域,自然铝饱和指数(A/CNK=Al2O3/CaO+Na2O+K2O的摩尔比)为1.00~1.38(图 5b; Shand, 1943)。此外,所有样品均显示中高等程度的碱性元素富集,K2O含量2.03%~4.66%,Na2O含量1.54%~3.76%,在K2O-SiO2图解上落入钙碱性和高钾钙碱性系列Peccerillo and Taylor (1976)(图 5c)。在TAS图解中,大部分样品落入花岗岩区域(图 5a; Irvine and Baragar, 1971; Middlemost, 1994)。

图 5 泽错花岗岩成分分类图解 (a) (K2O+Na2O)-SiO2(Irvine and Baragar, 1971; Middlemost, 1994);(b) A/NK-A/CNK(Shand, 1943);(c) K2O-SiO2(Peccerillo and Taylor, 1976);(d) A-型花岗岩分类判别图(Whalen et al., 1987) Fig. 5 Compositions of the Chem Co pluton samples plotted on diagrams (a) TAS classification of K2O+Na2O vs. SiO2 (Irvine and Baragar, 1971; Middlemost, 1994), (b) A/NK vs. A/CNK (Shand, 1943), (c) K2O vs. SiO2 (Peccerillo and Taylor, 1976); (d) plot to distinguish A-type granitoids diagram (Whalen et al., 1987)

Cr含量变化较大1.59×10-6~46.1×10-6,Ni元素含量较为富集1.1×10-6~14.8×10-6。样品中Ba含量249×10-6~1282×10-6,Sr含量84.1×10-6~824×10-6,Rb含量83.6×10-6~279×10-6。同时具有高La(5.87×10-6~87.9×10-6)、低Yb(0.47×10-6~2.40×10-6),(La/Yb)N比4.72~70.0。此外,Sr/Y比4.36~69.2,均值22.9;Sr/La比3.75~41.6,均值10.6。高场强元素(HFSE,如Nb, Ta, P, and Ti)亏损,大离子亲石元素(LILE,如Rb, Cs, Ba,K)富集。轻稀土(LREE)元素含量较高而重稀土(HREE)含量较低,轻重稀土比(LREE/HREE)为4.57~26.6,富Pb而轻微的亏损Th。微量元素/原始地幔和稀土元素/球粒陨石标准化图解显示,大多数样品表现出中等的负Eu异常,Eu/Eu*比(EuN /(SmN×GdN)0.5)范围在0.58~0.92(图 6)。样品ZC16-1的地化特征与其余样品存在差异,出现Eu正异常(3.06),这可能是由于熔体形成以后并没有充分迁移出熔融源区而就地形成斜长石堆晶造成的(刘军锋等, 2008),也能有其它未知原因,因此仅将此列出。这些特征表明泽错岩体稀土元素经历了分异过程。

图 6 泽错花岗岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素曲线(b)(标准化值据McDonough and Sun, 1995) Fig. 6 Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element diagrams (b) for the Chem Co intrusions (normalization values after McDonough and Sun, 1995)
3.2 锆石U-Pb年龄

本文挑选的锆石多为浅黄色至黄褐色,半透明、长柱状的自形晶体。锆石宽约40~60μm,长约80~180μm,阴极发光图像显示具有明显韵律环带(图 7)。各样品的Th/U比值范围集中在如下区间:HL-1,0.02~1.22;ZC16-4,0.05~1.04;ZC16-15,0.2~0.56。这些样品测试点的Th/U比较高且较为集中,符合岩浆锆石的特征(Corfu et al., 2003; Hoskin and Schaltegger, 2003)。由于锆石在后期可能经受不同程度的扩散、蜕晶化或重结晶等,部分锆石颗粒中出现不同程度的铅丢失(万渝生等, 2011),导致有些测试点协和度低甚至为负。本文选取落在谐和线上并且最为集中的测试点作为一组年龄进行加权平均,将该锆石U-Pb年龄解释为岩浆侵位的年龄。

图 7 泽错岩体锆石SHRIMP阴极发光(CL)图像和U-Pb谐和线及加权平均年龄 圆圈代表测试点 Fig. 7 Cathodoluminescence (CL) images of zircons from the Chem Co pluton, with analytical numbers, U-Pb concordia diagrams and weighted mean ages U-Pb analysis spots are shown by solid circles

对HL-1样品中的19个锆石边缘的分析,206Pb/238U年龄集中在103±2.1Ma~111±2.4Ma,加权平均年龄为107±1.4Ma(MSWD=1.7, n=19)(图 7a, b)。对ZC16-4样品中的6个数据点的分析结果表明,206Pb/238U年龄集中在122±1.1Ma~126±1.0Ma之间,加权平均年龄为123±1.7Ma(MSWD=2.4, n=6)(图 7c, d)。对ZC16-15样品中的30个数据点的分析,206Pb/238U年龄集中在113±2.5Ma~122±2.5Ma,加权平均年龄为117±0.6Ma(MSWD=1.3, n=30)(图 7e, f)。以上数据表明,泽错花岗岩的侵位时代为早白垩纪,约107~123Ma。

