岩石学报  2019, Vol. 35 Issue (2): 295-311, doi: 10.18654/1000-0569/2019.02.02   PDF    
高温-超高温变质作用成因研究——来自华北克拉通西部孔兹岩带和南非Kaapvaal克拉通西南部Namaqua活动带与Bushveld变质杂岩体的启示
李旭平 , 王晗 , 孔凡梅     
山东省沉积成矿作用实验室, 山东科技大学地球科学与工程学院, 青岛 266510
摘要:超高温变质作用是在变质地质学领域,继超高压变质作用研究高峰之后的又一重要前缘课题,对于认识地壳构造-热演化具有重要意义。本文总结了华北克拉通西部孔兹岩带和南非Kaapvaal克拉通西南部Namaqua活动带与Bushveld变质杂岩体的高温-超高温麻粒岩的化学成分、矿物组合、变质演化特征,及其相应的变质事件与构造属性。我国的超高温变质作用带,包括华北克拉通西部的孔兹岩带——从内蒙西段的大青山到东段的集宁-凉城地区的超高温变质岩,皆为Al-Mg质和Al饱和体系的超高温变质岩石,常见假蓝宝石+石英、尖晶石+石英的典型超高温变质组合,以及含假蓝宝石±尖晶石、但缺少石英的非典型超高温变质组合。南非Namaqua活动带与Bushveld变质杂岩体分别发现有独特的Fe-Al饱和的铁尖晶石+石英+大隅石、刚玉+高温石英等超高温矿物组合,罕见的高温硼硅酸盐和硅硼铝镁石等超高温矿物组合;以及Ca-Mg质饱和的钙镁橄榄石+镁硅钙石镁黄长石+镁橄榄石等超高温矿物组合的麻粒岩。研究的核心问题是矿物和岩石在高温-超高温条件下的特殊行为方式,不同构造环境和岩石化学成分下的变质反应及其热动力学过程。由此提出超高温变质作用成因研究中的科学问题:包括不同类型和地质属性的高温-超高温麻粒岩的成因特征;麻粒岩的形成条件演化过程和构造背景;高温-超高温变质过程中部分熔融和重新水化过程中流体的作用以及岩体形变过程中的部分熔融;变质反应以及变质作用P-T-t轨迹、元素地球化学和熔体作用行为;岩石保留的可能的变质事件和年代学记录,定量评价高温-超高温过程中变质演化的时间跨度和演化速率。
关键词: 高温-超高温麻粒岩     华北克拉通西部孔兹岩带     南非Kaapvaal克拉通高温-超高温麻粒岩     科学问题    
Probe into the genesis of high temperature-ultrahigh temperature metamorphism: The enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua mobile belt and the Bushveld metamorphic complex of South Africa
LI XuPing, WANG Han, KONG FanMei     
Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
Abstract: In recent years there have been increased efforts to understand mineral equlibria at very high temperatures, to quantify pressure and temperature in such rocks and to model geological environments that can create such temperatures. The high temperature (HT)-ultrahigh temperature (UHT) metamorphism is another important frontier subject in the field of metamorphic geology, following the unprecedented upsurge in the study of ultrahigh pressure metamorphism. This paper summarizes the chemical composition, mineral assemblage, metamorphic evolution characteristics, and the tectonic background of the HT-UHT granulites from the Khondalite Belt in the west of the North China Craton (NCC) and the Bushveld metamorphic complex in the Namaqua active belt in the southwest of the Kaapvaal Craton in South Africa. The HT-UHT metamorphic rocks of the Western Khondalite Belt of the NCC in Inner Mangolia, including UHT metamorphic rocks from the western side Daqingshan to the eastern side Jining-Liangcheng, are all Al-Mg and Al saturated HT-UHT granulites with common occurred mineral assemblages of sapphirine+quartz, spinel+quartz, and quartz absent sapphirine±spinel. On the other hand, rare occurred HT-UHT mineral assemblages of hercynite+quartz+osumilite, corundum+quartz granulites and borosilicates-bearing mineral assemblage such as kornerupine+sapphirine in the Namaqualand-Natal Mobile Belt adjacent to Kaapvaal Craton, which are Fe-Al saturated HT-UHT granulites. There are also Ca-Mg saturated UHT granulites, such as that with mineral assemblage of monticellite+merwinite+akermanite+forsterite in the Bushveld metamorphic Complex of South Africa. The core research question is in what particular way rocks and minerals behave at high to ultrahigh temperatures, with emphasis on mineral reactions in the broader sense, from seemingly closed-system phase equlibria to metasomatic reactions across bulk-compositional discontinuities. The scientific issues on the genesis study of hyperthermal metamorphism, therefore, are proposed in this paper:they include genetic features and geological characteristics of different HT-UHT rock types; the forming condition, tectonic setting and evolution processes of the HT-UHT granulites; the role of fluids in terms of triggering melting or rehydration, and the controls of fluids on mineral equilibria; gain of insight into the effects of partial melting, including the leucosome-melanosome separation process; the effect of melt being presented during deformation; application of appropriate high-T thermometers and examine the consistency between different thermobarometric methods; and to characterize the various types of high-T reaction textures observed and consider implications for reaction kinetics.
Key words: HT-UHT granulites     The Western Khondalite Belt of the NCC     The Kaapvaal Craton of South Africa     Scientific issues    

超高温(UHT)变质作用是指在地壳深部(20~40km),变质峰期温度达到900~1100℃的极端条件下发生的变质作用(Kelsey et al., 2006; Kelsey, 2008; Brown, 2007a, b, c, 2014; Harley, 2008; Kelsey and Hand, 2015)。前人研究表明能够记录超高温变质作用的主要是富镁铝的泥质岩,往往具有一些特殊的矿物组合,主要包括(本文矿物缩写源自Whitney and Evans, 2010):(1)假蓝宝石(Spr)+石英(Qz)(金巍, 1989; 郭敬辉等, 2006; Guo et al., 2012; Jiao et al., 2011; Santosh et al., 2007a, b);(2)紫苏辉石(Hyp)+夕线石(Sil)+Qz(White et al., 2001; Kelsey et al., 2004; 刘守偈和李江海, 2009);(3)含大隅石(Osm)的矿物组合(Das et al., 2001; Korhonen et al., 2013);(4)尖晶石(Spl)+Qz;(5)刚玉(Crn)+Qz及其他含刚玉矿物组合(Hensen, 1987; Mouri et al., 2003, 2004; 刘守偈和李江海, 2009; Zhang et al., 2012);(6)具有中条纹(Mper)和反条纹长石(Aper)的K-Na-Ca三相长石(Jiao and Guo, 2011);(7)BIF中出现过的Ca-Fe-Mg-Al四相辉石矿物组合(Barnicoat and O’Hara, 1979; Harley, 1987, 2008)。其中前三类为鉴别性的超高温矿物组合,即本文所说的典型的超高温矿物组合,可以直接根据矿物组合判别为超高温麻粒岩;后四类为指示性的矿物组合(Harley, 2008),因之不能用于直接判别属于超高温麻粒岩。其不能作为典型的超高温矿物组合的原因主要是:尖晶石在氧化条件下可以结合Fe3+,而未降低其形成温度;此外尖晶石可以与熔体共存,而石英是熔体后期结晶的产物,因此不代表真实的Spl+Qz的超高温形成条件(Hensen, 1986; Harley, 2008)。Crn+Qz矿物组合是否代表典型的UHT矿物组合长期有争议,有热力学数据计算出的这一矿物组合在UHT条件下稳定,如>1100℃/>11~13kbar(Mouri et al., 2003, 2004),然而其他的研究表明在Sil→Crn+Qz的过程中,Sil在熔体中仍然稳定,少量的Cr和Fe进入Crn结构就可以大大的降低形成的温度条件,例如在磁铁矿存在的条件下,Crn+Qz所代表的形成温度大大降低(Waters, 1991)。对于K-Na-Ca三相长石,长石必须是深熔作用中形成,而不是岩浆作用的残留长石,为此最好的情况是出现在具有花岗变晶结构的变质泥质麻粒岩中、或者说是混合岩化作用中形成的浅色体的中条纹长石,在正片麻岩中变质前残留的中条纹长石和反条纹长石不是UHT的鉴别矿物(如Harley, 2008)。至于Ca-Fe-Mg-Al四相辉石矿物组合,仅适用于BIF岩性,晶格中出熔的矿物成分必须回算以得到准确的温度值,尽管如此,当Mn进入辉石晶格也会影响准确的温度估算(Barnicoat and O’Hara, 1979; Harley, 2008)。

随着超高温变质作用的研究,借助矿物的温压计和THERMOCALC、Perple_X等相平衡计算工具,陆续识别出了其它超高温组合的岩石(Kelsey et al., 2004, 2005; Kelsey, 2008; Kelsey and Hand, 2015)。后文将阐述的一些不具有上述特殊超高温组合的岩石也记录了超高温变质历史(张建新和孟繁聪, 2005; Guo et al., 2012; Jiao et al., 2015; Li and Wei, 2016; Yang and Wei, 2017a, b)。

超高温变质作用是变质地质学领域继超高压变质作用研究高峰之后的又一重要前缘领域,对于认识地壳构造-热演化具有重要意义(Brown, 2007a, b, 2014; Santosh et al., 2006, 2007a; Harley, 1998; Kelsey et al., 2007)。全球范围内已经陆续识别出五十多处超高温麻粒岩露头,且新发现或升级为超高温麻粒岩的报道日益增多(Yang and Wei, 2017a, b; Li and Wei, 2018; Santosh et al., 2018)。其地质年代的分布跨度可从3178Ma到35Ma,多与碰撞造山和伸展构造带有关(图 1)。

图 1 全球超高温麻粒岩分布图(据Kelsey, 2008修改) Fig. 1 Global distribution of ultrahigh-temperature metamorphic localities (after Kelsey, 2008)

由于正常造山带加厚地壳很难达到超高温条件,产生超高温变质作用需要额外的热源,额外热源的产生可能与下地壳拆沉、软流圈上涌、洋脊俯冲或地幔柱活动等壳-幔相互作用有关(Harley, 2008; Guo et al., 2012; 焦淑娟和郭敬辉, 2019)。因此,超高温变质作用的研究对于理解和认识岩石圈流变学、大陆地壳生长和分异都具有重要意义(Kelsey, 2008)。

