岩石学报  2019, Vol. 35 Issue (4): 1033-1057, doi: 10.18654/1000-0569/2019.04.04   PDF    
青河后造山岩体成因及其对阿尔泰造山带晚古生代构造演化的启示
董增产1,2 , 赵国春1,3 , 潘峰1,2 , 王凯2 , 黄博涛1,2     
1. 大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069;
2. 中国地质调查局造山带地质研究中心, 西安地质调查中心, 西安 710054;
3. 香港大学地球科学系, 香港
摘要:阿尔泰造山带位于西伯利亚板块与哈萨克斯坦-准噶尔板块之间,是中亚造山带重要组成部分。长期以来,阿尔泰何时结束造山一直存在争议,阻碍了对中亚造山带晚古生代构造演化的认识。中国阿尔泰造山带南缘发育早二叠世花岗岩,具有碱性或A型花岗岩特征,能够反映碰撞后伸展的构造环境。青河岩体位于阿尔泰造山带东南部,主要由二长花岗岩和少量闪长岩组成,具有研究阿尔泰造山带晚期构造演化的条件。本文以此为切入点,对青河岩体开展年代学和地球化学工作。新的测年数据表明似斑状二长花岗岩(283±3Ma)、中细粒二长花岗岩(280±2Ma)、糜棱岩化二长花岗岩(286±2Ma)和辉长闪长玢岩(269±1)均形成于早二叠世。岩体高硅(SiO2=61.98%~73.35%),富碱(K2O+Na2O=5.84%~8.72%,碱度率AR=2.12~3.65),低钙(CaO=1.29~3.76%),里特曼指数σ=2.38~2.54,K2O/Na2O=0.78~1.06,属于高钾钙碱性岩石系列。微量元素显示Ba、Sr、P、Ti、Nb、Ta亏损,Eu明显负异常(δEu=0.46~0.78),10000×Ga/Al=2.85~2.47,反映具有A型花岗岩特征,可作为阿尔泰碰撞造山作用结束的标志。另外,这些岩体εHft)值介于+4.04~+11.78之间,二阶段模式年龄(tDM2)分别变化于880~694Ma、923~633Ma、875~555Ma、1030~635Ma,揭示其源区主要由新元古代幔源物质或新生地壳组成。结合区域上同时代、同构造位置富碱性(A型)花岗岩研究结果,认为青河中酸性岩体成因与地幔岩浆底侵早期下地壳有关,是新元古代玄武质物质再熔,并发生结晶分异的结果。因此,阿尔泰造山带于早二叠世(286~280Ma)已经结束了碰撞造山作用,处于伸展的构造背景。
关键词: 阿尔泰造山带     早二叠世     碰撞后伸展     青河岩体    
Petrogenesis of the Qinghe post-orogenic pluton and its implications for the Late Paleozoic tectonic evolution of the Altai orogenic belt
DONG ZengChan1,2, ZHAO GuoChun1,3, PAN Feng1,2, WANG Kai2, HUANG BoTao1,2     
1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China;
2. Research Center of Orogenic Geology, Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China;
3. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
Abstract: The Altai Orogenic Belt, situated between Siberia plate and Kazakhstan-Junggar plate, is part of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of the orogeny termination, which hampers us from better understanding the Paleozoic tectonic evolution of the Altai orogenic belt. The Permian granitoids are widely distributed in the southern Chinese Altai and show typical alkaline or A-type affinities, probably reflecting an extensional tectonic setting after collision. This forms the justification of this study in which we focus on the geochronology and geochemistry of the Qinghe pluton in order to evaluate the late-stage tectonic evolution of the Altai orogenic belt. The Qinghe pluton at the southeastern margin of the Altai orogenic belt is composed mainly of monzogranite with minor diorite. New geochronological data reveal Early Permian emplacement ages, including 283±3Ma for the porphyritic monzogranite, 280±2Ma for the monzogranite, 286±2Ma for the mylonitic monzogranite, and 269±1Ma for the pyroxene diorite porphyrite. The Qinghe monzogranites are characterized by high silicon (SiO2=61.98%~73.35%), alkali (K2O+Na2O=5.8%~8.72%) and alkalinity ratio (AR=2.12~3.65), and low calcium (CaO=1.2%~3.76%), belonging to high kalium calc-alkaline series with Rittmann Index=2.38~2.54 and K2O/Na2O=0.78~1.06. They are also depleted in Ba, Sr, P, Ti, Nb and Ta, with negative Eu abnormalies (δEu=0.46~0.78) and the ratio of 10000×Ga/Al (2.85~2.47), characterized by A-type granitoids that were emplaced at the end of the collision orogeny. In addition, there are the positive εHf(t) values (ranging from +4.04 to +11.78) and two stage model ages (tDM2) of 880~694Ma, 923~633Ma, 875~555Ma and 1030~635Ma for these intrusions, suggesting Neoproterozoic mantle material or juvenile crust as the source material. Together with the previous studies about contemporary enriched alkali (A-type) granite along the southeast margin of the Altai orogenic belt, this study suggests that the Qinghe pluton was generated by remelting of Neoproterozoic juvenile lower crust, probably caused by the underplating of mantle-derived magma with subsequent crystal fractionation. Therefore, the collision orogeny of the Altai orogenic belt must have ended in the Early Permian, followed by a post-collisional extensional event.
Key words: Altai orogenic belt     Early Permian     Post-collisional extension     Qinghe pluton    

中亚造山带作为典型的显生宙增生型造山带(Şengör et al., 1993),一直以来是增生造山和陆壳生长的重要研究对象。与整个中亚造山带一样,阿尔泰造山带在其漫长的演化历史中构造—岩浆事件频发,花岗岩广泛发育(图 1)。一般认为,花岗岩在其形成过程中记录着地壳深部物质能量转换的重要信息,是大陆地壳形成的重要表现形式之一,因此不同时代、不同成因类型的花岗岩研究成为揭示阿尔泰造山带深部壳幔相互作用及地壳增生方式的深部探针(邹天人等,1988王中刚等,1998袁峰等,2001Wang et al., 2006Yuan et al., 2007王涛等,2005童英等, 2006a, b)。

图 1 中国阿尔泰造山带地质背景图(据何国琦等,1990李天德和吴柏青,1996Windley et al., 2002修改) CAOB-中亚造山带; SC-西伯利亚板块; TC-塔里木板块; NC-华北板块;F1-红山嘴-诺尔特断裂; F2-康布铁堡-库尔特断裂; F3-额尔齐斯断裂;N-北阿尔泰; C-中阿尔泰; S-南阿尔泰; E-额尔齐斯构造带 Fig. 1 Simplified geological map of the Chinese Altai (modified after He et al., 1990; Li et al., 1996; Windley et al., 2002) The inset figure shows the extension of the CAOB, and the Chinese Altai is represented by a box. CAOB-Central Asian Orogenic Belt; SC-Siberia Craton; TC-Tarim Craton; NC-North China Craton; F1-Hongshanzui-Nuoerte Fault; F2-Kangbutiebao-Kuerte Fault; F3-Erqis Fault; N-North Domain; C-Central Domain; S-South Domain; E-Erqis Tectonic Belt

已有资料显示,中国阿尔泰造山带花岗岩主要由古生代及少量中生代花岗岩体组成,具有多种成因类型,包括有S、I、A型。依据与造山作用关系,可分为造山型和非造山型(邹天人,1988岳永君等,1990何国琦等,1994胡蔼琴等,1997Chen and Jahn, 2002王涛等, 2005, 2010童英等, 2006a, b李会军等,2010黄博涛等,2017)。王涛等(2010)结合前人大量同位素年龄和地球化学数据系统总结了阿尔泰造山带花岗岩的时空演变、成因类型和构造环境,并将其划分为3个阶段(早中古生代、晚古生代和早中生代)5个期次(中奥陶世、晚志留世-晚泥盆世、早石炭世、早二叠世和中晚三叠世-早侏罗世)。其中,早中古生代岩体分布广泛,变形强,保存了同造山的俯冲增生-弧后盆地伸展-聚合碰撞等不同演化阶段的岩浆记录;晚古生代表现为早石炭世的未变形碱性花岗岩(如布尔根碱性花岗岩)和早二叠世局部变形的I-A过渡型花岗岩类,认为是后造山底侵伸展环境的产物(王涛等,2010);早中生代岩体不变形,具高分异I型和S型花岗岩特征,指示阿尔泰造山带已经进入板内的构造演化阶段。由此看来,阿尔泰不同成因类型的花岗岩可以反映不同的构造环境,进而约束不同演化阶段的造山过程。

