岩石学报  2019, Vol. 35 Issue (5): 1478-1488, doi: 10.18654/1000-0569/2019.05.10   PDF    
三江特提斯南段多期构造活动的锆石裂变径迹证据
杨莉, 袁万明, 朱晓勇, 时贞     
中国地质大学(北京)科学研究院, 北京 100083
摘要: 三江特提斯造山带位于青藏高原东南侧,历经古生代-中生代不同特提斯洋开合、复杂增生造山和强烈成矿作用,倍受学界关注。本文应用锆石裂变径迹年代学研究中咱地块-义敦岛弧的构造活动,取得了新的认识,对特提斯演化扩展了时限制约。计获得12件锆石裂变径迹年龄分析结果,年龄变化于165~76Ma之间,并可划分为多个年龄组,即165Ma、144Ma、135~134Ma、126~108Ma、102~89Ma和76Ma。主要揭示新特提斯构造热事件,这些年龄组分别记录了班公湖-怒江洋形成阶段、班公湖-怒江洋开始闭合、雅鲁藏布江洋盆俯冲、班公湖-怒江洋闭合、陆内碰撞和陆内伸展。此时中咱地块-义敦岛弧均处于陆内演化过程。
关键词: 三江特提斯    构造活动    锆石裂变径迹年代学    中咱-义敦    青藏高原    
Zircon fission track thermochonology: New evidence on tectonic activities in the southern part of Sanjiang Tethys
YANG Li, YUAN WanMing, ZHU XiaoYong, SHI Zhen     
Institute of Earth Science, China University of Geosciences, Beijing 100083, China
Abstract: The Sanjiang Tethys orogenic belt is located in the southeastern side of the Qinghai-Tibet Plateau. It has undergone the opening and closing of different Tethys oceans, complex accretive orogeny and strong mineralization from Paleozoic to Mesozoic. In this paper the zircon fission track thermochronology is applied to research on the tectonic activities of Zhongzan terrane and Yidun island arc. It is shown a new understanding about the time limit to the Tethys evolution. Twelve zircon fission track ages were obtained. The ages range from 165~76Ma and could be divided into several age groups, i.e., 165Ma, 144Ma, 135~134Ma, 126~108Ma, 102~89Ma and 76Ma. These age groups well reveal the Tethyan tectonic evolution. The 165Ma and 144Ma recorded the Bangonghu-Nujiang Ocean forming and the Bangonghu-Nujiang Ocean coming into closure respectively. The 135~134Ma and 126~108Ma reflect that the Yarlung-Zangbo Ocean started to subducting and then gradually closed. The ocean basin opening-closing was accompanied with volcanic eruption, magma intrusion and ore mineralization. The 102~89Ma indicated the time limit of the intracontinental collisions in both Lhasa-Qiangtang terrane and Songpan-Ganzi terrane after the Yarlung-Zangbo Ocean closure. The 76Ma corresponded to the intracontinental extension. At this time, the Zhongzan terrane and Yidun island arc are in the intracontinental evolution, resulting in large scale of mineralization.
Key words: Sanjiang Tethy    Tectonic activity    Zircon fission track thermochronology    Zhongzan-Yidun region    Qinghai-Tibet Plateau    

裂变径迹低温热年代学(Fission Track Low Temperature Thermochronology)技术广泛用于造山带隆升研究中,近年来裂变技术和(U-Th)/He技术相结合,对造山带内岩石经历的热历史进行有效约束,对地质体的隆升时间、隆升过程及构造活动时间都能进行定量化限定。

裂变径迹作为新兴的热年代学技术方法,其低封闭温度(如磷灰石为100℃,锆石为250℃)可有效记录地质体经历低温范围内的相关信息,给出构造热事件最后阶段的热演化信息,在地质研究领域中的应用不断扩展,取得新进展(陈小宇等, 2016; 雷永良等, 2008; Yuan et al., 2003, 2006, 2009, 2019; Fellin et al., 2006; Tagami, 2005; Cheng et al., 2018; Li et al., 2019; Lin et al., 2019)。国内外大量研究从不同角度刻划青藏高原的隆升剥蚀过程,解决诸多实际地质问题,其中裂变径迹技术发挥了重要作用,目前对于三江地区的低温热年代学的相关报道并不多,尤其是锆石裂变径迹年代学数据更是鲜有。

西南“三江”地区位于青藏高原东南缘,处欧亚板块与印度板块结合部东侧,在空间上兼具南北两大板块特征,属东特提斯构造带南部巨型弯转地带,在漫长地质演化过程中,构造岩浆活动频繁而强烈,成矿条件优越,是目前特提斯构造动力学研究的热点地区(邓军等, 2012)。三江地区经历原特提斯、古特提斯、中特提斯和新特提斯消亡和陆陆碰撞等大陆岩石圈和大洋岩石圈两种构造体制之间的转换,诸如泛非期原特提斯消亡,加里东期陆内造山,晚海西-印支、燕山和喜马拉雅期俯冲碰撞造山等多次构造事件(刘增乾等, 1993; 李兴振等, 1999; 潘桂棠等, 2003),完整记录超级大陆裂解→增生→碰撞等特提斯演化过程。

