岩石学报  2019, Vol. 35 Issue (2): 505-522, doi: 10.18654/1000-0569/2019.02.15   PDF    
西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征:班公湖-怒江洋晚二叠世洋内俯冲的证据
韦少港1,2 , 宋扬3 , 唐菊兴3 , 刘治博3 , 王勤4 , 高轲5 , 李壮6 , 李发桥6     
1. 中国地震局地壳应力研究所, 北京 100085;
2. 中国地震局第一监测中心, 天津 300180;
3. 中国地质科学院矿产资源研究所, 北京 100037;
4. 成都理工大学地球科学学院, 成都 610059;
5. 中国地质调查局成都地质调查中心, 成都 610081;
6. 中国地质大学地球科学与资源学院, 北京 100083
摘要:西藏改则县多龙矿集区分布着大量的SSZ型蛇绿岩残片,是班公湖-怒江蛇绿岩带的重要组成部分,本文对代表性辉绿(玢)岩进行了锆石U-Pb定年、岩石地球化学及Sr-Nd同位素分析,获得辉绿玢岩加权平均年龄为252.1±1.5Ma(MSWD=0.09,n=33),表明多龙SSZ型蛇绿岩形成于晚二叠世。岩石烧失量普遍较高(1.57%~5.23%)的特征,表明样品普遍遭受蚀变;而且具有富硅、高铝、低MgO及低Mg#值(36.8~63.1)的特征,说明其经历过一定程度的分离结晶作用。多龙辉绿岩和辉绿玢岩富集大离子亲石元素(LILE:Rb、Cs、K、Sr、P、Pb),亏损高场强元素(HFSE:Ta、Nb、Ti、Zr、Hf);稀土元素总量为23.27×10-6~58.95×10-6δEu为0.83~1.35,(La/Yb)N为0.66~1.30,具有与岛弧拉斑玄武岩类似的稀土元素和总体一致的微量元素特征。岩石(87Sr/86Sr)i值为0.707345~0.708748,(143Nd/144Nd)i值为0.512669~0.512705,tDM2值为305~456Ma,εNdt)值为+6.9~+8.8,表明其岩浆源区为亏损地幔源区,其地球化学成分具有洋内弧的特征,暗示其可能是洋内俯冲作用的产物。综合分析认为,班-怒洋壳于晚二叠世时(ca.252Ma)在板块汇聚边缘发生了类似西太平洋Izu-Bonin-Mariana的洋内俯冲作用,形成兼具MOR蛇绿岩亲缘性和俯冲带SSZ蛇绿岩地球化学印记的双重属性的多龙辉绿岩及辉绿玢岩的母岩浆;母岩浆经过结晶分异、上升侵位,最终于洋内俯冲带之上的弧前盆地环境下形成多龙辉绿岩和辉绿玢岩。
关键词: 特提斯洋     多龙SSZ型蛇绿岩     晚二叠世     洋内俯冲     西藏    
Zircon U-Pb age, geochemistry and Sr-Nd isotope characteristics of the Duolong SSZ-type ophiolites in Geize County, Tibet: Evidence for intra-oceanic subduction of the Bangonghu-Nujiang Ocean during the Late Permian
WEI ShaoGang1,2, SONG Yang3, TANG JuXing3, LIU ZhiBo3, WANG Qin4, GAO Ke5, LI Zhuang6, LI FaQiao6     
1. The Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China;
2. The First Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China;
3. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
5. Chengdu Institute of Geology and Mineral Resources, China Geological Survey, Chengdu 610081, China;
6. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Duolong SSZ-type ophiolites, located in the northwest of Geize County, Tibet, are important parts of the Bangonghu-Nujiang ophiolite belt. This paper focuses on the zircon U-Pb dating, geochemistry and Sr-Nd isotope of the Duolong SSZ ophiolites. The representative allgovite yields zircon U-Pb weighted average age of 252.1+1.5Ma (MSWD=0.09, n=33), indicating that the Duolong SSZ-type ophiolite formed in the Late Permian. These rocks have high loss on ignition, indicating that they suffered from several alterations. Besides, they share high Si, high Al but low MgO and low Mg# value of 36.8 to 63.1, suggesting that they experienced a certain degree of separation crystallization. These SSZ-type ophiolites are systematically more enriched in large-ion lithophile elements (LILEs:Rb, Cs, K, Sr, P and Pb), relatively depleted in high strength elements (HFSE:Ta, Nb, Ti Zr and Hf). They yield total amount of rare earth elements of 23.27×10-6~58.95×10-6, δEu of 0.83~1.35 and (La/Yb)N ratios of 0.66~1.30, which are similar to those of island arc tholeiite. Moreover, these SSZ-type ophiolites share (87Sr/86Sr)i ratios of 0.707345~0.708748, (143Nd/144Nd)i ratios of 0.512669~0.512705, tDM2 value of 305~456Ma and εNd(t) value of +6.9~+8.8, all indicating that their parent magma source region is a depleted mantle source region. The geochemical characteristics of the Duolong SSZ-type ophiolite are characterized by the intra-oceanic arc, suggesting that they may be products of the intra-oceanic subduction of the Bangonghu-Nujiang Ocean, which are recorded in present-day Donglong region. Comprehensive analysis shows that the northward subduction of Bangonghu-Nujiang Tethys oceanic crust occurred during the Late Permian (ca. 252Ma). The geodynamics in convergent intra-oceanic margins is similar to that of the Izu-Bonin-Mariana in the Western Pacific, and this deep processes formed parent magma of Duolong ophiolites which share dual attributes of MOR-type ophiolite and SSZ-type ophiolite. After crystallization, the parent magma ascended and emplaced, eventually forming the Duolong SSZ-type ophiolite in the forearc basin environment above the intra-oceanic subduction zone.
Key words: Bangonghu-Nujiang Ocean     Duolong SSZ-type ophiolites     Late Permian     Intra-oceanic subduction     Tibet    

蛇绿岩通常被认为是古大洋岩石圈在造山带内的残留,是理解古大洋构造和岩浆演化历史的重要的镁铁质-超镁铁质岩石组合(Prinzhofer and Allègre, 1985; 徐德明等, 2008),能为研究古大洋岩石圈上地幔的岩浆萃取、部分熔融程度、熔体-岩石反应、流体-岩石反应等作用提供重要依据,并被广泛应用于全球板块构造系统的研究(Prinzhofer and Allègre, 1985; Dilek and Furnes, 2009)。Pearce et al. (1984)将蛇绿岩分为洋中脊(MOR)型和俯冲带(SSZ)型。先前研究认为绝大多数蛇绿岩形成于洋中脊(Moores and Jackson, 1974),然而随着地球化学技术的发展、世界各地蛇绿岩研究不断深入以及深海钻探计划(DSDP)和大洋钻探计划(ODP)研究进展,发现只有少数蛇绿岩是大洋扩张脊(MOR)的产物,而多数蛇绿岩代表板块俯冲消减带上(SSZ)的岛弧和弧后盆地、大陆边缘盆地等小洋盆(Robertson, 2002; 史仁灯, 2005, 2007)。早期研究认为MOR型蛇绿岩和SSZ型蛇绿岩代表相对独立的构造环境(Pearce et al., 1984; Robertson, 2002; Dai et al., 2011),但越来越多的关于特提斯构造域蛇绿岩的岩石学和地球化学研究表明,造山带内出露的蛇绿岩往往同时具有MOR和SSZ的双重属性(Dilek et al., 2008; Dilek and Thy, 2009),可能是洋内俯冲作用背景下地幔多阶段部分熔融的结果(Farahat, 2010)。

班公湖-怒江蛇绿岩带(以下简称“班-怒蛇绿岩带”)横亘于青藏高原中部,是特提斯蛇绿岩带的东延部分,其以零散分布的蛇绿岩块为标志,向西延伸到克什米尔,经班公湖-改则-安多-丁青后,沿怒江进入滇西,最终延伸到缅甸抹谷地区,全长超过2400km,是拉萨地块和南羌塘板块的构造碰撞带(Girardeau et al., 1984; Yin and Harrison, 2000);具有明显的地球物理标志(肖序常和李廷栋, 2000),按蛇绿岩出露地域自西向东可分为班公湖-改则、东巧-安多和丁青-怒江3段(王希斌等, 1987; 邱瑞照等, 2005)。然而,由于班-怒蛇绿岩带本身复杂的构造演化历史和藏北高原恶劣的交通和气候条件,使有关该蛇绿岩带的许多重要地质问题尚处于争论之中,尤其是对于班-怒蛇绿岩带所代表的洋盆性质、演化历史等许多重要地质问题等认识分歧较大:有的学者提出,班公湖-怒江洋是从古生代-中生代连续演化的大洋,代表了青藏高原古特提斯洋的分支洋盆(潘桂棠等, 2004, 2006; Pan et al., 2012; Zhu et al., 2013);有的学者认为,班公湖-怒江洋主体演化始于中生代,其最早可能打开于晚二叠世,最终闭合于白垩纪,班公湖-怒江洋可能代表了新特提斯洋的北部分支洋盆(任纪舜和肖黎薇, 2004; Shi et al., 2008; 黄启帅等, 2012)或者代表了中特提斯洋(Girardeau et al., 1984; Zhou et al., 1997; 雍永源和贾宝江, 2000; Wang et al., 2008);甚至有的学者提出,班公湖-怒江洋不是严格意义的大洋,而是由多个不连通的局限性小洋盆组成(卢书炜等, 2003; 赵文津等, 2004),或者班公湖-怒江洋仅是一个存在时间不超过100Myr的短命洋盆,其演化历程可能为晚三叠世-晚侏罗世或早白垩世(Kapp et al., 2007; 夏斌等, 2008; 曲晓明等, 2010; Zhu et al., 2016)。此外,近些年来,许多学者指出班-怒洋存在洋内俯冲作用,但是洋内俯冲作用的时限一直未能理清(张旗和杨瑞英, 1987; Pearce and Deng, 1988; 张旗和周国庆, 2001; 史仁灯等, 2005; 张玉修, 2007; 许伟等, 2015)。