碱性或A型花岗岩属于后造山或非造山花岗岩体(Loiselle and Wones, 1979邹天人等,1988Chen and Jahn, 2002),一般作为造山作用结束的标志。目前在阿尔泰造山带南缘已经发现了一系列碱性、A型和I-A过渡型花岗岩(图 1),如从东往西发育布尔根碱性(A型)花岗岩(315.9Ma,Rb-Sr法,刘家远和袁奎荣,1996胡霭琴等,1997),塔克什肯口岸富碱花岗岩(286±1Ma,童英等,2006a),喇嘛昭I-A过渡型岩体(Windely et al., 2002, 276±9Ma,王涛等,2005),富蕴县南线形花岗岩(张湘炳等,1996;281~275Ma,童英等,2006b),沙尔布拉克二云母花岗岩(275.1±1.7Ma,孙桂华等,2009),以及额尔齐斯断裂带以南的乌伦古碱性花岗岩等(赵振华等,1996Han et al., 1997, 单颗粒锆石U-Pb年龄314~323Ma,刘家远等,1995)。这些岩体的相继发现和研究不但约束了阿尔泰造山带主期造山作用结束的时间,而且揭示了早石炭世-晚二叠世(358~253Ma)存在较大规模的地壳伸展作用。然而,虽然前人对阿尔泰晚古生代构造背景有了一定认识,但限于测年手段和研究对象的多样化以及测年精度的差异,致使所获得花岗岩年龄跨度较大,如在中国阿尔泰西端还发现了泥盆纪后碰撞型花岗岩(418.3±6.4Ma,李会军等,2010),从而极大的影响了以此为基础进行的构造环境、造山作用以及构造演化的讨论。除此之外,即便对同一地质时期的构造-热事件解释亦然存在不同观点,例如陈汉林等(2006)认为富蕴县乌恰沟基性麻粒岩的发现揭示了阿尔泰造山带在早二叠世中-晚期(279~268Ma)还存在活动大陆边缘的岩浆活动;厉子龙等(2010)解释该超高温麻粒岩可能与古生代时期发生的古亚洲洋俯冲、西伯利亚板块和哈萨克斯坦—准噶尔板块碰撞造山作用过程有关。相反,王伟等(2009)通过研究阿勒泰东南部泥质麻粒岩认为早二叠世(292.8±2.3Ma)阿尔泰造山带南缘处于高热流活动的伸展环境。至此,阿尔泰造山带碰撞造山作用何时结束?二叠纪处于怎样的构造背景?以及阿尔泰造山带晚古生代如何由板块构造体制转向板内环境的机制尚不清楚。本文以此为切入点,选择阿尔泰造山带东南缘的青河后造山侵入岩为研究对象,通过U-Pb同位素定年,厘定该岩体形成时代;基于岩石地球化学特征和锆石Hf同位素组成分析,讨论岩体源区性质,成因类型和构造环境,进而揭示岩体形成过程中的壳幔相互作用和陆壳生长方式,为进一步探讨阿尔泰造山带海西期构造演化历史和构造体制转换提供依据。

1 区域地质背景

阿尔泰造山带是中亚造山带的重要组成部分,位于西伯利亚板块和哈萨克-准噶尔板块之间。曲国胜和何国琦(1992)根据沉积建造、岩浆作用、变质作用及构造变形强度、期次和构造层等特征,将阿尔泰造山带划分为5个构造带,后来,Windley et al.(2002)根据区域地层对比,变质变形,结合同位素年代学,将其从北到南划分为6个块体。国内多数学者,将块体2和块体3合并,认为具有微陆块性质(Hu et al., 2000; Xiao et al., 2004; Wang et al., 2006),并以红山嘴-诺尔特断裂、康布铁堡-库尔特断裂和额尔齐斯断裂带为界,划分为北阿尔泰、中阿尔泰、南阿尔泰三个块体和额尔齐斯构造带(何国琦等,1994Xiao et al., 2004童英等,2006b王涛等,2010图 1)。

研究区地处新疆青河县境内,隶属中国阿尔泰造山带东南缘(图 1)。区内地层主要包括中-上奥陶世哈巴河群(祝皆水, 1979)和早-中泥盆世康布铁堡组(图 2)。哈巴河群最初由地质部第十三大队命名(1957年),依据微古化石,将其划归寒武纪-震旦纪地层(王广耀和张玉亭,1984彭昌文,1989)。之后,又从该套地层相继解体出变质程度较高的古-中元古代克木齐群、中元古代苏普特岩群和新元古代富蕴群以及晚震旦世-早寒武世喀纳斯群(张建东等,2012a; 李天德和吴柏青,1996Hu et al., 2000胡霭琴,2002)。然而,一部分学者认为这些古老地层的划分依据并不充分,缺少标准化石和精确的年代学约束,其实是古生代地层遭受区域动力热流变质改造而成(Sun et al., 2008; Jiang et al., 2011; Long et al., 2012)。区内该地层主要为一套含铝质变质矿物(夕线石、堇青石、石榴石、红柱石和十字石)的泥质或砂泥质变质岩组合,岩石类型包含黑云斜长片麻岩、混合岩化片麻岩、云母石英片岩或变粒岩,1:25万青河幅将其归入中元古代苏普特岩群(张建东等,2012b)。康布铁堡组是新疆地质局区测大队六分队在阿勒泰县东南康布铁堡创名,定义为一套酸性火山岩、火山碎屑岩,夹正常碎屑岩及少量碳酸盐岩(王广耀和朱庆亮, 1978),该套地层中发现早泥盆世微古化石(吴志亮,1992),结合锆石U-Pb测年,归属早-中泥盆世(柴凤梅等,2009张进红等,2000刘伟等,2010张保江等,2012),主要岩性为流纹岩和火山碎屑岩组合,遭受后期构造改造,糜棱面理发育。研究区内哈巴河群和康布铁堡组没有直接接触,分别位于玛因鄂博断裂两侧,泥盆纪和二叠纪侵入岩沿该断裂发育,并将其分割。

图 2 研究区地质简图 Fig. 2 Simplified geological map of the Qinghe area

① 祝皆水/新疆地质局区测队. 1979. 1:20万二台幅地质图

② 张建东, 刘崴国, 唐智/新疆维吾尔自治区地质调查院. 2012a. 1:25万富蕴地质图

① 张建东, 刘崴国, 唐智/新疆维吾尔自治区地质调查院. 2012b. 1:25万青河地质图

② 王广耀, 朱庆亮/新疆地质局区域地质调查队. 1978. 1:20万阿勒泰幅地质图

青河岩体是阿尔泰造山带南部代表性侵入岩,沿构造线呈北西向带状分布。在研究区出露面积约10km,岩石类型以二长花岗岩和少量闪长岩为主,包括了灰褐色似斑状黑云二长花岗岩、中细粒二长花岗岩、糜棱岩化二长花岗岩、闪长岩和辉长闪长玢岩。其中,灰褐色似斑状黑云二长花岗岩和中细粒二长花岗岩呈渐变过渡接触关系,内部均发育黑云斜长片麻岩捕掳体,局部以脉状侵入地层之中。主要围岩为晚志留世-早泥盆世哈巴河群含石榴子石黑云斜长片麻岩,原岩是一套近源堆积的硬砂岩和岩屑砂岩,经后期热变质作用改造呈深变质岩层(Dong et al., 2018);糜棱岩化二长花岗岩分布玛因鄂博断裂两侧,其围岩主要为泥盆纪康布铁堡组流纹岩,受后期额尔齐斯断裂影响,发育糜棱面理。辉长闪长玢岩与灰褐色似斑状黑云二长花岗岩和中细粒黑云母二长花岗岩呈明显的侵入接触关系(图 3g)。

图 3 青河岩体岩相学特征 (a)似斑状黑云母二长花岗岩中的长石斑晶; (c)中细粒二长花岗岩与片麻岩侵入接触关系; (e)糜棱岩化二长花岗岩的糜棱面理; (g)辉长闪长玢岩与似斑状黑云母二长花岗岩侵入接触关系;(b)、(d)、(f)、(h)为对应的正交偏光下显微照片.Pl-斜长石; Q-石英; Bi-黑云母; Am-角闪石; Kfs-钾长石; Px-辉石; Chl-绿泥石 Fig. 3 Petrography features of the Qinghe intrusive rocks (a) the feldspar phenocryst-bearing in porphyritic biotite-monzogranite; (c) the intrusion contact relation between medium-fine grained monzogranite and gneiss; (e) the foliation of mylonitize granite, (g) the intrusion contact relation between gabbrodiorite porphyrite and porphyritic biotite-monzogranite; (b), (d), (f), (h) are microphotographs under cross-polarized light. Pl-plagioclase; Q-quartz; Bi-biotite; Am-amphibole; Kfs-K-feldspar; Px-pyroxene; Chl-chlorite
2 样品特征及分析方法

采集新鲜的4类侵入岩样品进行岩石地球化学和锆石U-Pb-Hf同位素测试,岩石类型包括似斑状黑云二长花岗岩(46°30′10″N、90°27′21″E)、中细粒黑云母二长花岗岩(46°30′06″N、90°27′32″E)、糜棱岩化二长花岗岩(46°30′06″N、90°15′30″E)和辉长闪长玢岩(46°31′15″N、90°27′32″E)。