三江造山带的成矿作用和造山机制研究一直是当前研究的热点问题,是全球特提斯构造域研究中的重要组成部分。三江特提斯经历了晚古生代特提斯构造演化向新生代大陆碰撞造山的叠加改造过程,伴随多次大规模多期成矿作用,形成众多金属矿床,目前对于三江造山带的成矿作用研究取得多项进展,诸如三江地区研究目前主要涉及成矿动力学背景(Hou et al., 2007),增生造山成矿系统(Deng et al., 2010, 2014a, b),碰撞造山成矿系统(Wang et al., 2016; Deng et al., 2014c),构造体制转换与复合叠加成矿作用(Deng et al., 2014a, d),成矿预测理论和勘查技术集成(Zhang et al., 2014; Deng et al., 2010),岩浆岩组合及时空分布(Mo et al., 1994; 莫宣学等, 2001, 2003; Cao et al., 2016),成岩成矿(Wang et al., 2014a; Zhang et al., 2017),特提斯开合演化历史(He et al., 2018; Liuzeng et al., 2018; Wang et al., 2018; Deng et al., 2018)等方面,成为当前整个青藏高原研究程度较高的地区。相关研究多集中于成矿作用,聚焦在义敦岛弧俯冲带内斑岩矿床(Yang et al., 2014, 2017a)和元素地球化学及其构造属性(Zi et al., 2012a, b; Peng et al., 2013),对俯冲-碰撞演化过程的年代学约束不够,积累的年代学数据不够多(Barr et al., 2000; Cao et al., 2016; 姜丽莉等, 2015; 冷成彪等, 2008; 曾普胜等, 2006),难以对构造事件提供精确而完整的年代学制约。热年代学手段以锆石U-Pb、独居石U-Th-Pb定年(邱昆峰和杨立强, 2011; 杨立强等, 2010)等常规方法,运用裂变径迹年代学的研究内容鲜有报道(Reid et al., 2005; Liuzeng et al., 2018; Tian et al., 2014)。

“三江”南段地区作为特提斯构造带东南突出的弧形山脉(岛弧)组成部分,其构造现象丰富、构造单元出露全面,在特提斯构造域形成演化时空、迁移规律和构造特征研究中,具有极强的代表性,是巨型复合造山带的理想研究区。本文通过对中咱地块-义敦岛弧不同层位露头样品的锆石进行裂变径迹分析,对区内中生代构造活动进行探讨,揭示三江南段义敦岛弧、中咱陆块及其相关地区侏罗纪以来经历的构造热事件,建立构造热演化事件时间格架,为三江南段构造演化历史研究提供精确的年代学证据,以期为深入认识三江地区构造演变过程与机理提供新佐证。

1 地质概况

本文研究区跨越两个不同的构造单元,分别为义敦岛弧和中咱地块,是三江特提斯多岛弧盆系统的重要组成部分,是研究三江特提斯构造演化的重要窗口。研究区是青藏高原南缘部分向坝区过渡地带,属于西南“三江”南段,区内地质构造复杂,是晚古生代以来喜马拉雅期冈瓦纳大陆与欧亚大陆挤压作用极强烈地段之一。大地构造位置属于义敦岛弧构造-岩浆-成矿带南端和中咱地块结合部位(图 1)。

图 1 三江特提斯地质简图及采样位置图(据邓军等, 2011修改) Fig. 1 Simplified geological map of Sanjiang Tethys and sample locations (after Deng et al., 2011)

三江巨型复合造山带由岛弧、地块及走滑运动形成的碎块组成,其形成与演化经历复杂地球动力学过程,时空变化迁移规律错综复杂。伴随“三江”地区复合造山带的演变,多种构造-岩浆活动、变质作用并存,区内矿产的形成与分布创造广泛,分布众多金属矿如Cu(Mo)、Ni、Pb、Zn、Nb、Sn(W)、Ta、Au、Ag、Pt等。

义敦岛弧为西南三江最大火山弧,呈南北向展布于三江特提斯多岛弧盆系东缘,夹持于松潘-甘孜地体和羌塘地块之间,向西为金沙江缝合带,东与甘孜理塘缝合带相接,呈南北向展布,北从四川德格,南至云南中甸,是一条长500km、宽90~150km的NNW展布的构造岩浆带。带内出露上元古界-新生界地层,其中侏罗纪与白垩纪地层缺失,而三叠纪地层出露面积占全区总面积的80%以上,第三系和第四系零星出露。义敦岛弧经历印支期洋壳俯冲造山、燕山期弧-陆碰撞和造山后伸展、喜马拉雅期走滑转换,形成当今的复合造山带。晚二叠世-晚三叠世早期形成甘孜-理塘洋盆,晚三叠世末期开始向西大规模俯冲消减于中咱地块之下,相应在西侧形成义敦弧(Mo et al., 1994)。大致以北纬30°为界,其北部古洋盆东侧为松潘-甘孜地体,西侧为厚度20~23km拉张减薄的过渡性地壳;南部古洋盆东侧为扬子陆块,西侧为较大厚度的地壳。这种东、西区域构造差异性(可能与板片撕裂有关)使得洋壳板片向西俯冲的角度不同,北段洋壳板片高角度俯冲于张性弧(昌台弧),发育VMS型和浅成低温热液型多金属矿床;南段洋壳板片由于扬子地块向西推挤而低角度缓俯冲形成压性弧(中甸弧),发育斑岩和矽卡岩型矿床(侯增谦等, 2001)。碰撞造山作用阶段,发育同碰撞花岗岩,此时岛弧地壳挤压收缩和剪切应变作用下形成复杂变形构造(李文昌等, 2010)。甘孜-理塘洋盆在晚三叠世末期沿俯冲带收缩为残余盆地,义敦岛弧主体开始隆升,局部地区接受河道沉积,构成磨拉石-杂陆屑建造(侯增谦等, 2001)。造山后伸展作用阶段以燕山早期板内长英质火山岩分布在义敦弧北段,以及分布在弧后区近陆一侧燕山晚期A型花岗岩(曲晓明等, 2003)。造山后伸展可能与造山带去根作用或下地壳拆沉作用有关,下部热的软流圈上涌,诱发地壳部分熔融造成大规模岩浆作用(Bird, 1979; Kay et al., 1994)。喜马拉雅期陆内碰撞造山作用使得青藏高原隆起,此时其东缘三江地区义敦岛弧发生逆冲-推覆作用和大规模走滑平移活动、喜马拉雅期花岗岩侵位、拉分盆地形成,也是青藏高原碰撞隆起作用的远程效应(李文昌等, 2011)。