3.3 云母、钾长石40Ar/39Ar年龄

白云母的坪年龄介于102~118Ma之间,略高于样品的锆石U-Pb年龄。样品的白云母年龄-39Ar累积释出量图表现为简单的年龄坪,在开始加热的前两、三个阶段释放了总计不到10%的气体累积量(图 8表 3)。样品的年龄分别为:ZC16-4,118.13Ma;HL-8,104.20Ma;HL-3,102.83Ma。与白云母相比,黑云母样品的热年代学分析代表了更低温的冷却历程。一般来说,年龄谱显示前2%至16%气体中有一定程度的年龄梯度,并快速上升到99~115Ma的年龄坪(图 8表 3)。大多数样品的年龄梯度都很陡,表明快速冷却。各个样品的年龄分别为:ZC16-4,115.22Ma;ZC16-15,100.70Ma;HL-3,99.71Ma。钾长石样品的Ar同位素分析展现较缓的年龄梯度(图 9表 4)。2个样品的气体释放量—年龄谱显示30%至40%的39Ar气体释放前,年龄一直缓慢增长,随后逐渐上升到90~91Ma的年龄坪。这表明岩体通过钾长石Ar封闭温度区间内经历了缓慢冷却过程。各个样品的年龄分别为:ZC16-15,91.94Ma;HL-3,90.32Ma。

图 8 泽错岩体白云母(紫色)和黑云母(黑色)40Ar/39Ar年龄谱和坪年龄图 Fig. 8 40Ar/39Ar age spectra and plateau age of muscovite (purple) and biotite (black) of different samples from the Chem Co pluton

图 9 泽错岩体钾长石40Ar/39Ar年龄谱和坪年龄及36Ar/40Ar-39Ar/40Ar反等时线图 Fig. 9 40Ar/39Ar release spectra and plateau age and 36Ar/40Ar-39Ar/40Ar reverse isochron diagram of K-feldspar of different samples from the Chem Co pluton
4 讨论 4.1 岩浆岩时代

花岗岩主要形成于俯冲、碰撞及后碰撞造山阶段的伸展环境,根据岩浆来源和性质,可将花岗岩分为I型、S型、A型和M型。前人对羌塘南部广泛分布的中生代岛弧型岩浆岩做过大量研究(Kapp et al., 2005, 2007; Li et al., 2014; Liu et al., 2014; Pullen et al., 2011)。结果显示,这些中生代岩浆岩与拉萨地块北部和中部地区的火山-岩浆岩无论从地质年代学,还是地球化学和岩石学特征均有许多相似之处(Kapp et al., 2005; Murphy et al., 1997; Volkmer et al., 2007; Zhu et al., 2011, 2013; Sui et al., 2013)。这条西起帕米尔高原,东至左贡,南至拉萨地块中部,北至羌塘地块中北部的岩浆岩带(Li et al., 2016; Zhu et al., 2016)存在两个主要年龄阶段,即早白垩世(峰值126~100Ma)和晚侏罗世(峰值180~160Ma)。

班怒带两侧的岩浆岩带中发育了大量与岛弧相关的岩浆岩,为探讨特提斯洋的俯冲闭合时限提供了很好的约束。沿该地区发育的岛弧型岩浆岩多为Ⅰ型,例如,八宿地区碰撞造山背景下由古地壳部分熔融形成的花岗岩类中锆石U-Pb年龄约为186~174Ma(Li et al., 2018);安多地区含角闪石Ⅰ型花岗岩的年龄为185~175Ma(Liu et al., 2017),对应于班公怒江洋向北俯冲和碰撞;班怒带西段盐湖地区岩体的地化数据显示为Ⅰ型花岗岩,锆石U-Pb年龄分别为121.0±2.7Ma和116.6±2.0Ma,表明早白垩世班公洋南向俯冲(Mi et al., 2017)。而S型花岗岩则鲜有报道,目前有扎普-多不杂岩浆弧中青草山地区含富铝矿物白云母、堇青石的强过铝质岩体,其石英二长斑岩锆石U-Pb年龄为122±1Ma,花岗斑岩年龄114.6±1.2Ma(刘洪等, 2016);以及八宿地区S型二云母花岗岩,年龄115.2±1.2Ma~112.8±1.3Ma(Liu et al., 2017)。而前人对金沙江缝合带中蛇绿岩、放射虫硅质岩和岛弧型岩浆岩的研究一致认为,金沙江洋在石炭纪早期(338~320Ma)经历海底扩张形成洋中脊玄武岩、基性-超基性深成岩后,在早中二叠世南向俯冲于北羌塘地体之下,于晚三叠世-早侏罗世闭合,且其关闭时限具东早西晚的穿时性(Reid et al., 2007; 张玉修等, 2006)。此外,近年来利用U-Pb、Sm-Nd、Lu-Hf等时线和Ar-Ar坪年龄限定龙木错-双湖构造带两侧的辉绿岩和辉长岩的年龄约在275~314Ma,代表洋盆扩张的年龄(翟庆国等, 2006; 王毅智等, 2007);而大量晚二叠-中三叠的花岗岩则代表了洋盆俯冲的时代;另外构造带内榴辉岩年龄被解释为变质作用的时间,如格木和冈玛错地区榴辉岩中锆石U-Pb和Lu-Hf等时线年龄分别为230~237Ma(翟庆国等, 2009; Zhai et al., 2011)和233~244Ma(Pullen et al., 2008);而榴辉岩中多硅白云母的Ar-Ar年龄(203~222Ma)和蓝片岩中角闪石的Ar-Ar年龄(223~227Ma)可能代表了榴辉岩折返的时间(李才等, 2006; Kapp et al., 2003; 翟庆国等, 2009)。而这些构造事件的时代均早于泽错岩体的侵位时代100~80Ma。

本次研究采用SHRIMP锆石U-Pb对岩体进行了系统的测试,结果表明泽错花岗岩的年龄为123~107Ma。泽错岩体与班公-怒江缝合带两侧的中生代花岗岩时代一致,而岩相学和地球化学的特征与羌塘南部青草山地区S型花岗岩具有很大程度的相似性,其成因环境和构造背景可能较为相近。因此,泽错岩体应为与班公-怒江洋俯冲相关的岩浆岩。