西藏改则多龙蛇绿岩是班公湖-怒江蛇绿岩带的重要组成部分,近年来的区域地质调查研究发现,多龙矿集区出露了较为完整的SSZ型蛇绿岩组合单元,主要由席状岩墙群、玻安岩(系)、枕状玄武岩和硅质岩组成(西藏自治区地质调查院, 2011; 许伟等, 2016),但迄今对其还没有详细的地球化学及地质年代学研究,其成因及构造环境仍不清楚。本文在前人研究的基础上,对多龙SSZ型蛇绿岩进行了较系统的岩石学、地球化学和地质年代学研究,进而探讨其成因及构造环境,其研究将会对探讨青藏高原特提斯洋的大地构造演化具有重要的意义。

①  西藏自治区地质调查院. 2011.西藏班公湖-怒江成矿带西段铜多金属资源调查报告

1 区域地质背景

多龙矿集区位于西藏阿里地区改则县北西约120km处,大地构造位置处于班-怒缝合带西段,南羌塘板块南缘(图 1)。区域地层主要为上三叠统日干配错组(T3r),下侏罗统曲色组(J1q),中-下侏罗统色哇组(J1-2s),下白垩统美日切错组(K1m),上渐新统康托组(E3k)和第四系。研究区中部的蛇绿岩带延伸约35km,宽3~7km,出露面积约180km2,总体呈东西向展布(图 1)。该蛇绿岩的组成单元(包括基性岩单元以及硅质岩单元等)多被构造肢解,在平面上表现为不连续的不规则棱形或透镜体,构成典型的网结状构造,且均呈构造岩片的形式逆冲推覆于下侏罗统曲色组(J1q)次深海陆棚-盆地斜坡复陆碎屑岩-类复理石建造之上,蛇绿岩构造岩片带南缘、北缘皆与以长石石英砂岩、粉砂岩为主的下侏罗统曲色组(J1q)地层呈断层接触;东西两侧局被上渐新统康托组(E3t)紫红色砂砾岩及第四系覆盖,矿区中部蛇绿混杂岩因后期构造肢解而缺失堆晶杂岩和地幔橄榄岩端元(许伟等, 2016),主要由席状岩墙群(辉长岩、辉绿岩、辉绿玢岩)、枕状玄武岩、块状玄武岩、气孔-杏仁状玄武岩、玄武质岩屑凝灰岩及硅质岩组成。近东西向展布的基性席状岩墙群是多龙矿区中部蛇绿岩的重要组成端元,岩性由辉长岩、辉绿岩、辉绿玢岩等组成,野外露头可见上百条岩墙呈平行的席状产出,部分岩墙呈直立状,部分岩墙因后期构造作用呈斜坡状或者近似水平状,单个岩墙的宽度约0.5~1.0m,个体独立产出,且个体之间可见冷凝边和烘烤边。糜棱岩普遍发育在蛇绿岩各端元和围岩的接触部位,由韧性基质(40%~50%)和变斑晶(50%~60%)组成,发育典型的眼球状构造(许伟等, 2016)。此外,多龙矿集区的东北角的昂龙一带可见一条沿SE向断裂展布的蛇绿混杂岩带,岩体出露规模不大,最大者长200余米,宽30~70m。蛇绿岩的组成单元(包括含铁斜方辉石橄榄蛇纹岩、碳酸盐化角闪辉长岩、玻基玄武岩、微纹层状硅质岩等)多被构造肢解,均呈构造岩片的形式产出在上三叠统日干配错组沉积建造内(西藏自治区地质调查院, 2011)。

图 1 西藏改则县多龙矿集区区域地质图(据韦少港等, 2016修改) 1-第四系;2-上渐新统康托组;3-下白垩统美日切错组;4-中下侏罗统色哇组;5-下侏罗统曲色组;6-上三叠统日干配错组;7-早白垩世二长花岗斑岩;8-早白垩世花岗闪长斑岩;9-早白垩世石英斑岩;10-早白垩世石英闪长斑岩;11-早白垩世闪长斑岩;12-蛇纹石化橄榄岩;13-枕状玄武岩;14-辉绿(玢)岩;15-辉长岩;16-硅帽;17-整合接触界线;18-不整合接触界线;19-断层及编号;20-矿床位置;21-地表蚀变范围;22-遥感影像提取的环形构造;23-工程控制矿体范围;24-取样位置 Fig. 1 Regional geological map of the Duolong ore-concentrated district, Geize County, Tibet 1-Quaternary; 2-Upper Oligocene Kangtuo Fm.; 3-Lower Cretaceous Meiritiecuo Fm.; 4-Lower-Middle Jurassic Sewa Fm.; 5-Lower Jurassic Quse Fm.; 6-Upper Riganpeicuo Fm.; 7-Early Cretaceous monzonitic granite porphyry; 8-Early Cretaceous granodiorite porphyry; 9-Early Cretaceous quartz porphyry; 10-Early Cretaceous quartz diorite porphyrite; 11-Early Cretaceous dioritic porphyrite; 12-serpentinizated olivinite; 13-pillow basalt; 14-diabase; 15-gabbro; 16-silicification cap; 17-conformity boundary; 18-unconformity boundary; 19-fault and number; 20-positon of mines; 21-alteration scope at surface; 22-the ring structure of remote sensing image; 23-controlled ore body scope; 24-positon of samples

本次研究集中关注矿集区中部基性席状岩墙群。研究区中部的辉绿岩呈绿色、灰绿色,块状构造,部分可见脆碎构造,辉绿结构,主要矿物为单斜辉石(30%~35%)、斜长石(55%~65%)和少量钛磁铁矿物(2%~5%);单斜辉石为自形-半自形粒状,粒径为1~3mm,局部被透闪石或阳起石交代为假象,呈假象产出;斜长石呈自形-半自形板条状,粒径为2~5mm,杂乱分布,构成三角架状,内充填他形粒状单斜辉石;斜长石多被黝帘石、绿泥石交代,呈假象产出,少量残留,此外偶见少量橄榄石、纤闪石和次生方解石等,副矿物为白钛石和钛铁矿、磁铁矿等(图 2)。辉绿玢岩呈绿色、灰绿色,块状构造,斑状结构,斑晶星散状分布,主要为斜方辉石和斜长石;斜方辉石斑晶(5%~10%),呈他形-半自形,粒径为0.2~1.0mm,个别可见熔蚀边,普遍发育裂隙,正交的辉石式解理清晰,无环带,但个别辉石发育双晶;斜长石斑晶(10%~15%),呈他形-半自形晶,粒径为0.5~2.0mm,发育聚变双晶和正环带结构,普遍被绿帘石、黝帘石交代。基质(70%~80%)具有典型辉绿结构,长条状斜长石自形程度较好,呈自形-半自形,发育绢云母、绿泥石蚀变,杂乱分布,构成三角架状,斜方辉石充填斜长石颗粒之间,偶见少量次生方解石,副矿物为白钛石和钛铁矿、磁铁矿等(图 2)。研究区辉绿岩与辉绿玢岩后期蚀变强烈,普通辉石常蚀变为绿泥石,橄榄石均分解为绿泥石蛇纹石集合体、斜长石表面分布绢云母鳞片。辉长岩风化面呈灰褐色、红褐色,新鲜面呈灰绿色、灰黑色,块状构造,具典型的辉长结构,主要由针柱状、板状斜长石和半自形辉石构成,发育钛铁矿、磁铁矿等镁铁质矿物(许伟等, 2016)。

图 2 西藏改则县多龙矿集区辉绿岩(a-f)及辉绿玢岩(g-l)野外露头与镜下照片 Pl-斜长石;Opx-单斜辉石;Cpx-斜方辉石 Fig. 2 Field and petrographic photos of diabase (a-f) and allgovite (g-l) from the Duolong ore-concentrated district, Geize County, Tibet Pl-plagioclase; Opx-clinopyroxene; Cpx-clinopyroxene
2 样品采集及分析方法

本研究的辉绿岩采样坐标为32°47′56″N、83°34′13″E,海拔5218m,2014年共采集4件样品;辉绿玢岩采样坐标为32°47′15″N、83°38′14″E,海拔5134m,2014年共采集5件样品。由于对2014年采集的样品未能测出有效年龄值,故2015年分别补充采集辉绿岩及辉绿玢岩样品各5件。

相关样品的锆石分选在廊坊诚信地质服务有限公司利用单矿物常规分离技术完成,制靶后进行透射光、反射光及阴极发光照相,优选无裂痕、环带发育良好的锆石进行U-Pb同位素定年。锆石U-Pb同位素定年在中国地质大学(北京)地质过程与矿产资源国家重点实验室激光烧蚀等离子质谱(LA-ICP-MS)微区分析实验室完成:激光剥蚀系统为美国Coherent公司的GeoLasPro 193准分子固体进样系统,ICP-MS为美国Thermo Fisher公司的X Series 2型四极杆等离子体质谱。测试过程中,激光斑束直径为32μm,频率为6Hz,采用He作为载气,Ar气作为补偿气。采用美国国家标准参考物质NISTSRM610对仪器进行最佳化,并将其作为微量元素含量测定的外标。采用标准锆石91500(Wiedenbeck et al., 1995)作为定年外标,采用标准锆石Mud Tank(Black and Gulson, 1978)作为监控样品。在样品测试过程中每测定5个样品点测定两次标准锆石91500,每个样品的前20s为背景信号采集时间,样品信号采集时间为50s。测试完成后,采用软件ICPMSDataCal(Liu et al., 2008)对样品的测试数据进行后期处理,年龄计算和谐和图的绘制采用Isoplot 3.0完成。