2.1 岩相学特征

似斑状黑云母二长花岗岩(D2054-2,图 3ab):风化面呈灰褐色,新鲜面灰白色,半自形粒状结构,似斑状结构,块状构造。粒状矿物0.5~5mm的约占60%,5~4.5mm×7.5mm的约占40%,片状矿物片径介于0.1×0.3mm~2.8×4.3mm之间。基质斜长石和钾长石各约占30%左右,石英25%左右,黑云母5%左右。另外,含微量磷灰石和不透明矿物。次生矿物有绢云母、黝帘石、绿泥石。薄片中观察斜长石多于钾长石,斜长石呈半自形条状、粒状,有轻微的绢云母化、黝帘石化。聚片双晶常见,钾长石由具格状双晶的微斜长石组成,微斜长石中常有钠长石微纹分布,钾长石与斜长石接触处偶还有蠕英石分布,黑云母呈黄-褐多色性。除个别颗粒有绿泥石化外,大部分无明显蚀变。

中细粒黑云母二长花岗岩(D2054-3,图 3cd):风化面呈灰褐色,新鲜面灰白色,半自形粒状结构,块状构造。粒状矿物0.3~2mm的占20%左右,2~2.6mm×5mm的约占80%,片状矿物小于0.1×0.2mm~1.5×2.3mm。钾长石含量约占35%、斜长石含量为30%左右、石英约占25%、黑云母小于8%。另外,含少量磷灰石和不透明矿物。次生矿物有绢云母、黝帘石和绿泥石。岩石中钾长石略多于斜长石,钾长石由具格状晶之微斜长石组成,微斜长石镜下还可见其中有析出的微纹状钠长石分布,构成微纹长石。

糜棱岩化二长花岗岩(PM002-2,图 3ef):岩体受到动力变质作用发生韧性变形。原岩中矿物晶体多被压碎成碎斑与碎基。岩石中碎斑含量<25%,其成分主要为斜长石与碱性长石(微斜长石、条纹长石),偶见褐帘石。碎斑形态呈眼球状或透镜状,粒径大小不等,变化于0.3~10mm之间;碎基含量>65%,由细粒化石英、长石及新生矿物绢云母、少量绿帘石组成。石英常呈拉长粒状,细条带状,扁豆状等塑性变形形态;绢云母常呈条纹状集合体;细小碎基集合体常围绕碎斑分布。

辉长闪长玢岩(PM001-1,图 3gh):风化面呈灰褐色,可分为斑晶和基质两部分,整体呈斑状结构。斑晶绝大部分由自形板状斜长石组成,聚片双晶发育,部分颗粒有环带构造,为中长石特征,斜长石大小介于2×4mm~3.5×6mm,含量大于8%,斑晶黑云母片径为1.3×2mm~2×3mm,含量小于2%;基质半自形粒状结构,块状构造。基质斜长石0.5×0.8mm~0.8×1.5mm,辉石0.1~0.3mm×0.8mm。斑晶和基质斜长石均无明显的次生蚀变,基质中铁镁矿物以辉石为主,属单斜辉石中的透辉石,角闪石具绿色多色性为多,常见交代围绕辉石分布,斜长石为中长石。

2.2 分析方法

对采集的4类岩石样品在西安地质调查中心实验室利用X射线荧光法(XRF)和电感耦合等离子体质谱法(ICP-MS)法进行主量、微量稀土元素测试。测年工作同样在该实验室进行,利用美国New Ware Research公司生产的激光剥蚀进样系统(UP193SS)和美国AULENT科技有限公司生产的Agilent 7500a型四级杆等离子体质谱仪联合构成的激光等离子质谱仪进行测试。首先将挑选锆石的样品在实验室粉碎至80~100目,经常规浮选和磁选方法分选后,在双目镜下先根据锆石的颜色、自形程度、形态等特征初步分类,挑选出具有代表性的锆石作为测定对象。将分选出的锆石分组置于DEVCON环氧树中,待固结后将其抛磨至粒径的大约二分之一,使锆石内部充分暴露,然后进行锆石显微(反射光和透射光)照相、阴极发光(CL)显微图像研究及锆石微区U-Pb同位素年龄测定。激光束斑直径为32μm,剥蚀深度20~40μm,激光脉冲8Hz。测试采用标准锆石91500作为外部标准物质,元素含量采用NIST610作为外标,29Si作为内标元素。年龄结果使用Isoplot3. 0软件(Ludwig, 2003)计算。详细分析步骤和数据处理方法参考有关文献(Gao et al., 2002)。

锆石Lu-Hf同位素分析在西安地质调查中心实验室完成,所用仪器为Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP MS)。实验过程中采用He作为剥蚀物质载气。剥蚀直径44μm,激光剥蚀时间为26s,脉冲频率4~8Hz,脉冲能量100mJ。计算参数为176Lu/177Hf=0.0332和176Hf/177Hf=0.282772 (Blichert-Toft and Albarède, 1997),εHf(t)计算采用176Lu衰变常数为1.867×10 a(Albarède et al., 2006)。Hf单阶段模式年龄tDM1的计算以现今的亏损地幔值为参考。Hf两阶段模式年龄(tDM2)计算时,平均地壳的值采用176Lu/177Hf=0.015(Rudnick and Gao, 2003),详细分析步骤和处理方法见参考文献(Yuan et al., 2008)。

3 分析结果 3.1 主、微量元素

青河岩体岩石化学分析结果显示(表 1),所有样品在TAS分类图上(Cox et al., 1979)均落入亚碱性岩石系列的(石英)闪长岩和花岗岩区(图 4a)。其中,花岗岩样品高硅,SiO2含量变化较大(61.98%~73.35%),富钾(K2O=2.97%~4.43%),Na2O=3.74%~4.75%,K2O/Na2O=0.78~1.06,K2O+Na2O=5.84%~8.72%,里特曼指数σ=2.38~2.54,显示高钾钙碱性岩石系列,并有向钾玄岩演化趋势(图 4b表 1)。碱度率AR=2.12~3.65,在AR-SiO2图上,除糜棱岩化二长花岗岩落入碱性岩区,似斑状黑云母二长花岗岩和细粒二长花岗岩落入钙碱性区,但总体显示由钙碱性向碱性演化趋势(图 4c)。Al2O3含量为13.55%~15.58%。碱铝指数AKI=0.56~0.67,略低于Whalen et al. (1987)划定的A型花岗岩的AKI平均值(0.95)。10000×Ga/Al=2.85~2.47,低于世界A型花岗岩值3.75(Whalen et al., 1987) A/CNK=0.90~0.99,A/NK=1.49~1.59,属于准铝质花岗岩系列(图 4d)。TiO2含量低(0.29%~1.32%),贫Fe2O3T=1.82%~6.75%,CaO含量变化于1.29%~3.76%,MgO=0.45%~2.13%。辉长闪长玢岩样品SiO2含量介于51.66%~53.6%,属于钙碱性系列。TiO2含量变化于2.89%~3.11%,Al2O3含量为14.17%~14.15%,Fe2O3T=9.53%~9.96%,CaO含量6.81%~7.36%,MgO=4.42%~4.69%,Mg#值为52~53。

表 1 青河岩体主量元素丰度(wt%)及特征参数 Table 1 Major elements abundances (wt%) and parameters of the Qinghe intrusive rocks

图 4 青河岩体主量元素分类图 (a)硅碱图(Cox et al., 1979);(b)SiO2-K2O图解;(c)碱度率图解(Wright, 1969);(d)A/CNK-A/NK图(Peccerillo and Taylor, 1976) Fig. 4 Major element classification diagrams for the Qinghe intrusive rocks (a) SiO2 vs. Na2O+K2O diagram (Cox et al., 1979); (b) SiO2 vs. K2O diagram; (c) diagram of alkality (Wright, 1969); (d) A/CNK vs. A/NK diagram (Peccerillo and Taylor, 1976)

稀土、微量元素分析结果显示(表 2),青河岩体稀土元素总量高,∑REE=163.6×10-6~349.2×10-6,其中轻稀土为98.63×10-6~213.1×10-6,重稀土为55.10×10-6~116.0×10-6。轻重稀土分馏较为明显,LREE/HREE=1.38~2.46,(La/Yb)N=3.26~6.39。(La/Sm)N=1.55~3.02,(Gd/Yb)N=1.26~1.85,样品δEu变化于0.46~0.83(图 5a),显示Eu负异常,球粒陨石标准化稀土元素配分曲线呈右倾型“海鸥”状(图 5a)。

图 5 青河侵入岩球粒陨石标准化稀土元素配分图(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据McDonough and Sun, 1995) Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after McDonough and Sun, 1995)

表 2 青河岩体微量、稀土元素丰度(×10-6)及特征参数 Table 2 Trace and rare earth elements abundances (×10-6) and parameters of the Qinghe intrusive rocks

原始地幔标准化微量元素显示(图 5b),4个样品均富集大离子亲石元素Rb、K、Th、U、Pb。其中3个花岗岩样品亏损高场强元素Nb、Ta、La、Ce、Ti、P等和Ba、Sr元素;辉长闪长玢岩样品虽然同样亏损高场强元素Nb、Ta、La、Ce和Sr元素,但是P和Ti元素富集。