4.2 岩石成因

在A型花岗岩分类判别图中,大部分样品落入A型和未分异区间(图 5d),而较低的FeOT/MgO比(2.18~4.01)和(Na2O+K2O)/CaO比(1.72~12.13)不符合A型花岗岩的特征(Collins et al., 1982; Whalen et al., 1987)。另外,Rb/Sr比(0.1~3.3)和Rb/Ba比(0.07~1.12)较低,表明分异在岩浆演化过程中起到的影响较小。而样品中含有一定量的过铝质矿物白云母,部分样品做过白云母年龄测试(图 8),且几乎不含除黑云母外的其它暗色矿物。高硅低钠(Na2O含量1.54%~3.76%,均值2.94%),低钙(CaO含量0.45%~3.71%,均值1.74%),A/CNK较高(≥1)。这些特征都与I型花岗岩不相符(Chappell and White, 1992; Li et al., 2007)。此外,大部分样品位于高钾钙碱性系列,只有2个样品处于钙碱性系列(图 5c),高场强元素亏损(Nb、Ta、Ti),轻稀土元素和大离子亲石元素(Cs、Rb、Ba和K)富集,(La/Yb)N比介于4.72到70.0,岩相以高硅花岗岩为主,这些特征均符合典型的岛弧型花岗岩(Condie, 2001, 2005)。除ZC16-6大部分样品为过铝质(A/CNK=1.08~1.38, Chappell and White, 2001),Th-Rb和Y-Rb演化趋势与S型花岗岩相吻合(Janoušek et al., 2004; 图 10a, b),K值和A/CNK值不随Mg+Fe变化(Clemens and Stevens, 2012; Clemens et al., 2011; 图 10c, d),以上均为典型的S型花岗岩的性质。因此,泽错岩体可能是与岛弧相关的S型花岗岩。而在岛弧环境下S型花岗岩和I型花岗岩可以共生,被认为是地壳增厚后发生了短暂的板块回滚,从而引起的岛弧重熔以及岩浆活动的重启产生的(Collins and Richards, 2008; Wei et al., 2017; Liu et al., 2018)。

图 10 泽错岩体I/S型花岗岩判别图 Rb-Th (a, Chappell, 1999)、Rb-Y (b, Janoušek et al., 2004)、(Mg+Fe)-K(c)和(Mg+Fe)-A/CNK(d) (Clemens and Stevens, 2012; Clemens et al., 2011) Fig. 10 Plots of I/S type for the granitoids from the Chem Co pluton samples
4.3 岩体冷却史

通过不同矿物的年龄和对应封闭温度可以获得泽错岩体的冷却历史,其中白云母425±45℃(Harrison et al., 2009),黑云母320±40℃(Harrison et al., 1985)和钾长石225±25℃(Lovera et al., 1989)。来自同一个岩石样品中几种矿物的年代测定(ZC16-4中锆石U-Pb、白云母、黑云母的年龄分别为:123±1.7Ma、118.13±0.39Ma、115.22±0.27Ma;HL-3中白云母、黑云母和钾长石的年龄分别为:102.83±0.55Ma、99.71±0.25Ma、90.32±0.94Ma)结果,可以为热历史提供更为详实的信息和约束。虽然HL-3没有锆石U-Pb年龄,但与它最近的样品HL-1的锆石U-Pb年龄为107±1.4Ma。如此2个样品ZC16-4和HL-3的三种矿物中显示了相似的冷却过程,表明在经历了初始阶段大约850℃和425℃之间均值速率为~53.1℃/Myr快速冷却后,岩体冷却速率相对变慢但依然维持在~33.3℃/Myr,从约425℃到320℃。到约220℃之前,速率降至~7.3℃/Myr。因此在~120Ma的岩浆熔融体后,岩浆侵位在较冷的上地壳围岩中,并在~10Myr内降至~320℃以下。而且自钾长石Ar同位素时钟封闭以来,岩体再没有经历超过220℃的后期事件重置。即从岩体侵位到~90Ma以前,只发生了简单的冷却或抬升过程。此外,结合区域上Van der Beek et al. (2009)在巴基斯坦北部德沃萨依(Deosai)高原报道的锆石和磷灰石裂变径迹和(U-Th)/He年龄,缓慢冷却阶段从90Ma一直持续到~38Ma,而此后岩体冷却速率增快至~3.3℃/Myr并维持到~26Ma,而中新世以后则再次经历了快速冷却~8.7℃/Myr(图 11)。

图 11 龙木错地区热历史演化图解 橙色标志和钾长石MDD模拟曲线据Leloup et al. (2012).裂变径迹和(U-Th)/He数据据Van der Beek et al. (2009) Fig. 11 Thermal history of the Longmu Co region Samples data and K-feldspar MDD from Leloup et al. (2012) are in orange. Apatite fission track and (U-Th)/He data are from Van der Beek et al. (2009)
4.4 中新生代大地构造的启示