大量研究表明,超高温变质作用普遍与超大陆演化有对应关系(Brown, 2007b; Santosh et al., 2006, 2007a, b; Kelsey et al., 2007)。一般来说,太古宙岩石表现出相当普遍的中压-高温相变质作用,既没有蓝片岩也没有大陆深俯冲和回返的记录。然而,从新太古代到寒武纪出现了大规模的超高温(UHT)变质带,意味着新太古代的地球动力学机制发生了明显的变化。此后,在整个地球演化过程中,每隔一段时间,就有瞬时的高热流现象出现,并可以观察到相应的超高温变质作用(Brown, 2007a, b)。这种瞬时热流常常出现在弧后盆地,与超高温变质作用、超大陆形成相关联,通常记录的是顺时针P-T轨迹,反映出弧后盆地的闭合增厚过程(Hyndman et al., 2005; Brown, 2007a)。许多新元古代-寒武纪的UHT变质带都在类似于现代的弧后盆地环境中形成,并且变质作用发生的时间与各大陆岩石圈聚合到超级克拉通或超级大陆形成的时间是一致的(Brown, 2007a)。例如:全球第一个真正的超大陆——Nuna/Columbia超大陆,是在2.1~1.8Ga碰撞事件中形成(赵国春等, 2002; Brown, 2007b),解体后于1.1~0.9Ga形成Rodinia和Grenville超大陆,伴随着Rodinia超大陆的解体,在0.6~0.55Ga形成Gondwana超大陆。超大陆形成时期,板块发生碰撞,原始的超海洋遭到破坏,板块缝合线处出现热流异常,弧后地区热流高于正常值,板块俯冲将克拉通碎片带到此处,为超高温变质作用的发生提供了条件(Hoffman, 1991; Brown, 2007b)。

古元古代是华北克拉通稳定固结的关键时期(Zhao et al., 2005, 2006, 2011; Zhao and Zhai, 2013; 赵国春, 2009; Guo et al., 2012; 李三忠等, 2016),也是全球板块构造特征趋于明显的关键时期,同时还是一个超大陆演化时期(Rogers and Santosh, 2002)。因此开展古元古代末期超高温变质作用、高压麻粒岩变质作用及其相关构造热事件(岩墙群事件和裂谷事件等)对研究华北克拉通北缘区域构造格局转变以及古元古代超大陆(如哥伦比亚超大陆)再造具有重要的意义(赵国春等, 2002; Zhao et al., 2006; 李三忠等, 2016; Andersen, 2014)。

极端条件下的变质作用是目前变质地质学研究的前沿领域,高温/超高压变质作用的研究与探讨地球深部组成和结构相关。对其研究在中国的起步较晚,但发展迅猛,不仅在华北孔兹岩带,在冀东、阿尔金、大别山和新疆阿尔泰都有发现,目前高温/超高压变质作用研究正走向深入探讨(Wei et al., 2014; 张建新和孟繁聪, 2005)。本文旨在通过对华北克拉通孔兹岩带和南非Kaapvaal克拉通西南缘Namaqua活动带高温-超高温变质作用研究现状的梳理,对近年来高温-超高温变质作用研究中发现的几点科学问题进行探讨,包括:超高温变质作用的识别标志、峰期变质温度、P-T-t轨迹、构造背景、熔体作用,并指出相关科学问题,以期为后期超高温变质作用的研究提供基础资料。

1 华北克拉通孔兹岩带超高温变质作用

华北克拉通西部、北部分别以祁连山早古生代造山带和泰山-内蒙古-大兴安岭晚古生代造山带为界,南部以秦岭-大别-苏鲁超高压变质带与华南克拉通相邻。作为稳定的地质构造单元,华北克拉通基底主要为中-晚太古代岩石和少量早太古代岩石组成。早前寒武纪地层发育并广泛出露是华北克拉通的一大特色。根据基底的物质组成、构造环境、变质演化和同位素年龄等方面的差异,华北克拉通主要可分为东部陆块、西部陆块和中部造山带(图 2)。东部陆块与中部构造带以信阳-开封-建平断裂为界,西部陆块与中部构造带以大同-多伦断裂分隔。东部陆块主要由早-中太古代英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)片麻岩和少量表壳岩组成,中部造山带由晚太古代TTG片麻岩、似花岗岩、变质超铁镁质-长英质火山岩和沉积变质岩组成(卢良兆等, 1996; Zhao et al., 2001, 2005, 2010; Zhai and Liu, 2003; 赵国春, 2009; Li et al., 2018; Chen et al., 2018)。西部陆块基底主要出露于集宁地区、大青山-乌拉山、固阳-武川、色尔腾、贺兰山-千里山、阿拉善地区等地,可划分为晚太古代TTG片麻岩、表壳岩和早元古代孔兹岩带两个主要构造单元,孔兹岩系主要沿集宁-大青山-乌拉山-千里山-贺兰山呈近东西向线状分布,称之为孔兹岩带(万渝生等, 2000; Zhao et al., 2005; 翟明国, 2009; Yin et al., 2009, 2011)。孔兹岩带是由于阴山陆块与鄂尔多斯陆块的碰撞拼合而构成一条碰撞造山带(Zhao et al., 2005; 赵国春, 2009; Wang et al., 2018)。

图 2 华北克拉通主要构造单元划分(据Zhao et al., 2005) Fig. 2 Main tectonic units of the North China Craton (after Zhao et al., 2005)

华北克拉通超高温麻粒岩主要分布在西部孔兹岩带中,自内蒙古大青山地区首次发现含假蓝宝石泥质片麻岩以来(金巍, 1989),国内华北克拉通孔兹岩带的高温-超高温麻粒岩研究已经引起国内外学者的高度关注(刘福来等, 2002; 郭敬辉等, 2006; 赵国春, 2009; Li et al., 2011; Wang et al., 2011; Tsunogae et al., 2011; Guo et al., 2001, 2012),陆续识别出大约有十多处超高温麻粒岩露头(图 3),但主要集中在中部的大青山地体和东部的集宁-凉城地体(图 3a)。大青山地区包括东坡、沙尔沁(郭敬辉等, 2006; Guo et al., 2012; Jiao and Guo, 2011; Jiao et al., 2015)和林格尔地区的小南沟和南天门(Liu et al., 2012);集宁-凉城地区包括土贵乌拉地区的天皮山、土贵山公园、大井、徐武家等地(Santosh et al., 2006, 2007a; Jiao et al., 2011; Jiao and Guo, 2011);卓资-凉城一带包括小什字、下白窑、徐马窑、赵家窑,这些地区多为过铝/强过铝花岗岩(Peng et al., 2012; Zhang et al., 2012; Li and Wei, 2018)(图 3b)。如前所述,依据Harley (2008),将出现以下三类标志性矿物组合的岩石定名为典型的超高温麻粒岩:(1)假蓝宝石(Spr)+石英(Qz);(2)紫苏辉石(Hyp)+夕线石(Sil)+Qz;(3)含大隅石(Osm)的矿物组合。相应地,对于没有以上典型的矿物组合,一般不能通过矿物组合直接进行判别,而必须通过矿物相化学成分平衡计算来确定经历了超高温变质作用的岩石,称之为非典型的超高温麻粒岩。上述已经识别出的露头中,已确定的典型的超高温麻粒岩分布在土贵乌拉和卓资-凉城一带,包括天皮山、土贵山公园、大井、徐武家、徐马窑、小什字、红寺沟;非典型的超高温麻粒岩分布在大青山和怀安地区包括东坡、沙尔沁、和林格尔其分布如图 3b, c所示。这些超高温变质麻粒岩都是变质沉积岩, 且露头尺度较小(<0.1km2),在区域上呈面状多点分布。多数露头中,超高温麻粒岩与辉长苏长岩侵入体紧邻,如东坡、土贵山和徐武家,在土贵乌拉附近的岩芯中也见辉长苏长岩,指示同期侵入的幔源基性岩浆为超高温变质作用提供了额外热量(Peng et al., 2010; 赵国春, 2009; Guo et al., 2012)。

图 3 华北克拉通超高温麻粒岩分布图 (a)华北克拉通西部带构造分区(据Zhao et al., 2012);(b)孔兹岩带中超高温麻粒岩的主要露头分布(据郭敬辉等, 2002);(c)大井/土贵乌拉地区地质简图及超高温麻粒岩的露头分布(据Jiao and Guo, 2011) Fig. 3 Distribution of ultrahigh-temperature metamorphic localities in the North China Craton (a) tectonic division of the Western Block into the Ordos and Yinshan blocks separated by the EW-trending Paleoproterozoic Khondalite Belt (after Zhao et al., 2012); (b) distribution of high-grade metamorphic rocks in the eastern segment of the Khondalite Belt (after Guo et al., 2002); (c) simplified geological map of the Dajing/Tuguiwula area (after Jiao and Guo, 2011)

孔兹岩带代表性超高温麻粒岩的变质条件及年龄统计如表 1所示。中段大青山地区东坡的超高温假蓝宝石麻粒岩位于苏长岩岩脉与长英质麻粒岩之间,是SiO2不饱和岩石,相对低Mg,含有大量Spr,但缺少Qz和Opx,不发育超高温标志性矿物组合,经历了从进变质、峰期变质(Spr+Grt+Spl+Sil+Bt+Pl)、降温减压(M3: Sil+Bt+Grt)到退变至含少量的Crd+Ilm(M4)四个变质阶段的顺时针P-T轨迹,利用有效全岩成分视剖面图解和相关矿物的等化学成分钱,得出了910~1020℃的变质温度峰期和ca.1.93~1.92Ga、1.85Ga的超高温变质年龄(Guo et al., 2012; Jiao et al., 2017)。大青山西段沙尔沁地区的含假蓝宝石泥质麻粒岩也记录了4个变质演化阶段,进变质阶段的Sil+Bt矿物组合、峰期变质的Spr+Mag、近等温降压后的Spl+Crd矿物组合到等压降温形成新的Sil+Bt矿物组合; 记录了峰期温压条件为860~890℃/7.5~8.5kbar,峰期变质年龄为1.86Ga的顺时针变质作用P-T轨迹,虽然没有达到典型超高温变质作用的温度,但指示了一个快速升温、近等压降温和快速降温的独特变质作用的过程(Jiao et al., 2015)。和林格尔地区孔兹岩带中的Spl-Grt-Sil麻粒岩,据矿物组合的化学成分估算出峰期变质条件达到940~1030℃/6.5~7.5kbar,变质年代1.92Ga(Liu et al., 2012)。

表 1 孔兹岩带超高温麻粒岩露头的变质条件及年龄统计 Table 1 The metamorphic condition and age of UHT granulite of the Khondalite Belt