对新鲜岩石样品进行无污染粉碎至200目,用于测定全岩主、微量元素及Sr-Nd同位素。2014年采集样品(DL 2014)的主量及微量元素分析于中国地质大学地质过程与矿产资源国家重点实验室完成,主量元素采用固态X射线荧光光谱仪(XRF-1500)分析测定,测试仪器型号为Rigaku RIX2100,分析精度优于5%;微量元素化学预处理采用两酸(HNO3+HF)高压反应釜(Bomb)溶样方法进行样品的化学预处理,分析仪器为美国安捷伦公司生产Agilent 7500a型等离子质谱仪,分析精度优于5%~10%;实验室分析详细方法见参考文献(Han et al., 2007)。2015年采集的样品(2015DL)的主量和微量元素分析于国土资源部国家地质实验测试中心完成,其中主量元素用熔片X-射线荧光光谱法(XRF-PW4400)测定,并采用等离子光谱和化学法测定进行互相检测,分析精度小于2%~8%;稀土微量元素采用等离子质谱仪(ICPMS-PE300D)测试,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素的分析精度为10%,实验室分析详细方法见参考文献(连东洋等, 2014)。

全岩Sr-Nd同位素分离提取和测量在中国地质大学地质过程与矿产资源国家重点实验室完成,首先准确称量实验要求的全岩粉末(200目)50~100mg左右,使用纯化HF-HNO3-HCL溶样,之后加入纯化HCl使用Rb-Sr(AG50W-X12,200~400目)、Sm-Nd(LN树脂)交换柱进行分离提纯和元素提取。样品测试仪器型号为热电离质谱仪TIMS-ICPMS,数据以86Sr/88Sr=0.1194和146Nd/144Nd=0.7219校正作为分馏修正。在样品测试的整个过程中,所测定的Alfa Nd标样和NBS-987 Sr标样的Nd-Sr同位素比值,分别为143Nd/144Nd=0.512433±0.000008(±2σ)和87Sr/86Sr=0.710252±0.000015(±2σ)。

3 测试结果 3.1 锆石U-Pb年龄

从约30kg的辉绿玢岩样品(2015DL26)中选出了近550粒锆石。锆石多数在50~180μm之间,锆石多为柱状、长柱状,长宽比1:1~4:1。锆石自形晶-半自形晶体,内部结构均匀,阴极发光照片显示岩浆结构发育,具备典型振荡环带(图 3);用LA-ICP-MS完成了50粒锆石的U-Pb定年,将远离谐和线的14个测点予以剔除,其余36测点分析结果列于表 1。本文获得辉绿玢岩锆石的Pb含量为9.8×10-6~36.3×10-6,平均值为345×10-6;U含量为228×10-6~824×10-6,平均值为440×10-6;Th含量为68×10-6~492×10-6,平均值为256×10-6;Th/U比值变化于0.34~0.77之间,平均值为0.6,大于0.1,且Th和U之间具有明显的正相关性(表 1图 4b),属典型的岩浆锆石特征(Hoskin and Schaltegger, 2003)。单颗粒锆石的年龄变化于249.1±4.3Ma~255.1±5.5Ma之间,锆石的谐和图和加权平均给出的年龄为252.1±1.5Ma(MSWD=0.09, n=33)(图 4a),认为可代表辉绿玢岩的结晶年龄。此外分析中有三粒结构晶形不同的锆石(点2015DL26-12、2015DL26-43及2015DL26-47)年龄分别为266.4±4.0Ma、294.5±6.2Ma及295.6±4.7Ma,应为继承性锆石年龄,代表辉绿玢岩成岩前的岩浆热事件。

图 3 西藏改则县多龙矿集区辉绿玢岩锆石阴极发光图像 Fig. 3 Cathodoluminescence images of the Duolong allgovite, Geize County, Tibet

表 1 西藏多龙矿集区辉绿玢岩锆石U-Pb年龄数据 Table 1 Zircons U-Pb isotope data of the Duolong allgovite, Geize County, Tibet

图 4 西藏改则县多龙矿集区辉绿玢岩锆石U-Pb年龄图(a)及Th-U协变图(b) Fig. 4 Zircon U-Pb ages (a) and Th-U diagram (b) for the Duolong allgovite, Geize County, Tibet
3.2 主微量元素地球化学特征

本区蛇绿岩样品主量元素、微量元素分析结果列于表 2中。本文蛇纹岩烧失量(LOI)在1.57%~5.23%之间,说明蛇绿岩样品可能受到后期蚀变的影响。扣除烧失量归一化后重新计算氧化物含量,辉绿岩SiO2含量为51.56%~59.26%,平均值为55.04%;Na2O含量为0.77%~4.76%,K2O含量为0.18%~0.75%,CaO含量为6.20%~9.64%,全铁Fe2O3T含量为12.36%~14.59%,P2O5含量为0.09%~0.15%。辉绿岩具低的A12O3(12.86%~16.56%)、MgO含量(3.71%~6.90%)和Mg#值(36.8~51.8)和高TiO2含量(1.15%~1.60%)。辉绿玢岩SiO2含量为49.91%~55.73%,平均值为51.96%;Na2O含量为0.33%~5.05%,K2O含量为0.01%~0.60%,CaO含量为6.60%~14.29%,全铁Fe2O3T含量为9.45%~11.75%,P2O5含量为0.05%~0.08%。相较于辉绿岩,辉绿玢岩具有较高的A12O3(13.32%~17.17%)、MgO(6.43%~8.56%)含量和Mg#值(56.0~63.1)及较低的TiO2含量(0.71%~1.07%)。考虑到岩石样品遭受后期蚀变作用,对K、Na、Ca等碱金属元素丰度产生影响,本文采用不活泼元素(Zr、Ti、Y、Nb等)进行岩石类型判别和成因的探讨。在Zr/TiO2-Nb/Y图解上所有样品均落入玄武安山岩区域,Th-Co图解显示辉绿岩落入钙碱性玄武岩系列或在其边缘区,辉绿玢岩落入拉斑玄武岩系列(图 5)。

表 2 西藏改则县多龙矿集区辉绿岩及辉绿玢岩的全岩主量元素(wt%)、微量元素(×10-6)分析结果 Table 2 Whole-rock major (wt%), trace (×10-6) element data of the Duolong diabase and allgovite, Geize County, Tibet

图 5 西藏改则县多龙矿集区辉绿岩及辉绿玢岩的Zr/TiO2-Nb/Y图(a, 据Winchester and Floyd, 1977)和Th-Co图(b, 据Hastie et al., 2007) Fig. 5 Zr/TiO2 vs. Nb/Y plot (a, after Winchester and Floyd, 1977) and Th vs. Co plot (b, after Hastie et al., 2007) for the Duolong diabase and allgovite, Geize County, Tibet

辉绿岩球粒陨石标准化曲线为平坦型(图 6a),稀土元素总量在47.22×10-6~58.95×10-6之间,平均为53.85×10-6,高于正常洋中脊玄武岩相应值(39.11×10-6)(Sun and McDonough, 1989),LREE/HREE变化较大,介于1.35~1.99之间;轻重稀土分馏作用较弱,(La/Yb)N为0.66~1.30,平均值为0.91;δEu为0.83~1.07,平均值为0.94,显示弱负异常至弱正异常的特点。辉绿玢岩球粒陨石标准化曲线呈LREE轻微亏损的平坦型分布型式(图 6a),稀土元素总量在23.27×10-6~38.64×10-6之间,平均为29.26×10-6,略低于正常洋中脊玄武岩相应值(Sun and McDonough, 1989),LREE/HREE较稳定,介于1.14~1.28之间;轻重稀土发生较高程度分馏作用,(La/Yb)N为0.56~0.69,平均值为0.58;δEu为0.94~1.35,平均值为1.08,显示弱的负异常至弱的正异常的特点,表明存在斜长石堆晶现象。微量元素蛛网图(图 6b)显示, 辉绿岩和辉绿玢岩具有十分相似的配分型式,曲线总体显示为近平坦型分布型式,尤其是曲线的后半部Nd-Lu段,整体上以富集Rb、Sr、K、Pb等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,贫Zr、Hf元素等为特点,反应弧岩浆的组分特点。

图 6 西藏改则县多龙矿集区辉绿岩及辉绿玢岩的球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized rare earth elements patterns (a) and trace element spidergrams (b) of the Duolong diabase and allgovite, Geize County, Tibet (normalization values after Sun and McDonough, 1989)
3.3 全岩Sr-Nd同位素

多龙辉绿岩和辉绿玢岩Sr-Nd同位素组成见表 3。样品的87Rb/86Sr为0.0267~0.5905,87Sr/86Sr为0.707443~0.710122,远高于原始地幔现代值(87Sr/86Sr=0.7045; DePaolo and Wasserburg, 1976);147Sm/144Nd为0.2019~0.2262,143Nd/144Nd比值为0.513012~0.513130,高于原始地幔现代值(143Nd/144Nd=0.512638; Jacobsen and Wasserburg, 1980),具有高Sr高Nd的特征。根据上文所测辉绿玢岩锆石U-Pb加权平均年龄t=252.1Ma进行计算,其(87Sr/86Sr)i值为0.707345~0.708748,(143Nd/144Nd)i为0.512669~0.512705,εNd(t)值为+6.9~+8.8,二阶模式年龄集中于305~456Ma。(87Sr/86Sr)i-εNd(t)四象限图显示,样品均处于第一象限上部,明显区别于藏北新生代火山岩及洞错蛇绿岩(图 7)。

表 3 西藏改则县多龙矿集区辉绿岩及辉绿玢岩Sr、Nd同位素组成 Table 3 The Sr and Nd isotopic compositions of the Duolong diabase and allgovite, Geize County, Tibet

