岩石学报  2019, Vol. 35 Issue (2): 275-294, doi: 10.18654/1000-0569/2019.02.01   PDF    
冈底斯岩浆弧的形成与演化
张泽明1,2 , 丁慧霞2 , 董昕1 , 田作林1     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国地质大学(北京)地球科学与资源学院, 北京 100083
摘要:位于青藏高原南部的冈底斯岩浆弧是新特提斯大洋岩石圈长期俯冲导致的中生代岩浆作用的产物,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,也是研究增生与碰撞造山作用和大陆地壳生长与再造的天然实验室。基于岩浆、变质和成矿作用研究成果,我们将冈底斯弧的形成与演化历史划分5期,即新特提斯洋早期俯冲、新特提斯洋中脊俯冲、新特提斯洋晚期俯冲、印度-亚洲大陆碰撞和后碰撞期。第1期发生在晚白垩世之前,是以新特提斯洋岩石圈的长期俯冲、地幔楔部分熔融形成钙碱性弧岩浆岩为特征。长期的幔源岩浆作用导致了整个冈底斯弧发生显著的新生地壳生长,并在岩浆弧西部形成了一个大型的与俯冲相关的斑岩型铜矿。第2期发生在晚白垩世,活动的新特提斯洋中脊发生俯冲,软流软圈沿板片窗上涌,使上升的软流圈、地幔楔和俯冲洋壳发生部分熔融,导致了强烈的幔源岩浆作用和显著的新生地壳生长与加厚,并以不同类型和不同成分岩浆岩的同时发育和伴随的高温变质作用为特征。第3期发生在晚白垩世晚期,为新特提斯洋脊俯冲后残余大洋岩石圈的俯冲期,以正常的弧型岩浆作用为特征。第4期发生在古新世至中始新世,伴随印度与亚洲大陆的碰撞,俯冲的新特提斯洋岩石圈回转和断离引起软流圈上涌,诱发了强烈的幔源岩浆作用。在此阶段,大陆碰撞导致的地壳挤压缩短和幔源岩浆的底侵与增生,使冈底斯弧经历了显著的地壳生长和加厚,新生和古老加厚下地壳的高压、高温变质和部分熔融,幔源和壳源岩浆岩的共生和强烈的岩浆混合。所形成的I型花岗岩大多继承了新生地壳弧型岩浆岩的化学成分,并多显出埃达克岩的地球化学特征。在岩浆弧北部形成了一系列与起源于古老地壳花岗岩相关的Pb-Zn矿床。第5期发生在晚渐新世到早-中中新世的后碰撞挤压过程中,以地壳的继续加厚,加厚下地壳的高温变质、部分熔融和埃达克质岩石的形成为特征。在岩浆弧东段南部形成了一系列与起源于新生加厚下地壳埃达克质岩石相关的斑岩型Cu-Au-Mo矿。冈底斯带的多期岩浆、变质与成矿作用为其从新特提斯洋俯冲到印度-亚洲大陆碰撞的构造演化提供了重要限定。
关键词: 大陆岩浆弧     俯冲与碰撞     地壳生长与加厚     高温变质与部分熔融     岩浆成矿作用     青藏高原南部    
Formation and evolution of the Gangdese magmatic arc, southern Tibet
ZHANG ZeMing1,2, DING HuiXia2, DONG Xin1, TIAN ZuoLin1     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. School of Earth Science and Resources, Chinese University of Geosciences, Beijing 100083, China
Abstract: The Gangdese magmatic arc, southern Tibet, was products of the Mesozoic and Cenozoic magmatism during the long-lasting subduction of the Neo-Tethyan oceanic lithosphere and the subsequent India-Asia collision, respectively, and therefore, it is a natural laboratory for studying accretionary and collisional orogenesis, as well as growth and reworking of the continental crust. Based on a synthesis of available results of magmatism, metamorphism and mineralization in this region, the formation and evolution history of the Gangdese arc is divided into five stages, namely, the early subduction of the Neo-Tethyan lithosphere, the subduction of the Neo-Tethyan mid-oceanic ridge, the late subduction of remnant Neo-Tethyan lithosphere, the collision of India and Asia, and the post-collisional stage. The first stage, lasting from Late Triassic to Middle Cretaceous, is characterized by the normal subduction of the Neo-Tethyan oceanic lithosphere and the formation of subduction-related arc magmatic rocks, and during this stage, the long-term mantle-derived magmatism resulted in the significantly growth of juvenile crust throughout the Gangdese arc, together with the generation of a giant porphyry Cu deposit in the western segment of the Gangdese arc. The second stage, happened in Late Cretaceous, was related to the subduction of the active Neo-Tethyan mid-oceanic ridge. In this stage, the upwell of the asthenosphere along the slab window resulted in extensive partial melting of upwelling asthenosphere, subduction slab and hinging-wall mantle wedge, which in turn, resulted in formation of diversity magmatic rocks and high-temperature metamorphic rocks. At the same time, underplating and accretion of the voluminous mantle-derived magma induced in the significantly growth and thickening of the Gangdese arc crust, and high-temperature and high-pressure metamorphism and partial melting of the thickened lower crust. The third stage, the latest Late Cretaceous, is characterized by the subduction of remnant Neo-Tethyan oceanic lithosphere and the normal arc magmatism. The fourth stage is represented by Paleocene to Middle Eocene magmatic flare-up, which was induced by the roll-back and breakoff of the subducted Neo-Tethyan slab during the Indo-Asian collision. This stage is characterized by the significantly thickening and partial melting of juvenile and old crusts, and extensive mixing of the mantle-and crust-derived magmas. The generated I-type granites inherited the chemical compositions of arc-type magmatic rocks, and also have the geochemical features of adakites. A series of large and giant Pb-Zn deposits related to the old crust-derived granites formed in the northern part of the Gangdese arc. The latest post-collisional stage is characterized by the continuous thickening and formation of the thickened lower crust-derived adakitic rocks during the Late Oligocene to Middle Miocene and many large and giant adakitic rock-related porphyry Cu-Au-Mo deposits formed in the eastern Gangdese arc in this stage. The multistage magmatic, metamorphic and mineralization processes provide excellent constraints for the Gangdese tectonic evolution from the Neo-Tethyan ocean subduction to India-Asia continental collision.
Key words: Continental magmatic arc     Subduction and collision     Crustal growth and thickening     HT metamorphism and partial melting     Magma-related mineralization     Southern Tibet    

岩浆弧形成在汇聚板块边界,是与板块俯冲有关的岩浆作用产物,是研究板块构造、壳-幔相互作用和大陆地壳生长的天然实验室(Ducea et al., 2015; Jagoutz and Kelemen, 2015)。由于已知的岩浆弧剖面具有与大陆地壳剖面类似的组成和安山质的全地壳化学成分,因此,岩浆弧被认为是后太古代以来大陆地壳生长的主要位置,通过岩浆弧地壳剖面可以直接研究大陆地壳的组成与生长(Davidson and Arculus, 2006; Miller and Snoke, 2009; Bosch et al., 2011; Brown and Ryan, 2011; Jagoutz and Schmidt, 2012)。

目前,国际上有关岩浆弧与大陆地壳生长的研究主要集中在以下5个重大科学问题上:(1)岩浆弧与大陆地壳的组成。一般认为大陆上地壳由中酸性岩浆岩组成,而下地壳由基性岩组成(Rudnick and Gao, 2014)。但也有研究认为,大陆下地壳总体上具有安山质成分(Hacker et al., 2015)。岩浆弧与大陆地壳不仅在垂向上是分层的,在横向上也是多变的,不同地区出露的大陆地壳和岩浆弧地壳剖面有较大差别,很可能并不存在一致的岩浆弧与大陆地壳剖面(Miller and Snoke, 2009)。(2)岩浆弧地壳如何转变(再造)成大陆地壳。尽管大家都认为大陆地壳起源于下伏地幔,但大陆地壳的成因仍然是个迷(Hofmann, 1988)。这是因为,幔源岩浆岩是玄武质的,而大陆地壳却具有安山质成分(Kelemen and Behn, 2016)。从玄武质的岩浆弧再造成安山质的大陆地壳有两种可能的机制:一是岩浆弧根部高密度岩石的拆沉作用(delamination; Kay and Mahlburg-Kay 1991; Jagoutz and Behn, 2013; Lee, 2014);二是轻的俯冲物质的上涌和底垫作用(relamination; Hacker et al., 2011, 2015; Castro et al., 2013; Kelemen and Behn, 2016; Maunder et al., 2016)。从玄武质弧岩浆岩中分异出来的高密度基性-超基性岩石因重力不稳定而拆沉进入地幔,可以使岩浆弧地壳总体成分变成安山质。但有研究发现,拆沉后的岩浆弧下地壳与大陆下地壳存在化学成分差异,并因此提出俯冲物质的上涌和底垫可能是一种更好或补充的转变机制(Hacker et al., 2015; Kelemen and Behn, 2016; He et al., 2018)。此外,也有研究认为幔源玄武质岩浆与俯冲洋壳起源的长英质岩浆混合(Kelemen et al., 2014),俯冲洋壳(和沉积物)起源的岩浆与地幔反应(Castro et al., 2013),或者大陆碰撞过程中残余俯冲洋壳的部分熔融也可以形成安山质的岩浆弧(Niu et al., 2013)。弧岩浆岩很可能是多源区的,包括地幔楔、俯冲洋壳及沉积物和岩浆弧下地壳,很可能不存在统一的岩浆弧和大陆地壳生长模式(Straub and Zellmer, 2012)。(3)岩浆弧地壳的加厚与构造机制。许多岩浆弧地壳都经历过明显的加厚过程,但对地壳加厚机制存在较大争议。可能的机制包括地壳缩短和逆冲推覆(DeCelles, 2004; DeCelles et al., 2009; Chin et al., 2013),区域性挤压变形和岩石的垂向运动(Paterson and Farris, 2008),幔源岩浆的增生和底侵(Miller and Snoke, 2009),俯冲板片物质(如沉积物和洋壳)和俯冲剥蚀物质的底垫(Stern, 1991; Kay et al., 2005; Behn et al., 2011; Hacker et al., 2011, 2015; Chapman et al., 2013)。岩浆弧地壳加厚可以发生在不同的构造环境下,如板块俯冲角度变化、洋脊或洋底高原俯冲、弧-弧或弧-陆碰撞(Brown and Ryan, 2011)。不同构造环境和不同构造机制下形成的岩浆弧加厚下地壳的组成与结构、变质与岩浆作用特征,以及地壳加厚在岩浆弧生长和大陆地壳形成中的作用是目前地质界正在探索的重要科学问题。(4)岩浆弧成矿作用的深部过程。大陆岩浆弧普遍发育与岩浆作用相关的金属矿产。相关研究表明,无论在洋壳俯冲,还是在大陆碰撞过程中形成的金属矿床,其成矿岩浆都是起源于岩浆弧根部,很可能是新生加厚下地壳高压变质基性岩(富角闪石基性麻粒岩)部分熔融形成的富水、含硫和高氧逸度熔体(Kay and Mpodozis, 2001; Rosenbaum et al., 2005; Hou and Cook, 2009; Hou et al., 2011; Lee et al., 2012; Hou and Zhang, 2015; Richards, 2015; Zheng et al., 2015a, b; Wu et al., 2016; Yang et al., 2016a, b; Xu et al., 2017; Zeng et al., 2017)。但也有研究认为,含矿斑岩是幔源基性岩浆在高压下分异的产物(Lu et al., 2015)或幔源与壳源岩浆混合的产物(Yang et al., 2015)。(5)岩浆弧根部的变质、熔融和岩浆作用与岩浆弧地壳生长再造。无论是揭示岩浆弧地壳组成与结构、岩浆弧地壳再造、还是探索地壳加厚机制与成矿作用,都离不开对岩浆弧根部变质、深熔和岩浆作用的研究。岩浆弧根部不仅是新生地壳生长的位置,也是新生与古老地壳再造的场所。它就像是岩浆弧的“工厂”,将来源于地幔楔、俯冲带和弧地壳的物质通过高温变质和部分熔融(或再熔融)加工成岩浆,分异的岩浆上升到中上地壳形成花岗岩,残余的高密度基性-超基性岩石构成下地壳或拆沉进地幔(Ducea et al., 2015; Hacker et al., 2015; Jagoutz and Kelemen, 2015; Kelemen and Behn, 2016; Maunder et al., 2016; He et al., 2018)。但是,由于岩浆弧的中-下地壳(特别岩浆弧根)较少出露到地表,我们目前对岩浆弧深部组成、深部作用和地壳生长与再造的认识还比较有限。