中咱地块夹在义敦岛弧带和金沙江带之间,系甘孜-理塘洋开启并裂离扬子陆块而成为独立的微板块,受印度洋板块、欧亚板块相互作用影响,区域地质构造复杂多变。受到区内逆冲断层的影响,地层出露不完整,地块中段的巴塘-得荣、南段巨甸-石鼓及北段盖玉附近出露古生界地层。中咱陆块和昌都陆块之间的碰撞,使得区内发育一系列近南北向的短轴背、向斜构造,古生代地层发生褶皱变形,晚三叠地层呈不整合覆于其上;岩浆岩从加里东期到印支期主要出露喷出岩,华里西期到喜山期以中酸性侵入岩为主(王全伟等, 2008),区内的变质岩极为发育,金沙江断裂带以东广泛分布变质程度较深的区域变质岩,为浅变质的绢云母-绿泥石相;在挤压破碎带及断裂附近分布以构造角砾岩、糜棱岩、碎裂岩等不同类型的动力变质岩。晚三叠世中晚期,甘孜-理塘洋壳向德钦-中甸陆块下俯冲,中咱地块东缘由被动边缘转化为活动边缘。自东向西沿俯冲方向形成昌台-乡城岛弧带和义敦弧后盆地。

2 样品与测试 2.1 样品

本文获得测试结果的样品总计12件,样品采集于中咱地块和义敦岛弧,大多数样品位于中咱地块,分布在中甸县纳帕海-桥头断裂两侧,总体延伸呈近于垂直构造带。其中样品YN06取自中三叠统北衙组(T2b)地层,岩性以灰岩夹砂岩为主;YN07和YN12分别取自中泥盆统穷错组(D2qc)和古道领组(D2g),岩性以灰岩夹片岩为主;YN15和YN16取自下泥盆统何元寨组(D1h),主要岩性为厚层状泥灰岩,夹斜长角闪岩、白云岩、片岩、板岩和砂砾岩;其余样品采于震旦系巨甸岩群(Pt3J),岩性以千枚岩、片岩以及变质砂板岩为主。

2.2 测试方法

采集的全岩样品通过常规方法进行粉碎、淘洗、烘干,进行粗选-电磁选-重液选等手段,提纯并分离出锆石单矿物颗粒。选矿工作在河北省区域地质矿产调查所实验室完成。

采集的样品通过锆石裂变径迹分析,计获得12件样品测试结果。实验室首先将锆石颗粒固定在聚四氟乙丙烯透明塑料片上,制作成光薄片,研磨抛光揭示矿物颗粒内表面。将锆石样片在210℃下KOH+NaOH高温熔融物内蚀刻20~35h,揭示自发径迹(Yuan et al., 2003, 2006)。将低铀白云母片作为外探测器盖在光薄片上,与CN2(锆石)标准铀玻璃(Bellemans et al., 1995)一并接受热中子辐照(Yuan et al., 2006)。在25℃条件下40% HF中蚀刻白云母外探测器20min揭示诱发径迹。最后在高精度光学显微镜100倍物镜下观测统计裂变径迹。应用IUGS推荐的Zeta常数标定法计算出裂变径迹中心年龄。根据标准锆石矿物的测定,加权平均得出Zeta常数值(Hurford and Green, 1983; Hurford, 1990)。本次试验获得的锆石样Zeta常数为(90.9±2.8)a/cm2

2.3 测试结果

样品测试结果表明,12个锆石裂变径迹年龄分布在75.6±12.9Ma~165.3±15.7Ma之间(表 1),样品的径迹年龄直方图及单颗粒年龄分布见图 2

图 2 三江地区锆石裂变径迹年龄P(χ2)值>5%样品单颗粒年龄频率曲线及其年龄直方图 Fig. 2 Histograms and frequency curves of zircon single grain ages of Sanjiang region

表 1 锆石裂变径迹测试结果 Table 1 Observed results of ZFT and relevant calculated data

锆石裂变径迹年龄总体变化幅度不大。中心年龄与池年龄在误差范围也基本一致。锆石样品裂变径迹表观年龄总体上均小于区内岩体形成年龄,说明岩体上升侵位过程中冷却并于侏罗纪纪缓慢通过部分退火带,且其后区内发生的构造-热事件均未达到锆石裂变径迹封闭温度(250℃),锆石未完全退火,因此,样品裂变径迹年龄结果反映研究区所经历的地质热事件。借助Green et al. (1986)提供的方法计算误差,对所测单颗粒年龄是否属于同一年龄组概率进行评价,当P(χ2)大于5,表明各单颗粒年龄差别属于统计误差范围之内;当P(χ2) < 5,表明单颗粒年龄不均匀分布,可能存在多个总体、物源或成因复杂,此时基于泊松变异的常规分析无效,只能借助于平均年龄,本次研究的12个样品中,YN15、YN16、YN22、YN27等4个样品P(χ2) < 5。应用Binomfit软件(Brandon, 1992, 1996)对其径迹年龄进行分解,其中YN15锆石径迹年龄分解为两组拟合年龄89.1±6.3Ma和142.7±7.7Ma;YN16径迹年龄分解为三组拟合年龄75.6±12.9Ma,99.2±11.4Ma和126.3±11.7Ma;YN20分解为100.3±5.9Ma和127.2±9.6Ma;YN22分解为102.3±13.3Ma和165.3±15.7Ma;YN27分解为98.6±16.7Ma和134.2±19.3Ma(图 3)。

图 3 χ2检验值小于5%样品锆石裂变径迹年龄分解图 左栏为雷达图解;右栏为概率密度图 Fig. 3 Decomposition of zircon fission track age which failed the χ2 test Left are single grain age radial plots; right are single grain probability density plots

锆石裂变径迹体系(ZFT)的封闭温度可作为一个有用的热年代学计,可揭示汇聚造山带长期剥蚀历史。造山带岩石具有相对清晰的冷却模式,并与构造热事件和剥蚀作用有关。值得引起注意的是,不同年龄和遭受不同程度辐射损伤的锆石,曾受到低温热扰动事件影响,在这种情况下,矿物的非均相退火(heterogeneous annealing)和部分退火机制会导致年龄分布较分散,甚至在所有颗粒都经历相同热历史的深成岩中也是如此。辐射损伤的微小变化会带来单颗粒之间U+Th浓度的差异,进而影响其退火动力学机制,而这种退火效应往往出现在经历多次构造热事件扰动的造山带中(Garver et al., 2005)。