3.2 年代学及Hf同位素特征

对4件样品分别进行了锆石分选和反射光、透射光、阴极发光等显微照相(图 6)。阴极发光照片显示似斑状黑云母二长花岗岩、中细粒二长花岗岩锆石形态和内部结构较为相似,呈长柱状,环带特征明显;糜棱岩化二长花岗岩锆石呈短柱状,环带清晰,但较为破碎,可能与后期脆-韧性变形作用改造有关;辉长闪长玢岩锆石晶体形态不完整,部分为柱状,阴极发光照片显示锆石内部结构清楚,具有分带特征,部分锆石中生长环带清楚。以上样品锆石Th/U比值介于0.18~1.30之间,大于0.1,均为岩浆成因。

图 6 青河岩体代表性锆石CL图像 Fig. 6 Representative cathodoluminescence (CL) images for the zircon from the Qinghe intrusive rocks

通过LA-ICP-MS锆石U-Pb测年,获得一批高精度的年代学数据,结果显示所有锆石的207Pb/235Pb和206Pb/238U年龄谐和性较好(表 3,谐和度=(207Pb/235Pb)/(206Pb/238U)),在谐和线上分别形成一个较大年龄集中区,年龄分别为283±3Ma(n=20,MSWD=0.81)、280±2Ma(n=27,MSWD=0.75)、286±2Ma(n=27,MSWD=1.2)和269±1Ma(n=20,MSWD=0.75),与加权平均年龄280±2Ma、280±1Ma、282±2Ma(n=23,MSWD=1.3)和269±2Ma误差范围内一致(图 7),证明测年数据准确可靠,将其谐和年龄作为该侵入岩的形成时代,认为这些花岗岩形成于早二叠世中期,辉长闪长玢岩时代划归早二叠世晚期。

图 7 青河地区中酸性侵入岩锆石U-Pb谐和年龄图 Fig. 7 U-Pb concordia diagrams for zircon of the intrusive rocks in the Qinghe area

表 3 青河岩体LA-ICP-MS锆石U-Pb测年数据 Table 3 LA-ICP-MS zircon U-Pb age data of the Qinghe intrusive rocks

本文对4件样品中的测年锆石部分进行了原位Hf同位素测试,分析点与U-Pb年龄编号一致(表 4)。结果显示锆石εHf(t)值均为正值,分别变化于+6.64~+9.74、+6.06~+10.51、+3.3~+11.78和+4.04~+10.27,二阶段模式年龄tDM2分别为880~686Ma、923~784Ma、875~621Ma和1030~635Ma(表 4)。

表 4 青河岩体锆石Hf同位素分析 Table 4 Hf isotopic analyses for zircons from the Qinghe intrusive rocks
4 讨论 4.1 岩体形成时代及意义

青河二叠纪侵入岩出露于中国阿尔泰东南部,本文对其中的3件花岗岩样品进行了锆石U-Pb测年,并获得一致的同位素年龄(283±3Ma、280±2Ma和286±2Ma)。该年龄基本可以代表该岩体的形成时代,并与区域上碱性或富碱花岗岩形成时代较为一致,如喇嘛昭岩体(276±9Ma,王涛等,2005)、沙尔布拉克二云母花岗岩(275.1±1.7Ma,孙桂华等,2009)、富蕴县南线形花岗岩体(281~275Ma,童英等,2006b)以及塔克什肯口岸富碱花岗岩(286±1Ma,童英等,2006a),前人将这些岩体定义为后造山型花岗岩;另外,可与研究区以西发育的后碰撞强过铝质花岗岩(283±4Ma,周刚等,2007)、阿勒泰市东南以及富蕴乌恰沟等地的高温麻粒岩形成时代进行对比(292.8±2.3Ma,王伟等,2009厉子龙等, 2004, 2010;279~268Ma,陈汉林等,2006)。区内辉长闪长玢岩形成时代为269±1Ma,较似斑状黑云母二长花岗岩形成时间要晚,这与两者野外宏观接触特征一致(图 3g)。本研究结合前人成果表明阿尔泰造山带南缘,沿额尔齐斯断裂两侧,从西往东发育较大规模的早二叠世富碱性花岗岩带,进而认为,青河二叠纪岩体可能同属后造山型侵入岩。

4.2 源区性质

阿勒泰东南出露的喇嘛昭I-A过渡型岩体(276±9Ma)和塔克什肯口岸富碱性花岗岩(286±1Ma)Sr-Nd同位素特征均表明年轻幔源物质对花岗岩的形成具有重要贡献(王涛等,2005童英等,2006c)。童英等(2006c)通过对中国阿尔泰花岗岩Pb同位素填图认为,阿尔泰花岗岩不论何种类型、何种构造背景以及任何时代都具有相似的Pb同位素组成特点,均显示上地幔或深部地壳的物源属性。青河早二叠世花岗岩类和辉长闪长玢岩锆石Hf同位素测试结果显示εHf(t)值均为正值(+4.04~+11.78),在锆石年龄-Hf同位素相关性图解中,样品接近于亏损地幔源区(图 8),揭示青河岩体源岩可能均来源于上地幔或玄武质下地壳物质。二阶段模式年龄tDM2分别变化于880~694Ma、923~633Ma、875~621Ma、1030~635Ma,说明其主要物源很可能来自新元古代物质的重熔。加之4个样品均存在875~633阶段的模式年龄重叠区,说明青河二叠纪中酸性岩体具有相似的源区特征。

图 8 辉长闪长玢岩锆石年龄-εHf(t)同位素相关性图解 Fig. 8 Age vs. εHf(t) discrimination pattern for the gabbrodiorite porphyrite

锆石Hf二阶段模式年龄tDM2绝大部分变化于900~700Ma(表 4),与Rodinia超大陆裂解并形成古亚洲洋的时间较为一致(Şengör et al., 1993; Xu et al., 2005; Zhang et al., 2006; Windley et al., 2007; Kheraskova et al., 2010; Xiao et al., 2010)。已有研究表明,由于Rodinia超大陆裂解,在西伯利亚南缘形成了1.0Ga左右的蛇绿岩带(Khain et al., 1997, 2003; Cocks and Torsvik, 2007; Wilhem et al., 2012; Yakubchuk, 2017),同时在其南缘裂离出微陆块(李天德和吴柏青,1996李天德和波里扬斯基,2001Windley et al., 2002李会军等,2006),经过后期地质演化形成阿尔泰造山带。如果该观点成立,在该微陆块内部极有可能保留了Rodinia裂解事件的信息。由此以来,青河中酸性岩体锆石εHf(t)(+4.04~+11.78)和tDM2(900~700Ma)成为最好的证据。结合青河以西喇嘛昭后造山岩体一致的εHf(t)值(+1.3~+2.8)和Nd模式年龄(tDM=940~850Ma),不但指示了阿尔泰造山带深部存在由新元古代幔源物质组成的新生地壳,而且为二叠纪青河岩体的形成提供了物源。因此,我们认为新元古代裂解引起地幔物质上涌形成的新生地壳可能是青河中酸性侵入岩的主要物质来源。

4.3 岩体成因类型

花岗岩样品SiO2含量变化较大,整体富硅(SiO2=61.98%~73.35%),富碱(K2O+Na2O=5.84%~8.72%,碱度率AR=2.12~3.65),低钙(1.29%~3.76%),K2O/Na2O比值为0.78~1.06,里特曼指数σ介于2.35~3.08之间,属于高钾钙碱性花岗岩系,整体显示向碱性过渡特点(图 4c),但A12O3(13.53%~15. 58%)高于一般的碱性花岗岩(一般小于12%,王涛等,2005)。研究显示,碱性花岗岩通常富碱贫钙,富铁贫镁、富氟贫水以及富Zr、∑Ce、∑Y、Nb、Ta(袁忠信,2001)。然而,青河花岗岩体中Nb、Ta、Zr、Ce、Y相对亏损,而且未发现碱性花岗岩特有的暗色矿物霓(辉)石、钠闪石等,与碱性花岗岩明显不同。但是,Ba、Sr、P、Ti亏损,Rb、K、Th、U、Pb富集,以及稀土配分曲线显示右倾型“海鸥状”,Eu负异常,符合A型花岗岩一般特征(Hong et al., 1996)。

青河花岗岩体在Whalen et al.(1987)的花岗岩成因类型分类图上,落入A型或I,S-A边界区(图 9a-c);在Collins et al.(1982)的K2O/Na2O分类图上,落入A型或I-A边界区(图 9d)。基于A型花岗岩不相容元素不受分异程度影响,Zr+Nb+Ce+Y常被用来区分高分异的I型和A型花岗岩(Whalen et al., 1987)。在(Zr+Nb+Ce+Y)-(FeOT/MgO)和(Zr+Nb+Ce+Y)-(Fe2O3+Na2O)/CaO图上,样品基本落在高分异(FG)I型和未分异I-,S-,M-型(OGT)花岗岩以外的区域(图 9e, f)。因此,我们认为青河酸性岩体应该属于A型花岗岩,与阿尔泰造山带中南部同时代(276±9Ma)喇嘛昭后造山岩体(I-A过渡型)地球化学特征相似(王涛等,2005)。