青藏高原是由一系列起源于冈瓦纳大陆的地体,从早古生代开始不断增生到亚洲大陆形成的(Dewey et al., 1988; Yin and Harrison, 2000; Pan et al., 2012a)。新特提斯洋岩石圈向北俯冲和印度与亚洲大陆沿雅鲁藏布江缝合带的碰撞导致了规模巨大的青藏高原的形成。青藏高原从北到南依次由昆仑地体、松潘-甘孜地体、南羌塘、北羌塘、拉萨地体和喜马拉雅带组成(图 1; bAllègre1984 et al., 1984; Yin and Harrison, 2000; Yin, 2006; 许志琴等, 2007; Gehrels et al., 2011; Zhang and Santosh, 2012; Zhang et al., 2017)。这些地体依次被昆仑(KSZ)、金沙江、龙木错-双湖、班公湖-怒江和雅鲁藏布江缝合带分隔(Yin and Harrison, 2000; Pan et al., 2012a)。拉萨地体由前寒武纪的结晶基底、古生代-中生代的沉积岩和古生代-新生代的岩浆岩组成(Xu et al., 1985, 2013a; 潘桂棠等, 2004, 2006; Zhu et al., 2011; Zhang et al., 2012; Lin et al., 2013; Hu et al., 2018)。

图 1 泛喜马拉雅和冈底斯岩浆岩带地质简图 图中表示了三叠纪以来的岩浆岩分布,冈底斯带东段与中、新生代岩浆作用相关的主要金属矿床位置,以及在东、西喜马拉雅构造结分布的代表岩浆弧中-下地壳组成的中-高级变质岩. KSZ-昆仑缝合带; JSSZ-金沙江缝合带; LSSZ-龙木措-双湖缝合带; BNSZ-班公湖-怒江缝合带; ITSZ-雅鲁藏布江缝合带.矿床类型及分布位置据Zheng et al. (2015a) Fig. 1 Sketch geological map of the Trans-Himalayan magmatic arc

冈底斯岩浆弧位于拉萨地体南部,长约2000km,与其西部的拉达克和科尹斯坦岩浆弧共同构成了长约2500km的泛喜马拉雅岩浆弧(图 1; Allègre et al., 1984; Searle et al., 1987; Yin and Harrison, 2000; Wu et al., 2010)。一般认为,冈底斯岩浆弧形成在中生代新特提斯大洋岩石圈向北部的拉萨地体之下的长期俯冲过程中,而且在印度与亚洲大陆的碰撞过程中叠加了强烈的新生代岩浆作用(Coulon et al., 1986; Debon et al., 1986; Harris et al., 1988a, b; Pearce and Mei, 1988; Chung et al., 2003, 2005, 2009; Ding et al., 2003; Hou et al., 2004; 莫宣学等, 2005, 2006, 2009a, b; Chu et al., 2006; 莫宣学和潘桂棠, 2006; 赵志丹等, 2006; Wu et al., 2007, 2010; Mo et al., 2007, 2008; Wen et al., 2008a, b; Zhu et al., 2008, 2009, 2010, 2011, 2015, 2017a, b, 2018; Ji et al., 2009, 2014, 2016; Zhao et al., 2009; 纪伟强等, 2009; Zhang et al., 2010a; Xia et al., 2011; 刘峰等, 2011; Zheng et al., 2012, 2014a; Guo et al., 2013; Ma et al., 2013a, b, c; 董昕和张泽明, 2013; Liu et al., 2014a, b; Wang et al., 2015a, b; Pan et al., 2016; Weller et al., 2016)。冈底斯岩浆弧东段发育有多期与岩浆作用有关的金属成矿作用,是巨型金属成矿带(图 1侯增谦等, 2008Hou et al., 2009; Qin et al., 2012; Wang et al., 2014a, b, 2017; Zhaoet al., 2014; Zheng et al., 2014a, b, 2015a,b; Xu et al., 2017)。由此可见,冈底斯岩浆弧是一个经历了长期演化的复合型大陆岩浆弧,是世界上研究俯冲带岩浆作用与大陆地壳形成演化的最佳位置,将为上述科学问题的解决提供难得的机会。

1 冈底斯带的岩浆岩作用

本文将拉萨地体南部冈底斯岩浆弧生长期形成的、与洋壳俯冲相关的中生代至早新生代弧岩浆岩,和在冈底斯弧再造期形成的、与陆-陆碰撞相关的新生代岩浆岩统称为冈底斯岩浆岩带或简称冈底斯带。冈底斯岩浆岩带经历了长期的岩浆作用,其开始于中三叠世,持续到中新世,主要由晚白垩世至早第三纪的大面积花岗岩基和广泛分布的林子宗火山岩系组成(Allègre et al., 1984; Yin and Harrison, 2000; 潘桂棠等, 2004; Chung et al., 2005; 莫宣学等, 2005; Ji et al., 2009; Zhu et al., 2011, 2013, 2015, 2018; Wang et al., 2016)。现有研究表明,冈底斯岩浆岩带的岩浆作用是幕式的,具有三个明显的峰期,分别在晚白垩世(95~90Ma)、早始新世(52~48Ma)和早-中中新世(18~14Ma)(图 2; Zhu et al., 2017a)。基于现有研究成果,我们将冈底斯带的岩浆作用划分2个大的阶段和5期(图 2图 3)。第1阶段为大洋岩石圈俯冲阶段,包括发生在新特提斯洋岩石圈早期俯冲过程中的第1期岩浆作用(220~100Ma)、发生在新特提斯洋中脊俯冲过程中的第2期岩浆岩作用(100~80Ma)和与新特提斯洋晚期俯冲相关的第3期岩浆作用(80~65Ma);第2阶段为大陆碰撞阶段(65~8Ma),包括与印度-亚洲大陆碰撞同时发生的第4期(65~40Ma)和在碰撞后汇聚过程中发生的第5期岩浆作用(40~8Ma)。不同时代岩浆岩的时、空分布和全岩化学成分表明,大洋岩石圈早期俯冲阶段形成的晚三叠世岩浆岩主要布在冈底斯带北部,显出双峰式岩浆作用特征(图 3)。大洋岩石圈早期俯冲阶段形成的早-中侏罗世岩浆岩在冈底斯带广泛分布,主要以中酸性岩为主。在新特提斯洋中脊俯冲和新特提斯洋晚期俯冲期形成的晚白垩世岩浆岩以中性和基性岩为主,具有少量的超基性岩和花岗岩,主要分布在冈底斯带东段(图 3)。在大陆碰撞阶段形成的古新世至早-中始新世岩浆岩在冈底斯有广泛分布,主要为中酸性岩,含有丰富的基性岩,而后碰撞阶段形成的晚始新世至中新世岩浆岩在整个岩浆岩带广泛分布,主要是中酸性岩,含很少量的基性岩(图 3)。

图 2 冈底斯带岩浆岩锆石U-Pb年龄频率和构造演化阶段划分(据Zhu et al., 2017a修改) Fig. 2 Histogram of zircon U-Pb ages of the Gangdese magmatic rocks with a division of tectonic evolution stages (modified after Zhu et al., 2017a)

图 3 冈底斯带中、新生代岩浆岩SiO2含量与锆石U-Pb年龄和构造演化阶段划分 图中数据据Zhu et al., 2018和朱弟成未发表资料,以及少量作者未发表数据 Fig. 3 Diagram of SiO2 contents versus zircon U-Pb ages of the Mesozoic and Cenozoic magmatic rocks of the Gangdese arc with a division of tectonic evolution stages
1.1 与新特提斯洋早期俯冲相关的岩浆岩作用

在新特提斯洋早期俯冲过程中形成的中三叠-早白垩世岩浆岩在冈底斯带广泛分布(图 1)。在岩浆带中南部产出的晚三叠世玄武岩和安山岩(Wang et al., 2016),辉长岩(Meng et al., 2016)和富角闪石基性侵入岩(Ma et al., 2018)以富集大离子亲石元素(LILE)和轻稀土元素(LREE)、亏损高场强元素(HFSE)为特征,形成在新特提斯洋岩石圈北向俯冲导致的岩浆弧构造环境。Chu et al.(2006)揭示早侏罗世花岗岩显示出弧岩浆的地球化学特征,其岩浆锆石具有正的εNd(t)值(+10.4~+16.8),是初生地壳部分的熔融产物。冈底斯弧西段,谢通门地区的早侏罗世闪长岩富集LILE和LREE、亏损HFSE,起源于含水地幔楔的部分熔融,形成在与洋壳俯冲有关的岩浆弧构造环境(Xu et al., 2017)。

在拉萨地体南部分布的早-中侏罗世叶巴组火山岩主要由玄武岩、粗面岩和流纹岩和火山碎屑岩组成(潘桂棠等, 2006)。这些岩石具有负的Nb、Ta和Ti异常,正的εNd(t)值(+2.4~+4.5),形成在与新特提斯洋俯冲有关的大陆弧环境。其中的基性岩石起源于不均匀的地幔源区,而长英质岩石是新生的玄武质下地壳部分熔融产物,但具有古老大陆地壳物质的贡献(Zhu et al., 2008)。Kang et al.(2014)研究表明,早侏罗世的玄武岩、安山岩和粗面岩具有弧火山岩的地球化学特征,具有正的εNd(t)值,低的初始Sr同位素成分,具有与雅鲁藏布江蛇绿岩带中洋中脊玄武岩类似的地球化学特征,很可能起源于亏损地幔楔。晚侏罗至早白垩世的桑日群火山岩沿拉萨地体南部产出。桑日群下部的安山岩具有埃达克岩的化学成分,如高Sr和Sr/Y比,低Y和HREE含量,很可能起源于俯冲的新特提斯洋壳板片的部分熔融(姚鹏等, 2006)。Zhu et al.(2009)研究也表明,早白垩世安山岩具有埃达克岩的地球化学特征(如高Al2O3、高La/Yb比、高Sr含量、低Y和HREE含量、正Eu异常),具有正的εNd(t)值(+3.7~+5.8)。岩石中的锆石也具有正的εHf(t)值(+11.0~+15.5)。这些安山岩应起源于俯冲的新特提斯洋板片的部分熔融,在岩浆上升过程中与地幔楔橄榄岩发生过相互作用,为新特提斯洋岩石圈在早白垩世以高角度向拉萨地体之下俯冲提供了证据。

1.2 与新特提斯洋中脊俯冲相关的岩浆作用

在新特提斯洋中脊俯冲过程中形成的晚白垩世岩浆岩主要分布于岩浆带东部。位于朗县至米林地区的里龙岩基是晚白垩世(100~85Ma)岩浆作用的代表。该岩基下部由辉长岩和辉长苏长岩组成,上部由紫苏花岗岩和花岗闪长岩组成(Wen et al., 2008a; Zhang et al., 2010a, 2014a; Ma et al., 2013a)。里龙岩基经历了明显的岩浆结晶分异,辉长岩为堆晶岩,而紫苏花岗岩和花岗闪长岩为分异岩浆结晶产物。岩基中的紫苏花岗岩和花岗闪长岩均具有埃达克岩和大陆岩浆弧紫苏花岗岩的成分特征(Wen et al., 2008a; Zhang et al., 2010a)。结合同时期存在的钙碱性岩浆岩和同时期发生的高温麻粒岩相变质作用,Zhang et al.(2010a)认为这种高温、低水的紫苏花岗岩是新特提斯洋中脊俯冲过程中洋壳板片部分熔融产物。Ma et al.(2013a)研究也表明,这些紫苏花岗岩具有埃达克岩的地球化学特征,以及高的全岩εNd(t)值(+2.4~+4.0)和锆石εHf(t)值(+10.1~+15.8),相对低的87Sr/86Sr(i)比(0.7042~0.7043),起源于俯冲的新特提斯洋壳的部分熔融。但他们认为,俯冲岩石圈回转导致的软流圈上涌为洋壳部分熔融提供了热源。此外,Ma et al.(2013c)认为冈底斯中部则嘎地区的晚白垩世(94Ma)辉长岩起源于岩石圈地幔的含水部分熔融。Xu et al.(2015)认为冈底斯弧的晚白垩世埃达克质岩石是正常幔源弧岩浆发生以角闪石为主的分离结晶作用产物。

Zheng et al.(2014a)对米林和朗县地区的晚侏罗世(105~76Ma)花岗岩、闪长岩、煌斑岩和基性包体的系统研究揭示,花岗质岩石具有埃达克岩的化学成分,高的εNd(t)(+2.7~+2.8)和δ18O(8.9‰~9.2‰),岩浆锆石具有高的εHf(t)值(+11.0~+17.0),起源于新生下地壳的部分熔融;而其它岩石起源于低温蚀变的新特提斯洋壳的部分熔融。这些岩石形成在新特提斯洋中脊俯冲过程中,热的软流圈沿板片窗上涌引起了俯冲洋壳和上板片底部的部分熔融,导致了强烈的岩浆作用和明显的地壳生长。