集宁-凉城地体的土贵乌拉地区超高温麻粒岩为SiO2饱和岩石,相对富MgO,土贵山地区的假蓝宝石麻粒岩发育特征的超高温组合Grt+Mper+Pl+Kfs+Qz+Bt±Spr±Spl± Sil,暗色矿物含量少于5%,峰期变质温压条件相对较高(>1000℃),记录了逆时针P-T轨迹,超高温变质年龄为1.9Ga(Santosh et al., 2007a, b);然而,Li and Wei (2018)对土贵山地区的假蓝宝石麻粒岩进行热力学模拟计算,得出温度峰期>960℃/8~9kbar,但为顺时针P-T轨迹的变质演化过程,超高温变质年龄为1.92Ga。东边的大井Mg-Al麻粒岩,其峰期矿物组合到达Spr+Qz+Grt+Sil稳定域,估算温压条件>1000℃/10kbar(Jiao et al., 2011),记录了逆时针的P-T轨迹;天皮山的超高温麻粒岩保留有Spr+Qz、Hyp+Sil+Qz组合,指示的超高温变质作用温度达1050℃以上,采用电子探针独居石Th-Pb方法和SHRIMP锆石U-Pb方法,得到的变质作用时代是1.92Ga(Santosh et al., 2007a, b);向南徐武家地区的假蓝宝石麻粒岩也达到Spr+Qz稳定域,据二长石温度计计算出最低的峰期温压条件也可以达到966~1019℃/8kbar(Jiao and Guo, 2011)。位于IMSZ南部地区的徐马窑地区发现的Spl+Qz组合的超高温麻粒岩,其变质温度ca.875~975℃,记录了逆时针P-T轨迹(Zhang et al., 2012)。小什字的石榴石岩记录了3个变质演化阶段,峰期未出现典型的超高温矿物组合,根据相平衡和金红石中Zr计算出来的温度,M2阶段的P-T条件为910~925℃/6.8~71kbar达到了超高温变质作用的条件。已确定的红寺沟超高温露头出现在土贵乌拉以南的红寺沟村,其峰期的矿物组合为Grt1+Sil+Kfs+Pl+Spl+Ilm+Qz,出现了Sil+Qz的典型的超高温矿物组合,记录了930~1050℃的变质温度(Yang et al., 2014)。位于集宁地块和怀安地块碰撞带的赵家窑地区的“常规的”泥质麻粒岩峰期矿物组合为Grt+Bt+Sil+Kfs+Pl+Spl+Qz,不具有典型的超高温矿物组合,但通过精细的相平衡计算,在减压增温过程中达到950~1000℃的超高温变质温度,进而降温冷却,记录了顺时针P-T轨迹和1.84Ga的变质年龄;超高温变质是继Ky稳定域之后,在减压升温过程中达到的;接下来降温过程经历的超固相线冷却和亚固相线冷却的两阶段;反映加厚地壳岩石在抬升过程中先加热后冷却的过程(Li and Wei, 2016)。

集宁-凉城地体出露的超高温麻粒岩,主要为麻粒岩相变质沉积岩,常与S型花岗岩和辉长苏长岩相伴生。通常认为,S型花岗岩是孔兹岩系经历高温-超高温变质作用发生部分熔融形成的产物(翟明国等, 1996; 钟长汀等, 2006; Peng et al., 2012),其形成时代~1.85Ga(Peng et al., 2012);或是来自新太古代下地壳和古元古代新生下地壳熔体的混合(郭敬辉等, 1999; 张华锋等, 2013), 其内还出包含有大量超高温变质岩石,呈透镜状产于孔兹岩内(郭敬辉等, 2006)。孔兹岩系多处发育NEE-SWW向的大型韧性剪切带,韧性剪切时代与后期中压麻粒岩相退变作用相对应(张华锋等, 2009, 2013), 其形成年龄在1930~1890Ma之间(郭敬辉等, 2002; 钟长汀等, 2006)。锆石以及独居石原位U-Pb定年分别获得1927~1917Ma的超高温峰期变质年龄(Santosh et al., 2006; 2007a,b)。

麻粒岩相岩石在碰撞变质带的变质过程通常是以顺时针变质轨迹为特征的(Harley, 1989; Zhao et al., 2005, 2012; Zhao and Zhai, 2013)。总结华北克拉通孔兹岩带中各超高温露头的P-T轨迹可以看到逆时针的P-T轨迹的记录,包括土贵乌拉地区的天皮山、土贵山公园、大井和徐马窑(图 4)。Shimizu et al. (2013)认为逆时针方向的P-T演化的实现需要在俯冲/碰撞阶段向下地壳大量输入热量,然后挤压和冷却,可能与岩浆底侵作用或高温外部流体通过软流圈上涌有关。土贵乌拉地区位于两大陆块(阴山和鄂尔多斯)的主要碰撞缝合带,在古元古代板块碰撞、断裂之前具有较长时间的俯冲加厚历史(Shimizu et al., 2013)。

由于不同露头和地区的UHT麻粒岩的原岩化学成分不同,图 4利用了FMAS系统中可用的岩石成因网格对华北克拉通孔兹岩带的P-T轨迹进行评价,可以看出进入超高温变质阶段的主要变质矿物组合都落入UHTM区域,并通过不同的变质反应推出顺时针或逆时针的P-T轨迹。

图 4 图中显示了FMAS系统的岩石成因网格和Spr+Qz、Spl+Qz和Opx+Sil+Qz的稳定域(据Kelsey, 2008修改) (1)孔兹岩带东端赵家窑泥质高压麻粒岩(Li and Wei, 2016);(2)土贵乌拉泥质UHT高压麻粒岩(Li and Wei, 2018);(3)土贵乌拉泥质UHT麻粒岩(Santosh et al., 2012);(4)徐马窑泥质UHT麻粒岩(Zhang et al., 2012);(5)土贵乌拉南面红寺沟泥质UHT麻粒岩(Yang et al., 2014);(6)土贵乌拉泥质UHT麻粒岩(Santosh et al., 2007a);(7)孔兹岩带东端孤山泥质HP-(U)HT麻粒岩(Wu et al., 2017);(8)集宁地区小什字(Jiao et al., 2013);(9)大青山东坡(Guo et al., 2012);(10)大青山东坡(Jiao et al., 2017);(11)大青山沙尔沁(Jiao et al., 2015) Fig. 4 P-T diagram showing a petrogenetic grid in the FMAS system (modified after Kelsey, 2008) and available P-T trajectory of UHT metamorphic rocks from the Inner Mongolia Suture Zone The stability fields of Spr+Qz, Spl+Qz and Opx+Sil+Qz are also shown. The summary P-T path of granulites from the Western Khondalite Belt of Western Block, NCC. (1) the pelitic HP granulite of Zhaojiayao, Jining complex (Li and Wei, 2016); (2) the pelitic UHT granulites in the Tuguiwula area, Khondalite Belt (Li and Wei, 2018); (3) the UHT granulites in the Tuguiwula area (Santosh et al., 2012); (4) the pelitic UHT granulite of the Xumayao, east most segment of the Khondalite Belt in the NCC (Zhang et al., 2012); (5) pelitic UHT granulite from Hongsigou of south of Tuguiwula (Yang et al., 2014); (6) UHT granulites from the Tuguiwula area (Santosh et al., 2007a); (7) the pelitic HP-(U)HT granulite from Gushan, the eastern end of the Khondalite Belt (Wu et al., 2017); (8) Xiaoshizi from Jining terrane (Jiao et al., 2013b); (9) Dongpoin from the Daqingshan terrane (Guo et al., 2012); (10) Dongpoin from the Daqingshan terrane (Jiao et al., 2017); (11) Shaerqin from the Daqingshan terrane (Jiao et al., 2015)

华北克拉通孔兹岩带中超高温麻粒岩峰期特殊的矿物组合主要可归纳为以下三类:(1)尖晶石(Spl)+石英(Qz);(2)假蓝宝石(Spr)+石英(Qz);(3)含假蓝宝石(Spr)±尖晶石(Spl),但缺少石英(Qz)的非典型超高温变质组合。

Zhang et al. (2012)的研究结果,徐马窑露头的变质演化过程中主要经历了3个阶段,2个主要的变质反应:(1)近等温升压阶段(在975℃,从~6kbar升压至7.3kbar左右)。峰期超高温矿物组合Spl+Qz,通过反应Spl+Qz→Grt+Sil(+Crd)形成石榴石和夕线石(图 4也可看出);(2)近等压冷却阶段(在8kbar,从975℃到875℃),其反应以石榴石分解成黑云母为代表,其反应为Grt+H2O→Bt+Sil+Qz,因此形成了逆时针的P-T轨迹。

红寺沟含石榴石泥质麻粒岩的超高温矿物组合也是Spl+Qz,但与徐马窑露头相反,它是通过等压降温达到超高温,发生的变质反应为石榴石分解形成尖晶石和石英Grt→Spl+Qz,因此记录了顺时针P-T轨迹的变质演化过程。

土贵乌拉地区含有假蓝宝石的麻粒岩中典型的超高温矿物组合为Spr+Qz,假蓝宝石是由尖晶石、石英和夕线石反应得到的,即Spl+Qz+Sil→Spr,而反应Spr+Qz+Grt→Opx+Sil生成了Opx+Sil+Qz的矿物组合,该矿物组合也形成于超高温的峰期阶段,只是温度条件比Spr+Qz的稳定域要稍低(Santosh et al., 2012)。从Spr+Qz到Opx+Sil+Qz的矿物组合指示了一个等压冷却的阶段,从而构成了逆时针P-T轨迹(图 4)。但同样在土贵乌拉地区,对含有或缺失假蓝宝石的泥质麻粒岩的变质作用研究得出了峰期温度>960℃/8~9kbar的顺时针P-T轨迹(Li and Wei, 2018),该研究基于观察到峰期温度下假蓝宝石与尖晶石共同出现,而不是如前期研究观察到的尖晶石先于假蓝宝石出现的现象(如Santosh et al., 2007a, 2012)。

由此可见Spr-Qz组合相对于Spl-Qz组合出现在P-T空间的低压侧,表示了压力增加的变质过程(图 4)。当达到一定的压力条件,Spl+Qz的超高温矿物组合被Spr+Qz的超高温矿物组合替代,因此,在近等温度升压条件下,是Spl替代Spr,还是Spr替代Spl决定了顺时针和逆时针的P-T轨迹。

沙尔沁地区的含假蓝宝石泥质变质岩出现高温矿物Spr,但缺少Qz,因此未达到Spr+Qz稳定域,记录了与典型的含假蓝宝石+石英麻粒岩不同的变质轨迹(Jiao et al., 2015)。Spr形成的反应为Sil+Bt+Pl1±Qz=Spr+Mag±Spl2+Pl2+Kfs+Liq;进一步的变质反应Spr±Qz→Crd+Sil3-4±Spl3和Spr±Qz+Pl2→Crd+Sil3-4±Spl3+Pl3记录了顺时针变质轨迹(Jiao et al., 2015)。

小什字的石榴石岩,其峰期(M2)的Grt或Crd+Spl是由Grt1、Sil、Bt和±Qz反应而来的,其峰期温度达到950℃,连同一些标志性超高温矿物组合(例如Spr+Qz和Opx+Sil+Qz)的出现,表明了孔兹岩带原生岩在大规模熔融产生S型花岗岩类和石榴石残余体的过程中或之前都经历了很高的温度(Jiao et al., 2013)。