通过实地考察并结合地球化学和地质年代学分析,我们对泽错岩体的形成和演化有了初步认识,并且为青藏高原现今最为活跃地区之一——羌塘西缘的构造及岩浆演化提供了新的地球动力学约束。结果表明,泽错岩体最年轻的锆石U-Pb年龄为107±1.4Ma,表明此时班公-怒江洋仍在向北俯冲,而洋盆的消减闭合发生在此之后。现代和古代大洋的研究表明,洋盆的关闭以及后续的陆陆碰撞是一个极其复杂多样的过程(Pan et al., 2012)。近年来,对班公-怒江缝合带的研究积累了大量的岩石学、同位素地球化学、地质年代学和地震地球物理的数据(Zhu et al., 2016; Fan et al., 2018)。除了4.1节中提到的岛弧型岩浆岩,前人还获取了大量蛇绿岩、沉积岩以及古地磁的数据从而对洋盆闭合年代进行制约。我们的最新研究成果与Fan et al. (2018)的结论相一致,后者总结了前人对羌塘中西部地区沉积岩、蛇绿岩、区域不整合及古地磁数据,认为班公-怒江洋的真正闭合时间在早白垩世晚期。而Liu et al.(2014, 2017)通过对羌塘地体南部岩浆带中花岗岩的研究,认为侏罗纪和白垩纪两个岩浆活动时代可能分别与班公-怒江洋的俯冲和闭合事件有关,洋盆东部安多地区在早白垩闭合,而西部直到白垩纪晚期才完全关闭。此外Guo et al. (2019)通过对班公-怒江缝合带多个地区的野外构造观测和分析,结合其它研究成果确定了洋盆的俯冲消减过程具有由东到西剪刀叉式闭合的特征:东段在中侏罗世闭合,中段的初始碰撞发生在早白垩世,而西段则在早白垩世晚期到晚白垩世早期才封闭。此外,早白垩世晚期和晚白垩沉积地层之间的区域不整合广泛分布于班公-怒江缝合带内及两侧,其上覆沉积岩主要为陆相红层沉积,并夹有少量火山岩(Fan et al., 2018)。这些陆相红层为磨拉石建造,而早白垩世晚期-晚白垩之间的区域不整合则代表了拉萨地体与羌塘地体之间发生碰撞引发的强烈构造隆升(Li et al., 2013; Fan et al., 2018)。另外,南羌塘地体中西部与俯冲相关岩体的最小年龄(改则地区106Ma,Li et al., 2011和班公错地区101Ma,Liu et al., 2014)确定了洋盆西段的闭合以及拉萨-羌塘地体碰撞时代的下限。基于上述结论并结合我们获得的黑云母的最小年龄为99Ma,以及之后岩体冷却速率的快速降低(从425~320℃,~33.3℃/Myr降低至320~220℃,~7.3℃/Myr),笔者认为泽错岩体从开始侵位到99Ma之间,由于岩浆与围岩之间较高的温差,以岩浆流动和快速冷却作用为主;而99Ma至90Ma,由于二者温度接近,温差导致的热传递引起的冷却速率降低,此时拉萨与羌塘之间的碰撞造成区域性隆升成为深部岩体剥露及冷却的重要因素。此后直到新生代以来长达几十个百万年之内冷却速率一直维持在极低的水平,表明在此期间未发生明显的区域性构造或热事件。因此,羌塘地体西部与拉萨地体之间的碰撞可能发生在90Ma之前。

许多证据表明青藏高原西北地区在印度与欧亚大陆碰撞后约10Myr内(41~52Ma)便发生了区域性强烈隆升。根据古高度、构造和热年代学证据,高原西部与中部的隆升时间具有一定程度的可比性。这些在空间上离散分布的年龄总体具有较高的一致性,暗示青藏高原的这些地区可能在碰撞不久便发生响应并隆升到一定海拔高度。而最新的研究则认为羌塘地体在晚新生代经历了可观的东西向伸展,且起始年龄在西部和中东部均得到约13Ma(Yin et al., 1999; Kapp et al., 2000; Blisniuk et al., 2001; Van Buer et al., 2015)。

龙木错断裂的起始活动时间尚未得到精确测定。卫星影像上可观测到明显的被龙木错-郭扎错断层错断的基岩位移为25~32km,结合第四纪活动速率(<3mm/yr, Chevalier et al., 2017)推测该断裂的形成时间晚于17Ma(Chevalier et al., 2017)。该时间与羌塘地体发育正断层的起始时间也比较吻合,结合研究区自西向东发育的多条弧形正断层,表明自中新世中期以来羌塘很可能处于以伸展为主的应力环境。而阿尔金断裂和郭扎错断裂之间还发育多条雁行状排列的正断层,如玉龙-喀什断层,表明走滑断裂和正断层共同调节羌塘西部的伸展应力。沿玉龙-喀什断裂还发生了2008年7.3级于田地震并形成一条30km的地表张裂带,这是青藏高原有历史记录以来最大规模的一次正断层地震事件(Elliot et al., 2010),表明现今羌塘西缘已进入以正断层活动为主的地震时期,今后的应力应变很可能沿着几条剥露深成岩的正断层释放。

根据本文的研究和前人的研究结果(Leloup et al., 2012),我们认为龙木错地区在大约120~95Ma内发生了一次重大的区域性岩浆事件,并快速冷却到~220℃。这个阶段的热历史主要受控于岩浆侵位,而对构造事件的响应较弱。此后进入漫长的缓慢冷却阶段,构造运动趋于平静,直到~38Ma,印度/欧亚大陆碰撞引起的高原内部造山相应,羌塘西部开始进入区域性挤压。在短暂的隆升过后,到中新世由于喀喇昆仑断裂的快速活动和龙木错断裂开始走滑,沿龙木错断裂狭窄的构造带内自西向东发育多条裂谷,并将中下地壳的深成岩剥露至地表。这一期的构造运动也成为控制羌塘地体现今构造地貌格局形成的最为重要的应力机制。龙木错断裂可能是中新世发育的一条左旋走滑断裂,并作为高原西部边界控制物质向东运移以及应力释放的一条新途径。