最新研究表明,冈底斯白垩世时期岩浆作用具有从南向北迁移的特征,不可能形成在俯冲的新特提斯洋板片回转过程中(Zhu et al., 2018)。不同源区和不同成分岩浆岩的同时产出,低水、富CO2和高氧逸度的流体条件,以及同期高温变质作用的发生都表明,晚白垩世的强烈岩浆作用与正在扩张的新特斯洋中脊俯冲有关(张泽明等, 2009; Zhang et al., 2010a, b,2014a, b; 管琪等, 2010; Guo et al., 2011, 2013; Zheng et al., 2014a; Zhu et al., 2018)。

1.3 与残余新特提斯洋俯冲相关的岩浆作用

在晚白垩世晚期(80~65Ma),冈底斯弧经历了与残余的新特提斯洋岩石圈继续俯冲相关的岩浆作用。Ji et al.(2014)研究表明,80~73Ma的岩浆岩主要是酸性岩,包括由英云闪长岩、花岗闪长岩、二长花岗岩和花岗岩,而68~60Ma的岩浆岩成分很宽——从辉长岩到花岗岩。所有的花岗质岩石均为I型花岗岩,并具有高的锆石εHf(t)值(+7.1~+13.0),表明其起源于新生地壳的部分熔融。值得注意的是,较早期的花岗岩具有高的Sr/Y(47~450)和(La/Yb)N(6~38)比值,表明其起源于加厚下地壳。而较晚期的花岗岩具有降低的Sr/Y比值(3~40),表明较浅的岩浆源区和较薄的地壳。

1.4 与印度-亚洲碰撞相关的岩浆作用

大量研究表明,印度与亚洲大陆碰撞发生在早古近纪(65~50Ma)(Rowley, 1996; Leech et al., 2005; Najman et al., 2010, 2017; Meng et al., 2012; Hu et al., 2015, 2016; Ding et al., 2016a, b,2017; Zhu et al., 2017a, b)。这一时期是冈底斯岩浆作用的爆发期,所形成的侵入岩构成了冈底斯岩基的主体。冈底斯南部谢通门-南木林-尼木-曲水一带产出的大型花岗岩基形成在52~47Ma,主要由石英闪长岩、花岗闪长岩、二长花岗岩和钾长花岗岩组成。这些岩石中含有大量的暗色镁铁质微粒包体。在该岩基的南侧有一条东西向展布的基性小岩体带。相关研究认为,壳源花岗岩浆与幔源基性岩浆之间发生大规模的岩浆混合(Mo et al., 2005, 2007; 董国臣等, 2006; Zhu et al., 2018)。冈底斯的早第三系花岗岩多具有埃达克岩的地球化学特征,是新生玄武质加厚下地壳部分熔融产物,俯冲新特提斯板片断离导致的软流圈上涌为加厚下地壳的熔融提供了热源(Ji et al., 2012; Guan et al., 2012; Ma et al., 2014)。

在冈底斯广泛分布的早第三纪林子宗火山岩系是印度与亚洲大陆碰撞的岩浆作用响应(莫宣学等, 2003, 2007; Chung et al., 2005; Lee et al., 2009; Niu et al., 2013; Wang et al., 2015a; Zhu et al., 2017b)。早期的定年结果将林子宗火山岩系形成时间限定在65~40Ma(莫宣学等, 2003; He et al., 2007; Mo et al., 2008; Lee et al., 2009, 2012),而最近的系统定年结果将其形成时间限定在60~52Ma之间(Zhu et al., 2015, 2018)。Mo et al.(2008)Niu et al.(2013)研究揭示,林子宗火山岩系主要由钙碱性岩石组成,具有弧岩浆岩的典型地球化学特征,它们的87Sr/86Sr(i)比值(0.7048~0.7072)和εNd(t)值(+3.3~+2.4)也与同时代的I型花岗岩相同。因此认为,林子宗火山岩系是俯冲的新特提斯洋壳部分熔融产物。

但是,林子宗火山岩很可能具有复杂的组成与成因。Lee et al.(2012)认为是林子宗火山岩系的主体为地幔楔部分熔融产物,但也一部分起源于新生下地壳部和古老大陆地壳基底。林子宗火山岩系的化学成分变化很可能与大陆碰撞早期俯冲的新特提斯洋板片回转和断离有关。Zhu et al.(2015, 2018)基于对林子宗火山系的系统研究,揭示出从印度与亚洲大陆从初始碰撞到后碰撞汇聚,残余的新特提斯洋板片继续俯冲、回转和断离的构造演化过程。Liu et al.(2018)认为,林子宗火山岩系上部帕那组的玄武岩、玄武质安山岩和粗安岩具有与典型钙碱性弧火山岩不同的地球化学特征。玄武岩很可能是受到俯冲组分交代的、富集的含石榴石岩石圈地幔部分熔融的产物,玄武质安山岩很可能是拉萨地体古老基底物质混染玄武质岩浆的产物,粗面岩起源于新生和古老下地壳混合物质的部分熔融。在俯冲的新特提斯洋岩石圈断离过程中,岩石圈地幔和其上部大陆地壳的高温部分熔融形成了这些火山岩。

1.5 后碰撞岩浆作用

在大陆后碰撞阶段形成的渐新世至中新世(26~10Ma)岩浆岩在冈底斯南部广泛分布,主要岩性为二长花岗斑岩、二长斑岩、英安岩和流纹岩。这些岩石普遍具有埃达岩的地球化学特征,被认为是冈底斯弧新生的加厚下地壳部分熔融产物,俯冲印度大陆板片的断离或加厚岩石圈的对流移去导致的软流圈上涌为部分熔融提供了热源(Chung et al., 2003; Hou et al., 2004; Guo et al., 2007; Xu et al., 2010; Chen et al., 2011; Zhang et al., 2015; Yang et al., 2016a; Zeng et al., 2017)。系统的年代学资料表明,冈底斯带中部的埃达克质侵入岩具有较年轻(18~10Ma)的结晶年龄,而东段的埃达克质侵入岩具有较老的(26~21Ma)的结晶年龄(Chung et al., 2003, 2009; Hou et al., 2004; Guo et al., 2007; Xu et al., 2010)。岩石结晶年龄的空间变化趋势很可能与俯冲印度大陆板片的穿时性断离有关(Pan et al., 2012b)。但也有研究认为,这些后碰撞的埃达克质岩石起源于俯冲的新特提斯洋壳(Qu et al., 2004),俯冲板片熔体交代的地幔楔(Gao et al., 2010),俯冲的印度大陆基性下地壳(Xu et al., 2010),是地幔部分熔融形成的含水基性岩浆在高压下分离结晶作用产物(Lu et al., 2015),或者是幔源超钾质岩浆与壳源岩浆混合产物(Yang et al., 2015)。

2 冈底斯带中-下地壳的变质作用与部分熔融

在喜马拉雅造山带的东、西构造结,由于近几百万年来的快速抬升,泛喜马拉雅岩浆弧的中-下地壳岩石被剥露到地表(图 1)。在西喜马拉雅构造结的科尹斯坦(Kohistan)岩浆弧,出露有世界上著名的完整岛弧地壳剖面,已经成为研究大陆地壳生长的天然实验室(Jagoutz and Schmidt, 2012; Jagoutz and Behn, 2013)。在东喜马拉雅构造结的东、西两侧,也分布有大量的中-高级变质岩石(图 1)。这些变质岩石以前被误认为是拉萨地体的前寒武纪结晶基底,被称之为念青唐古拉岩群、林芝岩群或波密岩群。但是,近年来的研究表明,这些岩石的变质作用发生在中、新生代,其原岩主要为中、新生代的岩浆岩组成,含少量变质沉积岩。因此,这是一套中、新生代的变质杂岩,为冈底斯岩浆弧的中、下地壳组成,为研究岩浆弧地壳生长、再造与成矿作用深部过程提供了难得的机会(董昕等, 2009, 2012; Dong et al., 2010; Zhang et al., 2010b, 2013, 2014a, 2015; Searle et al., 2011; Palin et al., 2014)。目前的研究表明,冈底斯岩浆弧的中、下地壳经历了3期变质和深熔作用,分别发生在晚白垩世的新特提斯洋中脊俯冲期、古新世的陆-陆碰撞期和渐新世的后碰撞期(Burg et al., 1997; 王金丽等, 2008, 2009; Dong et al., 2010; Zhang et al., 2010b, 2013, 2014a, b, 2015; Guo et al., 2011, 2012; Pan et al., 2012b; Xu et al., 2013b; Palin et al., 2014)。

2.1 新特提斯洋中脊俯冲期的晚白垩世变质作用

Zhang et al.(2014a)研究揭示,米林地区晚白垩世里龙岩基下部的辉长岩经历了近同侵入期(90~80Ma)的高压和高温麻粒岩相变质作用,变质条件为0.9~1.3GPa和830~900℃(图 4)。这期变质作用发生在岩体的侵位过程中,即随着大体积幔源基性岩浆的底侵和增生,地壳发生了明显的加厚,由此导致底侵的基性岩本身发生了高压和高温变质作用(图 5b)。较早期的研究已经揭示出,东喜马拉雅构造结左侧的拉萨地体经历了约90~80Ma的高温麻粒岩相变质作用,很可能形成在新特提斯洋中脊俯冲构造环境(图 5b; Zhang et al., 2010b; 董昕等, 2012)。

图 4 冈底斯岩浆弧东端下地壳晚白垩世变质作用P-T条件 图中显示有世界上典型岩浆弧下地壳的变质条件范围(据Zhang et al., 2014a修改);图中角闪岩脱水熔融的干固相线Solidus (a)和(b)分别据作者对冈底斯弧晚白垩世石榴石角闪岩的相平衡模拟结果和López and Castro(2001)实验结果. Amp-角闪石; Cpx-单斜辉石, Ep-绿帘石, Grt-石榴石 Fig. 4 Late Cretaceous metamorphic P-T conditions of the lower crust of the Gangdese arc (modified after Zhang et al., 2014a)

图 5 冈底斯弧构造演化模式(据Guo et al., 2012修改) ITSZ-雅鲁藏布江缝合带 Fig. 5 Tectonic evolution model of the Gangdese magmatic arc (modified after Guo et al., 2012)

Guo et al.(2013)研究揭示,林芝杂岩中的含石榴石麻粒岩峰期变质矿物组合是石榴石+斜方辉石+高钛角闪石+斜长石+石英+金红石,所估计的峰期变质作用温度为803~924℃。地球化学研究表明,这些基性麻粒岩的原岩形成大陆边缘弧背景,起源于亏损地幔的部分熔融。锆石定年表明,原岩年龄为89Ma,而变质年龄在81Ma。在与变质基性岩伴生的大理岩中获得了167~86Ma的岩浆碎屑锆石年龄,而且这些碎屑锆石具有与侏罗世至白垩世冈底斯岩基锆石相同的Hf同位素成分,表明相关的碎屑岩具有来自冈底斯侵入岩或火山岩的物质,形成在弧前盆地环境。大理岩中的变质锆石也给出了81Ma的变质年龄。这些结果表明,弧岩浆岩和弧前沉积岩经历了晚白垩世的高温麻粒岩相变质作用,说明弧前地区有异常高的热源。结合其他证据,Guo et al.(2013)认为这期高温变质作用发生在新特提斯洋中脊俯冲导致的板片窗构造环境(图 5b)。

2.2 大陆碰撞期的古新世变质作用

冈底斯带东端经历了早新生代的岩浆作用和同时期的麻粒岩相变质作用和部分熔融。这期变质作用是以俯冲和同碰撞过程中形成的岩浆岩和沉积岩经历同碰撞期的高温变质和部分熔融,以及I型和S型花岗岩的形成为特征(Zhang et al., 2013)。所形成的I型花岗岩具有65~56Ma的结晶年龄,显出典型岩浆弧的地球化学特征,并具有正的εHf(t)值(+1.7~+13.0),为新生地壳部分熔融产物。共生的S型花岗岩为过铝质,含有石榴石和白云母,岩浆锆石具有约66~55Ma结晶年龄和明显负的εHf(t)值(-18.4~+2.0)。变质沉积岩中的继承锆石获得了2910~235Ma,表明其最大沉积年龄为三叠纪。变质侵入岩和变质沉积岩中的变质锆石获得了约67~52Ma的变质年龄。相平衡模拟表明,变质作用峰期发生在800~830℃和9~10.5kbar的麻粒岩相条件下,然后近等压冷却到约700℃。这期变质作用和不同类型花岗岩的形成很可能与陆-陆碰撞导致的地壳加厚,以及深俯冲新特提斯洋岩石圈断离导致的幔源岩浆底侵有关(图 5d)。