其余的8个样品的P(χ2)>5%,单颗粒年龄直方图为较为典型的单峰式分布,表明属于同一年龄组,各个样品的裂变径迹年龄都可反映相应构造热事件,有确切地质意义(袁万明等, 2002)。单颗粒年龄直方图显示年龄分布范围较大,根据年龄值分布特征,并结合研究区所经历的构造活动,将裂变径迹年龄值分为6组:165Ma、144Ma、135~134Ma、126~108Ma、102~89Ma和76Ma(图 4)。

图 4 三江地区锆石裂变径迹年龄分布直方图 Fig. 4 The distribution histogram of zircon fission track ages in the Sanjiang region
3 地质意义

西南三江特提斯造山带形成演化经历了古生代与中生代古特提斯、中特提斯和新特提斯洋盆开合过程,并伴随由洋盆闭合引发的增生造山以及新生代-印度欧亚大陆汇聚导致的碰撞造山作用。本文取得的锆石裂变径迹年龄变化于165~76Ma之间,是区内所经历构造活动的记录。这些年龄值由多个细分年龄组构成,即165Ma、144Ma、135~134Ma、126~108Ma、102~89Ma和76Ma。不同年龄组即是不同构造热事件发生发展的反映,又是对相关构造事件时限的制约。

(1) 165Ma:班公湖-怒江洋形成阶段。晚三叠世以来,甘孜-理塘洋壳向西俯冲,义敦岛弧开始形成,发育弧火山-复理沉积建造。三叠世末,甘孜-理塘洋关闭,整个川西地区全面抬升成陆,开始进入中特提斯晚期演化阶段。随着甘孜-理塘洋盆的关闭,于早、中侏罗世形成怒江洋。165Ma正是怒江洋处于形成时代。冈底斯地块产出的系列斑岩型Cu-Au矿中Re-Os年龄为177~170Ma,同时产出大量184~158Ma钙碱性熔岩和花岗杂岩体,形成长500km的岩浆弧(杨志明等, 2011; Lang et al., 2014; Hou and Zhang, 2015),这正是班公湖-怒江洋盆向冈底斯地块俯冲的产物。与之同时,雅鲁藏布江洋盆此时亦打开,形成所谓南北两支新特提斯洋(Hou and Zhang, 2015; Pan et al., 2012)。

(2) 144Ma:班公湖-怒江洋开始闭合。晚侏罗世班公湖-怒江洋壳俯冲、碰撞,直至闭合。144Ma记录开始关闭时间。印缅岭蛇绿岩带锆石U-Pb年龄及Hf同位素研究表明,洋壳形成或洋底变质作用的时间为163Ma,洋-洋俯冲闭合时间为147Ma(邓军等, 2011; Shi et al., 2009),这与本文164Ma和144Ma的锆石裂变径迹年龄一致。Wang et al. (2014b)通过羌塘-拉萨碰撞带研究,证实从140Ma开始发生自东向西的穿时碰撞。

(3) 135~134Ma:雅鲁藏布江洋形成。侏罗纪末(144Ma)班公湖-怒江洋的闭合,使得雅鲁藏布江地体与冈瓦纳被动大陆边缘分离,进而于早白垩世(135~134Ma)形成雅鲁藏布江新特提斯洋(Hou et al., 2011; Stampfli and Borel, 2002)。从135~134Ma起,雅鲁藏布江洋壳开始进入俯冲阶段。此时在德兴斑岩Cu矿区形成与Pb-Zn-Ag有关的145~125Ma英安质火山-次火山岩(Hou et al., 2011)。此时在德兴斑岩Cu矿区形成与Pb-Zn-Ag有关的145~125Ma英安质火山-次火山岩(Hou et al., 2011)。

(4) 126~108Ma:班公湖-怒江洋闭合与雅鲁藏布江洋俯冲消减。班公湖-怒江洋最终闭合,完成拉萨地体与羌塘地体的碰撞拼合过程。同时,雅鲁藏布江新特提斯洋向北俯冲,在拉萨地体南部边缘形成冈底斯安第斯型岩浆弧,伴随白垩纪末新特提斯洋的闭合,该岩浆弧向欧亚大陆南部边缘增生(莫宣学等, 2003; Hou et al., 2006; Shahabpour, 2005)。上述144Ma年龄与本阶段的关系,在于前者开始进入硬碰撞闭合阶段,而本年龄组126~108Ma代表最后碰撞闭合过程。之所以记录到两个年龄组144Ma和126~108Ma,可能体现班公湖-怒江洋闭合作用总体发生在早白垩世,并具有阶段性,即萨地体与羌塘地体的碰撞拼合以早白垩世的早、晚期为主。冈底斯地体发育约110Ma的火山岩(Zhu et al., 2013; Chen et al., 2014),腾冲地块发育锆石U-Pb年龄为127~115Ma的花岗岩(Cong et al., 2011; Xu et al., 2012; Deng et al., 2014a),都是新特提斯洋盆消亡过程的体现(Hou and Zhang, 2015)。雅鲁藏布江洋关闭是印度板块与拉萨板块碰撞拼合的结果,标志着区内中特提斯演化阶段的结束。在雅鲁藏布江中生代缝合带保留有大量洋壳残余物(蛇绿岩和混杂岩),记录着曾经的洋盆环境(Hou et al., 2011; Şengör AMC and Natal'in, 1996; Sorkhabi and Heydari, 2008)。

(5) 102~89Ma:陆内碰撞。义敦岛弧和中咱地块晚白垩世约100~81Ma发育高SiO2贫Ba、Sr、Eu花岗岩,属于陆内碰撞成因(Wang et al., 2014a, 2016; Cao et al., 2016)。拉萨地体-羌唐地体此时同样处于陆内碰撞环境。燕山期强烈的成岩成矿规模,诸如热林蚀变花岗斑岩及其(钨)钼矿、红山隐伏斑岩及其(铜)钼矿、铜厂沟(铜)钼矿等,也表明燕山期存在一次由增生造山向碰撞造山构造动力体制转换(李文昌等, 2011)。燕山期S型花岗岩的侵入,为带内浅成低温热液型金矿的形成提供了充足的热动力条件,促使蛇绿混杂岩含矿建造中的金活化转移,在有利的构造-岩性部位聚集成矿。