5 结论

羌塘西部龙木错地区泽错花岗岩体的锆石U-Pb年龄表明岩浆侵位时代在早白垩123~107Ma。矿物组合和地球化学特征显示其为过铝质S型花岗岩,形成于班公-怒江洋俯冲背景下的岛弧环境,说明洋盆在早白垩世晚期仍在向北俯冲。云母和钾长石40Ar/39Ar坪年龄表明90Ma以后岩体没有再经历高于~220℃的高温重置,并在此之后经历了长时间的缓慢冷却,此时龙木错地区处于构造相对平静时期,因而羌塘-拉萨地体碰撞发生在90Ma之前。至中新世时期受龙木错断裂左旋走滑和喀喇昆仑断裂右旋走滑活动的共同影响,龙木错地区的构造变形进入了以走滑和派生的东西向伸展为主的应力环境,并导致中下地壳的深成岩沿正断层逐渐剥露至地表。龙木错断裂可能作为中新世开始发育并维持较慢速率走滑的活动断层,成为高原西部边界物质向东运移和释放应力的新途径。

致谢      感谢戚学祥研究员和刘俊来教授对文稿提出了宝贵修改意见。感谢张泽明研究员和曾令森研究员给予本文的指导。锆石分析工作中得到了任鹏和颉颃强的大力协助,在此表示感谢。