Guo et al.(2012)的研究也表明,林芝杂岩经历了早新生代的变质和深熔作用。正片麻岩具有83Ma的原岩年龄和65~46Ma的变质年龄,正的εHf(t)值(+8.3),说明其原岩起源于新生地壳源区。副片麻岩中的锆石继承核具有2690~347Ma年龄,锆石边缘具有64Ma深熔年龄和55~41Ma的变质年龄。而S型花岗岩中的锆石具有63Ma的结晶年龄和负的εHf(t)值(-8.2~-2.7),表明其起源于古老地壳物质的部分熔融。Guo et al.(2012)认为冈底斯古新世的地壳深熔和变质作用很可能与俯冲的新特提斯洋板片回转引起的热扰动有关。

2.3 后碰撞期的渐新世变质作用

冈底斯岩浆弧的深地壳岩石也记录了渐新世(35~25Ma)变质、深溶和岩浆作用再造(Zhang et al., 2010b, 2015; 董昕等, 2012)。这期变质和深熔作用分别发生在34~26Ma和28~24Ma,变质花岗岩具有65~38Ma的原岩年龄,变质沉积岩中继承碎屑锆石的年龄在2708~37Ma之间变化。这期变质作用的温、压条件为710~760℃和~12kbar,地热梯度是18~20℃/km(Zhang et al., 2015)。早期形成的花岗岩和沉积岩经历了稍晚期的高压-高温变质和部分熔融表明,冈底斯岩浆弧经历了又一期明显的地壳加厚过程。大陆碰撞和后续不断汇聚引起的地壳缩短、加厚、俯冲剥蚀作用,以及俯冲大陆板片的断离很可能共同导致了岩浆弧新生和古老地壳的变质和深熔再造(图 5e)。

3 冈底斯带的成矿作用

冈底斯岩浆带是巨型金属成矿带(图 1),是中国最重要的多金属成矿区之一,主要包括斑岩型Cu-Mo-Au矿床,矽卡岩型Fe和Pb-Zn-Ag矿床,斑岩型或矽卡岩型Mo-Cu-W矿床,与花岗岩有关的Sn-W矿床,沉积型Pb-Zn矿床,块状硫化物型(VMS)Cu-Pb-Zn矿床,以及热液型和造山型Au与多金属矿床(侯增谦等, 2008; Hou and Cook, 2009; Qin et al., 2012; Zhao et al., 2014; Hou et al., 2015a; Richards, 2015; Wang et al., 2015b, 2017; Zheng et al., 2015a, b; Xu et al., 2017)。现有的大量研究已经揭示出,冈底斯成矿带的时空分布规律以及成矿作用与岩浆作用的相关性,建立了碰撞造山带的成矿模型。

在冈底斯带,与岩浆作用相关的多金属成矿作用主要发生在中侏罗-早白垩世、古新世和中新世。在特提斯洋壳俯冲过程中形成的矿床比较少见,目前仅发现一个中侏罗纪(185~170Ma)的大型斑岩型Cu-Au矿床。相反,在大陆主碰撞期(65~50Ma)形成了大量的矽卡岩型和斑岩型Pb-Zn-Ag-Fe-Mo-W矿床。在大陆碰撞后期更是形成了许多大型或超大型斑岩型Cu-Mo-Au矿床。

冈底斯带的金属矿床主要分布在岩浆弧东段,主碰撞期的成矿作用主要发生在冈底斯北带,而后碰撞的成矿作用主要集中在冈底斯南带(图 1)。研究认为,在冈底斯东段侏罗纪岩浆岩的底侵过程中发生了地壳物质的混合,导致Cu作为硫化物堆积在岩浆弧的底部(Hou et al., 2015b)。这很可能是冈底斯带东段没有俯冲期(侏罗纪)Cu矿的原因。冈底斯带东段渐新世斑岩型Cu矿空间分布与侏罗纪弧岩浆岩的产出范围是一致的,成矿斑岩也具有与侏罗纪岩浆岩相同的同位素组成。这很可能说明,新生代的地壳加厚和俯冲板片的断离导致了处在下地壳的、富铜的侏罗纪岩浆岩的再熔融,由此形成了渐新世的大型和超大型斑岩Cu矿(Hou et al., 2015b)。

大多数研究认为,无论在洋壳俯冲过程中,还是在大陆碰撞过程中,含Cu-Mo-Au矿的斑岩岩浆都起源于岩浆弧根部,即为新生或受俯冲改造的加厚下地壳部分熔融形成的富水、含硫和高氧逸度的埃达克质岩浆,最有可能的源区物质是由玄武质岩石高压变质形成的石榴石角闪岩(Hou et al., 2009, 2013; Qu, 2009; Shafiei et al., 2009; Richards, 2015; Zheng et al., 2015a, b; Wu et al., 2016; Yang et al., 2016a; Xu et al., 2017; Zeng et al., 2017)。另外,也有人提出,含矿斑岩是幔源基性岩浆在高压下分异的产物(Lu et al., 2015)或幔源与壳源岩浆混合的结果(Yang et al., 2015)。相反,与Pb-Zn-Ag矿相关的花岗岩浆很可能是古老地壳物质部分熔融形成的,与矽卡岩型Fe-Cu矿相关的岩浆很可能是古老和新生地壳部分熔融的混合产物(Zheng et al., 2015a)。

4 冈底斯带的地壳生长

广泛研究已经表明,冈底斯的中、新生代岩浆岩具有弧岩浆岩的地球化学特征,大多是起源于亏损地幔,俯冲洋壳,或者是新生下地壳部分熔融的产物(Coulon et al., 1986; Debon et al., 1986; Chung et al., 2003, 2005; Ding et al., 2003; Hou et al., 2004; 莫宣学等, 2005, 2009a; Chu et al., 2006; Mo et al., 2007, 2008; Wen et al., 2008a, b; Ji et al., 2009, 2014; 纪伟强等, 2009; Wu et al., 2010; Zhang et al., 2010a; Zhu et al., 2010, 2011, 2015; Zheng et al., 2012, 2014a; Ma et al., 2013a, b, c)。大量的Sr和Nd同位素研究表明,在岩浆的形成过程中有亏损地幔物质的重要贡献,表明冈底斯带经历了显著的新生地壳生长(Harris et al., 1988a; Chung et al., 2005; 莫宣学等, 2005, 2006, 2009a, b; Mo et al., 2008; Wen et al., 2008a, b; 纪伟强等, 2009; Chu et al., 2011; Zhu et al., 2011; Zheng et al., 2014a; Hou et al., 2015a)。

基于对中、新生代岩浆岩的研究,Zhu et al.(2011)揭示出拉萨地体中部存在古元古至太古代的基底岩石,而南北两边是年轻的显生宙新生地壳。拉萨地体曾经是一个古特提斯洋中的微大陆,中、新生代大洋岩石圈向其下部俯冲,以及其与北部羌塘地体和南部印度大陆的碰撞导致的岩浆作用使期南北两边发生了地壳生长。大量的Hf同位素研究表明,冈底斯带的大多数岩浆岩具有正的、接近亏损地幔的εHf(t)值,显示出起源于亏损地幔和新生地壳的组成特征(Chu et al., 2006, 2011; Wu et al., 2007, 2010; Chung et al., 2009; Ji et al., 2009; 纪伟强等, 2009; Guo et al., 2011, 2012; Zhu et al., 2011; Zheng et al., 2012, 2014a; Ma et al., 2013c; Zhang et al., 2013; Hou et al., 2015a; Pan et al., 2016; Ding and Zhang, 2018)。中生代岩浆岩中的锆石具有较高的正εHf(t)值(图 6),表明岩浆岩主要起源于亏损地幔源区,受到少量古老地壳物质的混染。同碰撞过程中形成的岩浆岩具有很宽的εHf(t)范围(图 6),其源区包括亏损地幔、新生地壳和古老壳。后碰撞岩浆岩具有较一致,但低的εHf(t)值(图 6),很可能起源于是新生与古老地壳物质混合源区。由此可见,冈底斯带的新生地壳生长主要发生在中生代和早新生代,而高温变质与深熔导致的新生和古老地壳再造主要发生在新生代的大陆碰撞与后碰撞期(图 6)。

图 6 冈底斯带岩浆岩锆石U-Pb年龄与εHf(t)值(据Chu et al., 2011)及构造演化和地壳生长-加厚-深熔作用过程 Fig. 6 Diagram of zircon U-Pb ages versus εHf(t) values of the Gangdese magmatic rocks (modified after Chu et al., 2011) with tectonic evolution, and the crustal growth-thickening-partial melting stages

Hf同位素填图显示,拉萨地体东南和西北大部分地区中、新生代岩浆岩中的锆石具有较高的εHf(t)值(0~+14),地壳模式年龄(tDMC)在1200~200Ma之间(图 7; Hou et al., 2015a)。这表明这些地区是由显生宙的新生地壳组成,由此计算出的幔源物质在地壳生长中的贡献率为60%~90%(Zhu et al., 2011; Hou et al., 2015a)。研究表明,中生代与俯冲有关的斑岩型Cu-Au矿床和新生代与碰撞有关的Cu-Mo矿床产出在具有高的εHf(t) (>5)值的新生地壳中(图 7)。相反,与花岗岩有关的Pb-Zn矿主要产出在古老地壳分布区。因此,地壳组成和成矿位置具有密切的时空关系,表明地壳结构、特征和成分控制着成矿作用(Hou et al., 2015a)。Zheng et al.(2012)研究揭示,冈底斯带不同地区的后碰撞埃达克质岩石具有不同地球化学特征,表明整个岩浆弧的下地壳同位素成分是不均匀的,具有可变量的新生幔源岩浆加入。冈底斯中东部主要由新生下地壳组成,表明在新特提斯洋俯冲过程中有大量的幔源岩浆加入。相反,在冈底斯的西部,下地壳相对古老,只有少量幔源岩浆加入(Zheng et al., 2012)。

图 7 拉萨地体及冈底斯带中、新生代岩浆岩锆石εHf(t)值空间变化(据Hou et al., 2015a) 图中显示有与中、新生代岩浆岩相关的金属矿床分布. BNSZ-班公湖-怒江缝合带;ITSZ-雅鲁藏布江缝合带 Fig. 7 Spatial variation of zircon εHf(t) values for the Mesozoic-Cenozoic magmatic rocks in the Lhasa terrane (after Hou et al., 2015a)

正如上面描述的,俯冲带形成的弧岩浆岩具有与大陆地壳类似的化学成分,表明大陆地壳是俯冲带岩浆作用的产物,由此形成了大陆地壳成因的弧模型。但是这个模型也有许多问题,如幔源的弧岩浆岩应该是玄武质的,而全大陆地壳是安山质的。另外,俯冲过程中弧地壳的生长速率与俯冲剥蚀速率相近,对大陆地壳生长很可能没有净贡献。Mo et al.(2007)Niu et al.(2013)对冈底斯带大陆碰撞期(~55±10Ma)花岗岩(包括火山岩和侵入岩)的研究发现,这些岩石显示典型的弧岩浆特征,而且具有与全地壳类似的主量和微量元素成分。这些同碰撞的花岗岩也具有幔源岩浆特征,最有可能是俯冲洋壳上部在角闪岩相条件下部分熔融形成的。即在大陆碰撞后,在洋中脊发生过热液蚀变,在洋底发生过风化和水化的残余洋壳俯冲到深部后,发生在角闪岩相条件的部分熔融,形成安山质的熔体,即同碰撞安山岩。同碰撞的安山岩具有从洋壳继承的地幔化学成分特征,是真正的初生大陆地壳物质。大陆碰撞产生和保存了新生地壳,导致了大陆地壳的净生长(Niu et al., 2013)。

5 冈底斯带的地壳加厚

青藏高原及冈底斯岩浆弧具有近双倍的正常地壳厚度(Hirn et al., 1984; Molnar, 1988; Zhao et al., 1993)。以前的研究多认为,青藏高原巨厚地壳的形成是印度与亚洲大陆碰撞在始新世碰撞的结果(England and Houseman, 1986; Molnar et al., 1993; Yin and Harrison, 2000)。但是,也有研究表明,拉萨和羌塘地体在大陆碰撞前经历了明显的地壳缩短和加厚作用(England and Searle, 1986; Murphy et al., 1997; Ding and Lai, 2003; Kapp et al., 2003, 2005, 2007a, b; Guynn et al., 2006)。基于对冈底斯中部林周盆地早新生代沉积岩的氧同位素研究,Ding et al.(2014)揭示,在印度与亚洲大陆刚开始碰撞时,冈底斯已经具有4500m高度,亚洲大陆南缘在晚白垩世就已经存在一个安底斯型的山脉。这表明冈底斯(拉萨地体)在碰撞前已经历了明显的地壳加厚。Wen et al.(2008a)认为冈底斯东端的晚白垩世埃达克质花岗闪长岩是加厚下地壳部分熔融的产物。正如上面描述的,冈底斯弧东端的晚白垩世基性侵入岩经历了近同侵入期的高温-高压变质作用,变质压力可达1.5GPa(Zhang et al., 2014a),相对应的地壳厚度至少为50km。这些为冈底斯弧晚白垩世(约85~80Ma)地壳明显加厚提供了重要证据。