此外,Yang and Wei (2017a)利用稀土元素温度计确定华北克拉通东部地块冀东地区基性麻粒岩(Grt+Di+Hyp)也记录了顺时针超高温变质轨迹,其P-T条件为950~1070℃/0.9~1.0GPa,变质年龄为2.52~2.51Ga(Yang and Wei, 2017a)。指示一种特殊的太古宙构造环境,包括表壳岩块体向TTG岩浆海深部沉降,然后发生穹窿抬升的构造演化过程。

对于华北克拉通西部孔兹岩带孔兹岩带超高温变质的构造背景存在不同认识。Zhao et al. (2005)认为该孔兹岩带为北部阴山陆块和南部鄂尔多斯陆块在~1.95Ga碰撞拼合形成,碰撞造山后的伸展,拉张作用引起的地幔上涌可能导致了超高温变质作用的发生(赵国春, 2009);Zhai and Santosh (2011)提出集宁-凉城地区超高温麻粒岩所处的丰镇活动带经历了大陆裂解-俯冲-碰撞,伴随着伸展构造辉长岩浆底侵而引起超高温变质作用的热异常(翟明国, 2009);Santosh and Kusky (2010)提出的双俯冲模式中认为该区经历早期太平洋型俯冲-增生以及最终喜马拉雅型碰撞拼合过程;Peng et al. (2012)Guo et al. (2012)则认为该区为洋中脊俯冲构造环境,伴随软流圈上涌导致超高温变质发生;新近发现的孔兹岩带中部东坡西南处的莎尔沁~1.86Ga高温-超高温变质作用则认为发生于陆-陆碰撞后地壳伸展的背景下(Jiao et al., 2015)。东坡超高压麻粒岩独居石结构、矿物组合以及对应的SHRIMP U-Pb定年证实了两期超高温变质事件的存在(Jiao et al., 2018)。由此可见,华北克拉通西部孔兹岩带超高温变质事件已成为古元古时期地壳演化的重要构造结点。

2 Kaapvaal克拉通西南部Namaqua活动带高温-超高温变质作用研究进展

在南非Kaapvaal克拉通及其西南部中元古代Namaqualand-Natal活动带西部的Namaqua高级变质区出露有从角闪岩相,麻粒岩相到超高温麻粒岩。在Kaapvaal克拉通内部及Namaqua变质高级区的许多麻粒岩捕掳体是在金伯利岩中发现,因此图 5的许多麻粒岩地是金伯利岩出露位置。南非的Namaqualand变质杂岩,属于新元古代泛非造山带(Macey et al., 2011)。在花岗质片麻岩中出现的超高温矿物组合包括铁尖晶石+石英(Hc+Qz)和含大隅石(Osm)Fe-Al矿物组合、刚玉+石英组合(Crn+Qz)等等(Waters, 1991; Norwicki et al., 1995; Mouri et al., 2003; Colliston et al., 2014)。此外,有些地方还出现罕见的高温硼硅酸盐如柱晶石(kornerupine)和硅硼铝镁石(werdingite)(Waters and Moore, 1985),以及含单斜辉石成分的硅灰石(wollastonite)等(Seto et al., 2006)。这些丰富的、特殊的超高温变质类型岩石为研究超高温UHT变质作用的和动力学机制提供了更加丰富的研究材料和基地,但研究程度仍然有限。

图 5 南非Kaapvaal克拉通和西南部Namaqua活动带构造简图及其高温-超高温麻粒岩露头的分布图(据Dawson and Smith, 1987; Schmitz and Bowring, 2003, 2004修改) Fig. 5 Schematic tectonic map of Kaapvaal Craton and Namaqua Mobile Belt and outcrops of the HT-UHT granulites (modified after Dawson and Smith, 1987; Schmitz and Bowring, 2003, 2004)

Dawson and Smith (1987)在太古代Kaapvaal克拉通中部的Kroonstadt西北部首次发现了金伯利岩中捕获的富Mg、Al并与石墨共生的含假蓝宝石泥质麻粒岩(Spr+Qz+Grt±Sil)捕掳体(图 5)。进一步的岩石矿物学研究确定了麻粒岩的峰期变质P-T条件(>1000℃,9~11kbar)和近等压冷却退变过程,并给出了2590±80Ma的变质年龄(Dawson et al., 1997)。Schmitz and Bowring (2003)进一步将该变质年龄精确到2.72Ga,第一次将克拉通内部岩浆活动和地壳扩张在地表的反应与下地壳克拉通岩石圈的极端瞬时热效应联系起来,认为现今Kaapvaal克拉的中、西部的2.7Ga Ventersdorp超群构造岩浆作用发生在上、下地壳的地震波界面,是对下地壳流变作用响应;进而阐明了超高温变质作用是在非均匀的克拉通岩石圈减薄和叠加的热对流岩浆作用下发生的。南非中太古代Limpopo高级变质带中发育超高温变质岩,如在Zimbabwe中部的铝直闪石石榴石岩的石榴石变斑晶中发现Crn+Qz±Sil, Spr+St±Opx以及Spr+Sil等矿物组合(Tsunogae and van Reenen, 2006),岩石记录了顺时针P-T轨迹,压力峰期条件为740~760℃/24~26kbar,继之温度峰期条件为890~930℃/9~10kbar,其后发生等压冷却,并得出Kaapvaal和Limpopo两个太古代克拉通在ca. 2.0Ga发生碰撞闭合。

在南非中元古代Namaqualand-Natal活动带西部Namaqua变质区的Bushmanland地区出露有从角闪岩相,麻粒岩相到超高温麻粒岩相的三个变质带,在这一地区陆续发现了含柱晶石片麻岩、铁尖晶石-石英麻粒岩、含大隅石(Osm)泥质麻粒岩和变质钙质硅酸盐麻粒岩(Waters and Moore, 1985; Waters, 1989, 1991; Norwicki et al., 1995; Seto et al., 2006; Colliston et al., 2014)。其中超高温变质矿物组合包括Hc-Qz-Osm, 还有Crn+Qz等(Waters, 1991; Norwicki et al., 1995; Colliston et al., 2014)。大隅石化学成分富Mg,铁多为Fe3+,出现源于高氧逸度、低水活度环境。大隅石的形成来自变质反应:Bt+Crd+Kfs=Osm+L(melt);Crd+Opx+Kfs+Qz=Osm;Bt+Crd+Qz=Osm+Opx+Kfs+L(如图 6a),大隅石出现的峰期条件为~870℃/5kbar,随之发生等压冷却至~760℃。或许是由于计算方法的限制,这里Osm的出现并没有达到超高温的温度条件,与其作为典型超高温矿物的身份相悖。

图 6 南非Namaqua变质区超高温矿物组合的峰期变质条件 (a) KFMASH体系以及KMASH体系反应方程,围绕着[Sil, Grt]不变点简化省略,阴影部分是峰期变质条件(引自Norwicki et al., 1995);(b)实验测得的假蓝宝石和柱晶石的稳定域,反应(1)的箭头表示随着Fe增加和被取代曲线的位移情况(引自Waters and Moore, 1985).矿物缩写:Chl-绿泥石;Crd-堇青石;Crn-刚玉;En-顽火辉石;Krn-柱晶石;Spr-假蓝宝石;Spl-尖晶石 Fig. 6 The peak metamorphic P-T conditions of UHT mineral assemblage in the Namaqua Metamorphic Complex, South Africa (a) The KFMASH reactions, and the KMASH reactions around the [Sil, Grt] invariant point are omitted for clarity. The hatched area represents the most likely peak metamorphic P-T conditions (after Norwicki et al., 1995); (b) experimental determinations of kornerupine and sapphirine stability. Arrows on reaction (1) show sense of displacement of curve with increasing Fe and B substitution in the structure (after Waters and Moore, 1985). Mineral abbreviations: Chl-chlorite; Crd-cordierite; Crn-corundum; En-enstatite; Krn-kornerupine; Spr-sapphirine; Spl-spinel

Namaqua变质区有些地方还出现罕见的高温硼硅酸盐如柱晶石(kornerupine, Krn)其结构式XM9T5O22-(X1/32/3)M9T5O21(OH)是一个系列,其中X是一个不规则的部分填充的位点,M和T分别是八面体和四面体位点(Moore and Araki, 1979),和硅硼铝镁石(werdingite,其矿物分子式为((Mg, Fe)2Al14Si4B4O37)(Waters and Moore, 1985)。柱晶石可能形成于麻粒岩相变质作用的峰期或稍过峰期,其温压条件为750~800℃/4~6.5kbar(Seifert, 1975)(图 6灰色框内),在岩石中与高级变质矿物(假蓝宝石,斜方辉石等)密切相关(Waters and Moore, 1985),通过以下反应可限定无硼柱晶石在Mg-Al2O3-SiO2-H2O体系中的稳定域(图 6b):

(1)
(2)
(3)

另外,在~900℃/5kbar的无水条件下,电气石分解也会产生kornerupine+sapphirine+liquid+vapour (Watres and Moore, 1985及其引用的文献)。硅硼镁铝矿和柱晶石是电气石进变质反应的产物,与硅硼镁铝石相比,柱晶石存在于更高的压力条件下(Werding and Schreyer, 1978)。

此外Namaqualand麻粒岩的硅灰石(wollastonite Ca1.96Fe0.01Al0.01Si2.01O6)中出熔单斜辉石成分的,记录了800~860℃的变质温度(Seto et al., 2006)。这些高温组合比较特别,研究程度仍然有限。

南非Kaapvaal克拉通内部的Bushveld Complex周围发育接触变质带。在变质泥岩、硅质岩和碳酸盐岩中,即出现Al饱和超高温组合,还出现含有独特的钙镁饱和等Ca-Mg质和Ca饱和的矿物组合。接触变质作用引发了两方面的研究意义,一是岩体高温引起进变质作用,脱挥发分从而造成流体与岩浆、与围岩发生作用。根据流体的来源、性质以及接触面的传质程度,岩浆的化学特征也会受到影响。其次,除了流体渗透混染,从围岩到岩浆中物质的转移是以壳源熔体的形式加入(Cawthorn and McCarthy, 1985; Cawthorn, 2013; Barton et al., 1986),因而围岩大规模的部分熔融与原始岩浆的混染,由此引起底部泥质岩的部分熔融并发生超高温变质作用(Harris et al., 2003; Johnson et al., 2003; Buick et al., 2001, 2004)。与常见的泥质岩发生超高温的情况不同,在此最引人兴趣的是对于富Ca的岩石发生超高温的研究。Bushveld limb北部的Platreef地区的研究充分表明,镁铁质岩浆不仅受到来自变泥质岩的地壳物质混染,而且也受到下盘接触的白云质岩石作用(Harris and Chaumba, 2001)。从变质岩石学角度,钙硅酸盐岩完整记录并保存了变质峰期条件;Bushveld东部的捕虏体组合指示了其温度接近于镁铁质岩浆侵入时的温度(Wallmach et al., 1989; Pitra and De Waal, 2001; Petzer, 2003; Petzer and Reinhardt, 2004)。此外,钙硅酸盐岩是灵敏的流体监视器,可以区分流体成分在进变质-退变质的不同阶段的变化(Buick et al., 2000)。