图 7 西藏改则县多龙矿集区辉绿岩及辉绿玢岩的(87Sr/86Sr)i-εNd(t)图解(据Rollison, 2000) 藏北新生代火山岩据刘燊等, 2003;洞错蛇绿岩据鲍佩声等, 2007;下地壳据Miller et al., 1999;班-怒洋玄武岩据Liu et al., 2014 Fig. 7 (87Sr/86Sr)I vs. εNd(t) diagram of the Duolong diabase and allgovite, Geize County, Tibet (after Rollison, 2000) Cenozoic volcanic rocks in northern Tibet (Liu et al., 2003), Dong Co ophiolite (Bao et al., 2007), Bangong-Nujiang Ocean basalt (Liu et al., 2014a) and the lower crust (Miller et al., 1999) are shown for comparison
4 讨论 4.1 源区性质与岩石成因

岩石地球化学显示其SiO2含量(49.91%~59.26%)略高于N-MORB的SiO2含量(48.77%, Sun and McDonough, 1989),部分样品SiO2含量明显高出基性岩SiO2含量的53%上限,不过显微岩相学显示本文辉绿岩和辉绿玢岩均具有典型辉绿结构。此外,典型的基性岩锆石为板状,无明显环带或宽缓的条纹状环带,本文样品锆石的整体特征与蛇绿岩中典型基性岩锆石并不完全一致,反映出岩石中的锆石形成于相对偏中性(富硅)岩浆环境(Zhai et al., 2013; Zhang et al., 2016)。岩石地球化学显示多龙辉绿岩和辉绿玢岩A12O3含量为12.86%~17.17%,平均值为14.99%;P2O5含量为0.05%~0.15%,平均值为0.09%;、TiO2含量为0.71%~1.60%,平均值为1.09%;分别与N-MORB的相应值(15.9%、0.09%、1.15%)接近(Wilkinson, 1982; Schilling et al., 1983);其富硅、高铝、低MgO的特点,Mg#为36.8~63.1,明显低于初始岩浆Mg#值(68~75),表明岩石经历过一定程度的分离结晶作用(Frey et al., 1978)。

总体上,多龙辉绿岩和辉绿玢岩稀土元素平坦型配分曲线与典型的IAT和N-MORB的稀土元素配分曲线型式相似,区别于板内玄武岩(WPB)、洋岛玄武岩(OIB)及富集型洋中脊玄武岩(E-MORB)稀土元素配分曲线型式(Condie, 1989; Sun and McDonough, 1989)。两者具有相似的稀土配分型式,各样品REE配分型式近似相互平行,只有位置的高低,显示其稀土分异程度相当,表明二者可能来自同一源区,辉绿玢岩样品配分曲线位于辉绿岩下部,重稀土具相似性,但轻稀土显示有轻微亏损,可能反映了地幔源区的某种属性。Condie (1989)指出IAT和N-MORB的Ta、Nb丰度分别不大于0.7×10-6和12×10-6,Nb/La < l,Hf/Ta>5,La/Ta>15,Ti/Y < 350;而WPB、OIB和E-MORB则正好相反。本文样品中的Ta丰度(0.05×10-6~0.47×10-6)和Nb丰度(0.72×10-6~2.88×10-6)较低,Nb/La比值为0.42~0.61,Hf/Ta比值为9.79~25.6,La/Ta比值为14.8~34.0,Ti/Y比值为225~295;表明其岩石成因、形成环境与WPB、OIB、E-MORB岩石构造环境无关,类似于IAT或N-MORB的形成环境。而且两者稀土元素分配模式为LREE弱亏损型或平坦型,表明它们来自亏损地幔,而且反映了母岩浆具较高的熔融程度(路凤香, 1989)。另外δNb [δNb=log(Nb/Y)+1.74-1.92log(Zr/Y)]均小于0,也进一步说明了岩浆源区与亏损地幔有关(Fitton et al., 1997)。岩石具有不均匀的MgO(3.71%~8.56%)、Mg#值(36.8~63.1)、Cr(4.4×10-6~235×10-6)和Ni(13.2×10-6~80.6×10-6)含量,表明岩石经历了不同程度镁铁质矿物的分离结晶作用(李文霞等, 2012)。δEu为0.83~1.35,多在0.91以上,显示弱的负Eu异常或正Eu异常,说明母岩浆在演化过程中结晶分离作用较弱,斜长石的结晶分离程度较低,总体特征与IAT特征相近(Cullers and Graf, 1984)。据Wilson (1989)可知,N-MORB的Zr/Nb值多大于30,多龙辉绿岩和辉绿玢岩Zr/Nb值为29.5~57.2,平均值为43.3,说明多龙蛇绿岩具有N-MORB的特征;但是据Elthon (1991)Pearce (1991)可知,形成于MORB环境下的玄武岩中Th/Ta=0.75~2.00,多龙辉绿岩和辉绿玢岩的Th/Ta值分别为1.15~7.05,平均值为3.19,说明本区蛇绿岩不完全具有N-MORB性质。由于Th、Ta与Nb具有相似的不相容性,具备比大离子亲石元素(Rb、Ba、Cs、Sr、K等)更低的活动性,Eisele et al. (2002)提出了Nb异常指数的计算公式为:Nb/Nb*=NbPM/(ThPM×LaPM)1/2,PM代表利用原始地幔标准化后的数据进行计算。本文样品的Nb异常指数为0.34~0.76,平均为0.54,小于1,显示负Nb异常。因而由负Nb异常和部分大离子亲石元素的富集,可以推断研究区蛇绿岩含有IAT的成分,即受到俯冲作用的影响。Nb的负异常在一定程度上可以反应地幔源区含有岛弧火山岩的组分,而与典型的大洋中脊N-MORB有明显区别(Pearce and Deng, 1988; 王保弟等, 2007)。本文岩石的Th、Ta含量也显示了弧岩浆的地球化学特征(张旗等, 1999)。夏林圻等(2007)认为岛弧玄武岩一般具有较低的Zr含量(< 130×10-6),Zr/Y比值(< 4)为特征,多龙辉绿岩和辉绿玢岩的Zr含量为10.0×10-6~94.1×10-6,Zr/Y为1.9~3.1,也指示了正常岛弧岩浆的特点;Ti/V在13.7~24.1之间,与岛弧拉斑玄武岩的特征值一致(Shervais, 1982)。此外,由于正常岛弧岩浆往往弱亏损Zr、Hf等元素,通常表现为弱负异常到明显负异常,从而制约了岛弧岩浆岩的锆石结晶作用(Zhai et al., 2013; Zhang et al., 2016)。微量元素蛛网图(图 6)显示, 多龙辉绿岩和辉绿玢岩的Th、Nb、Ti等HFSE亏损,Zr、Hf弱负异常,Sr、K、Rb、P等LILE强烈富集,与典型的岛弧火山岩的地球化学相似,反应弧岩浆的组分特点(刘飞等, 2013),与典型的大洋中脊N-MORB有明显区别。因为在岛弧区普遍发生洋壳和沉积物向岩石圈深部的再循环,正常岛弧岩浆通常由源自俯冲板片脱水产生的流体交代地幔楔发生部分熔融而形成,由于该富水的流体亏损高场强元素(HFSE),如Nb、Ta、Ti等元素,导致高场强元素的流体/岩石分配系数很小(< < 1);或者由于高场强元素倾向于残留在难熔矿物相(例如金红石、榍石)中,高场强元素具有较其它不相容元素具备较高的晶/液分配系数;因此正常岛弧岩浆中出现显著的Nb-Ta-Ti负异常,而大洋中脊之玄武岩通常不出现Nb、Ta的亏损(Pearce and Deng, 1988; 张旗和周国庆, 2001; 赖绍聪和刘池阳, 2003)。

多龙辉绿岩和辉绿玢岩的(143Nd/144Nd)i比值为0.512669~0.512705,低于大西洋、印度洋和太平洋典型N-MORB值(0.5130~0.5133)和E-MORB(0.51299~0.5130)值(Saunders et al., 1988; Rollison, 2000);t2DM介于305~456Ma,εNd(t)为+6.9~+8.8,其范围大致在大洋地幔平均值[εNd(t)=10]附近,表现出洋壳的亲缘性,同样反映了其岩浆源区应为亏损地幔源区(图 7)。多龙辉绿岩和辉绿玢岩Zr/Hf比值为28.0~37.5,平均值为32.7,低于N-MORB的值36.1(史仁灯, 2005),亦显示来自亏损源区的特点。前人指出同时具有正εNd(t)值和负Nb、Ta、Ti、Zr、Hf异常的特征通常出现在岛弧玄武岩中(Kelemen et al., 2007)。显生宙以来,海水的87Sr/86Sr比值变化于0.7068~0.7092(J-P3),现代大洋海水进入洋中脊的87Sr/86Sr比值为0.7092,作为热液流体离开洋壳的87Sr/86Sr比值为0.703(Elderfield, 1986)。多龙辉绿岩和辉绿玢岩的Sr含量为39.4×10-6~294×10-6,平均值为165.1×10-6;(87Sr/86Sr)i值为0.707345~0.708748,平均值为0.707817,高于大西洋、印度洋和太平洋的N-MORB值(0.70229~0.70316)和E-MORB值(0.70280~0.70334)(Saunders et al., 1988),暗示其可能是海水与洋壳相互反应的结果。虽然蛇绿岩岩石的锶同位素通常增高,前人往往将此变化归因于蛇绿岩岩石形成于海底,导致蛇绿岩岩石遭受海水蚀变影响而导致87Sr/86Sr比值值增高(邢光福等, 1997; 刘丛强等, 1995)。Sr是相对活动的元素,在各种蚀变和变质过程中易被改变,而Nd则相对稳定,不易改变。εNd(t)值随着(87Sr/86Sr)i比值的增加而呈近水平的趋势,是典型的流体交代或者蚀变作用的影响。虽然岩相学分析可知本文样品普遍遭受一定的蚀变作用(斜长石、辉石等原生矿物发生了变质作用),但多龙辉绿岩和辉绿玢岩如此高的(87Sr/86Sr)i值及较低的εNd(t)值(低于大洋地幔平均值),难以简单的用海水蚀变或岩石(原生矿物)变质作用来解释;而更可能是俯冲过程中,深海沉积物随大洋板片俯冲到地幔深处发生脱水,地幔楔物质被流体交代后发生部分熔融的结果,并表现出SSZ型蛇绿岩的典型特征(杨经绥等, 2011; 徐向珍等, 2011)。因为地幔橄榄岩的Rb、Sr含量极低,SSZ环境下的俯冲洋壳或者洋壳沉积物发生脱水作用形成的流体通常富含LILE离子,可能极大地改变岩石中的锶同位素组成;而且俯冲洋壳或洋壳沉积物对蛇绿岩源区有一定的混染和影响,可以导致εNd(t)值变低(邱瑞照等, 2004, 2005)。