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Armijo R, Tapponnier P, Mercier JL and Han TL. 1986. Quaternary extension in southern Tibet:Field observations and tectonic implications. Journal of Geophysical Research:Solid Earth, 91(B14): 13803-13872 DOI:10.1029/JB091iB14p13803
Avouac JP and Tapponnier P. 1993. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20(10): 895-898 DOI:10.1029/93GL00128
Bao PS, Xiao XC, Su L and Wang J. 2007. Geochemical characteristics and isotopic dating for the Dongcuo ophiolite, Tibet Plateau. Science in China (Series D), 50(5): 660-671 DOI:10.1007/s11430-007-0045-5
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1): 155-170
Blisniuk PM, Hacker BR, Glodny J, Ratschbacher L, Bi SW, Wu ZH, Mcwilliams MO and Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5Myr ago. Nature, 412(6847): 628-632
Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1-26 DOI:10.1017/S0263593300007720
Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chappell BW and White AJR. 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Sciences, 48(4): 489-499 DOI:10.1046/j.1440-0952.2001.00882.x
Chen GR, Liu HF, Jiang GW, Zeng QG, Zhao SR and Zhang XG. 2004. Discovery of the Shamuluo Formation in the central segment of the Bangong Co-Nujiang suture zone, Tibet. Geological Bulletin of China, 23(2): 193-194 (in Chinese with English abstract)
Chevalier ML, Ryerson FJ, Tapponnier P, Finkel RC, Van der Woerd J, Li HB and Liu Q. 2005. Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion. Science, 307(5708): 411-414 DOI:10.1126/science.1105466
Chevalier ML, Tapponnier P, Van der Woerd J, Ryerson FJ, Finkel RC and Li HB. 2012. Spatially constant slip rate along the southern segment of the Karakorum fault since 200ka. Tectonophysics, 530-531: 152-179 DOI:10.1016/j.tecto.2011.12.014
Chevalier ML, Pan JW, Li HB, Sun ZM, Liu DL, Pei JL, Xu W and Wu C. 2017. First tectonic-geomorphology study along the Longmu-Gozha Co fault system, Western Tibet. Gondwana Research, 41: 411-424 DOI:10.1016/j.gr.2015.03.008
Clemens JD, Stevens G and Farina F. 2011. The enigmatic sources of I-type granites:The peritectic connexion. Lithos, 126(3-4): 174-181 DOI:10.1016/j.lithos.2011.07.004
Clemens JD and Stevens G. 2012. What controls chemical variation in granitic magmas?. Lithos, 134-135: 317-329 DOI:10.1016/j.lithos.2012.01.001
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Collins WJ and Richards SW. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559-562 DOI:10.1130/G24658A.1
Compston W, Williams IS and Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research:Solid Earth, 89(S02): B525-B534 DOI:10.1029/JB089iS02p0B525
Condie KC. 2001. Mantle Plumes and Their Record in Earth History. London: Cambridge University Press
Condie KC. 2005. High field strength element ratios in Archean basalts:A window to evolving sources of mantle plumes?. Lithos, 79(3-4): 491-504 DOI:10.1016/j.lithos.2004.09.014
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500
Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. GSA Bulletin, 122(1-2): 145-161 DOI:10.1130/B26520.1
Dewey JF, Shackleton RM, Chang CF and Sun YY. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 379-413 DOI:10.1098/rsta.1988.0135
Ding L, Kapp P and Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): 1-18
Fan JJ, Li C, Xie CM and Wang M. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tiber:Implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-Tethys. International Geology Review, 56(12): 1504-1520 DOI:10.1080/00206814.2014.947639
Fan JJ, Li C, Xie CM, Wang M and Chen JW. 2015. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos, 227: 148-160 DOI:10.1016/j.lithos.2015.03.021
Fan JJ, Li C, Wang M and Xie CM. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249 DOI:10.1007/s00531-017-1487-4
Gao JF, Lu JJ, Lai MY, Lin YP, Lin YP and Pi W. 2003. Analysis of trace elements in rock samples using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract)
Guo R, Li S, Yu S, Dai L, Liu Y, Peng Y, Zhou ZZ, Wang YH, Liu YM and Wang Q. 2019. Collisional processes between the Qiangtang Block and the Lhasa Block: Insights from structural analysis of the Bangong-Nujiang Suture Zone, central Tibet. Geological Journal, https://doi.org/10.1002/gj.3420
Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000a. Can slab melting be caused by flat subduction?. Geology, 28(6): 535-538 DOI:10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
Gutscher MA, Spakman W, Bijwaard H and Engdahl ER. 2000b. Geodynamics of flat subduction:Seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5): 814-833 DOI:10.1029/1999TC001152
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G and Ding L. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508 DOI:10.1130/G22453.1
Haines SS, Klemperer SL, Brown L, Guo J, Mechie J, Meissner R, Ross A and Zhao WJ. 2003. INDEPTH Ⅲ seismic data:From surface observations to deep crustal processes in Tibet. Tectonics, 22: 1001 DOI:10.1029/2001TC001305
Hao LL, Wang Q, Wyman DA, Ou Q, Dan W, Jiang ZQ, Wu FY, Yang JH, Long XP and Li J. 2016. Underplating of basaltic magmas and crustal growth in a continental arc:Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245: 223-242 DOI:10.1016/j.lithos.2015.09.015
Harrison TM, Duncan I and McDougall I. 1985. Diffusion of 40Ar in biotite:Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468 DOI:10.1016/0016-7037(85)90246-7
Harrison TM, Copeland P, Kidd WSF and Yin A. 1992. Raising Tibet. Science, 255(5052): 1663-1670 DOI:10.1126/science.255.5052.1663
Harrison TM, Célérier J, Aikman AB, Hermann J and Heizler MT. 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4): 1039-1051 DOI:10.1016/j.gca.2008.09.038
Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bulletin, 112(3): 324-350 DOI:10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250 DOI:10.1130/G36362.1
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Janoušek V, Braithwaite CJR, Bowes DR and Gerdes A. 2004. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids:An integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78(1-2): 67-99 DOI:10.1016/j.lithos.2004.04.046
Kapp P, Yin A, Manning CE, Murphy M, Harrison TM, Spurlin M, Lin D, Deng XG and Wu CM. 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28(1): 19-22
Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH and Ding L. 2003. Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22(4): 1043
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin, 117(7-8): 865-878
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119(7-8): 917-933 DOI:10.1130/B26033.1