南非Kaapvaal克拉通内部Bushveld Complex提供了独特的侵入-接触变质高温-超高温HT-UHT变质作用实例;大量的镁铁质岩浆侵入地壳沉积序列,其中钙质硅酸盐捕掳体(Calc-silicate xenoliths)记录了>1000℃的超高温矿物组合,其保存的特有的超高温矿物组合还未在国内发现。与国内的Al-Mg质和Al饱和超高温岩石不同的是,这里岩石含有钙镁橄榄石(monticellite; CaMgSiO4),镁硅钙石(merwinite; Ca3MgSi2O8),镁黄长石(akermanite; Ca2MgSi2O7),镁橄榄石(forsterite; Mg2SiO4)等Ca-Mg质岩石的超高温矿物,并且经历了多阶段变质作用和流体作用(Wallmach et al., 1989; Clarke et al., 2009a, b; Santosh and Kusky, 2010; Reinhardt et al., 2015)。Wallmach et al. (1989)的岩石成因格子,涵盖了CaO-MgO-SiO2-CO2系统中已知的高级变质程度,在此基础上加以简化成P-T图,得出接触变质边缘带和捕虏体内稀有矿物共生体的稳定域和反应关系(图 7)。此外,以下几组矿物共生组合也明确了钙硅酸盐捕虏体达到的超高温P-T条件。

图 7 P-T图显示了钙质硅酸盐捕虏体高温变质过程中可能发生的矿物反应 阴影区和点状区表明了边缘区和临界区捕掳体的P-T条件(据Wallmach et al., 1989).矿物缩写:Wo-硅灰石;Mtc-钙镁橄榄石;Mw-镁硅钙石;Ak-镁黄长石;Fo-镁橄榄石;Per-方镁石 Fig. 7 P-T diagram showing possible mineral reactions that can occur during high-temperature metamorphism of Calc-silicate xenoliths The hatched and the dotted areas indicate the P-T conditions under which the marginal and the critical zone magma intruded (after Wallmach et al., 1989). Mineral abbreviations: Wo-wollastonite; Mtc-monticellite; Mw-merwinite; Ak-akermanite; Fo-forsterite; Per-periclase

(1) 钙镁橄榄石(monticellite)中出溶镁橄榄(forsterite):T>1200℃;

(2) 出现脱羟基的富Ba金云母(phlogopite):T>1050℃,>1kbar;

(3) 岩体边缘捕虏体方解石(calcite)-镁黄长石(akermanite)-钙镁橄榄石(monticellite)的共生组合:T < 1390℃,P < 3.1kbar;

(4) 接触变质带捕虏体镁橄榄石(forsterite)-方镁石(periclase)-钙镁橄榄石(monticellite)的共生组合:T < 1390℃,P < 2.3kbar。

上述各露头既包括超高温麻粒岩露头,也包括特殊的高温-超高温矿物露头(如在Namaqua变质区变质钙质硅酸盐麻粒岩、含柱晶石片麻岩在温度峰期分别出现了特殊的超高温矿物硅灰石和柱晶石)。其变质条件、年龄及特殊矿物的温度条件统计如表 2

表 2 南非高温-超高温露头的变质条件、年龄及特殊矿物稳定条件统计 Table 2 Metamorphic conditions, ages and stability conditions of special minerals of high-grade metamorphic rocks in South Africa

各露头超高温麻粒岩P-T轨迹和变质峰期在在P-T图解上的稳定域以及特殊高温-超高温矿物的稳定范围如图 8。其中Grt+Spr+Qz区域为Kaapvaal克拉通中部含石英-假蓝宝石麻粒岩捕掳体峰期稳定域,箭头1记录的是该岩石的退变过程。区域7的斜线阴影和圆点阴影分别代表Bushveld Complex东部超高温钙质硅酸盐捕虏体边缘区和临界区超高温矿物组合的稳定范围,其温度甚至远高于假蓝宝石出现的温度范围,指示了一个超高温低压的环境。

图 8 南非代表性HT-UHT露头的P-T轨迹、峰期稳压范围或出现的特殊矿物的稳定域(据Tsunogae and van Reenen, 2006) 1. Kaapvaal克拉通中部含石英-假蓝宝石麻粒岩捕掳体(Schmitz and Bowring, 2003);2. Limpopo高级变质带铝直闪石-石榴石麻粒岩(Tsunogae and van Reenen, 2006);3. Limpopo带Beit Bridge泥质麻粒岩(Zeh et al., 2004);4. Namaqua变质区含柱晶石片麻岩(Waters and Moore, 1985);5. Namaqua变质区铁尖晶石-石英麻粒岩(Waters, 1989, 1991);6. Namaqua变质区含大隅石泥质麻粒岩(Norwicki et al., 1995; Colliston et al., 2014);7. Bushveld Complex东部超高温钙质硅酸盐捕虏体(Wallmach et al., 1989) Fig. 8 The P-T trajectories, peak condition of typical HT-UHT outcrops in South Africa or the stable domain of special minerals (after Tsunogae and van Reenen, 2006) 1. Spr+Qz granulite xenoliths in central Kaapvaal Craton (Schmitz and Bowring, 2003); 2. the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe, Ged+Grt granulite (Tsunogae and van Reenen, 2006); 3. pelitic granulite from Beit Bridge, Limpopo Belt (Zeh et al., 2004); 4. kornerupine-bearing granulite in Namaqualand Metamorphic Complex (Waters, 1989, 1991); 5. Hc+Qz granulite in Namaqualand metamorphic complex; 6. Osumilite-bearing metapelitic granulites in Namaqualand Metamorphic Complex (Norwicki et al., 1995; Colliston et al., 2014); 7. calc-silicate xenoliths in the eastern Bushveld Complex (Wallmach et al., 1989)
3 超高温变质作用成因研究中的科学问题

变质地质学领域对超高温变质作用的研究方兴未艾,是继过去30多年来超高压变质作用研究高峰之后的又一重要前缘课题,近年来的研究表现出的主要科学问题可以总结如下:

(1) 标志性矿物组合是识别超高温变质作用的主要依据,常见的有鉴别性Spr+Qz、Opx+Sil+Qz、Osm矿物组合, 以及具有指示性的Spl-Qz、Crn-Qz、Ca-Fe-Mg-Al四相辉石矿物组合、具有中条纹和反条纹长石的K-Na-Ca三相长石等矿物组合。但有些岩石受限于原岩化学成分不出现这些典型的超高温变质矿物(张建新和孟繁聪, 2005; Guo et al., 2012; Li and Wei, 2016; Yang and Wei, 2017a, b), 从而制约了超高温麻粒岩的识别及其区域分布范围的限定。在超高温变质作用中,变质作用P-T条件的限定一直是个难题,一般来说,传统的Fe-Mg交换的地质温度压力计,如二辉石温度计、石榴石-斜方辉石温度计,其封闭温度都低于麻粒岩相变质作用条件,很难记录超高温变质条件。因此,如何有效的确定超高温变质作用的P-T条件非常具有很大挑战性。为了解决这一问题,除了可借助能有效识别超高温麻粒岩的温度计,如紫苏辉石Al含量温度计、二长石温度计、锆石Ti含量温度计(Ti in zircon)、金红石Zr含量温度计(Zr in rutile)和石英中的Zr含量温度计(TitiumQ)之外。对超高温岩石精细结构、熔体包裹体的研究,以及通过热力学计算深熔作用过程中超高温矿物的消失与演化都能推算出分期矿物组合的存在以及超高温的变质温度(Brown, 2007c; Brown and Korhonen, 2009; Korhonen et al., 2013; 魏春景, 2016; Li and Wei, 2016; Yang and Wei, 2017a)。

(2) 目前对超高温变质作用的构造背景有不同认识。包括有碰撞造山带(Ellis, 1987; Schmitz and Bowring, 2004); 碰撞造山地壳加厚后伸展(e.g. Harley, 1987, 1998; Schmitz and Bowring, 2003; Brown, 2006, 2007a, b, 2014; Kelsey, 2008; 郭敬辉等, 2006; Guo et al., 2012, Jiao et al., 2015); 碰撞增生岛弧(Bohlen, 1991)或弧后盆地(Brown, 2006, 2007a, b; Collins and Windley, 2002; Gorczyk and Vogt, 2015; Bial et al., 2015)等。超高温变麻粒岩所记录的P-T轨迹包括顺时针和逆时针两种。在华北克拉通西部孔兹岩带中这两种P-T轨迹都存在,顺时针P-T轨迹如西部孔兹岩带大青山地区的含假蓝宝石超高温麻粒岩(郭敬辉等, 2006; Guo et al., 2012; Jiao et al., 2015); 逆时针P-T轨迹如内蒙孔兹岩带土贵乌拉的含Spr的Mg-Al麻粒岩(Santosh et al., 2007a),即使在土贵乌拉也有研究得出顺时针P-T轨迹(Li and Wei, 2018)。在世界其他超高温变质带也存在着这两种相背的P-T演化过程,如印度南部高止山脉的含Osm的Mg-Al麻粒岩(Korhonen et al., 2013)。南非Kaapvaal克拉通西南缘Namaqua活动带Namaqua变质区铁尖晶石-石英麻粒岩(Waters, 1989, 1991),印度高止山脉东部的Anakapalle地区的超高温麻粒岩都记录了逆时针P-T轨迹(Korhonen et al., 2013)。南非Limpopo带Beit Bridge杂岩中的泥质麻粒岩和Zimbabwe中部的铝直闪石石榴石麻粒岩(Zeh et al., 2004; Tsunogae and van Reenen, 2006)、含Osm的阿尔及利亚Mg-Al麻粒岩(Adjerid et al., 2013)和Gangaraja Madugula附近地区的含假蓝宝石麻粒岩都记录了顺时针P-T轨迹(Dharma Rao et al., 2012);Kaapvaal克拉通金伯利岩中Spr-Qz超高温麻粒岩捕掳体记录了超高温冷却过程(Schmitz and Bowring, 2004)。那么这两种P-T轨迹是否代表特定的构造背景和地质意义,其动力学机制是怎样的?