但是,基于对冈底斯岩基的研究,Zhu et al. (2018)认为在约70Ma前,冈底斯弧具有正常的地壳厚度(~37km),在70~60Ma冈底斯弧的局地开始加厚,在55~45Ma,冈底斯地壳整体加厚到50~58km。这期加厚很可能是俯冲的新特提斯洋板片回转和断离过程中幔源岩浆底侵的结果。在约20~10Ma,由于印度大陆向拉萨地体之下的俯冲和伴随的逆冲推覆,冈底斯地壳加厚到~68km。因此,冈底斯山在约55~45Ma达到了>4000m的高度,在约20~10Ma达到了目前的高度。

Mo et al.(2007)研究表明,冈底斯带广泛分布的古新世林子宗火山岩系和同时代的花岗岩起源于亏损地幔或俯冲的新特提斯洋壳。这些岩浆岩的形成导致了岩浆弧地壳的显著加厚。莫宣学等(2007)估计,地幔物质对目前青藏高原南部地壳总厚度的贡献可达30%。假定碰撞前的地壳厚度是~35km,地幔物质对冈底斯地壳厚度的净贡献是15km,而构造的贡献是~20km。

冈底斯带广泛分布的新生代埃达克质岩石普遍被认为是加厚下地壳部分熔融的产物(Chung et al., 2003; Hou et al., 2004; Guo et al., 2007; Chen et al., 2011; Guan et al., 2012; Ji et al., 2012; Zheng et al., 2012; Ma et al., 2014; Wang et al., 2015a; Zhang et al., 2015; Yang et al., 2016a; Zeng et al., 2017)。Chung et al.(2009)通过对冈底斯晚始新世埃达克岩的研究,认为45~30Ma之间是青藏高原最主要的地壳加厚期,加厚的下地壳主要由基性岩组成。Ji et al.(2012)认为,从65~34Ma冈底斯的埃达克质岩浆作用是连续的,岩浆岩的La/Yb和Sr/Y比值增加,岩浆锆石的Hf同位素比值降低,表明地壳在逐渐加厚。

基于现有的研究成果,我们认为冈底斯带地壳加厚开始于晚白垩世,持续到后碰撞期(图 6)。晚白垩世时期,地壳加厚机制是幔源基性岩浆的底侵和增生,地壳厚度至少达到50km。新生代的地壳加厚可能是一个连续的过程,同碰撞期地壳加厚的主要机制是地壳挤压缩短,并伴随有幔源岩浆的底侵,而后碰撞期地壳加厚机制是地壳挤压缩短。

正如上面描述的,冈底斯弧晚白垩世的地壳加厚也可能与南北向的地壳缩短有关。值得注意的是,冈底斯带也可能并没有经历从晚白垩世到中新世(20~10Ma)的长期持续地壳加厚过程,因为加厚的地壳很难一直保持稳定。科迪勒拉造山带的研究表明,弧根的高密度岩石有可能会发生周期性的拆沉(DeCelles et al., 2009; Ducea, 2011)。Ji et al.(2014)基于晚白垩世花岗岩地球化学特征随时间的变化趋势,提出在晚白垩世晚期冈底斯弧经历了地壳减薄过程,即加厚的岩石圈发生了拆沉,青藏高原南部的巨厚地壳是在新生代形成的。此外,有研究提出青藏高原南部的加厚岩石圈在~26Ma发生拆沉(对流移去),诱发了超钾质和埃达克质岩浆作用(Chung et al., 2005; Chen et al., 2017; Lu et al., 2018)。

6 冈底斯弧的形成与演化

尽管还存在较大的争议,但相当多的研究者认为,新特提斯洋在晚三叠世开始向拉萨地体之下俯冲(Chu et al., 2006; Ding et al., 2003; Pan et al., 2012a; Meng et al., 2016; Wang et al., 2016),新特提斯洋中脊俯冲发生在晚白垩世(100~80Ma),印度与亚洲大陆碰撞发生在60~50Ma。基于这些时间限定,综合岩浆、变质和成矿作用研究成果,我们将冈底斯弧的形成与演化划分5期,即新特提斯洋的早期俯冲、新特提斯洋中脊俯冲、新特提斯洋晚期俯冲、印度-亚洲大陆碰撞和后碰撞期(图 2图 3图 6)。第1期发生在晚白垩世之前,是以新特提斯洋岩石圈的长期俯冲,地幔楔部分熔融形成钙碱性弧岩浆岩为特征,并表现为新生地壳的长期生长。在岩浆弧西部形成了一个中侏罗世(185~170Ma)的与俯冲相关的大型斑岩型Cu-Au矿床(图 5a);第2期发生在晚白垩世,活动的新特提斯洋中脊发生俯冲,软流软圈沿板片窗上涌,使软流圈、地幔楔和俯冲洋壳发生部分熔融,导致了强烈的幔源岩浆作用和显著的新生地壳生长与加厚,并以不同类型和不同成分岩浆岩的发育为特征,其中包括正常的弧型岩浆岩和埃达克质岩石(图 5b);第3期发生在晚白垩世晚期,新特提斯洋脊俯冲后残余大洋岩石圈的俯冲,以正常的弧型岩浆作用为特征(图 5c);第4期发生在古新世至中始新世,伴随印度与亚洲大陆的碰撞,俯冲的新特提斯洋岩石圈回转和断离引起软流圈上涌,诱发了强烈的幔源岩浆作用。地壳挤压缩短和幔源岩浆的底侵导致了明显的地壳加厚和生长,新生和古老加厚下地壳的高压、高温变质和部分熔融,幔源和壳源岩浆岩的共生和强烈的岩浆混合。所形成的I型花岗岩大多继承了新生地壳弧型岩浆岩的化学成分,并显出埃达克岩的地球化学特征(图 5d)。在岩浆弧北部形成了一系列与起源于古老地壳花岗岩相关的Pb-Zn矿床(图 7);第5期发生在晚渐新世到早-中中新世的后碰撞过程中,以地壳的继续加厚,加厚下地壳的部分熔融和埃达克质岩石的形成为特征,同时伴随有幔源的钾质-超钾质岩浆作用,可能的构造环境是印度大陆岩石圈的撕裂和断离,或加厚岩石圈地幔的对流移去等(图 5e)。在岩浆弧东段南部形成了一系列与起源于新生加厚下地壳埃克质岩浆岩相关的斑岩型Cu-Au-Mo矿床(图 7)。

目前,也有研究认为,雅鲁藏布江(新特提斯)洋在晚三叠世打开,是班公-怒江古特提斯洋向南俯冲形成的弧后盆地(潘桂棠等, 2006)。雅鲁藏布江洋岩石圈在早侏罗世开始俯冲,形成以叶巴组火山岩为代表的火山弧。Zhu et al.(2011, 2013, 2016, 2018)和Li et al.(2018)认为冈底斯弧的三叠-侏罗纪岩浆作用最有可能是班公-怒江洋岩石圈沿拉萨地体北缘南向俯冲的产物,新特提斯洋很可能是古特提斯洋向南俯冲形成的弧后盆地,拉萨与羌塘地体在140~130Ma的碰撞诱发了新特提斯洋岩石圈的北向俯冲。

7 问题与展望

冈底斯岩浆岩带已经进行了较广泛的研究,取得许多重要成果。但是,与世界上的典型岩浆弧相比,冈底斯岩浆弧的地壳组成、结构、生长再造作用与构造机制研究还比较薄弱,需要开展如下研究:(1)冈底斯岩浆岩带地壳岩石形成深度。确定岩浆岩(体)的侵位压力,变质岩的变质压力,揭示各种岩石形成的(古)深度,确定不同深度来源岩石的空间分布,是建立岩浆弧地壳剖面的最基本工作,世界上著名的岩浆弧都进行了相关研究(Hacker et al., 2008; Ducea et al., 2015; Jagoutz and Kelemen, 2015),但在冈底斯带相关研究还是空白。(2)冈底斯带的地壳组成。查明岩浆岩带上地壳沉积岩和岩浆岩、中-下地壳岩浆岩和变质岩(变质沉积岩和变质岩浆岩),以及前寒武纪结晶基底的组成与空间分布,岩浆岩(变质岩浆岩)的原岩类型、形成时代、地球化学特征及成因,构建整个岩浆弧的地壳组成剖面,这也是揭示岩浆弧地壳组成的关键性工作,但在冈底斯带也尚未开展。(3)岩浆弧地壳的化学成分及其随时间演化。岩浆弧地壳的化学成分是随时间变化的(Ducea et al., 2015)。冈底斯岩浆弧具有约150Myr的生长历史和约50Myr的再造过程,经历了增生与碰撞复合造山过程,系统研究不同期次、不同地壳层次岩浆岩的化学成分,不仅可以揭示岩浆弧地壳的总体地球化学成分,也可以揭示其化学成分随时间的演化,进而建立复合型大陆岩浆弧地壳化学成分与演化模型。世界上典型的岩浆弧都进行了相关研究,但在冈底斯相关研究尚未系统开展。(4)岩浆弧根部多期变质作用P-T-t轨迹与动力学。查明冈底斯岩浆弧根部同俯冲期、同碰撞期和后碰撞期的变质作用条件、开始与持续时间、P-T-t轨迹与动力学机制,是揭示岩浆弧的生长与再造的关键,相关工作不仅在冈底斯,在世界上其它典型岩浆弧也较少进行,尚未建立起岩浆弧地壳生长与再造的变质作用与动力学模型。(5)岩浆弧根部的多期部分熔融与岩浆作用。研究表明,岩浆弧根部经历了广泛的部分熔融,弧岩浆岩大多都起源于岩浆弧根部。但是,与大洋和大陆俯冲带相比,岩浆弧根部(俯冲带上盘)的部分熔融及机制还缺少系统研究。查明岩浆弧加厚下地壳不同构造阶段的部分熔融条件、时限、熔融程度和熔体成分,建立变质-深熔-岩浆作用之间的联系,将为揭示壳源弧岩浆岩的成因提供关键性制约。(6)岩浆弧的地壳结构(Architecture)与复合造山带构造演化。岩浆弧不仅具有长期的形成与演化历史,而且具有复杂的地壳结构(Miller and Snoke, 2009; Palin et al., 2012; Ducea et al., 2015)。冈底斯岩浆弧经历了复合造山作用,很可能由多个构造岩片组成。这些岩片具有不同的岩石组成、形成时代、变质条件与P-T-t轨迹,岩片之间很可能存在构造不连续现象。揭示不同构造岩片的形成与演化历史及动力学机制,不仅可以建立岩浆弧地壳结构与构造模型,还可以为复合造山带的构造演化提供重要限定。

此外,冈底斯带的幕式岩浆活动与动力学,深俯冲印度大陆地壳对冈底斯岩浆作用的贡献也需要进一步研究。冈底斯带的岩浆活动是不连续的,具有明显的活动期和静止期(Chung et al., 2005; Chu et al., 2006; Wu et al., 2007, 2010; Ji et al., 2009; Liu et al., 2014a, b; Zhu et al., 2015, 2018)。查明冈底斯带的岩浆活动规律,及其与板块的俯冲速率、俯冲角度、板块回转与断离、加厚岩石圈的拆沉、洋脊或洋底高原的俯冲等构造机制的关系,是冈底斯弧形成与演化研究的重要问题。俯冲到拉萨地体之下的印度大陆地壳经历了强烈的部分熔融,形成了在喜马拉雅造山带广泛分布的、不同时代的和不同类型的淡色花岗岩(Zhang et al., 2004; Hou et al., 2012; Kohn, 2014; 吴福元等, 2015; 曾令森和高利娥, 2017; 张泽明等, 2017, 2018)。有研究认为,所形成的岩浆岩侵入到了冈底斯岩浆岩带(Hou et al., 2012)。冈底斯带新生代岩浆岩显示出更多古老地壳物质的贡献。目前以有证据表明,这种古老地壳物质是很可能是印度大陆的结晶基底。

冈底斯岩浆岩带是经历了长期演化的、具有双倍的地壳厚度的复合型大陆岩浆弧。广泛分布的不同时代、不同来源和不同成因的岩浆岩,以及深地壳层次岩石的出露为研究大陆地壳生长与复合造山及动力学提供了难得的机会。对冈底斯岩浆弧不同地壳层次岩石进行系统的构造地质学、岩石学、年代学和地球化学研究,建立复合型大陆岩浆弧的地壳组成与化学成分剖面,揭示岩浆弧加厚下地壳的多期变质-深熔-岩浆作用与动力学机制,建立复合型大陆岩浆弧地壳生长与再造的构造模型,不仅具有重要的理论意义,也可以为冈底斯带的岩浆成矿作用研究提供重要信息。

冈底斯岩浆岩带是国际地学界的研究热点,已经发表了500多篇文章。由于作者水平有限,难以全面评述取得的进展,文中不当之处敬请批评指正!