4.2 地球动力学背景

基性岩中Ta、Nb、Ti、Zr、Hf、Th、Y、HREE等高场强元素通常不受低于角闪岩相变质作用和热液蚀变的影响,是最有效的岩浆源区和判别不同构造环境的示踪剂(Pearce and Cann, 1971, 1973; Wood, 1980; Dilek and Furnes, 2011, 2014; Pearce, 2014)。多龙辉绿岩和辉绿玢岩在微量元素构造环境判别图的Zr/Y-Y图解、V-Ti/1000图解及Nb/Th-Nb图解中所有数据点基本全部落入到岛弧拉斑玄武岩区域(图 8)。在Th/Hf-Ta/Hf图解中大部分样品落入大洋岛弧玄武岩区域,少量落入板块边缘N-MORB区域;在Th/Yb-Ta/Yb图解中落入洋内弧区域,个别投点落入亏损地幔源区N-MORB区域;在Nb/Yb-Th/Yb图解样品投点基本上落入大洋岛弧弧前区域内(图 8)。Ti/100-Zr-3Y图解中所有样品投点均落入大洋海底玄武岩、低钾拉斑玄武岩和钙碱性玄武岩范畴,而区别于板内玄武岩(图 9);在2Nb-Zr/4-Y图解中所有样品投点均落入N-MORB与火山弧玄武岩区域;在Hf/3-Th-Nb/16图解中,落入岛弧拉斑玄武岩区域内(图 9)。此外,多龙辉绿岩和辉绿玢岩具有明显较高的Zr/Nb(29.5~57.2)比值,显示大洋岛弧基性岩浆特征(Shervais, 1990)。

图 8 西藏改则县多龙矿集区辉绿岩及辉绿玢岩微量元素构造判别图解 (a) Zr/Y-Zr (Pearce and Norry, 1979);(b) V-Ti/1000 (Shervais, 1982);(c) Nb/Th-Nb (李曙光, 1993);(d) Th/Hf-Ta/Hf (汪云亮等, 2001);(e) Th/Yb-Ta/Yb (Pearce, 1982);(f) Th/Yb-Nb/Yb (Pearce, 2008) Fig. 8 Trace element discrimination plots of tectonic setting for the Duolong diabase and allgovite, Geize County, Tibet

图 9 西藏改则县多龙矿集区辉绿岩及辉绿玢岩构造判别图解 (a) Ti/100-Zr-3Y (Pearce and Cann, 1973);(b) 2Nb-Zr/4-Y (Meschede, 1986);(c) Hf/3-Th-Nb/16 (Wood, 1980) Fig. 9 Trace element composition for the tectonic setting discrimination for the Duolong diabase and allgovite, Geize County, Tibet

Pearce et al. (1984)将蛇绿岩分为洋中脊(MOR)型和俯冲带(SSZ)型,并最终被绝大多数地质学家所接受。已有研究表明,蛇绿岩可形成于洋中脊、岛弧、弧前和弧后等不同的构造环境(Coleman, 1977; Shervais, 1990),且多数蛇绿岩主要形成于俯冲带环境(Peace et al., 1984; 史仁灯, 2005)。张旗和周国庆(2001)曾指出,蛇绿岩的基本地球化学类型有两种,分别为岛弧型(IAT)和洋脊型(MORB),在俯冲带形成的是IAT与玻安岩,不成熟的弧后盆地玄武岩兼具IAT和MORB特征。本文通过各类判别图可以看出多龙蛇绿岩具有大洋火山弧玄武岩的特征,表明多龙辉绿岩和辉绿玢岩不是洋脊型(MORB)而是形成于成熟大洋之中的岛弧环境,即为洋内弧环境(SSZ),其形成与洋内俯冲作用有关。前人在多龙矿集区东北部的昂龙地区发现了大面积的玻玄岩出露(西藏自治区地质调查院, 2011),而玻玄岩与玻安岩是玻安岩系的两个亚类(张旗, 1990)。目前发现几乎所有的玻安岩都产于弧前盆地(fore-arc)或洋内弧,并与洋内消减作用有关,时间上主要出现于岛弧盆地演化的初期(pre-arc)(Crawford et al., 1989; 张旗, 1990; Piercey et al., 2001; 裴先治等, 2006)。目前认为玻安岩是在弧前低压高温环境下,由俯冲板片脱水作用形成流体交代亏损的地幔楔而形成(张旗, 1990; Piercey et al., 2001; 裴先治等, 2006);H2O的饱和度越高其所形成的熔体SiO2的含量越高(Hickey and Frey, 1982),当熔融之前加入的H2O有限时, 便会形成SiO2含量偏低的玻玄岩(张旗, 1990)。现今的玻安岩几乎都发现于弧前盆地或洋内弧,因为其需要难熔的地幔源(如方辉橄榄岩)和俯冲洋壳脱水放出的水的供给才能形成(Hickey and Frey, 1982; Crawford et al., 1989)。因而,有的研究者认为在蛇绿岩中只要发现了玻安岩,就可以确定该蛇绿岩产于弧前环境,受到了消减作用的影响(肖序常与李廷栋, 2000)。

张旗和杨瑞英(1987)于班-怒蛇绿岩带东段的丁青地区发现辉长岩、辉绿岩和斜长花岗岩等为代表的玻镁安山岩系岩,认为班公湖-怒江洋存在过类似于西太平洋的洋内岛弧环境。Peace and Deng (1988)于班-怒蛇绿岩带中段的藏北湖区发现玻安岩、典型的IAT(白拉)和N-MORB(阿多),其空间分带性可与西太平洋岛弧区对比,如从汤加弧前带通过Tofua岛弧至Lao盆地和从马里亚纳弧前带通过马里亚纳岛弧至马里亚纳海槽(Pearce and Deng, 1988),张旗和周国庆(2001)认为班公湖-怒江蛇绿岩既类似西太平洋,也可对比东地中海蛇绿岩(如特罗多斯和土耳其, Şengör, 1992)。鲍佩声等(2007)发现班-怒蛇绿岩带中西段改则县洞错地区具有N-MORB型和SZZ型不同构造环境的蛇绿岩。张玉修(2007)进一步指出洞错蛇绿岩的源区是被EMⅡ型地幔轻微混染或者混合的亏损N-MORB型地幔源区,其形成于SSZ环境的不成熟的弧后盆地;而拉果错蛇绿岩的地幔源区是被EMⅡ型地幔混染或者混合的亏损N-MORB型地幔源区,其形成于SSZ环境中的洋内俯冲带上的弧间洋盆环境。王保弟等(2007)认为拉果错蛇绿岩是由消减板片流体交代的地幔楔源区的部分熔融形成,可能形成于弧间盆地环境,代表了班公湖-怒江洋弧-弧碰撞的产物。许伟等(2015)指出改则康穷地区同时存在弱亏损的类MOR型地幔橄榄岩和玻安岩等SSZ型弧前地幔橄榄岩,两者是班公湖-怒江洋在洋内俯冲作用下地幔多阶段部分熔融形成的地幔残留。前人于班-怒蛇绿岩带西段班公湖发现方辉橄榄岩等的N-MORB型蛇绿岩、玻安岩和高Cr#尖晶石相方辉橄榄岩等的SZZ型蛇绿岩,其中N-MORB型蛇绿岩形成于洋中脊环境,SZZ型蛇绿岩形成于洋内俯冲带上的弧前环境,由于后期的构造叠置作用导致二者同时出露于班-怒蛇绿混杂岩带之中(史仁灯, 2005, 2007; 史仁灯等, 2005)。上述事实表明,班公湖-怒江洋存在洋内俯冲作用(张旗和杨瑞英, 1987; Pearce and Deng, 1988; 张旗和周国庆, 2001; 史仁灯, 2005; 史仁灯等, 2005; 张玉修, 2007; 许伟等, 2015; 韦少港等, 2016)。