(3) 华北克拉通西部孔兹岩带的超高温麻粒岩研究备受国内外学者广泛关注。在该地区已发现的超高温麻粒岩露头中,多数都与辉长苏长岩侵入体紧邻,这指示了同期侵入的幔源基性岩浆是超高温变质作用的额外热源。那么,超高温变质作用是仅在区域上局部地点发育?还是整个区域上都达到了超高温变质温度?这一科学问题的解决主要在于明确超高温麻粒岩的产出地质特征,有效鉴别出更多的超高温麻粒岩露头,找出其分布特征和地质关系。南非研究区的高温-超高温麻粒岩的构造背景与其多样的、特殊的矿物组合相对应,丰富多样;除了Namaqua造山带中的泥质麻粒岩,还包括赋存在金伯利岩中的泥质麻粒岩捕掳体和Bushveld变质杂岩体接触变质麻粒岩。因此除了原岩相对封闭的变质作用体系,还受到岩浆作用及岩浆化学成分的影响,使得高温-超高温变质作用的研究更加丰富多彩。

(4) 高温-超高温变质过程中随着温度升高,通过深熔反应产生很强的活动性的熔体,熔体含量逐渐增加,可以在岩石体系中特定部位集中,发生分凝作用(segregation),也可以从体系中分离出去(extraction),形成岩浆脉体和侵入体,同时,在降温过程中,留在岩石体系中的熔体会发生结晶作用,释放出水流体,引起变质岩石的逆反应(back reaction)和/或退变质反应(Kriegsman, 2001; 魏春景, 2016)。高级变质岩石的矿物组合及组构特点取决于不同的进变熔融反应,不同程度的熔体分凝和汲取,以及不同程度的退变反应三种过程的综合效应。因此,超高温变质过程中熔体的作用有别于其他变质作用的一个重要特征,在不同的超高温变质体系中,熔体的行为和作用是至关重要的问题。因此设计研究超高温变质过程中,流体存在和缺失的情况产生部分熔融的化学机制和动力学机制,鉴别高温-超高温岩石转化以及矿物变形的特征。

综上所述,解决以上关键问题的方法包括查明高温-超高温麻粒岩产出分布的地质特征。通过精细矿物学、岩石学和地球化学研究,(1)确定并对比不同类型和地质属性的高温-超高温麻粒岩的成因特征,建立接触火成岩和变质岩的空间关系;(2)探讨麻粒岩的形成条件、构造背景和演化过程,研究相邻的铁镁质岩浆岩对超高温变质作用的影响,尤其是在平行岩浆围岩界面发生成分变化的可视区域的相变;(3)探讨部分熔融和重新水化过程中流体的作用以及岩体形变过程中的部分熔融,部分熔融和交代作用下麻粒岩的演化特征;(4)定量限定变质反应以及变质作用P-T-t轨迹、元素地球化学和熔体作用行为;(5)确定岩石记录可能的变质事件和年代学记录,定量评价高温-超高温过程中变质演化的时间跨度和演化速率。