(6) 76Ma:伸展阶段。随着班公湖-怒江洋闭合,印度板块向欧亚板块的俯冲以及东部扬子地块的阻挡,导致青藏高原全面隆升和造山构造活动,三江地区地壳被挤压和强烈缩短、地体被强烈挤出并向南或南东逃逸,形成大规模逆冲推覆、走滑、深部韧性剪切和拆离滑脱构造活动,并伴随强烈的构造岩浆活动和成矿作用,形成许多金属矿产。白垩纪经历后造山伸展作用,义敦岛弧中、北段发育A型花岗岩及矽卡岩型锡矿(侯增谦等, 2003)。义敦岛弧燕山晚期造山后伸展环境下的花岗岩浆侵入活动集中在~80Ma,与区内成矿作用同期,例如红山大型斑岩铜钼矿区岩体锆石U-Pb年龄77Ma和79Ma,辉钼矿Re-Os矿化年龄77Ma和80Ma(Yang et al., 2017b)。红山矿区花岗斑岩锆石U-Pb年龄81.1±0.5Ma(王新松等, 2011)。Queershan-Cilincuo belt晚白垩世A型花岗岩发育(Qu et al., 2002; Wu et al., 2016),中甸地区乡城措莫隆钾长花岗岩Ar-Ar年龄为77Ma(吕伯西等, 1993),腾冲地块中部与多个热液Sn-W矿床有关的A型花岗岩锆石U-Pb年龄为76~68Ma(Xu et al., 2012; Deng et al., 2014d),这些都是区内此次伸展阶段的产物,与残余洋片重熔有关。羌塘地体南部存在的80~76Ma富钾岩浆岩,亦是岩石圈拆沉的结果(Li et al., 2013)。

总之,在锆石裂变径迹年龄165~76Ma期间,虽然中咱地块和义敦岛弧处于陆内演化过程,但是,这些年龄和年龄组却较好地揭示了三江地区新特提斯构造-岩浆热事件,特别是对班公湖-怒江洋盆形成、俯冲、闭合以及拉萨-羌塘地块陆内碰撞,扩展了具体的时限制约。

4 结论

本文工作穿越三江特提斯域义敦岛弧和中咱地块,通过对不同构造部位样品的锆石裂变径迹热年代学分析,获得新特提斯构造演化过程的新证据。

(1) 所获得锆石裂变径迹年龄为165~76Ma,可划分为165Ma、144Ma、135~134Ma、126~108Ma、102~89Ma和76Ma多个年龄组。

(2) 年龄165Ma和144Ma揭示怒江洋盆形成阶段和最终俯冲关闭的时间,而135~134Ma和126~108Ma年龄组较好地记录雅鲁藏布江洋开始裂开俯冲与逐步俯冲闭合的时间。洋盆开合的同时,均伴随系列火山喷发-岩浆侵入活动及其成矿作用。

(3) 年龄102~89Ma是继雅鲁藏布江洋闭合之后,在拉萨-羌塘地块乃至松潘-甘孜地块发生陆内碰撞时限;年龄76Ma反映晚期陆内伸展作用。特提斯域进入陆内演化之后,是大规模成矿作用时期。

致谢      谨以此文祝贺翟裕生院士九十华诞。翟院士在成矿系统理论和找矿实践领域取得的科研成就令人叹服,他精益求精、不折不挠的治学精神使人肃然起敬,他胸怀家国天下的情怀值得我们终身学习。同时,感谢参与和支持本文工作的各位同仁。