图 9 青河岩体10000×Ga/Al对Zr、Nb、Zr+Nb+Ce+Y,K2O-Na2O(据Collins et al., 1982)及(Zr+Nb+Ce+Y)对FeOT/MgO、(Fe2O3+Na2O)/CaO成因分类图(据Whalen et al., 1987) FG=分异的I型花岗岩区; OGT=未分异I,S,M型花岗岩区 Fig. 9 10000×Ga/Al vs. Zr, Nb and Zr+Nb+Ce+Y, K2O-Na2O (after Collins et al., 1982), Zr+Nb+Ce+Y vs. FeOT/MgO and (Fe2O3+Na2O)/CaO (after Whalen et al., 1987) discriminant diagrams for the Qinghe pluton FG=field for fractionated I-type granitoids; OGT=field for unfractionated I-, S- and M-type granites

目前,对于A型花岗岩成因包括:1)中下地壳高钾、贫水岩石的部分熔融(Collins et al., 1982; Whalen et al., 1987; Patiño Douce, 1997);2)玄武质岩浆的结晶分异(Eby 1990, 1992; Tuner et al., 1992; King et al., 2001);3)富F、Cl的熔体与早期残余岩浆或花岗岩发生交代作用(Taylor, 1980; Harris et al., 1986)等多种模式。而且,被认为是板内花岗岩(Pearce et al., 1984)、后碰撞碱性花岗岩(Sylvester, 1989)或非造山花岗岩(Rogers and Greenberg, 1990)。Eby(1990, 1992)和Hong et al.(1996)又将A型花岗岩细分为非造山(A1、AA)和后碰撞(A2、PA)两种类型。然而,无论是何种划分方式,较为一致的是该类花岗岩形成于伸展构造环境(洪大卫等,1995王德滋等,1995吴才来等,1998)。

4.4 岩浆成因

地球化学数据显示,青河早二叠世侵入体成岩过程中发生了岩浆的结晶分异作用,主要表现在:1)花岗岩微量元素Sr、Ba、P、Ti的明显负异常,指示了斜长石、磷灰石、钛铁矿和榍石等矿物发生了分离结晶作用;2)哈克图解上(图 10),无论是单一岩体(包括辉长闪长玢岩),还是似斑状二长花岗岩-中细粒二长花岗-糜棱岩化二长花岗岩,SiO2和其他氧化物之间均显示良好的线性关系,除了与Na2O和K2O为正相关,与Al2O3、Fe2O3、CaO、MgO、TiO2、P2O5和MnO为负相关,整体呈现了典型的岩浆结晶分异演化趋势(图 10)。因此,青河A型花岗岩可能属于玄武质岩浆的结晶分异成因模式(Tuner et al., 1992; Eby, 1990, 1992; King et al., 2001)。

图 10 青河岩体哈克图解 Fig. 10 Hark diagrams of the Qinghe intrusive rocks

已有资料显示,阿尔泰造山带南缘发育二叠纪基性岩脉,如早二叠世喀拉通克(287± 5Ma,韩宝福等,2004;287±4Ma,焦建刚等,2014)、锡伯杜、阿拉托别和托别巴斯陶基性岩体等(杨文平等,2004)。Sr-Nd-O同位素或地球化学特征显示这些岩体均起源于亏损的软流圈地幔(张招崇等, 2003, 2006杨文平等,2004焦建刚等,2014),揭示了一定规模的幔源岩浆侵入。如此看来,这些基性岩体似乎具备了产生A型花岗岩的物质条件,然而,事实并非如此,原因有三:1)这些基性脉体与青河A型花岗岩同时代,不可能在形成过程中同时发生结晶分异产生酸性岩体;2)这些脉体在研究区或者整个阿尔泰造山带南缘零星分布,而碱性或A型花岗岩呈带状连续分布,出露面积较大,不可能由这些基性岩脉直接分异出如此规模的酸性岩体;3)青河A型花岗岩具有早期玄武质下地壳物质重熔性质,前已述及,岩体εHf(t)均为正值,二阶段模式年龄(tDM2)集中变化于900~700Ma,指示新元古代幔源岩浆形成的玄武质新生地壳可能是青河后造山侵入岩形成的主要物质来源。然而,导致该熔融事件发生的热来自何处?近来,笔者在沿青河侵入体延伸方向以西发现了含有大量暗色闪长质暗色微粒包体的花岗岩和高温基性麻粒岩(另文发表),其中包体和寄主花岗岩形成时代分别为283±2Ma和284±2Ma,基性麻粒岩的围岩辉长岩形成时代为~277Ma。因此,我们认为引发下地壳物质发生部分熔融的热源很有可能来自早二叠世强烈的壳幔相互作用,而基性麻粒岩以及青河A型花岗岩的产生是该过程物质、能量转换的重要表现形式。因此,我们推测在早二叠世碰撞造山作用结束之后,在由挤压转向伸展的构造背景下,由于俯冲板片断离导致了软流圈物质上涌底侵玄武质下地壳(900~700Ma)发生部分熔融,形成源岩浆,之后在其就位过程中发生结晶分异,最终产生青河后造山中酸性岩体。该岩体成因与兴蒙造山带晚古生代-中生代花岗岩(洪大卫等,2000)和华北板块北缘乌梁斯太A型花岗岩(罗红玲等,2009)形成机制十分类似。

4.5 构造环境及地壳生长

阿尔泰造山带早二叠世构造环境存在板块俯冲(陈汉林等,2006厉子龙等,2010林秀斌等,2010)和碰撞后伸展(童英等, 2006b, c王伟等,2009)两种观点。另外,也有人提出早泥盆世就已经发生了碰撞(李会军等,2010)。一般认为,A型花岗岩具有一定的构造指示意义,是造山作用结束的标志。青河岩体在R1-R2图解中,花岗岩样品全部落在碰撞后隆起-造山晚期区域(图 11a)。在Y+Nb-Rb协变图上(Pearce et al., 1984; Pearce, 1996)显示由火山弧向板内构造环境过渡的后碰撞性质(图 11b)。在Eby(1992)关于A型花岗岩成因分类图上,样品均落在指示后碰撞环境的A2区(图 11cd),说明它不可能形成于板内构造环境,而是造山后期相对稳定的张性环境(周若等,1997)。通过对比区域上阿尔泰造山带南缘同构造位置从东往西发育的一系列指示伸展背景的(富)碱性或A(I-A)型花岗岩(胡霭琴等,1997;286±1Ma,童英等,2006aWindley et al., 2002;276±9Ma,王涛等,2005张湘炳等,1996;281~275Ma,童英等,2006b;275.1±1.7Ma,孙桂华等,2009),以及额尔齐斯断裂带以南的乌伦古碱性花岗岩等地球化学和年代学特征(赵振华等,1996Han et al., 1997, 单颗粒锆石U-Pb年龄314Ma~323Ma,315.9Ma,Rb-Sr法,刘家远和刘奎荣,1996),并结合沈晓明等(2013)利用淡色花岗岩(~313Ma)对于阿尔泰造山带南缘碰撞时限的约束,笔者认为,阿尔泰造山带东南缘在早二叠世已经处于造山后伸展的构造环境。

图 11 青河岩体构造环境判别图 (a) R1-R2图解(Batchelor and Bowden, 1985);(b)Y+Nb-Rb图解(Pearce, 1996);(c) Y/Nb-Rb/Nb和Y/Nb-Sc/Nb图解(Eby, 1992);(d)Nb-Y-Ce和Nb-Y-Ga×3图解(Eby, 1992). VAG-火山弧花岗岩;ORG-洋脊花岗岩;WPG-板内花岗岩;Syn-COLG-同碰撞花岗岩;A1-非造山;A2-后碰撞 Fig. 11 Tectonic discrimination diagrams for the Qinghe pluton (a) R1 vs. R2 diagram (Batchelor and Bowden, 1985); (b) Y+Nb vs. Rb diagram (Pearce, 1996); (c) Y/Nb vs. Rb/Nb and Y/Nb vs. Sc/Nb diagrams (after Eby, 1992); (d) Nb-Y-Ce and Nb-Y-Ga×3 diagrams (Eby, 1992). VAG-volcanic arc granite; ORG-ocean-ridge granite; WPG-within-plate granite; Syn-COLG-syncollision granite; A1-anorogenic; A2-post orogenic

阿尔泰造山带属于典型的增生型造山带,是解析大陆造山作用类型与探索大陆生长过程的重要窗口。研究表明,大陆地壳生长包括垂向生长和侧向增生。前者是指大陆地壳从地幔萃取过程,后者是指大陆生长通过弧和微陆块碰撞过程(Condie, 1990)。已有资料显示,后造山地壳的生长包括新的地幔岩浆底侵引起的垂向生长(王涛等,2005)和残留在陆壳中的俯冲洋壳或年轻增生楔物质重熔、通过再循环加入到地壳产生的水平生长(Coleman,1989洪大卫等,2000Hong et al., 2004, 童英等,2006c)。阿尔泰造山带的南缘广泛发育基性-超基性岩脉,包括早二叠世喀拉通克、锡伯杜、阿拉托别和托别巴斯陶基性岩体等(张招崇等, 2003, 韩宝福等, 2004, 2006;杨文平等,2004焦建刚等,2014),代表了一定规模的幔源岩浆上侵事件,是壳幔相互作用的最好证据,进而揭示二叠纪阿尔泰造山带由于幔源岩浆的上升侵位而引发了地壳的垂向生长。