参考文献
Adjerid Z, Godard G, Ouzegane KH and Kienast JR. 2013. Multistage progressive evolution of rare osumilite-bearing assemblages preserved in ultrahigh-temperature granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology, 31(5): 505-524. DOI:10.1111/jmg.2013.31.issue-5
Andersen T. 2014. .The detrital zircon record:Supercontinents, parallel evolution or coincidence?. Precambrian Research, 244: 279-287. DOI:10.1016/j.precamres.2013.10.013
Barnicoat AC and O'Hara MJ. 1979. High-temperature pyroxenes from an ironstone at Scourie, Sutherland. Mineralogical Magazine, 43(327): 371-375. DOI:10.1180/minmag.1979.043.327.09
Barton JM, Cawthorn RG and White J. 1986. The role of contamination in the evolution of the Platreef of the Bushveld Complex. Economic Geology, 81(5): 1096-1104. DOI:10.2113/gsecongeo.81.5.1096
Bial J, Büttner SH, Schenk V and Appel P. 2015. The long-term high-temperature history of the central Namaqua Metamorphic Complex:Evidence for a Mesoproterozoic continental back-arc in southern Africa. Precambrian Research, 268: 243-278. DOI:10.1016/j.precamres.2015.07.012
Bohlen SR. 1991. On the formation of granulites. Journal of Metamorphic Geology, 9(3): 223-229. DOI:10.1111/jmg.1991.9.issue-3
Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34(11): 961-964. DOI:10.1130/G22853A.1
Brown M. 2007a. Metamorphic conditions in orogenic belts:A record of secular change. International Geology Review, 49(3): 193-234. DOI:10.2747/0020-6814.49.3.193
Brown M. 2007b. Metamorphism, plate tectonics, and the supercontinent cycle. Earth Science Frontiers, 14(1): 1-18. DOI:10.1016/S1872-5791(07)60001-3
Brown M. 2007c. Crustal melting and melt extraction, ascent and emplacement in orogens:Mechanisms and consequences. Journal of the Geological Society, 164(4): 709-730. DOI:10.1144/0016-76492006-171
Brown M and Korhonen FJ. 2009. Some remarks on melting and extreme metamorphism of crustal rocks. In:Gupta AK and Dasgupta S (eds.). Physics and Chemistry of the Earth's Interior. New York:Springer, 67-87
Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4): 553-569. DOI:10.1016/j.gsf.2014.02.005
Buick IS, Gibson RL, Cartwright I, Maas R, Wallmach T and Uken R. 2000. Fluid flow in metacarbonates associated with emplacement of the Bushveld Complex, South Africa. Journal of Geochemical Exploration, 69-70: 391-395. DOI:10.1016/S0375-6742(00)00032-7
Buick IS, Maas R and Gibson R. 2001. Precise U-Pb titanite age constraints on the emplacement of the Bushveld Complex, South Africa. Journal of the Geological Society, 158(1): 3-6. DOI:10.1144/jgs.158.1.3
Buick IS, Stevens G and Gibson RL. 2004. The role of water retention in the anatexis of metapelites in the bushveld complex aureole, South Africa:An experimental study. Journal of Petrology, 45(9): 1777-1797. DOI:10.1093/petrology/egh033
Cawthorn RG and McCarthy TS. 1985. Incompatible trace element behavior in the Bushveld Complex. Economic Geology, 80(4): 1016-1026. DOI:10.2113/gsecongeo.80.4.1016
Cawthorn RG. 2013. Rare earth element abundances in apatite in the Bushveld Complex:A consequence of the trapped liquid shift effect. Geology, 41(5): 603-606. DOI:10.1130/G34026.1
Chen S, Li XP, Kong FM and Feng QD. 2018. Metamorphic evolution and zircon U-Pb ages of the Nanshankou mafic high pressure granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. DOI:10.1007/s12583-017-0956-9
Clarke B, Uken R and Reinhardt J. 2009a. The geometry and emplacement mechanics of a Bushveld Complex peridotite body, South Africa. South African Journal of Geology, 112(2): 141-162. DOI:10.2113/gssajg.112.2.141
Clarke B, Uken R and Reinhardt J. 2009b. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos, 111(1-2): 21-36.
Collins AS and Windley BF. 2002. The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. Journal of Geology, 110(3): 325-339. DOI:10.1086/339535
Colliston WP, Schoch AE and Cole J. 2014. The Grenvillian Namaqua-Natal fold belt adjacent to the Kaapvaal Craton:1. Distribution of Mesoproterozoic collisional terranes deduced from results of regional surveys and selected profiles in the western and southern parts of the fold belt.. Journal of African Earth Sciences, 100: 7-19. DOI:10.1016/j.jafrearsci.2014.05.017
Das K, Dasgupta S and Miura H. 2001. Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity. American Mineralogist, 86(11-12): 1423-1434. DOI:10.2138/am-2001-11-1211
Dawson JB and Smith JV. 1987. Reduced sapphirine granulite xenoliths from the Lace Kimberlite, South Africa:Implications for the deep structure of the Kaapvaal Craton. Contributions to Mineralogy and Petrology, 95(3): 376-383. DOI:10.1007/BF00371851
Dawson JB, Harley SL, Rudnick RL and Ireland TR. 1997. Equilibration and reaction in Archaean quartz-sapphirine granulite xenoliths from the Lace kimberlite pipe, South Africa. Journal of Metamorphic Geology, 15(2): 253-266. DOI:10.1111/j.1525-1314.1997.00017.x
Dharma Rao CV, Santosh M and Chmielowski RM. 2012. Sapphirine granulites from Panasapattu, Eastern Ghats belt, India:Ultrahigh-temperature metamorphism in a Proterozoic convergent plate margin. Geoscience Frontiers, 3(1): 9-31.
Ellis DJ. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology, 15(2): 167-170. DOI:10.1130/0091-7613(1987)15<167:OAEOGI>2.0.CO;2
Gorczyk W and Vogt K. 2015. Tectonics and melting in intra-continental settings. Gondwana Research, 27(1): 196-208. DOI:10.1016/j.gr.2013.09.021
Guo JH, Shi X, Bian AG, Xu RH, Zhai MG and Li YG. 1999. Pb isotopic composition of feldspar and U-Pb age of zircon from Early Proterozoic granite in Sanggan area, North China craton:Metamorphism, crustal melting and tectono-thermal event. Acta Petrologica Sinica, 15(2): 199-207.
Guo JH, Zhai MG and Xu RH. 2001. Timing of the granulite facies metamorphism in the Sanggan area, North China Craton:Zircon U-Pb geochronology. Science in China (Series D), 44(11): 1010-1018. DOI:10.1007/BF02875394
Guo JH, Chen Y, Peng P, Liu F, Chen L and Zhang LQ. 2006. Sapphirine bering granulite from Daqingshan area, Inner Mongolia~1. 85Ga ultrahigh temperature (UHT) metamorphism. In:2006's National Symposium on Petrology and Geodynamics. Nanjing:Nanjing University: 213-216.
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1. 93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142.
Harley SL. 1987. A pyroxene-bearing meta-ironstone and other pyroxene-granulites from Tonagh Island, Enderby Land, Antarctica:Further evidence for very high temperature (>980℃) Archaean regional metamorphism in the Napier Complex. Journal of Metamorphic Geology, 5(3): 341-356. DOI:10.1111/jmg.1987.5.issue-3
Harley SL. 1989. The origins of granulites:A metamorphic perspective. Geological Magazine, 126(3): 215-247. DOI:10.1017/S0016756800022330
Harley SL. 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. Geological Society, London, Special Publications, 138(1): 81-107. DOI:10.1144/GSL.SP.1996.138.01.06
Harley SL. 2008. Refining the P-T records of UHT crustal metamorphism. Journal of Metamorphic Geology, 26(2): 125-154. DOI:10.1111/jmg.2008.26.issue-2
Harris C and Chaumba JB. 2001. Crustal contamination and fluid-rock interaction during the formation of the Platreef, northern limb of the Bushveld Complex, South Africa. Journal of Petrology, 42(7): 1321-1347. DOI:10.1093/petrology/42.7.1321
Harris N, McMillan A, Holness M, Uken R, Watkeys M, Rogers N and Fallick A. 2003. Melt generation and fluid flow in the thermal aureole of the bushveld complex. Journal of Petrology, 44(6): 1031-1054. DOI:10.1093/petrology/44.6.1031
Hensen BJ. 1986. Theoretical phase relations involving cordierite and garnet revisited:The influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology, 92(3): 362-367. DOI:10.1007/BF00572165
Hensen BJ. 1987. P-T grids for silica-undersaturated granulites in the systems MAS (n+4) and FMAS (n+3)-tools for the derivation of P-T paths of metamorphism. Journal of Metamorphic Geology, 5(2): 255-271. DOI:10.1111/jmg.1987.5.issue-2
Hoffman PF.. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out?. Science, 252(5011): 1409-1412. DOI:10.1126/science.252.5011.1409
Hyndman RD, Currie CA and Mazzotti SP. 2005. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15(2): 4-10. DOI:10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2
Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. American Mineralogist, 96(2-3): 250-260. DOI:10.2138/am.2011.3500
Jiao SJ, Guo JH, Mao Q and Zhao RF. 2011. Application of Zr-in-rutile thermometry:A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379-393. DOI:10.1007/s00410-010-0602-3
Jiao SJ, Guo JH, White SL and White BF. 2013. New constraints from Garnetite on the P-T path of the Khondalite belt:Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758. DOI:10.1093/petrology/egt029
Jiao SJ, Guo JH, Wang LJ and Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31-57. DOI:10.1016/j.precamres.2015.08.002
Jiao SJ, Fitzsimons ICW and Guo JH. 2017. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton:New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Research, 303: 208-227. DOI:10.1016/j.precamres.2017.03.024
Jiao SJ, Fitzsimons ICW, Zi JW, Evans NJ, McDonald BJ and Guo J. 2018. Texturally-constrained SHRIMP U-Th-Pb monazite geochronology reveals two Paleoproterozoic UHT episodes in the Khondalite Belt, North China Craton. In: Granulites & Granulites 2018. Ullapool, Scotland, Abstract: 48
Jiao SJ and Guo JH. 2018. Mineralogical characteristics of sapphirine and its application in investigating ultrahigh temperature (UHT) metamorphism. Acta Petrologica Sinica, 35(1): 16-30. DOI:10.18654/1000-0569/2019.01.02
Jin W. 1989. Early Precambrian geological evolution and metamophic dynamic study of central part of north margin of the North China Craton. Ph. D. Dissertation. Changchun: Changchun University of Earth Sciences (in Chinese)
Johnson TE, Gibson RL, Brown M, Buick IS and Cartwright I. 2003. Partial melting of metapelitic rocks beneath the Bushveld Complex, South Africa. Journal of Petrology, 44(5): 789-813. DOI:10.1093/petrology/44.5.789
Kelsey DE, White RW, Holland TJB and Powell R. 2004. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. Journal of Metamorphic Geology, 22(6): 559-578. DOI:10.1111/jmg.2004.22.issue-6
Kelsey DE, White RW and Powell R. 2005. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for silica-undersaturated sapphirine-bearing mineral assemblages. Journal of Metamorphic Geology, 23(4): 217-239. DOI:10.1111/jmg.2005.23.issue-4
Kelsey DE, Clark C and Hand M. 2006. Integrating zircon and monazite saturation with metamorphism in melt-bearing systems. Geochimica et Cosmochimica Acta, 70(18): A312.
Kelsey DE, Hand M, Clark C and Wilson CJL. 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica. Journal of the Geological Society, 164: 667-683. DOI:10.1144/0016-76492006-013
Kelsey DE. 2008. On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13(1): 1-29. DOI:10.1016/j.gr.2007.06.001
Kelsey DE and Hand M. 2015. On ultrahigh temperature crustal metamorphism:Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3): 311-356. DOI:10.1016/j.gsf.2014.09.006
Korhonen FJ, Brown M, Clark C and Bhattacharya S. 2013. Osumilite-melt interactions in ultrahigh temperature granulites:Phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881-907. DOI:10.1111/jmg.2013.31.issue-8
Kriegsman LM. 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 56(1): 75-96.
Li SZ, Zhao GC and Sun M. 2016. Paleoproterozoic amalgamation of the North China Craton and the assembly of the Columbia supercontinent. Science Bulletin, 61(9): 919-925.
Li XP, Yang ZY, Zhao GC, Grapes R and Guo JH. 2011. Geochronology of khondalite-series rocks of the Jining Complex:Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review, 53(10): 1194-1211. DOI:10.1080/00206810903548984
Li XP, Wang X, Chen S, Storey C, Kong FM and Schertl HP. 2018. Petrology and zircon U-Pb dating of meta-calcsilicate from the Jiaobei terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221-241. DOI:10.1016/j.precamres.2018.04.018
Li XW and Wei CJ. 2016. Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595-615. DOI:10.1111/jmg.2016.34.issue-6
Li XW and Wei CJ. 2018. Ultrahigh-temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. DOI:10.1111/jmg.2018.36.issue-4
Liu FL, Shen QH and Zhao ZR. 2002. Evolution of mineral assemblages of khondalite series in the process of prograde metamorphism, southeastern Inner Mongolia:Evidence from mineral inclusions in zircons. Geological Bulletin of China, 21(2): 75-78.
Liu SJ and Li JH. 2009. Paleoproterozoic high temperature paired metamorphic belt in central part of southern Inner Mongolia and its tectonic implication. Geological Journal of China Universities, 15(1): 48-56.
Liu SJ, Li JH and Santosh M. 2010. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2): 225-235. DOI:10.1007/s00410-009-0425-2
Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS and Li JH. 2012. Paleoproterozoic granulites from Heling'er:Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 148: 54-70. DOI:10.1016/j.lithos.2012.05.024
Lu LZ, Xu XC and Liu FL. 1996. The Precambrian Khondalite Series in the North of China. Changchun:Changchun Publishing House: 16-19.
Macey PH, Siegfried HP, Minnaar H and Almond J. 2011. The geology of the loeriesfontein area. Explanation to Sheet 3018, Scale: 1: 250000. Council for Geoscience