研究区辉绿玢岩中的锆石的结构和Th/U比值(0.34~0.77)来看, 它们均为岩浆成因,测定的252.1±1.5Ma(晚二叠世晚期)年龄应代表其的形成时代。同时期班公湖蛇绿混杂岩岩浆活动强烈发育(耿全如等, 2011),史仁灯等(2004)在班公湖蛇绿混杂岩中发现玻安岩,认为其形成于洋内岛弧的弧前环境,暗示蛇绿岩可能形成于类似西太平洋Izu-Bonin-Mariana(IBM)。周涛等(2014)获得班公湖地区卜垄蛇绿混杂岩中火山岩单颗继承性锆石U-Pb年龄为254.6±1.5Ma,王保弟等(2015)利用LA-ICP-MS锆石U-Pb方法获得改则洞错地区舍拉玛沟中高压麻粒岩的成岩时代为254±2Ma,指出其为大洋深俯冲的产物;在误差范围内与本文获得多龙矿集区的辉绿玢岩成岩年龄相符;此外,陈玉禄等(2005)发现在藏北湖区面状蛇绿岩带内(班戈县白拉乡地区)存在着上三叠统确哈拉组不整合覆盖在蛇绿岩体上,并在那曲县达仁乡辉长岩中测得同位素年龄(U-Pb法)为242Ma和259Ma,其形成时代为晚二叠世-早三叠世(张玉修, 2007),班公湖地区方辉橄榄岩和东巧蛇绿岩的地幔橄榄岩Re-Os同位素年龄分别为254±28Ma(黄启帅等, 2012)和251±65Ma(Shi et al., 2012),反映了班-怒洋于晚二叠世时期经历了一次构造热事件,此次构造岩浆热事件的时间与本文辉绿玢岩的年龄相一致,暗示次构造岩浆热事件有可能为大洋的洋内俯冲作用。因此,综合分析认为,班-怒洋洋壳于ca. 252Ma(晚二叠世)时在板块汇聚边缘发生了类似西太平洋的IBM的洋内俯冲作用,形成兼具MOR蛇绿岩亲缘性和俯冲带SSZ蛇绿岩地球化学印记的双重属性的多龙辉绿岩及辉绿玢岩的母岩浆;母岩浆经过结晶分异、上升侵位,最终于洋内俯冲带之上的弧前盆地环境下形成多龙辉绿岩和辉绿玢岩。

5 结论

(1) 班-怒缝合带中西段改则县多龙地区出露有SSZ型蛇绿岩, 蛇绿岩中辉绿玢岩的锆石U-Pb年龄为252.1±1.5Ma(MSWD=0.09, n=33),说明多龙蛇绿岩形成于晚二叠世。

(2) 多龙辉绿岩和辉绿玢岩富集大离子亲石元素(LILE:Rb、Cs、K、Sr、P、Pb),亏损高场强元素(HFSE:Ta、Nb、Ti、Zr、Hf);稀土元素总量在23.27×10-6~58.95×10-6之间,其分配曲线呈轻稀土弱亏损型和平坦型的分布形态,δEu为0.83~1.35,(La/Yb)N为0.66~1.30,与典型的岛弧拉斑玄武岩(IAT)相似。多龙辉绿岩和辉绿玢岩的(87Sr/86Sr)i值为0.707345~0.708748,(143Nd/144Nd)i值为0.512669~0.512705,tDM2值为305~456Ma,εNd(t)值为+6.9~+8.8,表明其岩浆源区为亏损地幔源区。

(3) 班-怒洋壳于晚二叠世时(ca. 252Ma)在板块汇聚边缘发生了类似西太平洋的IBM的洋内俯冲作用,形成兼具MOR蛇绿岩亲缘性和俯冲带SSZ蛇绿岩地球化学印记的双重属性的多龙辉绿岩及辉绿玢岩的母岩浆;母岩浆经过结晶分异、上升侵位,最终于洋内俯冲带之上的弧前盆地环境下形成多龙辉绿岩和辉绿玢岩。

致谢      感谢西藏地调院李玉彬工程师、西藏地勘局第五地质大队李彦波工程师在野外工作过程中给予的帮助;感谢中国地质大学(北京)地质过程与矿产资源国家重点实验室,以及国土资源部国家地质实验测试中心的老师在样品分析测试过程中提供了大量帮助;特别感谢二位专家对稿件提出的宝贵评审意见。