5 结论

(1) 青河后造山中酸性侵入岩形成于早二叠世(269~286Ma);

(2) 青河后造山花岗岩属于高钾钙碱性系列,具有A型花岗岩特征。

(3) 青河中酸性侵入岩源岩来自玄武质下地壳,是后碰撞伸展背景下形成,其热源主要来自于早二叠世幔源岩浆的底侵作用。

(4) 阿尔泰造山带于早二叠世之前已经结束了碰撞造山作用并转向伸展的构造背景;玄武质岩浆直接参与了岩体的形成,反映了强烈的壳幔相互作用和地壳垂向生长。

致谢      本文在锆石测年过程中得到了西安地调中心靳梦琪,李艳广和汪双双工程师的帮助;写作过程中与香港大学刘潜博士进行了有益的讨论;在此一并表示感谢!最后要衷心感谢两位审稿人对本文提出的宝贵意见。

参考文献
Albarède F, Scherer EE, Blichert-Toft J, Rosing M, Simionovici A and Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. DOI:10.1016/j.gca.2005.09.027
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55. DOI:10.1016/0009-2541(85)90034-8
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258. DOI:10.1016/S0012-821X(97)00040-X
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. New York: Elsevier, 63-114
Chai FM, Mao JW, Dong LH, Yang FQ, Liu F, Geng XX, Zhang ZX and Huang CK. 2009. Geochronology and genesis of the meta-rhyolites in the Kangbutiebao Formation from the Kelang basin at the southern margin of the Altay, Xinjiang. Acta Petrologica Sinica, 25(6): 1403-1415.
Chen B and Jahn BM. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geological Magazine, 139(1): 1-13. DOI:10.1017/S0016756801006100
Chen HL, Yang SF, Li ZL, Yu X, Xiao WJ, Yuan C, Lin XB and Li JL. 2006. Zircon SHRIMP U-Pb chronology of Fuyun basic granulite and its tectonic significance in Altaid orogenic belt. Acta Petrologica Sinica, 22(5): 1351-1358.
Cocks LRM and Torsvik TH. 2007. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Science Reviews, 82(1-2): 29-74. DOI:10.1016/j.earscirev.2007.02.001
Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-635. DOI:10.1029/TC008i003p00621
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. DOI:10.1007/BF00374895
Condie KC. 1990. Growth and accretion of continental crust:Inferences based on Laurentia. Chemical Geology, 83(3-4): 183-194. DOI:10.1016/0009-2541(90)90279-G
Cox KG, Bell JD and Pankhurst RJ. 1979. The Interpretation of Igneous Rocks. Dordrecht: Springer
Dong ZC, Han YG, Zhao GC, Pan F, Wang K, Huang BT and Chen JL. 2018. Zircon U-Pb ages and Hf isotopes of Paleozoic metasedimentary rocks from the Habahe Group in the Qinghe area, Chinese Altai and their tectonic implications. Gondwana Research, 61: 100-114. DOI:10.1016/j.gr.2018.05.006
Eby GN. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134. DOI:10.1016/0024-4937(90)90043-Z
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 26(2): 181-196. DOI:10.1111/ggr.2002.26.issue-2
Han BF, Wang SG, Jahn BM, Hong DW, Kagami H and Sun YL. 1997. Depleted-mantle source for the Ulungur river A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159. DOI:10.1016/S0009-2541(97)00003-X
Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429.
Han BF, Ji JQ, Song B, Chen LH and Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I):Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077-1086.
Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67-81. DOI:10.1144/GSL.SP.1986.019.01.04
He GQ, Han BF, Yue YJ and Wang JH. 1990. Tectonic division and crustal evolution of Altay orogenic belt in China. In: Geoscience of Xinjiang. Beijing: Geological Publishing House, 2: 9-20 (in Chinese)
He GQ, Li MS and Liu DQ. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumuqi: Xinjiang People's Publishing House, 1-437 (in Chinese)
Hong DW, Wang SG, Han BF and Jin MY. 1995. Classification and discriminating symbols of tectonic setting for alkaline granites. Science in China (Series B), 25(4): 418-426.
Hong DW, Wang SG, Han BF and Jin MY. 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 13(1): 13-27. DOI:10.1016/0743-9547(96)00002-5
Hong DW, Wang SG, Xie XL and Zhang JS. 2000. Genesis of positive ε(Nd, t) granitoids in the Da Hinggan Mts.-Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2): 441-456.
Hong DW, Zhang JS, Wang T, Wang SG and Xie XL. 2004. Continental crustal growth and the supercontinental cycle:Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5): 799-813. DOI:10.1016/S1367-9120(03)00134-2
Hu AQ, Wang ZG and Tu GZ. 1997. Geological Evolution and Metallogenetic Regularity in Northern Xinjiang. Beijing: Science Press: 52-62.
Hu AQ, Jahn BM, Zhang GX, Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence. Part 1. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15-51. DOI:10.1016/S0040-1951(00)00176-1
Hu AQ, Zhang GX, Zhang QF, Li TD and Zhang JB. 2002. A review on ages of Precambrian metamorphic rocks from Altai orogen in Xinjiang, NW China. Scientia Geologica Sinica, 37(2): 129-142.
Huang BT, Dong ZC, Pan F and Wang K. 2017. Geochronology, petrogenesis and geological significance of the Early Devonian and terminal Cambrian granites in Qinghe area of China's Altay orogenic belt. Acta Petrologica et Mineralogica, 36(4): 458-472.
Jiang YD, Sun M, Zhao GC, Yuan C, Xiao WJ, Xia XP, Long XP and Wu FY. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai:Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 189(1-2): 140-154. DOI:10.1016/j.precamres.2011.05.008
Jiao JG, Wang Y, Qian ZZ, Wang B, Lu H, Liu H and Zheng PP. 2014. Tentative discussion on rock-forming and ore-forming mechanism of Kalatongke Cu-Ni sulfide deposit and chronology of Kalatongke Y9 intrusion. Mineral Deposits, 33(4): 675-688.
Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE and Fedotova AA. 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1-4): 329-358. DOI:10.1016/S0301-9268(02)00218-8
Khain VE, Gusev GS, Khain EV, Vernikovsky VA and Volobuyev MI. 1997. Circum-Siberian Neoproterozoic ophiolite belt. Ofioliti, 22(2): 195-200.
Kheraskova TN, Bush VA, Didenko AN and Samygin SG. 2010. Breakup of Rodinia and early stages of evolution of the Paleoasian ocean. Geotectonics, 44(1): 3-24. DOI:10.1134/S0016852110010024
King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. DOI:10.1046/j.1440-0952.2001.00881.x
Li HJ, He GQ, Wu TR and Wu B. 2006. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrologica Sinica, 22(5): 1369-1379.
Li HJ, He GQ, Wu TR and Wu B. 2010. Discovery of the Early Paleozoic post-collisional granite in Altay, China and its geological significance. Acta Petrologica Sinica, 26(8): 2445-2451.
Li TD and Wu BQ. 1996. New improvement of comparative study of geology and mineralization of Altai between China and Kazakhstan. In: Geological Society of China (ed.). 8th Five Year Plan of Geoscience for Contribution to 30th IGC. Beijing: Geological Society of China, 256-259 (in Chinese)
Li TD and Poliyangsiji BH. 2001. Tectonics and crustal evolution of Altai in China and Kazakhstan. Xinjiang Geology, 19(1): 27-32.
Li ZL, Chen HI, Yang SF, Xian WJ and Tainosho Y. 2004. Discovery of mafic granulites from the Altay orogenic belt:Evidence from mineralogical study. Acta Petrologica Sinica, 20(6): 1445-1455.
Li ZL, Wang HH, Chen HL, Xiao WJ, Yang SF and Hu YZ. 2010. Composition of spinels, spinel-quartz association and mineral reactions from ultrahigh-temperature granulites:An example from spinel-orthopyroxene-garnet granulite of the South Altay orogenic belt. Earth Science Frontiers, 17(1): 74-85.