参考文献
Barr SM, MacDonald AS, Dunning GR, Ounchanum P and Yaowanoiyothin W. 2000. Petrochemistry, U-Pb (zircon) age, and palaeotectonic setting of the Lampang volcanic belt, northern Thailand. Journal of the Geological Society, 157(3): 553-563 DOI:10.1144/jgs.157.3.553
Bellemans F, De Corte F and Van Den Haute P. 1995. Composition of SRM and CN U-doped glasses:Significance for their use as thermal neutron fluence monitors in fission track dating. Radiation Measurements, 24(2): 153-160 DOI:10.1016/1350-4487(94)00100-F
Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research:Solid Earth, 84(B13): 7561-7571 DOI:10.1029/JB084iB13p07561
Brandon MT. 1992. Decomposition of fission-track grain-age distributions. American Journal of Science, 292(8): 535-564 DOI:10.2475/ajs.292.8.535
Brandon MT. 1996. Probability density plot for fission-track grain-age samples. Radiation Measurements, 26(5): 663-676 DOI:10.1016/S1350-4487(97)82880-6
Cao K, Xu JF, Chen JL, Huang XX, Ren JB, Zhao XD and Liu ZX. 2016. Double-layer structure of the crust beneath the Zhongdian arc, SW China:U-Pb geochronology and Hf isotope evidence. Journal of Asian Earth Sciences, 115: 455-467 DOI:10.1016/j.jseaes.2015.10.024
Chen XY, Liu JL and Weng ST. 2016. Deformation characteristics and Cenozoic exhumation of the Yao Shan complex evidenced by apatite fission track thermochronology. Acta Petrologica Sinica, 32(8): 2303-2316 (in Chinese with English abstract)
Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463 DOI:10.1016/j.gr.2013.06.005
Cheng YH, Wang SY, Li Y, Ao C, Li YF, Li JG, Li HL and Zhang TF. 2018. Late Cretaceous-Cenozoic thermochronology in the southern Songliao Basin, NE China:New insights from apatite and zircon fission track analysis. Journal of Asian Earth Sciences, 160: 95-106 DOI:10.1016/j.jseaes.2018.04.015
Cong F, Lin SL, Zou GF, Li ZH, Xie T, Peng ZM and Liang T. 2011. Magma mixing of granites at Lianghe:In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Science China (Earth Sciences), 54(9): 1346-1359 DOI:10.1007/s11430-011-4208-z
Deng J, Wang QF, Yang LQ, Wang YR, Gong QJ and Liu H. 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3): 95-105 DOI:10.1016/j.gexplo.2010.04.005
Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509 (in Chinese with English abstract)
Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015
Deng J, Wang CM and Santosh M. 2014c. Orogenesis and metallogenesis in the Sanjiang Tethyan domain, China:Preface. Gondwana Research, 26(2): 415-418 DOI:10.1016/j.gr.2013.12.003
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014d. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang CM, Zi JW, Xia R and Li Q. 2018. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Research, 62: 75-92 DOI:10.1016/j.gr.2017.10.008
Fellin MG, Vance JA, Garver JI and Zattin M. 2006. The thermal evolution of Corsica as recorded by zircon fission-tracks. Tectonophysics, 421(3-4): 299-317 DOI:10.1016/j.tecto.2006.05.001
Garver JI, Reiners PW, Walker LJ, Ramage JM and Perry SE. 2005. Implications for timing of Andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, northern Peru. J. Geol., 113: 117-138 DOI:10.1086/427664
Green PF, Duddy IR, Gleadow AJW, Tingate PR and Laslett GM. 1986. Thermal annealing of fission tracks in apatite:1. A qualitative description. Chemical Geology:Isotope Geoscience Section, 59: 237-253 DOI:10.1016/0168-9622(86)90074-6
He WY, Yang LQ, Lu YJ, Jeon H, Xie SX and Gao X. 2018. Zircon U-Pb dating, geochemistry and Sr-Nd-Hf-O isotopes for the Baimaxueshan granodiorites and mafic microgranulars enclaves in the Sanjiang Orogen:Evidence for westward subduction of Paleo-Tethys. Gondwana Research, 62: 112-126 DOI:10.1016/j.gr.2018.03.011
Hou ZQ, Qu XM, Zhou JR, Yang YQ, Huang DH, Lü QT, Tang SH, Yu JJ and Zhao JH. 2001. Collision-orogenic processes of the Yidun arc in the Sanjiang region:Record of granites. Acta Geologica Sinica, 75(4): 484-497 (in Chinese with English abstract)
Hou ZQ, Qu XM, Yang ZS, Meng XJ, Li ZQ, Yang ZM, Zheng MP, Zheng YY, Nie FJ, Gao YF, Jiang SH and Li GM. 2003. Metallogenesis in Tibetan collisional orogenic belt:Ⅲ. Mineralization in post-collisional extension setting. Mineral Deposits, 25(6): 629-651 (in Chinese with English abstract)
Hou ZQ, Zeng PS, Gao YF, Du AD and Fu DM. 2006. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian Collision Zone:Constraints from Re-Os dating of molybdenite. Mineralium Deposita, 41(1): 33-45 DOI:10.1007/s00126-005-0038-2
Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang Tethyan metallogenesis in S.W. China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48-87 DOI:10.1016/j.oregeorev.2004.12.007
Hou ZQ, Zhang HR, Pan XF and Yang ZM. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust:Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2): 21-45 DOI:10.1016/j.oregeorev.2010.09.002
Hou ZQ and Zhang HR. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70: 346-384 DOI:10.1016/j.oregeorev.2014.10.026
Hurford AJ and Green PF. 1983. The zeta age calibration of fission-track dating. Chemical Geology, 41: 285-317 DOI:10.1016/S0009-2541(83)80026-6
Hurford AJ. 1990. Standardization of fission track dating calibration:Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology:Isotope Geoscience Section, 80(2): 171-178 DOI:10.1016/0168-9622(90)90025-8
Jiang LL, Xue CD, Hou ZQ and Xiang K. 2015. Petrogenesis of the Bengge syenites, northwestern Yunnan:Geochemistry, geochronology and Hf isotopes evidence. Acta Petrologica Sinica, 31(11): 3234-3246 (in Chinese with English abstract)
Kay SM, Coira B and Viramonte J. 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research:Solid Earth, 99(B12): 24323-24339 DOI:10.1029/94JB00896
Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q and Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622 DOI:10.1016/j.jseaes.2013.08.009