Leloup PH, Arnaud NO, Mahéo G, Paquette JL, Guillot S, Valli F, Li HB, Xu ZQ, Lacassin R and Tapponnier P. 2012. Successive deformation episodes along the Lungmu Co zone, west-central Tibet. Gondwana Research, 21(1): 37-52 DOI:10.1016/j.gr.2011.07.026
Li C, Zhai QG, Chen W, Yu JJ, Huang XP and Zhang Y. 2006. Ar-Ar chronometry of the eclogite from central Qiangtang area, Qinghai-Tibet Plateau. Acta Petrologica Sinica, 22(12): 2843-2849 (in Chinese with English abstract)
Li HB, Valli F, Xu ZQ, Yang JS, Tapponnier P, Lacassin R, Chen SY, Qi XX and Chevalier ML. 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geology in China, 33(2): 239-255 (in Chinese with English abstract)
Li HK, Tian XL and Geng K. 2011. Introduction to SHRIMP zircon U-Pb dating methods. Land and Resources in Shandong Province, 27(3): 24-26 (in Chinese with English abstract)
Li JX, Qin KZ, Li GM, Xiao B, Zhao JX and Chen L. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet:Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth Sciences, 41(6): 525-536 DOI:10.1016/j.jseaes.2011.03.008
Li JX, Qin KZ, Li GM, Richards JP, Zhao JX and Cao MJ. 2014. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications. Lithos, 198-199: 77-91 DOI:10.1016/j.lithos.2014.03.025
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96(1-2): 186-204 DOI:10.1016/j.lithos.2006.09.018
Li YL, He J, Wang CS, Santosh M, Dai JG, Zhang YX, Wei YS and Wang JG. 2013. Late Cretaceous K-rich magmatism in central Tibet:Evidence for early elevation of the Tibetan plateau?. Lithos, 160-161: 1-13 DOI:10.1016/j.lithos.2012.11.019
Li YL, He J, Wang CS, Han ZP, Ma PF, Xu M and Du KY. 2015. Cretaceous volcanic rocks in south Qiangtang Terrane:Products of northward subduction of the Bangong-Nujiang Ocean?. Journal of Asian Earth Sciences, 104: 69-83 DOI:10.1016/j.jseaes.2014.09.033
Li YL, He J, Han ZP, Wang CS, Ma PF, Zhou A, Liu SA and Xu M. 2016. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong-Nujiang Ocean subduction. Lithos, 245: 34-46 DOI:10.1016/j.lithos.2015.10.014
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD and Ding L. 2014. Subduction of the Bangong-Nujiang Ocean:Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2): 188-206 DOI:10.1002/gj.v49.2
Liu DL, Shi RD, Ding L, Huang QS, Zhang XR, Yue YH and Zhang LY. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet:Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157-172 DOI:10.1016/j.gr.2015.04.007
Liu DL, Shi RD, Ding L and Zou HB. 2018. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys:New volcanic constraints from central Tibet. Lithos, 296-299: 452-470 DOI:10.1016/j.lithos.2017.11.012
Liu H, Zhang H, Li GM, Huang HX, Xiao WF, You Q, Ma DF, Zhang H and Zhang H. 2016. Petrogenesis of the Early Cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, Southern Qiangtang, Northern Tibet:Constraints from whole-rock geochemistry and zircon U-Pb geochronology. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848-860 (in Chinese with English abstract)
Liu JF, Sun Y, Feng T, Hu YH and Sun WD. 2008. Geochemistry and petrogenesis of Sifangtai mafic-ultramafic complex from North Qinling. Geochimica, 37(2): 174-186 (in Chinese with English abstract)
Liu S, Hu RZ, Gao S, Feng CX, Coulson IM, Feng GY, Qi YQ, Yang YH, Yang CG and Tang L. 2012. U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of andesites from Gerze, southern Qiangtang Block, northern Tibet. Journal of Asian Earth Sciences, 45: 150-161 DOI:10.1016/j.jseaes.2011.09.025
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Liu ZC, Ding L, Zhang LY, Wang C, Qiu ZL, Wang JG, Shen XL and Deng XQ. 2018. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet:Implications for the Neo-Tethyan subduction. Lithos, 312: 72-88
Loveless JP and Meade BJ. 2011. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth and Planetary Science Letters, 303(1-2): 11-24 DOI:10.1016/j.epsl.2010.12.014
Lovera OM, Richter FM and Harrison TM. 1989. The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research:Solid Earth, 94(B12): 17917-17935 DOI:10.1029/JB094iB12p17917
Ludwig KR. 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley: Geochronology Centre Special Publication, 1a: 56
Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac JP, Vidal P, Liu Q, Pan YS and Yi W. 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3-4): 311-330 DOI:10.1016/0012-821X(96)00086-6
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Mi WT, Kong X, Zhang D, Hu J and Wan YW. 2017. Zircon LA-ICP-MS dating and geochemical characteristics of I-type granitoids from the Yanhu area, west segment of the Bangongco-Nujiang suture (western Tibet):Petrogenesis and implications for the southward subduction of the Tethyan Ocean. Journal of the Geological Society of India, 90(3): 335-346 DOI:10.1007/s12594-017-0722-8
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?. Geology, 25(8): 719-722 DOI:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/ggr.2008.32.issue-3
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Peltzer G, Tapponnier P and Armijo R. 1989. Magnitude of Late Quaternary left-lateral displacements along the north edge of Tibet. Science, 246(4935): 1285-1289 DOI:10.1126/science.246.4935.1285
Pullen A, Kapp P, Gehrels GE, Vervoort JD and Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354 DOI:10.1130/G24435A.1
Pullen A, Kapp P, Gehrels GE, Ding L and Zhang Q. 2011. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure. GSA Bulletin, 123(3-4): 585-600 DOI:10.1130/B30154.1
Qin Y, Feng Q, Chen G, Chen Y, Zou KZ, Liu Q, Jian QQ, Zhou DW, Pan LH and Gao JD. 2018. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China:Implications for the Paleozoic tectonic transition in the North Qaidam Orogen. Journal of Asian Earth Sciences, 156: 145-166 DOI:10.1016/j.jseaes.2018.01.009
Raterman NS, Cowgill E and Lin D. 2007. Variable structural style along the Karakoram fault explained using triple-junction analysis of intersecting faults. Geosphere, 3(2): 71-85 DOI:10.1130/GES00067.1
Reid A, Wilson CJL, Shun L, Pearson N and Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China:U/Pb geochronology and Hf isotopic signature. Ore Geology Reviews, 31(1-4): 88-106 DOI:10.1016/j.oregeorev.2004.11.003
Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL and DePaolo DJ. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1-2): 117-152 DOI:10.1016/S0009-2541(97)00159-9
Robinson AC. 2009. Geologic offsets across the northern Karakorum fault:Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen. Earth and Planetary Science Letters, 279(1-2): 123-130 DOI:10.1016/j.epsl.2008.12.039
Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu ZQ and Yang JS. 2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, 22(4): 1037
Samson SD and Alexander Jr EC. 1987. Calibration of the interlaboratory 40Ar/39Ar dating standard, MMHB-1. Chemical Geology, 66(1-2): 27-34
Schneider W, Mattern F, Wang PJ and Li C. 2003. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone (Tibet):A Reading cycle. International Journal of Earth Sciences, 92(2): 228-254
Shand SJ. 1943. Eruptive Rocks:Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with A Chapter on Meteorite. New York: John Wiley and Sons
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.1): 26-30
Steiger RH and Jäger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362 DOI:10.1016/0012-821X(77)90060-7
Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL and Mo XX. 2013. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168-169: 144-159 DOI:10.1016/j.lithos.2013.01.012
Tapponnier P and Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264(5584): 319-324 DOI:10.1038/264319a0
Tapponnier P and Molnar P. 1977. Active faulting and tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930 DOI:10.1029/JB082i020p02905
Tapponnier P, Peltzer G and Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157 DOI:10.1144/GSL.SP.1986.019.01.07
Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677 DOI:10.1126/science.105978
Van Buer NJV, Jagoutz O, Upadhyay R and Guillong M. 2015. Mid-crustal detachment beneath western Tibet exhumed where conjugate Karakoram and Longmu-Gozha Co faults intersect. Earth and Planetary Science Letters, 413: 144-157 DOI:10.1016/j.epsl.2014.12.053
Van Der Beek P, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S and Latif M. 2009. Eocene Tibetan Plateau remnants preserved in the Northwest Himalaya. Nature Geoscience, 2(5): 364-368 DOI:10.1038/ngeo503
Volkmer JE, Kapp P, Guynn JH and Lai QZ. 2007. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics, 26(6): TC6007
Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ and Yang EX. 2011. The impact of high-grade metamorphism on the U-Th-Pb system of zircons:A case study of zircon dating of meta-diorite in Qixia area, eastern Shandong. Earth Science Frontiers, 18(2): 17-25 (in Chinese with English abstract)
Wang WL, Aitchison JC, Lo CH and Zeng QG. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1-2): 122-138 DOI:10.1016/j.jseaes.2007.10.022
Wang YZ, Qi SS, An SW and Xu CQ. 2007. Characteristics and Ar-Ar dating of ultramafic-mafic rocks in the Zadoi area, southern Qinghai, China. Geological Bulletin of China, 26(6): 668-674 (in Chinese with English abstract)
Wei L, Dong Y, Guo A, Liu X and Zhou D. 2013. Chronology and tectonic significance of Cenozoic faults in the Liupanshan arcuate tectonic belt at the northeastern margin of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 73(8): 103-113
Wei Y, Zhao Z, Niu Y, Zhu DC, Dong L, Wang Q, Hou Z, Mo X and Wei J. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet:Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278-281: 477-490 DOI:10.1016/j.lithos.2017.02.013
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology, 7: 1-35
Wright TJ, Parsons B, England PC and Fielding EJ. 2004. InSAR observations of low slip rates on the major faults of western Tibet. Science, 305(5681): 236-239 DOI:10.1126/science.1096388
Xiong F, Yang J, Xu X, Kapsiotis A, Hao X and Zhao L. 2018. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China). Journal of Asian Earth Sciences, 159: 109-129 DOI:10.1016/j.jseaes.2018.03.024
Xu ZQ, Yang JS, Li HB, Zhang JX, Zeng LS and Jiang M. 2006. The Qinghai-Tibet Plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract)
Yin A, Kapp PA, Murphy MA, Manning CE, Harrison TM, Grove M, Lin D, Deng XG and Wu CM. 1999. Significant Late Neogene east-west extension in northern Tibet. Geology, 27(9): 787-790 DOI:10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
Zhai QG, Li C and Huang XP. 2006. Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet, China, and its tectonic significance. Geological Bulletin of China, 25(12): 1419-1427 (in Chinese with English abstract)
Zhai QG, Li C and Wang J. 2009. Petrology, mineralogy and PTt path for the eclogite from central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1207-1220 (in Chinese with English abstract)
Zhai QG, Jahn BM, Zhang RY, Wang J and Su L. 2011. Triassic Subduction of the Paleo-Tethys in northern Tibet, China:Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370 DOI:10.1016/j.jseaes.2011.07.023
Zhang KJ, Zhang YX, Tang XC and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114(3-4): 236-249 DOI:10.1016/j.earscirev.2012.06.001
Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF and Xu LF. 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 210-211: 278-288 DOI:10.1016/j.lithos.2014.09.004
Zhang YX, Zhang KJ, Xia BD and Xie YW. 2006. Mesozoic sandstone composition in the Qiangtang Block, Tibet:Implications for tectonic setting. Acta Sedimentologica Sinica, 24(2): 165-174 (in Chinese with English abstract)
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
陈国荣, 刘鸿飞, 蒋光武, 曾庆高, 赵守仁, 张相国. 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(2): 193-194. DOI:10.3969/j.issn.1671-2552.2004.02.015
高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. DOI:10.3321/j.issn:0469-5097.2003.06.014
李才, 翟庆国, 陈文, 于介江, 黄小鹏, 张彦. 2006. 青藏高原羌塘中部榴辉岩Ar-Ar定年. 岩石学报, 22(12): 2843-2849.
李海兵, Valli F, 许志琴, 杨经绥, Tapponnier P, Lacassin R, 陈松永, 戚学祥, Chevalier ML. 2006. 喀喇昆仑断裂的变形特征及构造演化. 中国地质, 33(2): 239-255. DOI:10.3969/j.issn.1000-3657.2006.02.002
李洪奎, 田秀林, 耿科. 2011. SHRIMP锆石U-Pb测年方法简介. 山东国土资源, 27(3): 24-26. DOI:10.3969/j.issn.1672-6979.2011.03.006
刘洪, 张晖, 李光明, 黄瀚霄, 肖万峰, 游钦, 马东方, 张海, 张红. 2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因:来自地球化学和锆石U-Pb年代学的约束. 北京大学学报(自然科学版), 52(5): 848-860.
刘军锋, 孙勇, 冯涛, 胡艳华, 孙卫东. 2008. 北秦岭四方台基性-超基性杂岩的地球化学特征及其成因. 地球化学, 37(2): 174-186. DOI:10.3321/j.issn:0379-1726.2008.02.009
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增1): 26-30.
万渝生, 刘敦一, 董春艳, 刘守偈, 王世进, 杨恩秀. 2011. 高级变质作用对锆石U-Pb同位素体系的影响:胶东栖霞地区变质闪长岩锆石定年. 地学前缘, 18(2): 17-25.
王毅智, 祁生胜, 安守文, 许长青. 2007. 青海南部杂多地区超镁铁质-镁铁质岩石的特征及Ar-Ar定年. 地质通报, 26(6): 668-674. DOI:10.3969/j.issn.1671-2552.2007.06.006
许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
翟庆国, 李才, 黄小鹏. 2006. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义. 地质通报, 25(12): 1419-1427. DOI:10.3969/j.issn.1671-2552.2006.12.010
翟庆国, 李才, 王军. 2009. 藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹. 地质通报, 28(9): 1207-1220. DOI:10.3969/j.issn.1671-2552.2009.09.008
张玉修, 张开均, 夏邦栋, 谢尧武. 2006. 西藏羌塘地体三叠纪-侏罗纪海相砂岩颗粒组分及其构造意义. 沉积学报, 24(2): 165-174. DOI:10.3969/j.issn.1000-0550.2006.02.002