参考文献
Bao PC, Xiao XC, Su L and Wang J. 2007. Geochemical characteristics and isotopic dating for the Dongcuo ophiolite, Tibet Plateau. Science in China (Series D), 50(5): 660-671.
Black LP and Gulson BL. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics, 3: 227-232.
Chen YL, Zhang KZ, Li GQ, Nimaciren, Zhao SR and Chen GR. 2005. Discovery of an uniformity between the Upper Triassic Quehala Group and its underlying rock series in the central segment of the Bangong Co-Nujiang junction zone, Tibet, China. Geological Bulletin of China, 24(7): 621-624.
Coleman RG. 1977. Ophiolites:Ancient Oceanic Lithosphere?. Berlin, Heidellberg, New York: Springer-Verlag: 1-220.
Condie KC. 1989. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary:Identification and significance. Lithos, 23(1-2): 1-18. DOI:10.1016/0024-4937(89)90020-0
Crawford AJ, Fallon TJ and Green DH. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed.). Boninites. London: Academic Division of Unwin-Hyman Ltd., 1-49
Cullers RL and Graf JL. 1984. Rare earth elements in igneous rocks of the continental crust:Predominantly basic and ultrabasic rocks. Developments in Geochemistry, 2: 237-274. DOI:10.1016/B978-0-444-42148-7.50012-5
Dai JG, Wang CS, Hébert R, Santosh M, Li YL and Xu JY. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288(3-4): 133-148. DOI:10.1016/j.chemgeo.2011.07.011
DePaolo DJ and Wasserburg GJ. 1976. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3(12): 743-746. DOI:10.1029/GL003i012p00743
Dilek Y, Furnes H and Shallo M. 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 100(1-4): 174-209.
Dilek Y and Furnes H. 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113(1-2): 1-20.
Dilek Y and Thy P. 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite:Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos, 113(1-2): 68-87.
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics:geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123: 387-411. DOI:10.1130/B30446.1
Dilek Y and Furnes H. 2014. Ophiolites and their origins. Elements, 10(2): 93-100.
Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW and Hofmann AW. 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 196(3-4): 197-212. DOI:10.1016/S0012-821X(01)00601-X
Elderfield H. 1986. Strontium isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 57(1): 71-90. DOI:10.1016/0031-0182(86)90007-6
Elthon D. 1991. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature, 354(6349): 140-143. DOI:10.1038/354140a0
Farahat ES. 2010. Neoproterozoic arc-back-arc system in the Central Eastern Desert of Egypt:Evidence from supra-subduction zone ophiolites. Lithos, 120(3-4): 293-308.
Fitton JG, Saunders AD, Norry MJ, Hardarson BS and Taylor RN. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153(3-4): 197-208. DOI:10.1016/S0012-821X(97)00170-2
Frey FA, Green DH and Roy SD. 1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513. DOI:10.1093/petrology/19.3.463
Geng QR, Pan GT, Wang LQ, Peng ZM and Zhang Z. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet. Geological Bulletin of China, 30(8): 1261-1274.
Girardeau J, Marcoux J, Allègre CJ, Bassoullet JP, Tang YK, Xiao XC, Zao YG and Wang XB. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27-31. DOI:10.1038/307027a0
Han YG, Zhang SH, Pirajno F and Zhang YH. 2007. Evolution of the Mesozoic granites in the Xiong'ershan-Waifangshan region, western Henan Province, China, and its tectonic implications. Acta Geologica Sinica, 81(2): 253-265. DOI:10.1111/acgs.2007.81.issue-2
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357. DOI:10.1093/petrology/egm062
Hickey RL and Frey FA. 1982. Geochemical characteristics of boninite series volcanics:Implications for their source. Geochimica et Cosmochimica Acta, 46(11): 2099-2115. DOI:10.1016/0016-7037(82)90188-0
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.
Huang QS, Shi RD, Ding BH, Liu DL, Zhang XR, Fan SQ and Zhi XC. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong co for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrologica et Mineralogica, 31(4): 465-478.
Jacobsen SB and Wasserburg GJ. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1): 139-155. DOI:10.1016/0012-821X(80)90125-9
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. DOI:10.1130/B26033.1
Kelemen PB, Hanghøj K and Greene AR. 2007. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 3: 1-70.
Lai SC and Liu CY. 2003. Geochemistry and genesis of the island-arc ophiolite in Anduo area, Tibetan Plateau. Acta Petrologica Sinica, 19(4): 675-682.
Li SG. 1993. Ba-Nb-Th-La diagrams used to identify tectonic environments of ophiolite. Acta Petrologica Sinica, 9(2): 146-157.
Li WX, Zhao ZD, Zhu DC, Dong GC, Zhou S, Mo XX, DePaolo D and Dilek Y. 2012. Geochemical discrimination of tectonic environments of the Yalung Zangpo ophiolite in southern Tibet. Acta Petrologica Sinica, 28(5): 1663-1673.
Lian DY, Yang JS, Xiong FH, Liu F, Wang YP, Zhou WD and Zhao YJ. 2014. Composition characteristics and tectonic setting of the Dajiweng peridotite in the western Yarlung-Zangbo ophiolitic belt. Acta Petrologica Sinica, 30(8): 2164-2184.
Liu CQ, Xie GH and Masuda A. 1995. Geochemistry of Cenozoic basalts from eastern China:(Ⅱ) Sr, Bd, and Ce isotopic compositions. Geochimica, 24(3): 203-214.
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD and Ding L. 2014. Subduction of the Bangong-Nujiang Ocean:Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2): 188-206. DOI:10.1002/gj.v49.2
Liu F, Yang JS, Chen SY, Li ZL, Lian DY, Zhou WD and Zhang L. 2013. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone:Evidence for intra-oceanic supra-subduction within the Neo-Tethys. Geology in China, 40(3): 742-755.
Liu S, Hu RZ, Chi XG, Li C, Feng CX and Wang TW. 2003. Geochemical characteristics and petrogenesis of the post-collision ultrapotassium volcanic rocks in Qiangtang rock zone. Geotectonica et Metallogenia, 27(2): 167-175.
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
Lu FX. 1989. Mantle Petrology. Wuhan: China University of Geosciences Press: 1-123.
Lu SW, Ren JD, Du FJ and Liu PD. 2003. Tectonic evolution of the Meso-Tethyan Ocean:An example from the Nyima region in Xizang. Sedimentary Geology and Tethyan Geology, 23(3): 35-39.
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218. DOI:10.1016/0009-2541(86)90004-5
Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. DOI:10.1093/petroj/40.9.1399
Moores EM and Jackson ED. 1974. Ophiolites and oceanic crust. Nature, 250(5462): 136-139. DOI:10.1038/250136a0
Pan GT, Zhu DC, Wang LQ, Liao ZL, Geng QR and Jiang XS. 2004. Bangong Lake-Nu River suture zone, the northern boundary of Gondwanaland:Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382.
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533.
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. DOI:10.1016/j.jseaes.2011.12.018
Pearce JA and Cann JR. 1971. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth and Planetary Science Letters, 12(3): 339-349. DOI:10.1016/0012-821X(71)90220-2
Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300. DOI:10.1016/0012-821X(73)90129-5
Pearce JA and Norry MJ. 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. DOI:10.1007/BF00375192
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. Chichester: John Wiley and Sons, 525-548
Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society, London, Special Publication, 16(1): 77-94
Pearce JA and Deng WM. 1988. The ophiolite of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). In: Chang C (ed.). The Geological Evolution of the Tibet. London: The Royal Society, 215-238
Pearce JA. 1991. Ocean floor comes ashore. Nature, 354(6349): 110-111.
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48.
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108. DOI:10.2113/gselements.10.2.101
Pei XZ, Liu HB, Ding SP, Li ZC, Hu B, Sun RQ and Hou YH. 2006. Geochemical characteristics and tectonic significance of the meta-volcanic rocks in the Liziyuan Group from Tianshui area, Western Qinling orogen. Geotectonica et Metallogenia, 30(2): 193-205.
Piercey SJ, Murphy DC, Mortensen JK and Paradis S. 2001. Boninitic magmatism in a continental margin setting, Yukon-Tanana Terrane, southeastern Yukon, Canada. Geology, 29(8): 731-734. DOI:10.1130/0091-7613(2001)029<0731:BMIACM>2.0.CO;2
Prinzhofer A and Allègre CJ. 1985. Residual peridotites and the mechanisms of partial melting. Earth and Planetary Science Letters, 74(2-3): 251-265. DOI:10.1016/0012-821X(85)90025-1
Qiu RZ, Zhou S, Deng JF, Li JF, Xiao QH and Cai ZY. 2004. Dating of gabbro in the shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the Bangong Co-Nujiang ophiolite belt. Geology in China, 31(3): 262-268.
Qiu RZ, Deng JF, Zhou S, Li TD, Xiao QH, Guo TY, Cai ZY, Li GL, Huang GC and Meng XJ. 2005. Ophiolite types in western Qinghai-Tibetan Plateau:Evidences from petrology and geochemistry. Earth Science Frontiers, 12(2): 277-291.
Qu XM, Xin HB, Zhao YY, Wang RJ and Fan XT. 2010. Opening time of Bangong Lake middle Tethys oceanic basin of the Tibet Plateau:Constraints from petro-geochemistry and zircon U-Pb LAICPMS dating of mafic ophiolites. Earth Science Frontiers, 17(3): 53-63.
Ren JS and Xiao LW. 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet plateau by 1:250000 geological mapping. Geological Bulletin of China, 23(1): 1-11.
Robertson AHF. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1): 1-67.
Rollison HR. 2000. Petrogeochemistry. In: Yang XM, Yang XY and Chen SX (Trans.). Hefei: Press of University of Science and Technology of China, 186-187 (in Chinese)
Saunders AD, Norry MJ and Tarney J. 1988. Origin of MORB and chemically-depleted mantle reservoirs:Trace element constraints. Journal of Petrology, (1): 415-445.
Şengör AMC. 1992. The palaeo-tethyan suture:A line of demarcation between two fundamentally different architectural styles in the structure of Asia. Island Arc, 1(1): 78-91.
Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101-118. DOI:10.1016/0012-821X(82)90120-0
Shervais JW. 1990. Island arc and ocean crust ophiolites: Contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges. In: Malpas J, Moores E, Panayiotou A and Xenophontos C (eds.). Ophiolites: Oceanic Crustal Analogues. Nicosia, Cyprus: The Geological Survey Department, 507-520
Shi RD, Yang JS, Xu ZQ and Qi XX. 2004. Discovery of the boninite series volcanic rocks in the Bangong Lake ophiolite mélange, western Tibet, and its tectonic implications. Chinese Science Bulletin, 49(12): 1272-1278. DOI:10.1360/04wd0006
Shi RD. 2005. Recognition of the Bangong Lake MOR-and SSZ-type ophiolites in the northwestern Tibet Plateau and its tectonic significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-158 (in Chinese with English summary)
Shi RD, Yang JS, Xu ZQ and Qi XX. 2005. Recognition of MOR-and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet:Evidence from two kinds of mantle peridotites. Acta Petrologica et Mineralogica, 24(5): 397-408.
Shi RD. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite:Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin, 52(7): 936-941. DOI:10.1007/s11434-007-0134-z