致谢      感谢许志琴、金振民、莫宣学、吴福元、侯增谦、杨经绥和丁林院士,赵志丹、朱弟成、许继峰和张宏飞教授,曾令森和史仁灯研究员在工作中的指导与帮助!纪伟强和郭亮博士审阅全文并提出重要修改意见。

参考文献
Allègre CJ, Courtillot V and Tapponnier P, et al. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17-22. DOI:10.1038/307017a0
Behn MD, Kelemen PB, Hirth G, Hacker BR and Massonne HJ. 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 4: 641-646. DOI:10.1038/ngeo1214
Bosch D, Garrido CJ, Bruguier O, Dhuime B, Bodinier JL, Padròn-Navarta JA and Galland B. 2011. Building an island-arc crustal section:Time constraints from a LA-ICP-MS zircon study. Earth and Planetary Science Letters, 309(3-4): 268-279. DOI:10.1016/j.epsl.2011.07.016
Brown D, Ryan PD and Ryan PD. 2011. Arc-Continent Collision. Berlin Heidelberg: Springer-Verlag.
Burg JP, Davy P, Nievergelt P, Oberli F, Seward D, Diao ZZ and Meier M. 1997. Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova, 9(2): 53-56. DOI:10.1111/ter.1997.9.issue-2
Castro A, Vogt K and Gerya T. 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs:A test of Taylor's andesite model. Gondwana Research, 23(4): 1554-1566. DOI:10.1016/j.gr.2012.07.004
Chapman AD, Saleeby JB and Eiler J. 2013. Slab flattening trigger for isotopic disturbance and magmatic flare-up in the southernmost Sierra Nevada batholith, California. Geology, 41(9): 1007-1010. DOI:10.1130/G34445.1
Chen JL, Xu JF, Zhao WX, Dong YH, Wang BD and Kang ZQ. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane:Implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos, 125(3-4): 928-939.
Chen M, Niu FL, Tromp J, Lenardic A, Lee CTA, Cao WR and Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nature Communications, 8: 15659. DOI:10.1038/ncomms15659
Chin EJ, Lee CTA, Tollstrup DL, Xie LW, Wimpenny JB and Yin QZ. 2013. On the origin of hot metasedimentary quartzites in the lower crust of continental arcs. Earth and Planetary Science Letters, 361: 120-133. DOI:10.1016/j.epsl.2012.11.031
Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748. DOI:10.1130/G22725.1
Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu CH and Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Trans-Himalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479-486. DOI:10.1016/j.epsl.2011.05.020
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. DOI:10.1130/G19796.1
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196.
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48. DOI:10.1016/j.tecto.2009.08.008
Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302. DOI:10.1016/0012-821X(86)90186-X
Davidson JP and Arculus RJ. 2006. The significance of Phanerozoic arc magmatism in generating continental crust. In:Brown M and Rushmer T (eds.). Evolution and Differentiation of the Continental Crust. Cambridge:Cambridge University Press, 135-172
Debon F, Le Fort P, Sheppard SMF and Sonet J. 1986. The four plutonic belts of the Transhimalaya-Himalaya:A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 27(1): 219-250. DOI:10.1093/petrology/27.1.219
DeCelles PG. 2004. Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U. S.A. American Journal of Science, 304(2): 105-168. DOI:10.2475/ajs.304.2.105
DeCelles PG, Ducea MN, Kapp P and Zandt G. 2009. Cyclicity in cordilleran orogenic systems. Nature Geoscience, 2(4): 251-257. DOI:10.1038/ngeo469
Dewey JF, Shackelton RM, Chang CF and Sun YY. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594): 379-413. DOI:10.1098/rsta.1988.0135
Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H, Mu HC, Gou ZB, Shui XF, Li WC and Mao LJ. 2016a. Early Eocene (ca. 50Ma) collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73.
Ding HX and Zhang ZM. 2018. Early Cenozoic thickening and reworking of the eastern Gangdese arc, south Tibet:Constraints from the Oligocene granitoids. In:Zhang LF, Zhang Z, Schertl HP and Wei C (eds.). HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. Geological Society, London, Special Publications, 474.
Ding L and Lai QZ. 2003. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chinese Science Bulletin, 48(15): 1604-1610. DOI:10.1007/BF03183969
Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865. DOI:10.1093/petrology/egg061
Ding L, Xu Q, Yue YH, Wang HQ, Cai FL and Li S. 2014. The Andean-type Gangdese Mountains:Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. DOI:10.1016/j.epsl.2014.01.045
Ding L, Qasim M, Jadoon IAK, Khan MA, Xu Q, Cai FL, Wang HQ, Baral U and Yue YH. 2016b. The India-Asia collision in north Pakistan:Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letters, 455: 49-61. DOI:10.1016/j.epsl.2016.09.003
Ding L, Maksatbek S, Cai FL, Wang HQ, Song PP, Ji WQ, Xu Q, Zhang LY, Muhammad Q and Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China (Earth Sciences), 60(4): 635-3651. DOI:10.1007/s11430-016-5244-x
Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang LL, Chen T and Li B. 2006. Magma mixing in middle part of Gangdise magma belt:Evidences from granitoid complex. Acta Petrologica Sinica, 22(4): 835-844.
Dong X, Zhang ZM, Wang JL, Zhao GC, Liu F, Wang W and Yu F. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau:Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 25(7): 1678-1694.
Dong X, Zhang ZM and Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118(6): 677-690. DOI:10.1086/656355
Dong X, Zhang ZM, Liu F, Wang W, Yu F, Lin YH, Jiang HY and He ZY. 2012. Genesis of the metamorphic rock from southeastern Lhasa terrane and the Mesozoic-Cenozoic orogenesis. Acta Petrologica Sinica, 28(6): 1765-1784.
Dong X and Zhang ZM. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica, 29(6): 1933-1948.
Ducea MN. 2011. Fingerprinting orogenic delamination. Geology, 39(2): 191-192. DOI:10.1130/focus022011.1
Ducea MN, Saleeby JB and Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. The Annual Review of Earth and Planetary Sciences, 43(1): 299-331. DOI:10.1146/annurev-earth-060614-105049
England PC and Houseman GA. 1986. Finite strain calculations of continental deformation:2. Comparison with the India-Asia collision zone. Journal of Geophysical Research, 91(B3): 3664-3676. DOI:10.1029/JB091iB03p03664
England P and Searle M. 1986. The Cretaceous-Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics, 5(1): 1-14. DOI:10.1029/TC005i001p00001
Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH and Tian SH. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651-663. DOI:10.1016/j.lithos.2010.08.018
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016.
Guan Q, Zhu DC, Zhao ZD, Zhang LL, Liu M, Li XW, Yu F and Mo XX. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese belt, southern Tibet:Products of Neo-Tethyan ridge subduction?. Acta Petrologica Sinica, 26(7): 2165-2179.
Guan Q, Zhu DC, Zhao ZD, Gong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88-99. DOI:10.1016/j.gr.2011.07.004
Guo L, Zhang HF, Harris N, Pan FB and Xu WC. 2011. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt:Constraints from U-Pb zircon dating and Hf isotopic composition. Lithos, 127(1-2): 54-67. DOI:10.1016/j.lithos.2011.08.005
Guo L, Zhang HF, Harris N, Parrish R, Xu WC and Shi ZL. 2012. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 21(1): 100-111. DOI:10.1016/j.gr.2011.03.002
Guo L, Zhang HF, Harris N, Pan FB and Xu WC. 2013. Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction. Tectonophysics, 608: 112-126. DOI:10.1016/j.tecto.2013.10.007
Guo ZF, Wilson M and Liu JQ. 2007. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205-224. DOI:10.1016/j.lithos.2006.09.011
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G and Ding L. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508. DOI:10.1130/G22453.1
Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD and Luffi P. 2008. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. Journal of Geophysical Research:Solid Earth, 113(B3): B03204.
Hacker BR, Kelemen PB and Behn MD. 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3-4): 501-516. DOI:10.1016/j.epsl.2011.05.024
Hacker BR, Kelemen PB and Behn MD. 2015. Continental lower crust. Annual Review of Earth and Planetary Sciences, 43(1): 167-205. DOI:10.1146/annurev-earth-050212-124117
Harris NBW, Xu RH, Lewis CL and Jin CW. 1988a. Plutonic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594): 145-168. DOI:10.1098/rsta.1988.0124
Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ and Zhang YQ. 1988b. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594): 263-285. DOI:10.1098/rsta.1988.0129
He SD, Kapp P, DeCelles PG, Gehrels GE and Heizler M. 2007. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics, 433(1-4): 15-37. DOI:10.1016/j.tecto.2007.01.005
He YM, Zhang TY, Ai YH, Hou GB and Chen QF. 2018. Growth of the lower continental crust via the relamination of arc magma. Tectonophysics, 724-725: 42-50. DOI:10.1016/j.tecto.2018.01.006
Hirn A, Lepine JC, Jobert G, Sapin M, Wittlinger G, Xu ZX, Gao EY, Wang XJ, Teng JW, Xiong SB, Pandey MR and Tater JM. 1984. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23-25. DOI:10.1038/307023a0
Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. DOI:10.1016/0012-821X(88)90132-X
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Wang EQ, Mo XX, Ding L, Pan GT and Zhang ZJ, et al. 2008. Collisional Orogeny and Metallogenesis of the Tibetan Plateau. Beijing: Geological Publishing House.
Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2-24. DOI:10.1016/j.oregeorev.2009.05.001
Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. DOI:10.1016/j.oregeorev.2008.09.006
Hou ZQ, Zhang HR, Pan XF and Yang ZM. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust:Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2): 21-45. DOI:10.1016/j.oregeorev.2010.09.002
Hou ZQ, Zheng YC, Zeng LS, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W and Sun QZ. 2012. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38-52. DOI:10.1016/j.epsl.2012.06.030
Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM and Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 48(2): 173-192. DOI:10.1007/s00126-012-0415-6
Hou ZQ and Zhang HR. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70: 346-384. DOI:10.1016/j.oregeorev.2014.10.026
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015a. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575. DOI:10.2113/econgeo.110.6.1541
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015b. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250. DOI:10.1130/G36362.1
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT and Hou KJ. 2018. Precambrian origin of the North Lhasa terrane, Tibetan Plateau:Constraint from Early Cryogenian back-arc magmatism. Precambrian Research, 313: 51-67. DOI:10.1016/j.precamres.2018.05.014
Hu XM, Garzanti E, Moore T and Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1Ma). Geology, 43(10): 859-862. DOI:10.1130/G36872.1
Hu XM, Garzanti E, Wang JG, Huang WT, An W and Weeb A. 2016. The timing of India-Asia collision onset:Facts, theories, controversies. Earth-Science Reviews, 160: 264-299. DOI:10.1016/j.earscirev.2016.07.014
Jagoutz O and Schmidt MW. 2012. The formation and bulk composition of modern juvenile continental crust:The Kohistan arc. Chemical Geology, 298-299: 79-96. DOI:10.1016/j.chemgeo.2011.10.022
Jagoutz O and Behn MD. 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504(7478): 131-134. DOI:10.1038/nature12758
Jagoutz O and Kelemen PB. 2015. Role of arc processes in the formation of continental crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. DOI:10.1146/annurev-earth-040809-152345
Ji WQ, Wu FY, Chung SL, Li JX and Liu ZC. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020
Ji WQ, Wu FY, Liu CZ and Chung SL. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240-1261. DOI:10.1007/s11430-009-0131-y
Ji WQ, Wu FY, Liu CZ and Chung SL. 2012. Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences, 53: 82-95. DOI:10.1016/j.jseaes.2011.08.020
Ji WQ, Wu FY, Chung SL and Liu ZC. 2014. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 210-211: 168-180. DOI:10.1016/j.lithos.2014.10.001
Ji WQ, Wu FY, Chung SL, Wang XC, Liu CZ, Li QL, Liu ZC, Liu XC and Wang JG. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45Ma oceanic island basalt-type magmatism in southern Tibet. Geology, 44(4): 283-286. DOI:10.1130/G37612.1
Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc. Lithos, 200-201: 157-168. DOI:10.1016/j.lithos.2014.04.019
Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JH. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029.
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7): 865-878. DOI:10.1130/B25595.1
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007a. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917-932. DOI:10.1130/B26033.1
Kapp P, Decelles PG, Leier AL, Fabijanic JM, He S, Pullen A, Gehrels GE and Ding L. 2007b. The Gangdese retroarc thrust belt revealed. GSA Today, 17(7): 4-9. DOI:10.1130/GSAT01707A.1
Kay RW and Mahlburg-Kay S. 1991. Creation and destruction of lower continental crust. Geologische Rundschau, 80(2): 259-278. DOI:10.1007/BF01829365
Kay SM and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11: 4-9.
Kay SM, Gody E and Kurz A. 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin, 117(1): 67-88. DOI:10.1130/B25431.1
Kelemen PB, Hanghøj K and Greene AR. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In:Holland HD and Turekian KK (ed.). Treatise on Geochemistry:Vol. 4:The Crust. 2nd Edition. Oxford:Elsevier, 746-805
Kelemen PB and Behn MD. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience, 9(3): 197-205. DOI:10.1038/ngeo2662
Kohn MJ. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42(1): 381-419. DOI:10.1146/annurev-earth-060313-055005
Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q and Zhang Q. 2009. Eocene Neo-Tethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20-35. DOI:10.1016/j.tecto.2009.02.031
Lee HY, Chung SL, Ji JQ, Qian Q, Gallet S, Lo CH, Lee TY and Zhang Q. 2012. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53: 96-114. DOI:10.1016/j.jseaes.2011.08.019
Leech ML, Singh S, Jain AK, Klemperer SL and Manickavasagam RM. 2005. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 234(1-2): 83-97. DOI:10.1016/j.epsl.2005.02.038
Li SM, Wang Q, Zhu DC, Stern RJ, Cawood PA, Sui QL and Zhao ZD. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. Journal of Geophysical Research:Solid Earth, 123(5): 3391-3413. DOI:10.1002/2018JB015582
Lin YH, Zhang XM, Dong X, Shen K and Lu X. 2013. Precambrian evolution of the Lhasa terrane, Tibet:Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237: 64-77. DOI:10.1016/j.precamres.2013.09.006
Liu AL, Wang Q, Zhu DC, Zhao ZD, Liu SA, Wang R, Dai JG, Zheng YC and Zhang LL. 2018. Origin of the ca. 50Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet. . Lithos, 304-307: 374-387. DOI:10.1016/j.lithos.2018.02.017
Liu D, Zhao ZD, Zhu DC, Niu YL and Harrison TM. 2014a. Zircon xenocrysts in Tibetan ultrapotassic magmas:Imaging the deep crust through time. Geology, 42(1): 43-46. DOI:10.1130/G34902.1
Liu D, Zhao ZD, Zhu DC, Niu YL, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC and Liu JL. 2014b. Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207-231. DOI:10.1016/j.gca.2014.03.031
Liu F, Zhang ZM, Dong X, Yu F, Wang W, He ZY, Lin YH and Yan R. 2011. Cenozoic multistage magmatism and tectonic significance of the southeastern segment of the Gangdese belt, Tibetan Plateau. Acta Petrologica Sinica, 27(11): 3295-3307.
López S and Castro A. 2001. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4~14kbar. American Mineralogist, 86(11-12): 1396-1403. DOI:10.2138/am-2001-11-1208
Lu HJ, Tian XB, Yun K and Li HB. 2018. Convective removal of the Tibetan Plateau mantle lithosphere by~26Ma. Tectonophysics, 731-732: 17-34. DOI:10.1016/j.tecto.2018.03.006
Lu YJ, Loucks RR, Fiorentini ML, Yang ZM and Hou ZQ. 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43(7): 583-586. DOI:10.1130/G36734.1
Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013a. Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese:Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175175-176: 315-332.
Ma L, Wang Q, Li ZX, Wyman DA, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013b. Early Late Cretaceous (ca. 93Ma) norites and hornblendites in the Milin area, eastern Gangdese:Lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100~80Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos, 172-173: 17-30.
Ma L, Wang Q, Wyman DA, Jiang ZQ, Yang JH, Li QL, Gou GN and Guo HF. 2013c. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro. Chemical Geology, 349-350: 50-70.
Ma L, Wang BD, Jiang ZQ, Wang Q, Li ZX, Wyman DA, Zhao SR, Yang JH, Gou GN and Guo HF. 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa:Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197: 321-338. DOI:10.1016/j.lithos.2014.02.011
Ma XX, Meert JG, Xu ZQ and Yi ZY. 2018. Late Triassic intra-oceanic arc system within Neo-Tethys:Evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere, 10(4): 545-565. DOI:10.1130/L682.1
Maunder B, van Hunen J, Magni V and Bouilhol P. 2016. Relamination of mafic subducting crust throughout Earth's history. Earth and Planetary Science Letters, 449: 206-216. DOI:10.1016/j.epsl.2016.05.042
Meng J, Wand CS, Zhao XX, Coe R, Li YL and Finn D. 2012. India-Asia collision was at 24°N and 50Ma:Palaeomagnetic proof from southernmost Asia. Scientific Reports, 2(1): 925. DOI:10.1038/srep00925
Meng YK, Xu ZQ, Santosh M, Ma XX, Chen ZJ, Guo GL and Liu F. 2016. Late Triassic crustal growth in southern Tibet:Evidence from the Gangdese magmatic belt. Gondwana Research, 37: 449-464. DOI:10.1016/j.gr.2015.10.007
Miller RB and Snoke AW. 2009. Crustal cross sections from the Western North American Cordillera and elsewhere:Implications for tectonic and petrologic processes. The Geological Society of America, Special Paper, 456.
Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148.
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290.
Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asian collision:Zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76. DOI:10.1111/acgs.2005.79.issue-1
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51.
Mo XX, Zhao ZD, DePaolo DJ, Zhou S and Dong GC. 2006. Three types of collisional and post-collisional magmatism in the Lhasa block, Tibet and implications for India intra-continental subduction and mineralization:Evidence from Sr-Nd isotopes. Acta Petrologica Sinica, 22(4): 795-803.
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242. DOI:10.1016/j.lithos.2006.10.005
Mo XX, Zhao ZD, Zhou S, Dong GC and Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240-1244.
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67. DOI:10.1016/j.chemgeo.2008.02.003
Mo XX, Zhao ZD and Yu XH, et al. 2009a. Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau. Beijing: Geological Publishing House.
Mo XX, Zhao ZD, Zhu DC, Yu XH, Dong GC and Zhou S. 2009b. On the lithosphere of Indo-Asia collision zone in Southern Tibet:Petrological and geochemical constraints. Earth Science (Journal of China University of Geosciences), 34(1): 17-27. DOI:10.3799/dqkx.2009.003
Molnar P. 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 326(1589): 33-88. DOI:10.1098/rsta.1988.0080
Molnar P, England P and Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357-396. DOI:10.1029/93RG02030
Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X.. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?. Geology, 25(8): 719-722. DOI:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han JT, Liebke U, Oliver G, Parrish R and Vezzoli G. 2010. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115(B12): B12416. DOI:10.1029/2010JB007673
Najman Y, Jenks D, Godin L, Boudagher-Fadel M, Millar I, Garzanti E, Horstwood M and Bracciali L. 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54Ma in the Western Himalaya. Earth and Planetary Science Letters, 459: 301-310. DOI:10.1016/j.epsl.2016.11.036
Niu YL, Zhao ZD, Zhu DC and Mo XX. 2013. Continental collision zones are primary sites for net continental crust growth:A testable hypothesis. Earth-Science Reviews, 127: 96-110. DOI:10.1016/j.earscirev.2013.09.004
Palin RM, Searle MP, Waters DJ, Horstwood MSA and Parrish RR. 2012. Combined thermobarometry and geochronology of peraluminous metapelites from the Karakoram metamorphic complex, North Pakistan:New insight into the tectonothermal evolution of the Baltoro and Hunza Valley regions. Journal of Metamorphic Geology, 30(8): 793-820. DOI:10.1111/jmg.2012.30.issue-8
Palin RM, Searle MP, St-Onge MR, Waters DJ, Roberts NMW, Horstwood MSA, Parrish RR, Weller OM, Chen SR and Yang JS. 2014. Monazite geochronology and petrology of kyanite-and sillimanite-grade migmatites from the northwestern flank of the eastern Himalayan syntaxis. Gondwana Research, 26(1): 323-347. DOI:10.1016/j.gr.2013.06.022
Pan FB, Zhang HF, Harris N, Xu WC and Guo L. 2012b. Oligocene magmatism in the eastern margin of the East Himalayan syntaxis and its implication for the India-Asia post-collisional process. Lithos, 154: 182-192.
Pan FB, Zhang HF, Xu WC, Guo L, Luo BJ and Wang S. 2016. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of mafic intrusive rocks in the Motuo, SE Tibet constrain on their petrogenesis and tectonic implication. Lithos, 245: 133-146. DOI:10.1016/j.lithos.2015.05.011
Pan GT, Ding J and Yao DS, et al. 2004. Guidebook of 1:1500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Chengdu Cartographic Publishing House.
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533.
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012a. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. DOI:10.1016/j.jseaes.2011.12.018
Paterson SR and Farris DW. 2008. Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Transactions of the Royal Society of Edinburgh:Earth Sciences, 97(4): 397-413.
Pearce JA and Mei HJ. 1988. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594): 169-201. DOI:10.1098/rsta.1988.0125
Qin JH, Din J, Zhang DX, Rusk B, Liu CZ and Zhang QM. 2012. Tectonic settings of porphyry Cu-Mo-Au deposits in the Himalayan-Tibetan orogen, East Tethys. International Geology Review, 54(3): 302-312. DOI:10.1080/00206814.2010.543782
Qu XM, Hou ZQ and Li YG. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos, 74(3-4): 131-148. DOI:10.1016/j.lithos.2004.01.003
Qu XM, Hou ZQ, Zaw K, Mo XX, Xu WY and Xin HB. 2009. A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau:Evidence from zircon SHRIMP U-Pb dating and LA ICP-MS analysis. Ore Geology Reviews, 36(1-3): 52-64. DOI:10.1016/j.oregeorev.2009.04.001
Richards JP. 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen:From subduction to collision. Ore Geology Reviews, 70: 323-345. DOI:10.1016/j.oregeorev.2014.11.009
Rosenbaum G, Giles D, Saxon M, Betts PG, Weinberg RF and Duboz C. 2005. Subduction of the Nazca Ridge and the Inca Plateau:Insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters, 239(1-2): 18-32. DOI:10.1016/j.epsl.2005.08.003
Rowley DB. 1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4): 1-13. DOI:10.1016/S0012-821X(96)00201-4
Rudnick RL and Gao S. 2014. Composition of the continental crust. In:Holland HD and Turekian KK (eds.). Treatise on Geochemistry:Vol. 4:The Crust. 2nd Edition. Oxford:Elsevier, 1-51
Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Li TD, Xiao XC, Jan MQ, Thakur VC and Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6): 678-701. DOI:10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2
Searle MP, Elliott JR, Phillips RJ and Chung SL. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633-672. DOI:10.1144/0016-76492010-139
Shafiei B, Haschke M and Shahabpour J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265-283. DOI:10.1007/s00126-008-0216-0
Stern CR. 1991. Role of subduction erosion in the generation of Andean magmas. Geology, 19(1): 78-81. DOI:10.1130/0091-7613(1991)019<0078:ROSEIT>2.3.CO;2
Straub SM and Zellmer GF. 2012. Volcanic arcs as archives of plate tectonic change. Gondwana Research, 21(2-3): 495-516. DOI:10.1016/j.gr.2011.10.006
Wang C, Ding L, Zhang LY, Kapp P, Pullen A and Yue YH. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane:Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333. DOI:10.1016/j.lithos.2016.07.021
Wang JL, Zhang ZM and Shi C. 2008. Anatexis and dynamics of the southeastern Lhasa terrane. Acta Petrologica Sinica, 24(7): 1539-1551.