Lei YL, Zhong DL, Jia CZ, Ji JQ and Zhang J. 2008. Late Cenozoic differential uplift-exhumation of batholith and propagation of uplift recorded by fission track thermochronology in Chayu, the southeastern margin of the Tibetan Plateau. Acta Petrologica Sinica, 24(2): 384-394 (in Chinese with English abstract)
Leng CB, Zhang XC, Wang SX, Qin CJ, Gou TZ and Wang WQ. 2008. SHRIMP zircon U-Pb dating of the Songnuo ore-hosted porphyry, Zhongdian, Northwest Yunnan, China and its geological implication. Geotectonica et Metallogenia, 32(1): 124-130 (in Chinese with English abstract)
Li B, Chen XH, Zuza AV, Hu DG, Ding WC, Huang PH and Xu SL. 2019. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault:Constraints from apatite-and zircon-fission track thermochronology. Tectonophysics, 751: 109-124 DOI:10.1016/j.tecto.2018.12.005
Li WC, Pan GT and Hou ZQ, et al. 2010. Archipelagic-Basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House, 1-46 (in Chinese)
Li WC, Yin GH, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552 (in Chinese with English abstract)
Li XZ, Liu WJ and Wang YZ, et al. 1999. Tectonic Evolution of the Tethys and Mineralization in the Sanjiang Region, SW China. Beijing: Geological Publishing House, 1-256 (in Chinese)
Li YL, He J, Wang CS, Santosh M, Dai JG, Zhang YX, Wei YS and Wang JG. 2013. Late Cretaceous K-rich magmatism in central Tibet:Evidence for early elevation of the Tibetan plateau?. Lithos, 160-161: 1-13 DOI:10.1016/j.lithos.2012.11.019
Lin X, Tian YT, Donelick RA, Liuzeng J, Cleber SJ, Li AC, Wu QY and Li ZN. 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan Plateau:Evidence from modern river detrital apatite fission-track age constraints. Journal of Asian Earth Sciences, 170: 84-95 DOI:10.1016/j.jseaes.2018.10.028
Liu ZQ, Li XZ and Ye QT. 1993. Division of Tectono-Magmatic Zone and Distribution of Mineral in the Sanjiang Region. Beijing: Geological Publishing House, 1-246 (in Chinese)
Liuzeng J, Zhang JY, McPhillips D, Reiners P, Wang W, Pik R, Zeng LS, Hoke G, Xie KJ, Xiao P, Zheng DW and Ge YK. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 490: 62-76 DOI:10.1016/j.epsl.2018.03.011
Lü BX, Wang Z, Zhang ND, Duan JZ, Gao ZY, Shen GF, Pan CY and Yao P. 1993. Granitoids in the Sanjiang Region (Nujiang-Lancangjiang-Jinshajiang Region) and Their Metallogenic Specialization. Beijing: Geological Publishing House, 1-238 (in Chinese)
Mo XX, Deng JF and Lu FX. 1994. Volcanism and the evolution of Tethys in Sanjiang area, southwestern China. Journal of Southeast Asian Earth Sciences, 9(4): 325-333 DOI:10.1016/0743-9547(94)90043-4
Mo XX, Deng JF, Dong FL, Yu XH, Wang Y, Zhou S and Yang WG. 2001. Volcanic petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonics. Geological Journal of China Universities, 7(2): 121-138 (in Chinese with English abstract)
Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract)
Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS and Hu YZ. 2003. Arckipelagic Orogenesis Metallogenic Systems and Assessment of the Mineral Resources along the Nujiang-Lanchangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House, 278-420 (in Chinese)
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Peng TP, Wilde SA, Wang YJ, Fan WM and Peng BX. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China:Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 168-169: 15-32 DOI:10.1016/j.lithos.2013.01.015
Qiu KF and Yang LQ. 2011. Genetic feature of monazite and its U-Th-Pb dating:Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2721-2732 (in Chinese with English abstract)
Qu XM, Hou ZQ and Zhou SG. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China. Resource Geology, 52(2): 163-172 DOI:10.1111/rge.2002.52.issue-2
Qu XM, Hou ZQ and Tang SH. 2003. Age of intraplate volcanism in the back-arc area of Yidun island arc and its significance. Acta Petrologica et Mineralogica, 22(2): 131-137 (in Chinese with English abstract)
Reid AJ, Fowler AP, Phillips D and Wilson CJL. 2005. Thermochronology of the Yidun Arc, central eastern Tibetan Plateau:Constraints from 40Ar/39Ar K-feldspar and apatite fission track data. Journal of Asian Earth Sciences, 25(6): 915-935 DOI:10.1016/j.jseaes.2004.09.002
Şengör AMC and Natal'in BA. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A and Harrison M (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 443-486
Shahabpour J. 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24(4): 405-417 DOI:10.1016/j.jseaes.2003.11.007
Shi GH, Jiang N, Liu Y, Wang X, Zhang ZY and Xu YJ. 2009. Zircon Hf isotope signature of the depleted mantle in the Myanmar jadeitite:Implications for Mesozoic intra-oceanic subduction between the Eastern Indian plate and the Burmese platelet. Lithos, 112(3-4): 342-350 DOI:10.1016/j.lithos.2009.03.011
Sorkhabi R and Heydari E. 2008. Asia out of Tethys:Foreword. Tectonophysics, 451(1-4): 1-6 DOI:10.1016/j.tecto.2007.11.043
Stampfli GM and Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17-33 DOI:10.1016/S0012-821X(01)00588-X
Tagami T. 2005. Zircon fission-track thermochronology and applications to fault studies. Reviews in Mineralogy and Geochemistry, 58(1): 95-122 DOI:10.2138/rmg.2005.58.4
Tian YT, Kohn BP, Gleadow AJW and Hu SB. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 119(1): 676-698 DOI:10.1002/2013JB010429
Wang CM, Deng J, Carranza EJM and Santosh M. 2014a. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576-593 DOI:10.1016/j.gr.2013.05.005
Wang CM, Bagas L, Lu Y, Santosh M, Du B and McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39-65 DOI:10.1016/j.earscirev.2016.02.008
Wang CM, Yang LF, Bagas L, Evans NJ, Chen JY and Du B. 2018. Mineralization processes at the giant Jinding Zn-Pb deposit, Lanping Basin, Sanjiang Tethys Orogen:Evidence from in situ trace element analysis of pyrite and marcasite. Geological Journal, 53(4): 1279-1294 DOI:10.1002/gj.v53.4
Wang Q, Zhu DC, Zhao ZD, Liu SA, Chung SL, Li SM, Liu D, Dai JG, Wang LQ and Mo XX. 2014b. Origin of the ca. 90Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198-199: 24-37 DOI:10.1016/j.lithos.2014.03.019