Moore PB and Araki T. 1979. Kornerupine:A detailed crystal-chemical study. Neues Jahrbuch für Mineralogie-Abhandlungen, 134: 317-336.
Mouri H, Andreoli MAG, Kienast JR, Guiraud M and De Waal SA.. 2003. First occurrence of the rare 'corundum+quartz' assemblage in the high-grade zone from the Namaqualand Metamorphic Complex, South Africa:Evidence for higher P-T metamorphism?. Mineralogical Magazine, 67(5): 1015-1021. DOI:10.1180/0026461036750140
Mouri H, Guiraud M and Osanai Y. 2004. Review on 'corundum plus quartz' assemblage in nature:Possible indicator of ultra-high temperature conditions?. Journal of Mineralogical and Petrological Sciences, 99(4): 159-163. DOI:10.2465/jmps.99.159
Norwicki TE, Frimmel HE and Waters DJ. 1995. The occurrence of osumilite in pelitic granulites of the Namaqualand Metamorphic Complex, South Africa. South African Journal of Geology, 98(2): 191-201.
Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton:Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659. DOI:10.1016/j.precamres.2010.08.015
Peng P, Guo JH, Windley BF, Liu F, Chu ZY and Zhai MG. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton:Implications for ridge subduction. Precambrian Research, 222-223: 107-123. DOI:10.1016/j.precamres.2011.06.002
Petzer W. 2003. A petrological study of a calc-silicate xenolith in the marginal zone of the Eastern Bushveld Complex, Dwarsrivierpass, Northern Mpumalanga, South Africa. B. Sc. Thesis. University of Natal
Petzer W and Reinhardt J. 2004. Petrological study of an ultrahigh-temperature calc-silicate xenolith, eastern Bushveld Complex. Geoscience Africa, Abstrac: 516.
Pitra P and De Waal SA. 2001. High-temperature, low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa). Journal of Metamorphic Geology, 19(3): 311-325. DOI:10.1046/j.1525-1314.2001.00313.x
Reinhardt J, Elburg MA and Andersen T. 2015. Zircon U-Pb age data and Hf isotopic signature of Kaapvaal basement granitoids from the Archaean White Mfolozi Inlier, northern KwaZulu-Natal. South African Journal of Geology, 118(4): 473-488. DOI:10.2113/gssajg.118.4.473
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22. DOI:10.1016/S1342-937X(05)70883-2
Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly:Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266. DOI:10.1016/j.gr.2006.06.005
Santosh M, Tsunogae T, Li JH and Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285. DOI:10.1016/j.gr.2006.10.009
Santosh M, Wilde SA and Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196. DOI:10.1016/j.precamres.2007.06.006
Santosh M, Sajeev K, Li JH, Liu SJ and Itaya T. 2009a. Counterclockwise exhumation of a hot orogen:The Paleoproterozoic ultrahightemperature granulites in the North China Craton. Lithos, 110(1-4): 140-152. DOI:10.1016/j.lithos.2008.12.010
Santosh M, Wan YS, Liu DY, Dong CY and Li JH. 2009b. Anatomy of zircons from an ultrahot orogen:The amalgamation of the North China Craton within the supercontinent Columbia. Journal of Geology, 117(4): 429-443. DOI:10.1086/598949
Santosh M and Kusky T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens:A ridge subduction and slab window model. Terra Nova, 22(1): 35-42. DOI:10.1111/ter.2009.22.issue-1
Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton:Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106. DOI:10.1016/j.precamres.2011.05.003
Santosh M, Hu CN, Kim SW, Tang L and Kee WS. 2018. Late Paleoproterozoic ultrahigh-temperature metamorphism in the Korean Peninsula. Precambrian Research, 308: 111-125. DOI:10.1016/j.precamres.2018.02.010
Schmitz MD and Bowring SA. 2003. Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa. GSA Bulletin, 115(5): 533-548.
Schmitz MD and Bowring SA. 2004. Lower crustal granulite formation during Mesoproterozoic Namaqua-Natal collisional orogenesis, southern Africa. South African Journal of Geology, 107(1-2): 261-284. DOI:10.2113/107.1-2.261
Seifert F. 1975. Boron-free kornerupine:A high-pressure phase. American Journal of Science, 275(1): 57-87. DOI:10.2475/ajs.275.1.57
Seto Y, Ohi S, Shimobayashi N, Kitamura M, Miyake A, Hiroi Y and Grantham GH. 2006. Clinopyroxene exsolution in wollastonite from Namaqualand granulite, South Africa. American Mineralogist, 91: 446-450. DOI:10.2138/am.2006.2063
Shimizu H, Tsunogae T, Santosh M, Liu SJ and Li JH. 2013. Phase equilibrium modelling of Palaeoproterozoic ultrahigh-temperature sapphirine granulite from the Inner Mongolia Suture Zone, North China Craton:Implications for counterclockwise P-T path. Geological Journal, 48(5): 456-466. DOI:10.1002/gj.v48.5
Tsunogae T and van Reenen DD. 2006. Corundum+quartz and Mg-staurolite bearing granulite from the Limpopo Belt, southern Africa:Implications for a P-T path. Lithos, 92(3-4): 576-587.
Tsunogae T, Liu SJ, Santosh M, Shimizu H and Li JH. 2011. Ultrahigh-temperature metamorphism in Daqingshan, Inner Mongolia Suture Zone, North China Craton. Gondwana Research, 20(1): 36-47. DOI:10.1016/j.gr.2011.03.001
Wallmach T, Hatton CJ and Droop GTR. 1989. Extreme facies of contact metamorphism developed in calc-silicate xenoliths in the eastern Bushveld Complex. Canadian Mineralogist, 27: 509-523.
Wan YS, Geng YS, Liu FL, Shen QH, Liu DY and Song B. 2000. Age and composition of the Khondalite Series of the North China Craton and its adjacent area. Progress in Precambrian Research, 23(4): 221-237.
Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining Complex, North China craton. International Geology Review, 53(2): 212-229. DOI:10.1080/00206810903028144
Wang X, Li XP and Han ZZ. 2018. Zircon ages and geochemistry of amphibolitic rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and their tectonic implications. Precambrian Research, 317: 253-267. DOI:10.1016/j.precamres.2018.09.005
Waters DJ and Moore JM. 1985. Kornerupine in Mg-Al-rich gneisses from Namaqualand, South Africa:Mineralogy and evidence for late-metamorphic fluid activity. Contributions to Mineralogy and Petrology, 91(4): 369-382. DOI:10.1007/BF00374693
Waters DJ. 1989. Metamorphic evidence for the heating and cooling path of Namaqualand granulites. Geological Society, London, Special Publications, 43(1): 357-363. DOI:10.1144/GSL.SP.1989.043.01.31
Waters DJ. 1991. Hercynite-quartz granulites:Phase relations, and implications for crustal processes. European Journal of Mineralogy, 3(2): 367-386. DOI:10.1127/ejm/3/2/0367
Wei CJ, Qian JH and Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton. Geoscience Frontiers, 5(4): 485-497. DOI:10.1016/j.gsf.2014.02.008
Wei CJ. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅱ):Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrologica Sinica, 32(6): 1625-1643.
Werding G and Schreyer W. 1978. Synthesis and crystal chemistry of kornerupine in the system MgO-Al2O3-SiO2-B2O3-H2O. Contributions to Mineralogy and Petrology, 67(3): 247-259. DOI:10.1007/BF00381452
White RW, Powell R and Holland TJB. 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153.
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187.
Wu JL, Zhang HF, Zhai MG, Guo JH, Lia RX, Wang HZ, Zhao L, Jia XL, Wang LJ, Hu B and Zhang HD. 2017. Paleoproterozoic high-pressure-high-temperature pelitic granulites from Datong in the North China Craton and their geological implications:Constraints from petrology and phase equilibrium modeling. Precambrian Research, 303: 727-748. DOI:10.1016/j.precamres.2017.09.011
Yang C and Wei CJ. 2017a. Ultrahigh temperature (UHT) mafic granulites in the East Hebei, North China Craton:Constraints from a comparison between temperatures derived from REE-based thermometers and major element-based thermometers. Gondwana Research, 46: 156-169. DOI:10.1016/j.gr.2017.02.017
Yang C and Wei CJ. 2017b. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton:Records from mafic granulites. Precambrian Research, 301: 49-64. DOI:10.1016/j.precamres.2017.09.005
Yang QY, Santosh M and Tsunogae T. 2014. Ultrahigh-temperature metamorphism under isobaric heating:New evidence from the North China Craton. Journal of Asian Earth Sciences, 95: 2-16. DOI:10.1016/j.jseaes.2014.01.018
Yin CQ, Zhao GH, Sun M, Xia XP, Wei CJ, Zhou XW and Leung WH. 2009. LA-ICPMS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174: 78-94. DOI:10.1016/j.precamres.2009.06.008
Yin CQ, Zhao GC, Guo JH, Sun M, Zhou XW, Zhang J, Xia XP and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122: 25-38. DOI:10.1016/j.lithos.2010.11.010
Zeh A, Klemd R, Buhlmann S and Barton JM. 2004. Pro-and retrograde PT evolution of granulites of the Beit Bridge Complex (Limpopo Belt, South Africa):Constraints from quantitative phase diagrams and geotectonic implications. Journal of Metamorphic Geology, 22: 79-95. DOI:10.1111/j.1525-1314.2004.00501.x
Zhai MG, Guo JH, Yan YH, Li YG, Li JH and Zhang WH. 1996. An oblique cross section of archaean continental crust in Shanxi-Hebei-Nei Mongol Junctive area, North China Craton. Acta Petrologica Sinica, 12(2): 222-238.
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton:A review. Precambrian Research, 122(1-4): 183-199. DOI:10.1016/S0301-9268(02)00211-5
Zhai MG. 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton:Their genetic relation and geotectonic implications. Acta Petrologica Sinica, 25(8): 1753-1771.
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6-25. DOI:10.1016/j.gr.2011.02.005
Zhang HF, Luo ZB, Zhou ZG and Liu CF. 2009. Palaeoproterozoic collisional time in the Sanggan area of the North China Craton:Constraints from age of regional ductile shearing and post-collision super peraluminous granites. Journal of Mineral and Petrology, 29(1): 60-67.
Zhang HF, Luo ZB and Wang HZ. 2013. Paleoproterozic 2.0Ga meta-granite in the Liangcheng area, Inner Mongolia:Constraint on regional ultra-high temperature metamorphism. Acta Petrologica Sinica, 29(7): 2391-2404.
Zhang HT, Li JH, Liu SJ, Li WS, Santosh M and Wang HH. 2012. Spinel+quartz-bearing ultrahigh-temperature granulites from Xumayao, Inner Mongolia Suture Zone, North China Craton:Petrology, phase equilibria and counterclockwise P-T path. Geoscience Frontiers, 3(5): 603-611. DOI:10.1016/j.gsf.2012.01.003
Zhang JX and Meng FC. 2005. Sapphirine-bearing high pressure mafic granulite and its implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3): 265-269. DOI:10.1007/BF02897537
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. DOI:10.1016/S0301-9268(00)00154-6
Zhao GC, Sun M and Wilde SA. 2002. Early-Middle Mesoproterozoic Columbia Supercontinent research progress. Chinese Science Bulletin, 47(18): 1361-1364.
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Liu SW, Sun M, Li SZ, Wilde SA, Xia XP, Zhang J and He YH.. 2006. What happened in the Trans-North China Orogen in the period 2560~1850Ma?. Acta Geologica Sinica, 80(6): 790-806.
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792.
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177: 266-276. DOI:10.1016/j.precamres.2009.12.007
Zhao GC, Li SZ, Sun M and Wilde SA. 2011. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent:Record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356. DOI:10.1080/00206814.2010.527631
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, 23(4): 1207-1240. DOI:10.1016/j.gr.2012.08.016
Zhong CT, Deng JF, Wu YP, Mao DB, Xi Z and Chen B. 2006. Geochemical characteristics and tectonic significations of Paleoproterozoic strongly peraluminous granitoids in the central segment of the northern margin of the North China craton. Geological Bulletin of China, 25(3): 389-397.
郭敬辉, 石昕, 卞爱国, 许荣华, 翟明国, 李永刚. 1999. 桑干地区早元古代花岗岩长石Pb同位素组成和锆石U-Pb年龄:变质与地壳熔融作用及构造-热事件演化. 岩石学报, 15(2): 199-207.
郭敬辉, 翟明国, 许荣华. 2002. 华北桑干地区大规模麻粒岩相变质作用的时代:锆石U-Pb年代学. 中国科学(D辑), 32(1): 10-18.
郭敬辉, 陈意, 彭澎, 刘富, 陈亮, 张履桥. 2006. 内蒙古大青山假蓝宝石麻粒岩~1.8Ga的超高温(UHT)变质作用.见:2006年全国岩石学与地球动力学研讨会. 南京:南京大学: 213-216.
焦淑娟, 郭敬辉. 2019. 假蓝宝石(sapphirine)的矿物学特征及其在超高温变质作用研究中的应. 岩石学报, 35(1): 16-30. DOI:10.18654/1000-0569/2019.01.02
金巍. 1989. 华北陆台北缘(中段)早前寒武纪地质演化和变质动力学研究. 博士学位论文. 长春: 长春地质学院
李三忠, 赵国春, 孙敏. 2016. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展. 科学通报, 61(9): 919-925.
刘福来, 沈其韩, 赵子然. 2002. 内蒙古东南部孔兹岩系进变质过程矿物组合演化——来自锆石中矿物包裹体的证据. 地质通报, 21(2): 75-78. DOI:10.3969/j.issn.1671-2552.2002.02.005
刘守偈, 李江海. 2009. 内蒙古中南部古元古代高温型双变质带及其构造意义. 高校地质学报, 15(1): 48-56. DOI:10.3969/j.issn.1006-7493.2009.01.004
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春:长春出版社: 16-19.
万渝生, 耿元生, 刘福来, 沈其韩, 刘敦一, 宋彪. 2000. 华北克拉通及邻区孔兹岩系的时代及对太古宙基底组成的制约. 前寒武纪研究进展, 23(4): 221-237.
魏春景. 2016. 麻粒岩相变质作用与花岗岩成因-Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643.
翟明国, 郭敬辉, 阎月华, 李永刚, 李江海, 张雯华. 1996. 太古宙克拉通型下地壳剖面:华北怀安-丰镇-尚义的麻粒岩系-角闪岩系. 岩石学报, 12(2): 222-238. DOI:10.3321/j.issn:1000-0569.1996.02.005
翟明国. 2009. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题. 岩石学报, 25(8): 1753-1771.
张华锋, 罗志波, 周志广, 柳长峰. 2009. 华北克拉通中北部古元古代碰撞造山时限:来自强过铝花岗岩和韧性剪切时代的制约. 矿物岩石, 29(1): 60-67. DOI:10.3969/j.issn.1001-6872.2009.01.010
张华锋, 罗志波, 王浩铮. 2013. 内蒙凉城2.0Ga变质花岗岩对超高温变质作用的制约. 岩石学报, 29(7): 2391-2404.
张建新, 孟繁聪. 2005. 南阿尔金含假蓝宝石高压基性麻粒岩及其意义. 科学通报, 50(2): 167-171. DOI:10.3321/j.issn:0023-074X.2005.02.011
赵国春, 孙敏, Wilde SA. 2002. 早-中元古代Columbia超级大陆研究进展. 科学通报, 47(18): 1361-1364. DOI:10.3321/j.issn:0023-074X.2002.18.001
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
钟长汀, 邓晋福, 武永平, 毛德宝, 席忠, 陈博. 2006. 华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构造意义. 地质通报, 25(3): 389-397. DOI:10.3969/j.issn.1671-2552.2006.03.008