Lin XB, Chen HL, Yang SF, Li ZL, Yu X and Cheng XG. 2010. Exhumation of the Fuyun basic granulite in Altaid Orogenic Belt:Constraints from fission-track thermochronology. Acta Petrologica Sinica, 26(2): 413-420.
Liu JY and Yuan KR. 1996. Alkali Granite and Ore Formation in Eastern Junggar of Xinjiang. Changsha: Central South University of Technology Press: 1-140.
Liu W, Liu LJ, Liu XJ, Shang HJ and Zhou G. 2010. Age of the Early Devonian Kangbutiebao Formation along the southern Altay Mountains and its northeastern extension. Acta Petrologica Sinica, 26(2): 387-400.
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological of Society of America, 11: 468.
Long XP, Yuan C, Sun M, Xiao WJ, Wang YJ, Cai KD and Jiang YD. 2012. Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia:Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 22(2): 554-566. DOI:10.1016/j.gr.2011.04.009
Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71
Luo HL, Wu TR and Zhao L. 2009. Zircon SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance. Acta Petrologica Sinica, 25(3): 515-526.
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253. DOI:10.1016/0009-2541(94)00140-4
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. DOI:10.1007/BF00384745
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125.
Peng CW. 1989. Discovery and geological significance of micropaleoflora from the Habahe Group in Baikaba district of Xinjiang. Xinjiang Geology, 7(4): 19-22.
Qu GS and He GQ. 1992. The orogeny in the Altaides. Acta Geologica Sinica, 66(3): 193-205.
Rogers JJW and Greenberg JE. 1990. Late-orogenic, post-orogenic, and anorogenic granites:Distinction by major-element and trace-element chemistry and possible origins. Journal of Geology, 98(3): 291-310. DOI:10.1086/629406
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). The Crust Treatise on Geochemistry. Oxford: Pergamon, 1-64
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shen XM, Zhang HX and Ma L. 2013. Discovery of the Late Carboniferous leucogranite in the southern Altay range and its tectonic implications. Geotectonica et Metallogenia, 37(4): 721-729.
Sun GH, Li JY, Yang TN, Li YP, Zhu ZX and Yang ZQ. 2009. Zircon SHRIMP U-Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications. Geology in China, 36(5): 976-987.
Sun M, Yuan C, Xiao WJ, Long XP, Xia XP, Zhao GC, Lin SF, Wu FY and Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive accretionary history in the Early to Middle Palaeozoic. Chemical Geology, 247(3-4): 352-383. DOI:10.1016/j.chemgeo.2007.10.026
Sylvester PJ. 1989. Post-collisional alkaline granites. Journal of Geology, 97(3): 261-280. DOI:10.1086/629302
Taylor HP Jr. 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth and Planetary Science Letters, 47(2): 243-254. DOI:10.1016/0012-821X(80)90040-0
Tong Y, Wang T, Hong DW and Han BF. 2006a. Pb isotopic composition of granitoids from the Altay Orogen (China):Evidence for mantle-derived origin and continental growth. Acta Geologica Sinica, 80(4): 517-528.
Tong Y, Hong DW, Wang T, Wang SG and Han BF. 2006b. TIMS U-Pb zircon ages of Fuyun post-orogenic linear granite plutons on the southern margin of Altay orogenic belt and their implications. Acta Petrologica et Mineralogica, 25(2): 85-89.
Tong Y, Wang T, Kovach VP, Hong DW and Han BF. 2006c. Age and origin of the Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implications for continental growth. Acta Petrologica Sinica, 22(5): 1267-1278.
Turner SP, Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. DOI:10.1016/0024-4937(92)90029-X
Wang DZ, Zhao GT and Qiu JS. 1995. The tectonic constraint on the Late Mesozoic A-type granitoids in eastern China. Geological Journal of Universities, 1(2): 13-21.
Wang GY and Zhang YT. 1984. Primary division of the Sinian System in Altay Mountains of Xinjiang. Journal of Stratigraphy, 8(4): 296-300.
Wang T, Hong DW, Tong Y, Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai Orogen:Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640-650.
Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China:Implications for the tectonic evolution of an accretionary orogen. Journal of Geology, 114(6): 735-751. DOI:10.1086/507617
Wang T, Tong Y, Li S, Zhang JJ, Shi XJ, Li JY, Han BF and Hong DW. 2010. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth:Perspectives from Chinese Altay. Acta Petrologica et Mineralogica, 29: 595-618.
Wang W, Wei CJ, Wang T, Lou YX and Chu H. 2009. Confirmation of pelitic granulite in the Altai orogen and its geological significance. Chinese Science Bulletin, 54(14): 2543-2548. DOI:10.1007/s11434-009-0041-6
Wang ZG, Zhao ZH and Zou TR. 1998. Geochemistry of Granitoids in Altai, Xinjiang. Beijing: Science Press: 95-119.
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Wilhem C, Windley BF and Stampfli GM. 2012. The Altaids of Central Asia:A tectonic and evolutionary innovative review. Earth-Science Reviews, 113(3-4): 303-341. DOI:10.1016/j.earscirev.2012.04.001
Windley BF, Kröner A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China:New zircon age data and tectonic evolution. Journal of Geology, 110(6): 719-737. DOI:10.1086/342866
Windley BF, Alexeiev D, Xiao WJ, Kroner A and Basarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of Geological Society London, 164: 31-47. DOI:10.1144/0016-76492006-022
Wu CL, Zhou XR, Huang XC, Zhang CH, Wu DY and Huang WM. 1998. A-type granites in Maotan, Anhui. Acta Geologica Sinica, 72(3): 237-248.
Wu ZL. 1992. Lower Devonian volcanic-sedimentary formation of South Altai in Xinjiang Province and its diachronism. Journal of Kunming Institute of Technology, 17(6): 1-10.
Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106: 370-384. DOI:10.1017/S0016756800058222
Xiao WJ, Windley BF, Badararch G, Sun S, Li JL, Qin KZ and Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of central Asia. Journal of the Geological Society, 161(3): 339-342. DOI:10.1144/0016-764903-165
Xiao WJ, Huang BC, Han CM, Sun S and Li JL. 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253-273. DOI:10.1016/j.gr.2010.01.007
Xu B, Jian P, Zheng HF, Zou HB, Zhang LF and Liu DY. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of Northwest China:Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136(2): 107-123. DOI:10.1016/j.precamres.2004.09.007
Yakubchuk A. 2017. Evolution of the Central Asian Orogenic Supercollage since Late Neoproterozoic revised again. Gondwana Research, 47: 372-398. DOI:10.1016/j.gr.2016.12.010
Yang WP, Zhou G, Zhang ZC, Yan SH, He LX, He YS and Chen BL. 2004. Geochemistry of mafic intrusions on the south margin of the Altay orogenic belt and Cu-Ni sulfide ore potential of these intrusions. Geological Bulletin of China, 23(4): 390-399.
Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai:Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39. DOI:10.1016/j.chemgeo.2007.02.013
Yuan F, Zhou TF and Yue SC. 2001. The ages and the genetic types of the granites in the Nurt area, Altay. Xinjiang Geology, 19(4): 292-296.
Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118. DOI:10.1016/j.chemgeo.2007.10.003
Yuan ZX. 2001. A discussion on the naming of A-type granite. Acta Petrologica et Mineralogica, 20(3): 293-296.