Wang QW, Wang KM, Kan ZZ and Fu XF. 2008. Graqnite and Associated Metallogenic Series in Western Sichuan. Beijing: Geological Publishing House, 7-53 (in Chinese)
Wang XS, Bi XB, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS zircon U-Pb dating of granite porphyry in the Hongshan Cu-polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 1(3): 315-321 (in Chinese with English abstract)
Wu T, Xiao L, Wilde SA, Ma CQ, Li ZL, Sun Y and Zhan QY. 2016. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Ganluogou dioritic complex in the northern Triassic Yidun arc belt, Eastern Tibetan Plateau:Implications for the closure of the Garzê-Litang Ocean. Lithos, 248-251: 94-108 DOI:10.1016/j.lithos.2015.12.029
Xu YG, Yang QJ, Lan JB, Loud ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175 DOI:10.1016/j.jseaes.2011.06.018
Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis:An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract)
Yang LQ, Deng J, Gao X, He WY, Meng JY, Santosh M, Yu HJ, Zhen Y and Wang D. 2017a. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015-1032 DOI:10.1016/j.oregeorev.2016.03.015
Yang LQ, Gao X and Shu QH. 2017b. Multiple Mesozoic porphyry-skarn Cu (Mo-W) systems in Yidun Terrane, East Tethys:Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 90: 813-826 DOI:10.1016/j.oregeorev.2017.01.030
Yang Z, Yang LQ, Liu JT, Zhang GN, Long F and Liu YD. 2014. The discussion on the ore genesis of Yangla copper deposit, Yunnan, China. Acta Geologica Sinica, 88(Suppl.2): 1712-1713
Yang ZM, Hou ZQ, Jiang YF, Zhang HR and Song YC. 2011. Sr-Nd-Pb and zircon Hf isotopic constraints on petrogenesis of the late Jurassic granitic porphyry at Qulong, Tibet. Acta Petrologica Sinica, 27(7): 2003-2010 (in Chinese with English abstract)
Yuan WM, Wang SC, Yang ZQ and Wang LF. 2002. Fission track dating evidence on tectonic activities of northern Himalaya block. Nuclear Techniques, 25(6): 451-454 (in Chinese with English abstract)
Yuan WM, Zhang XT, Dong JQ, Tang YH, Yu FS and Wang SC. 2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Radiation Measurements, 36(1-6): 357-362 DOI:10.1016/S1350-4487(03)00151-3
Yuan WM, Dong JQ, Wang SC and Carter A. 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6): 847-856 DOI:10.1016/j.jseaes.2005.09.002
Yuan WM, Zheng QG, Bao ZK, Dong JQ, Carter A, An YC and Deng J. 2009. Zircon fission track thermochronology constraints on mineralization epochs in Altai Mountains, northern Xinjiang, China. Radiation Measurements, 44(9-10): 950-954 DOI:10.1016/j.radmeas.2009.10.094
Yuan WM, Zhang AK, Tian CZ, Feng X, Hao NN, Feng YL and Chen XQ. 2019. The tectonic events in Halongxiuma district, East Kunlun Mountains, Qinghai-Tibet Plateau:Evidence from fission track thermochronology. Radiation Measurements, 123: 63-68 DOI:10.1016/j.radmeas.2019.02.011
Zeng PS, Li WC, Wang HP and Li H. 2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:Petrology and chronology. Acta Petrologica Sinica, 22(4): 989-1000 (in Chinese with English abstract)
Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2): 557-575 DOI:10.1016/j.gr.2013.11.003
Zhang J, Wang H, Li SH and Li TJ. 2017. Paleogene magmatism and gold metallogeny of the Jinping terrane in the Ailaoshan ore belt, Sanjiang Tethyan Orogen (SW China):Geology, deposit type and tectonic setting. Ore Geology Reviews, 91: 620-637 DOI:10.1016/j.oregeorev.2017.08.032
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E, McCuaig TC and Peng TP. 2012a. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144-145: 145-160 DOI:10.1016/j.lithos.2012.04.020
Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ and McCuaig TC. 2012b. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140-141: 166-182 DOI:10.1016/j.lithos.2012.02.006
陈小宇, 刘俊来, 翁少腾. 2016. 滇西瑶山杂岩变形特征与新生代剥露隆升的磷灰石裂变径迹证据. 岩石学报, 32(8): 2303-2316.
邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509.
邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361.
侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余今杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程:花岗岩记录. 地质学报, 75(4): 484-497. DOI:10.3321/j.issn:0001-5717.2001.04.008
侯增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2003. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651.
姜丽莉, 薛传东, 侯增谦, 向坤. 2015. 滇西北甭哥正长岩体成因:锆石U-Pb年龄、Hf同位素和地球化学证据. 岩石学报, 31(11): 3234-3246.
雷永良, 钟大赉, 贾承造, 季建清, 张进. 2008. 青藏高原东南缘察隅地区晚新生代岩体差异抬-剥露和高原扩展的裂变径迹证据. 岩石学报, 24(2): 384-394.
冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠, 王外全. 2008. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义. 大地构造与成矿学, 32(1): 124-130. DOI:10.3969/j.issn.1001-1552.2008.01.016
李文昌, 潘桂棠, 侯增谦, 等. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社, 1-46.
李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552.
李兴振, 刘文均, 王义昭, 等. 1999. 西南三江地区特提斯构造演化与成矿(总论). 北京: 地质出版社, 1-256.
刘增乾, 李兴振, 叶庆同. 1993. 三江地区构造岩浆带的划分与矿产分布规律. 北京: 地质出版社, 1-246.
吕伯西, 王增, 张能德, 段建中, 高子英, 沈敢富, 潘长云, 姚鹏. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版社, 1-238.
莫宣学, 邓晋福, 董方浏, 喻学惠, 王勇, 周肃, 杨伟光. 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138. DOI:10.3969/j.issn.1006-7493.2001.02.001
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. DOI:10.3321/j.issn:1005-2321.2003.03.013
潘桂棠, 徐强, 侯增谦, 王立全, 杜德勋, 莫宣学, 李定谋, 汪名杰, 李兴振, 江新胜, 胡云中. 2003. 西南"三江"多岛弧造山过程、成矿系统与资源评价. 北京: 地质出版社, 278-420.
邱昆峰, 杨立强. 2011. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析. 岩石学报, 27(9): 2721-2732.
曲晓明, 侯增谦, 唐绍华. 2003. 义敦岛弧带弧后区板内岩浆作用的时代及意义. 岩石矿物学杂志, 22(2): 131-137. DOI:10.3969/j.issn.1000-6524.2003.02.004
王全伟, 王康明, 阚泽忠, 付小方. 2008. 川西地区花岗岩及其成矿系列. 北京: 地质出版社, 7-53.
王新松, 毕献武, 冷成彪, 唐永永, 兰江波, 齐有强, 沈能平. 2011. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义. 矿物学报, 31(3): 315-321.
杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739.
杨志明, 侯增谦, 江迎飞, 张洪瑞, 宋玉财. 2011. 西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究. 岩石学报, 27(7): 2003-2010.
袁万明, 王世成, 杨志强, 王兰芬. 2002. 北喜马拉雅带构造活动的裂变径迹定年证据. 核技术, 25(6): 451-454. DOI:10.3321/j.issn:0253-3219.2002.06.010
曾普胜, 李文昌, 王海平, 李红. 2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报, 22(4): 989-1000.