Wang JL, Zhang ZM, Dong X, Liu F, Yu F, Wang W, Xu FJ and Shen K. 2009. Discovery of Late Cretaceous garnet two-pyroxene granulite in the southern Lhasa terrane, Tibet and its tectonic significances. Acta Petrologica Sinica, 25(7): 1695-1706.
Wang Q, Zhu DC, Cawood PA, Zhao ZD, Liu SA, Chung SL, Zhang LL, Liu D, Zheng YC and Dai JG. 2015a. Eocene magmatic processes and crustal thickening in southern Tibet:Insights from strongly fractionated ca. 43Ma granites in the western Gangdese Batholith. Lithos, 239: 128-141.
Wang R, Richards JP, Hou ZQ, Yang ZM and DuFrane SA. 2014a. Increased magmatic water content:The key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109(5): 1315-1339. DOI:10.2113/econgeo.109.5.1315
Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB and DuFrane SA. 2014b. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese belt, Tibet:Implication for collision-related porphyry Cu-Mo±Au mineralization. Economic Geology, 109(7): 1943-1965. DOI:10.2113/econgeo.109.7.1943
Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA and Zhu JJ. 2015b. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Sciences Reviews, 150: 68-94. DOI:10.1016/j.earscirev.2015.07.003
Wang R, Tafti R, Hou ZQ, Chen ZC, Guo N, Evans NJ, Jeon H, Li QY and Li WK. 2017. Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization. Chemical Geology, 451: 116-134. DOI:10.1016/j.chemgeo.2017.01.010
Weller OM, St-Onge MR, Rayner N, Searle MP and Waters DJ. 2016. Miocene magmatism in the Western Nyainqentanglha Mountains of southern Tibet: An exhumed bright spot?. Lithos, 245: 147-160. DOI:10.1016/j.lithos.2015.06.024
Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11. DOI:10.1016/j.lithos.2008.02.005
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008b. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neo-Tethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201. DOI:10.1016/j.chemgeo.2008.03.003
Wu FY, Clift PD and Yang JH. 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26(2): TC2014.
Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Trans-Himalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13-25. DOI:10.1016/j.chemgeo.2009.12.007
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36.
Wu S, Zheng YY and Sun X. 2016. Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet. Ore Geology Reviews, 73: 83-103. DOI:10.1016/j.oregeorev.2015.10.023
Xia LQ, Li XM, Ma ZP, Xu XY and Xia ZC. 2011. Cenozoic volcanism and tectonic evolution of the Tibetan plateau. Gondwana Research, 19(4): 850-866. DOI:10.1016/j.gr.2010.09.005
Xu B, Hou ZQ, Zheng YC, Wang R, He MY, Zhou LM, Wang ZX, He WY, Zhou Y and Yang Y. 2017. In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet. Ore Geology Reviews, 90: 1063-1077. DOI:10.1016/j.oregeorev.2017.04.036
Xu RH, Schärer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa Block (Tibet): A geochronological study. The Journal of Geology, 93(1): 41-57. DOI:10.1086/628918
Xu WC, Zhang HF, Guo L and Yuan HL. 2010. Miocene high Sr/Y magmatism, South Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293-306. DOI:10.1016/j.lithos.2009.09.005
Xu WC, Zhang HF, Harris N, Guo L, Pan FB and Wang S. 2013a. Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: Implications for the early evolution of Lhasa terrane. Precambrian Research, 236: 46-58. DOI:10.1016/j.precamres.2013.07.016
Xu WC, Zhang HF, Harris N, Guo L and Pan FB. 2013b. Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance. Gondwana Research, 23(2): 715-725. DOI:10.1016/j.gr.2012.05.011
Xu WC, Zhang HF, Luo BJ, Guo L and Yang H. 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, South Tibet. Lithos, 232: 197-210. DOI:10.1016/j.lithos.2015.07.001
Xu ZQ, Yang JS, Li HB, Zhang JX and Wu CL, et al. 2007. Orogenic Plateau: Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau. Beijing: Geological Publishing House.
Yang ZM, Lu YJ, Hou ZQ and Chang ZS. 2015. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227-254. DOI:10.1093/petrology/egu076
Yang ZM, Goldfarb R and Chang ZS. 2016a. Generation of post-collisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. In: Richards JP (ed.). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Society of Economic Geologists Special Publication, 19: 279-300.
Yang ZM, Hou ZQ, Chang ZS, Li QY, Liu YF, Qu HC, Sun MY and Xu B. 2016b. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and post-collisional porphyry Cu systems in continental collision zones. Lithos, 245: 243-257. DOI:10.1016/j.lithos.2015.04.002
Yao P, Li JG, Wang QH, Gu XX, Tang JX and Hui L. 2006. Discovery and geological significance of the adakite in Gangdise island arc belt, Xizang (Tibet). Acta Petrologica Sinica, 22(3): 612-620.
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. DOI:10.1146/annurev.earth.28.1.211
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1-131. DOI:10.1016/j.earscirev.2005.05.004
Zeng LS and Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5): 1420-1444.
Zeng YC, Chen JL, Xu JF, Lei M and Xiong QW. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Research, 41: 51-64. DOI:10.1016/j.gr.2015.06.011
Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212. DOI:10.1016/j.epsl.2004.09.031
Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F and Geng GS. 2009. Petrology and geochronology of the charnockite from the southern Gangdese belt, Tibet: Evidence for the Andean-type orogen. Acta Petrologica Sinica, 25(7): 1707-1720.
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010a. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631. DOI:10.1016/j.gr.2009.10.007
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010b. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733.
Zhang ZM and Santosh M. 2012. Tectonic evolution of Tibet and surrounding regions. Gondwana Research, 21(1): 1-3. DOI:10.1016/j.gr.2011.08.007
Zhang ZM, Dong X, Liu F, Lin YH, Yan R, He ZY and Santosh M. 2012. The making of Gondwana: Discovery of 650Ma HP granulites from the North Lhasa, Tibet. Precambrian Research, 212-213: 107-116. DOI:10.1016/j.precamres.2012.04.018
Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep Gangdese arc, South Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547-2508. DOI:10.1093/petrology/egt056
Zhang ZM, Dong X, Xiang H, He ZY and Liou JG. 2014a. Metagabbros of the Gangdese arc root, South Tibet: Implications for the growth of continental crust. Geochimica et Cosmochimica Acta, 143: 268-284. DOI:10.1016/j.gca.2014.01.045
Zhang ZM, Dong X, Santosh M and Zhao GC. 2014b. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research, 25(1): 170-189. DOI:10.1016/j.gr.2012.08.024
Zhang ZM, Dong X, Xiang HX, Ding HX, He ZY and Liou JG. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1-21. DOI:10.1111/jmg.12107
Zhang ZM, Ding L, Zhao ZD and Santosh M. 2017. Tectonic evolution and dynamics of the Tibetan Plateau. Gondwana Research, 41: 1-8. DOI:10.1016/j.gr.2016.09.001
Zhang ZM, Dong X, Ding HX, Tian ZL and Xiang H. 2017. Metamorphism and partial melting of the Himalayan orogen. Acta Petrologica Sinica, 33(8): 2313-2341.
Zhang ZM, Kang DY, Ding HX, Tian ZL, Dong X, Qin SK, Mu HC and Li MM. 2018. Partial melting of Himalayan orogen and formation mechanism of Leucogranites. Earth Science, 43(1): 82-98.
Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L, Yang YH, Li C and Liu YS. 2014. Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geology Reviews, 56: 312-326. DOI:10.1016/j.oregeorev.2013.06.005
Zhao WJ, Nelson KD, Che J, Quo J, Lu D, Wu C and Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557-559. DOI:10.1038/366557a0
Zhao ZD, Mo XX, Momade S, Renne PR, Zhou S, Dong GC, Wang LL, Zhu DC and Liao ZL. 2006. Post-collisional ultrapotassic rocks in Lhasa Block, Tibetan Plateau: Spatial and temporal distribution and its' implications. Acta Petrologica Sinica, 22(4): 787-794.
Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190-212.
Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W and Huang KX. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296-311. DOI:10.1016/j.lithos.2012.05.026
Zheng YC, Hou ZQ, Gong YL, Liang W, Sun QZ, Zhang S, Fu Q, Huang KX, Li QY and Li W. 2014a. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240-263. DOI:10.1016/j.lithos.2013.12.013
Zheng YC, Fu Q, Hou ZQ, Yang ZS, Huang KX, Wu CD and Sun QZ. 2015a. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geology Reviews, 70: 510-532. DOI:10.1016/j.oregeorev.2015.04.004
Zheng YY, Sun X, Gao SB, Zhao ZD, Zhang GY, Wu S, You ZM and Li JD. 2014b. Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential. Journal of Asian Earth Sciences, 79: 842-857. DOI:10.1016/j.jseaes.2013.03.029
Zheng YY, Sun X, Gao SB, Wu S, Xu J, Jiang JS, Chen X, Zhao ZY and Liu Y. 2015b. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. Journal of Asian Earth Sciences, 103: 23-39. DOI:10.1016/j.jseaes.2014.11.036
Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. DOI:10.2747/0020-6814.50.5.442
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B.. 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003
Zhu DC, Mo XX, Zhao ZD, Niu YL, Wang LQ, Chu QH, Pan GT, Xu JF and Zhou CY. 2010. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. Geological Society of America Bulletin, 122(7-8): 979-993. DOI:10.1130/B30062.1
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002
Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu YL, Liu SA, Wu FY and Mo XX. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289. DOI:10.1038/srep14289
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17. DOI:10.1016/j.lithos.2015.06.023
Zhu DC, Wang Q, Cawood PA, Zhao ZD and Mo XX. 2017a. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. DOI:10.1002/2016JB013508
Zhu DC, Wang Q and Zhao ZD. 2017b. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples. Science China (Earth Sciences), 60(6): 1040-1056. DOI:10.1007/s11430-016-9041-x
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma. In: Treloar PJ and Searle MP (eds.). Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publications, 483.
董国臣, 莫宣学, 赵志丹, 朱弟成, 王亮亮, 陈涛, 李冰. 2006. 冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据. 岩石学报, 22(4): 835-844.
董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学. 岩石学报, 25(7): 1678-1694.
董昕, 张泽明, 刘峰, 王伟, 于飞, 林彦蒿, 姜洪颖, 贺振宇. 2012. 拉萨地体东南部变质岩的成因与中-新生代造山作用. 岩石学报, 28(6): 1765-1784.
董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因与构造意义. 岩石学报, 29(6): 1933-1948.
管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179.
侯增谦, 王二七, 莫宣学, 丁林, 潘桂棠, 张中杰, 等. 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社.
纪伟强, 吴福元, 钟孙霖, 刘传周. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学(D辑), 39(7): 849-871.
刘峰, 张泽明, 董昕, 于飞, 王伟, 贺振宇, 林彦蒿, 严溶. 2011. 青藏高原冈底斯带东南部新生代多期岩浆作用及其构造意义. 岩石学报, 27(11): 3295-3307.
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. DOI:10.3321/j.issn:1005-2321.2003.03.013
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. DOI:10.3969/j.issn.1006-7493.2005.03.001
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. DOI:10.3321/j.issn:1005-2321.2006.06.007
莫宣学, 赵志丹, Depaolo DJ, 周肃, 董国臣. 2006. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据. 岩石学报, 22(4): 795-803.
莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240-1244. DOI:10.3969/j.issn.1671-2552.2007.10.002
莫宣学, 赵志丹, 喻学惠, 等. 2009a. 青藏高原新生代碰撞-后碰撞火成岩. 北京: 地质出版社.
莫宣学, 赵志丹, 朱弟成, 喻学惠, 董国臣, 周肃. 2009b. 西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束. 地球科学―中国地质大学学报, 34(1): 17-27.
潘桂棠, 丁俊, 姚冬生, 等. 2004. 青藏高原及邻区地质图(1:1500000, 附说明书). 成都: 成都地图出版社.
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
王金丽, 张泽明, 石超. 2008. 拉萨地体东南缘的多期深熔作用及动力学. 岩石学报, 24(7): 1539-1551.
王金丽, 张泽明, 董昕, 刘峰, 于飞, 王伟, 徐方建, 沈昆. 2009. 西藏拉萨地体南部晚白垩纪石榴石二辉麻粒岩的发现及其构造意义. 岩石学报, 25(7): 1695-1706.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
许志琴, 杨经绥, 李海兵, 张建新, 吴才来, 等. 2007. 造山的高原:青藏高原的地休拼合、碰撞造山及隆升机制. 北京: 地质出版社.
姚鹏, 李金高, 王全海, 顾雪祥, 唐菊兴, 惠兰. 2006. 西藏冈底斯南缘火山-岩浆弧带中桑日群adakite的发现及其意义. 岩石学报, 22(3): 612-620.
曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444.
张泽明, 王金丽, 董昕, 赵国春, 于飞, 王伟, 刘峰, 耿官升. 2009. 青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据. 岩石学报, 25(7): 1707-1720.
张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313-2341.
张泽明, 康东艳, 丁慧霞, 田作林, 董昕, 秦圣凯, 穆虹辰, 李梦梅. 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98.
赵志丹, 莫宣学, Nomade S, Renne PR, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 24(4): 787-794.