Yue YJ, Wang SG, He GQ. 1990. The genetic types of granitoids and its implications on crustal evolution in Altay orogenic belt, China. In: Geoscience of Xinjiang (2). Beijing: Geological Publishing House, 72-85 (in Chinese with English abstract)
Zhang BJ, Li Q, Geng XX, Yang FQ and Liu F. 2012. Shrimp U-Pb age of the amphibolite from Mengku iron deposit and its geological implications in Altay, Xinjiang. Xinjiang Geology, 30(3): 277-282.
Zhang CL, Li ZX, Li XH, Ye HM, Wang AG and Guo KY. 2006. Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, Northwest China:Age, geochemistry, and implications for the rifting of Rodinia. International Geology Review, 48(2): 112-128. DOI:10.2747/0020-6814.48.2.112
Zhang JH, Wang JB and Ding RF. 2000. Characteristics and U-Pb ages of zircon in metavolcanics from the Kangbutiebao Formation in the Altay orogen, Xinjiang. Regional Geology of China, 19(3): 281-287.
Zhang XB, Sui JX, Li ZC, Liu W, Yang XY, Liu SS and Huang HY. 1996. Tectonic Evolution and Metallogenic Series of the Erqisi Structural Zone. Beijing: Science Press: 85-127.
Zhang ZC, Yan SH, Chen BL, He LX, He YS and Zhou G. 2003. Geochemistry of the Kalatongke basic complex in Xinjiang and its constraints on genesis of the deposit. Acta Petrologica et Mineralogica, 22(3): 217-224.
hang ZC, Yan SH, Chen BL, He LX, He YS and Zhou G. 2006. Sr, Nd and O isotope geochemistry of the mafic-ultramafic complexes in the south margin of Altay orogenic belt and discussion on their sources. Geological Review, 52(1): 675-688.
Zhao ZH, Wang ZG, Zou TR and Masuda A. 1996. Study on petrogenesis of alkali-rich intrusive rocks of Ulungur, Xinjiang. Geochimica, 25(3): 205-220.
Zhou G, Zhang ZC, Luo SC, He B, Wang X, Ying LJ, Zhao H, Li AH and He YK. 2007. Confirmation of high-temperature strongly peraluminous Mayin'ebo granites in the southern margin of Altay, Xinjiang:Age, geochemistry and tectonic implications. Acta Petrologica Sinica, 23(8): 1909-1920.
Zhou R, Yang J and Ren J. 1997. Comparative study on the characteristics and genesis between I-and A-type granite of Suzhou area. Earth Science (Journal of China University of Geosciences), 22(3): 240-246.
Zou TR, Cao HZ and Wu BQ. 1988. Orogenic and anorogenic granitoids of the Altay Mountains, Xinjiang and their discrimination criteria. Acta Geologica Sinica, 62(3): 228-245.
柴凤梅, 毛景文, 董连慧, 杨富全, 刘锋, 耿新霞, 张志欣, 黄承科. 2009. 阿尔泰南缘克朗盆地康布铁堡组变质火山岩年龄及岩石成因. 岩石学报, 25(6): 1403-1415.
陈汉林, 杨树锋, 厉子龙, 余星, 肖文交, 袁超, 林秀斌, 李继亮. 2006. 阿尔泰造山带富蕴基性麻粒岩锆石SHRIMP U-Pb年代学及其构造意义. 岩石学报, 22(5): 1351-1358.
韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328. DOI:10.3321/j.issn:0023-074X.2004.22.012
何国琦, 韩宝福, 岳永君, 王嘉桁. 1990.中国阿尔泰造山带的构造分区和地壳演化.见: 新疆地质科学(第2辑).北京: 地质出版社, 9-20
何国琦, 李茂松, 刘德全. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社.
洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418-426.
洪大卫, 王式洸, 谢锡林, 张季生. 2000. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456. DOI:10.3321/j.issn:1005-2321.2000.02.012
胡霭琴, 王中刚, 涂光炽. 1997. 新疆北部地质演化及成岩成矿规律. 北京: 科学出版社: 52-62.
胡霭琴, 张国新, 张前锋, 李天德, 张积斌. 2002. 阿尔泰造山带变质岩系时代问题的讨论. 地质科学, 37(2): 129-142. DOI:10.3321/j.issn:0563-5020.2002.02.001
黄博涛, 董增产, 潘峰, 王凯. 2017. 阿尔泰造山带青河地区早泥盆世和寒武纪末花岗岩的年代学、岩石成因及其地质意义. 岩石矿物学杂志, 36(4): 458-472. DOI:10.3969/j.issn.1000-6524.2017.04.002
焦建刚, 王勇, 钱壮志, 王斌, 鲁浩, 刘欢, 郑鹏鹏. 2014. 新疆喀拉通克铜镍硫化物矿床Y9岩体年代学与成岩成矿机制探讨. 矿床地质, 33(4): 675-688. DOI:10.3969/j.issn.0258-7106.2014.04.001
李会军, 何国琦, 吴泰然, 吴波. 2006. 阿尔泰-蒙古微大陆的确定及其意义. 岩石学报, 22(5): 1369-1379.
李会军, 何国琦, 吴泰然, 吴波. 2010. 中国阿尔泰早古生代后碰撞花岗岩的发现及其地质意义. 岩石学报, 26(8): 2445-2451.
李天德, 吴柏青. 1996.中国和哈萨克斯坦阿尔泰地质及成矿研究的新进展.见: 中国地质学会编. "八五"地质科技重要成果学术交流会议论文选集.北京: 中国地质学会, 256-259
李天德, 波里扬斯基BH. 2001. 中国和哈萨克斯坦阿尔泰大地构造及地壳演化. 新疆地质, 19(1): 27-32. DOI:10.3969/j.issn.1000-8845.2001.01.005
厉子龙, 陈汉林, 杨树峰, 肖文交, Tainosho Y. 2004. 阿尔泰基性麻粒岩的发现:来自矿物学的证据. 岩石学报, 20(6): 1445-1455.
厉子龙, 汪惠惠, 陈汉林, 肖文交, 杨树锋, 胡逸洲. 2010. 超高温麻粒岩中尖晶石成分、结构特征和矿物反应的指示意义:以阿尔泰造山带超高温尖晶石-斜方辉石-石榴石麻粒岩为例. 地学前缘, 17(1): 74-85.
林秀斌, 陈汉林, 杨树锋, 厉子龙, 余星, 程晓敢. 2010. 阿尔泰造山带富蕴基性麻粒岩折返过程:来自裂变径迹热年代学的限定. 岩石学报, 26(2): 413-420.
刘家远, 袁奎荣. 1996. 新疆东准噶尔富碱花岗岩类及其成矿作用. 长沙: 中南工业大学出版社: 1-140.
刘伟, 刘丽娟, 刘秀金, 尚海军周刚. 2010. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围. 岩石学报, 26(2): 387-400.
罗红玲, 吴泰然, 赵磊. 2009. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义. 岩石学报, 25(3): 515-526.
彭昌文. 1989. 新疆白哈巴地区哈巴河群的微古植物及其地层意义. 新疆地质, 7(4): 19-22.
曲国胜, 何国琦. 1992. 阿尔泰造山带的构造运动. 地质学报, 66(3): 193-205.
沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义. 大地构造与成矿学, 37(4): 721-729.
孙桂华, 李锦轶, 杨天南, 李亚萍, 朱志新, 杨之青. 2009. 阿尔泰山脉南部线性花岗岩锆石SHRIMP U-Pb定年及其地质意义. 中国地质, 36(5): 976-987. DOI:10.3969/j.issn.1000-3657.2009.05.003
童英, 洪大卫, 王涛, 王式洸, 韩宝福. 2006a. 阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 25(2): 85-89.
童英, 王涛, Kovach VP, 洪大卫, 韩宝福. 2006b. 阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义. 岩石学报, 22(5): 1267-1278.
童英, 王涛, 洪大卫, 韩宝福. 2006c. 中国阿尔泰造山带花岗岩Pb同位素组成特征:幔源成因佐证及陆壳生长意义. 地质学报, 80(4): 517-528.
王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1(2): 13-21.
王广耀, 张玉亭. 1984. 新疆阿尔泰震旦系的初步划分与对比. 地层学杂志, 8(4): 296-300.
王涛, 洪大卫, 童英, 韩宝福, 石玉若. 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640-650.
王涛, 童英, 李舢, 张建军, 史兴俊, 李锦轶, 韩宝福, 洪大卫. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以阿尔泰为例. 岩石矿物学杂志, 29(6): 595-618. DOI:10.3969/j.issn.1000-6524.2010.06.002
王伟, 魏春景, 王涛, 娄玉行, 初航. 2009. 中国阿尔泰造山带泥质麻粒岩的确定及地质意义. 科学通报, 54(7): 918-923.
王中刚, 赵振华, 邹天人. 1998. 阿尔泰花岗岩类地球化学. 北京: 科学出版社: 95-119.
吴才来, 周殉若, 黄许陈, 张成火, 吴多元, 黄文明. 1998. 安徽茅坦A型花岗岩研究. 地质学报, 72(3): 237-248. DOI:10.3321/j.issn:0001-5717.1998.03.005
吴志亮. 1992. 新疆阿尔泰山南缘早泥盆世火山-沉积建造及其穿时性. 昆明工学院学报, 17(6): 1-10.
杨文平, 周刚, 张招崇, 闫升好, 何立新, 何永胜, 陈柏林. 2004. 阿尔泰造山带南缘镁铁质岩体的地球化学特征及铜镍硫化物型矿床找矿前景. 地质通报, 23(4): 390-399. DOI:10.3969/j.issn.1671-2552.2004.04.014
袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区花岗岩形成时代及成因类型. 新疆地质, 19(4): 292-296. DOI:10.3969/j.issn.1000-8845.2001.04.013
袁忠信. 2001. 关于A型花岗岩命名问题的讨论. 岩石矿物学杂志, 20(3): 293-296. DOI:10.3969/j.issn.1000-6524.2001.03.011
岳永君, 王式洸, 何国琦. 1990.中国阿尔泰造山带中花岗岩类的成因类型及其在地壳演化中的意义.见: 新疆地质科学(第2辑).北京: 地质出版社, 72-85
张保江, 李强, 耿新霞, 杨富全, 刘锋. 2012. 阿尔泰蒙库铁矿斜长角闪岩锆石SHRIMP U-Pb年龄及地质意义. 新疆地质, 30(3): 277-282. DOI:10.3969/j.issn.1000-8845.2012.03.007
张进红, 王京彬, 丁汝福. 2000. 阿尔泰造山带康布铁堡组变质火山岩锆石特征和铀-铅年龄. 中国区域地质, 19(3): 281-287. DOI:10.3969/j.issn.1671-2552.2000.03.012
张湘炳, 隋静霞, 李志纯, 刘伟, 杨新岳, 刘顺生, 黄怀勇. 1996. 额尔齐斯构造带构造演化与成矿系列. 北京: 科学出版社: 85-127.
张招崇, 闫升好, 陈柏林, 何立新, 何永胜, 周刚. 2003. 新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束. 岩石矿物学杂志, 23(3): 217-224. DOI:10.3969/j.issn.1000-6524.2003.03.002
张招崇, 闫升好, 陈柏林, 何立新, 何永胜, 周刚. 2006. 柴凤梅阿尔泰造山带南缘镁铁质-超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨. 地质论评, 52(1): 675-688.
赵振华, 王中刚, 邹天人, 增田彰正. 1996. 新疆乌伦古富碱侵入岩成因探讨. 地球化学, 25(3): 205-220. DOI:10.3321/j.issn:0379-1726.1996.03.001
周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康. 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909-1920. DOI:10.3969/j.issn.1000-0569.2007.08.012
周若, 杨静, 任进. 1997. 苏州地区I-A型花岗岩特征与成因的对比研究. 地球科学-中国地质大学学报, 22(3): 240-246.
邹天人, 曹惠志, 吴柏青. 1988. 新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志. 地质学报, 62(3): 228-235.