Shi RD, Yang JS, Xu ZQ and Qi XX. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32(5-6): 438-457. DOI:10.1016/j.jseaes.2007.11.011
Shi RD, Griffin WL, O'Reilly SY, Huang QS, Zhang XR, Liu DL, Zhi SX, Xia QX and Ding L. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites:Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Research, 21(1): 194-206. DOI:10.1016/j.gr.2011.05.011
Schilling JG, Zajac M, Evans R, Johnston T, White W, Devine JD and Kingsley R. 1983. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N. American Journal of Science, 283(6): 510-586. DOI:10.2475/ajs.283.6.510
Sun SS and McDonough WE. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins: Geological Society of London, Special Publication, 42(1): 313-345
Wang BD, Xu JF, Zeng QG, Kang ZQ, Chen JL and Dong YH. 2007. Geochemistry and genesis of Lhaguo Tso ophiolite in south of Gerze area-Center Tibet. Acta Petrologica Sinica, 23(6): 1521-1530.
Wang BD, Wang LQ, Xu JF, Chen L, Zhao WX, Liu H, Peng PT and Li XB. 2015. The discovery of high-pressure granulite at Shelama in Dongco area along the Bangong Co-Nujiang River suture zone and its tectonic significance. Geological Bulletin of China, 34(9): 1605-1616.
Wang WL, Aitchison JC, Lo CH and Zeng QG. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1-2): 122-138. DOI:10.1016/j.jseaes.2007.10.022
Wang XB, Bao PS and Deng WM. 1987. Ophiolites of Tibet. Regional Geology of China, (3): 248-256.
Wang YL, Zhang CJ and Xiu SZ. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17(3): 413-421.
Wei SG, Yang S, Tang JX, Ke K, Feng J, Li YB and Hou L. 2016. Geochronology, geochemistry and petrogenesis of quartz diorite porphyrite from the Sena copper (gold) deposit, Tibet. Geology in China, 43(6): 1894-1912.
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, Trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23. DOI:10.1111/ggr.1995.19.issue-1
Wilkinson J. 1982. The genesis of mid -ocean ridge basalt. Earth Science Reviews, 18(1): 1-57.
Wilson M. 1989. Igneous Petrogenesis. London: Academic Division of Unwin Hyman, Ltd.: 466.
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. DOI:10.1016/0009-2541(77)90057-2
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. DOI:10.1016/0012-821X(80)90116-8
Xia B, Xu LF, Wei ZQ, Zhang YQ, Wang R, Li JF and Wang YB. 2008. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528-531.
Xia LQ, Xia ZC, Xu XY, Li XQ and Ma ZP. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method. Acta Petrologica et Mineralogica, 26(1): 77-89.
Xiao XC and Li TD. 2000. Tectonic Evolution and Uplift of the Qinghai-Xizang (Tibet) Plateau. Guangzhou: Guangdong Science and Technology Press.
Xing GF, Shen WZ, Wang DZ, Tao KY and Jin QM. 1997. Sr-Nd-Pb isotopic compositions and source features of Mesozoic to Cenozoic magmatic rocks on King George Island, Antarctica. Acta Petrologica Sinica, 13(4): 473-487.
Xu DM, Huang GC and Lei YJ. 2008. Geochemistry and tectonic significance of mantle peridotites from the Laangcuo ophiolite massif, Southwest Tibet. Acta Petrologica et Mineralogica, 27(1): 1-13.
Xu W, Li C, Wu YW, Xu MJ, Fan JJ, Jiang QY and Peng H. 2015. Petrological and geochemical characteristics of Kangqiong serpentinites in the central-western part of Bangong-Nujiang suture zone, Tibet. Geological Bulletin of China, 34(8): 1401-1412.
Xu W, Hu PY, Wang M, Chen JW, Zhang TY and Li X. 2016. Yanqiang Ling ophiolitic remnants has been discovered in Duolong ore concentration area, Gêrzê County, Tibet. Geological Bulletin of China, 35(5): 642-647.
Xu XZ, Yang JS, Guo GL, Li TF, Ren YF and Chen SY. 2011. The Yushugou-Tonghuashan ophiolites in Tianshan, Xinjiang, and their tectonic setting. Acta Petrologica Sinica, 27(1): 96-120.
Yang JS, Xiong FH, Guo GL, Liu F, Liang FH, Chen SY, Li ZL and Zhang LW. 2011b. The Dongbo ultramafic massif:A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit. Acta Petrologica Sinica, 27(11): 3207-3222.
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211
Yong YY and Jia BJ. 2000. Shear convergence of plates and suturing of terranes:A new model for the consumptions of the Meso-Tethys. Sedimentary Geology and Tethyan Geology, 20(1): 85-89.
Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet:SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199. DOI:10.1016/j.lithos.2013.02.005
Zhang Q and Yang RY. 1987. The geochemical characteristics of intrusion of boninitic series from Dingqing, Xizang. Acta Petrologica Sinica, 3(2): 64-74.
Zhang Q. 1990. A preliminary study on the geochemistry and origin of boninites and Boni-basalts. Geochimica, (3): 207-215.
Zhang Q, Qian Q, Wang Y, Jia XQ and Han S. 1999. Geochemistry of ophiolites. Geological Review, 45(7): 101-107.
Zhang Q and Zhou GQ. 2001. China Ophiolite. Beijing: Science Press: 1-200.
Zhang XZ, Dong YS, Wang Q, Dan W, Zhang CF, Deng MR, Xu W, Xia XP, Zeng JP and Liang H. 2016. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7): 1670-1686. DOI:10.1002/tect.v35.7
Zhang YX. 2007. Tectonic evolution of the middle-western Bangong-Nujiang suture, Tibet. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Zhao WJ, Liu K, Jiang ZT, Wu ZH, Zhao X, Shi DN, Xiong JY, Mechie J, Brown L, Hearn T, Guo JR and Haines SS. 2004. Bangong Co-Nujiang suture zone, Tibet:A suggestion given by deep geophysical structure. Geological Bulletin of China, 23(7): 623-635.
Zhou MF, Malpas J, Robinson PT and Reynolds PH. 1997. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Canadian Journal of Earth Sciences, 34(1): 59-65. DOI:10.1139/e17-005
Zhou T, Chen C, Liang S, Chen GF, Li HL and Li DW. 2014. Zircon U-Pb geochronology and geochemical characteristics of volcanic rocks in the ophiolite mélange at the Bangong Lake, Tibet. Geotectonica et Metallogenia, 38(1): 157-167.
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17. DOI:10.1016/j.lithos.2015.06.023
鲍佩声, 肖序常, 苏犁, 王军. 2007. 西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约. 中国科学(D辑), 37(3): 298-307.
陈玉禄, 张宽忠, 李关清, 尼玛次仁, 赵守仁, 陈国荣. 2005. 班公湖-怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义. 地质通报, 24(7): 621-624. DOI:10.3969/j.issn.1671-2552.2005.07.005
耿全如, 潘桂棠, 王立全, 彭智敏, 张璋. 2011. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景. 地质通报, 30(8): 1261-1274. DOI:10.3969/j.issn.1671-2552.2011.08.013
黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约. 岩石矿物学杂志, 31(4): 465-478. DOI:10.3969/j.issn.1000-6524.2012.04.001
赖绍聪, 刘池阳. 2003. 青藏高原安多岛弧型蛇绿岩地球化学及成因. 岩石学报, 19(4): 675-682.
李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图. 岩石学报, 9(2): 146-157. DOI:10.3321/j.issn:1000-0569.1993.02.005
李文霞, 赵志丹, 朱弟成, 董国臣, 周肃, 莫宣学, DePaolo D, Dilek Y. 2012. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别. 岩石学报, 28(5): 1663-1673.
连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一珏. 2014. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析. 岩石学报, 30(8): 2164-2184.
刘丛强, 解广轰, 增田彰正. 1995. 中国东部新生代玄武岩的地球化学(Ⅱ) Sr、Nd、Ce同位素组成. 地球化学, 24(3): 203-214. DOI:10.3321/j.issn:0379-1726.1995.03.001
刘飞, 杨经绥, 陈松永, 李兆丽, 连东洋, 周文达, 张岚. 2013. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征:新特提斯洋内俯冲的证据. 中国地质, 40(3): 742-755. DOI:10.3969/j.issn.1000-3657.2013.03.007
刘燊, 胡瑞忠, 迟效国, 李才, 冯彩霞, 王天武. 2003. 羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨. 大地构造与成矿学, 27(2): 167-175. DOI:10.3969/j.issn.1001-1552.2003.02.010
路凤香. 1989. 地幔岩石学. 武汉: 中国地质大学出版社: 1-123.
卢书炜, 任建德, 杜凤军, 刘品德. 2003. 从尼玛地区地质新资料看中特提斯洋的构造演化. 沉积与特提斯地质, 23(3): 35-39. DOI:10.3969/j.issn.1009-3850.2003.03.004
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. DOI:10.3321/j.issn:1005-2321.2004.04.004
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
裴先治, 刘会彬, 丁仨平, 李佐臣, 胡波, 孙仁奇, 侯育红. 2006. 西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义. 大地构造与成矿学, 30(2): 193-205. DOI:10.3969/j.issn.1001-1552.2006.02.010
邱瑞照, 周肃, 邓晋福, 李金发, 肖庆辉, 蔡志勇. 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代. 中国地质, 31(3): 262-268. DOI:10.3969/j.issn.1000-3657.2004.03.004
邱瑞照, 邓晋福, 周肃, 李廷栋, 肖庆辉, 郭铁鹰, 蔡志勇, 李国良, 黄圭成, 孟祥金. 2005. 青藏高原西部蛇绿岩类型:岩石学与地球化学证据. 地学前缘, 12(2): 277-291. DOI:10.3321/j.issn:1005-2321.2005.02.029
曲晓明, 辛洪波, 赵元艺, 王瑞江, 樊兴涛. 2010. 西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果. 地学前缘, 17(3): 53-63.
任纪舜, 肖黎薇. 2004. 1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1-11. DOI:10.3969/j.issn.1671-2552.2004.01.006
Rollison HR. 2000.岩石地球化学.见: 杨学明, 杨晓勇, 陈双喜(译).合肥: 中国科学技术大学出版社, 180-184
史仁灯, 杨经绥, 许志琴, 戚学祥. 2004. 西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义. 科学通报, 49(12): 1179-1184. DOI:10.3321/j.issn:0023-074X.2004.12.012
史仁灯. 2005.西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义.博士学位论文.北京: 中国地质科学院, 1-158
史仁灯, 杨经绥, 许志琴, 戚学祥. 2005. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据. 岩石矿物学杂志, 24(5): 397-408. DOI:10.3969/j.issn.1000-6524.2005.05.008
史仁灯. 2007. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约. 科学通报, 52(2): 223-227. DOI:10.3321/j.issn:0023-074X.2007.02.016
王保弟, 许继峰, 曾庆高, 康志强, 陈建林, 董彦辉. 2007. 西藏改则地区拉果错蛇绿岩地球化学特征及成因. 岩石学报, 23(6): 1521-1530. DOI:10.3969/j.issn.1000-0569.2007.06.026
王保弟, 王立全, 许继峰, 陈莉, 赵文霞, 刘函, 彭头平, 李小波. 2015. 班公湖-怒江结合带洞错地区舍拉玛高压麻粒岩的发现及其地质意义. 地质通报, 34(9): 1605-1616. DOI:10.3969/j.issn.1671-2552.2015.09.002
王希斌, 鲍佩声, 陈克樵. 1987. 西藏的蛇绿岩. 中国区域地质, (3): 248-256.
汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
韦少港, 宋扬, 唐菊兴, 高轲, 冯军, 李彦波, 侯淋. 2016. 西藏色那铜(金)矿床石英闪长玢岩年代学、地球化学与岩石成因. 中国地质, 43(6): 1894-1912.
夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528-531.
夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. DOI:10.3969/j.issn.1000-6524.2007.01.011
肖序常, 李廷栋. 2000. 青藏高原的构造演化与隆升机制. 广州: 广东科技出版社.
邢光福, 沈渭洲, 王德滋, 陶奎元, 金庆民. 1997. 南极乔治王岛中-新生代岩浆岩Sr-Nd-Pb同位素组成及源区特征. 岩石学报, 13(4): 473-487. DOI:10.3321/j.issn:1000-0569.1997.04.001
徐德明, 黄圭成, 雷义均. 2008. 西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义. 岩石矿物学杂志, 27(1): 1-13. DOI:10.3969/j.issn.1000-6524.2008.01.001
许伟, 李才, 吴彦旺, 徐梦婧, 范建军, 江庆源, 彭虎. 2015. 西藏班公湖-怒江缝合带中西段康穷蛇纹岩的岩石学、地球化学特征及其构造意义. 地质通报, 34(8): 1401-1412. DOI:10.3969/j.issn.1671-2552.2015.08.001
许伟, 胡培远, 王明, 陈景文, 张天羽, 李馨. 2016. 西藏改则县多龙矿集区发现岩墙岭蛇绿岩残片. 地质通报, 35(5): 642-647. DOI:10.3969/j.issn.1671-2552.2016.05.002
徐向珍, 杨经绥, 郭国林, 李天福, 任玉峰, 陈松永. 2011. 新疆天山地区榆树沟-铜花山蛇绿岩特征和构造背景. 岩石学报, 27(1): 96-120.
杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体:西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207-3222.
雍永源, 贾宝江. 2000. 板块剪式汇聚加地体拼贴中特提斯消亡的新模式. 沉积与特提斯, 20(1): 85-89. DOI:10.3969/j.issn.1009-3850.2000.01.007
张旗, 杨瑞英. 1987. 西藏丁青蛇绿岩中玻镁安山岩类侵入岩的地球化学特征. 岩石学报, 3(2): 64-74. DOI:10.3321/j.issn:1000-0569.1987.02.006
张旗. 1990. 玻安岩和玻玄岩地球化学特征和成因的探讨. 地球化学, (3): 207-215. DOI:10.3321/j.issn:0379-1726.1990.03.002
张旗, 钱青, 王焰, 贾秀琴, 韩松. 1999. 蛇绿岩的地球化学研究. 地质论评, 45(S): 101-107.
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社: 1-200.
张玉修. 2007.班公湖-怒江缝合带中西段构造演化.博士学位论文.广州: 中国科学院广州地球化学研究所
赵文津, 刘葵, 蒋忠惕, 吴珍汉, 赵逊, 史大年, 熊嘉育, Mechie J, Brown L, Hearn H, Guo JR, Haines SS. 2004. 西藏班公湖-怒江缝合带——深部地球物理结构给出的启示. 地质通报, 23(7): 623-635. DOI:10.3969/j.issn.1671-2552.2004.07.001
周涛, 陈超, 梁桑, 陈桂凡, 李华亮, 李德威. 2014. 西藏班公湖蛇绿混杂岩中火山岩锆石U-Pb年代学及地球化学特征. 大地构造与成矿学, 38(1): 157-167.