2. 内生金属矿床成矿机制国家重点实验室, 南京大学地球科学与工程学院, 南京 210023;
3. 南京大学生命科学学院, 南京 210023
2. State Key Lab for Mineral Deposits Research, School of Earth Sciences & Engineering, Nanjing University, Nanjing 210023;
3. School of Life Sciences, Nanjing University, Nanjing 210023, China
金属硫化物是由硫和金属形成的二元化合物,也包括As、Sb、Te、Se等元素作为阴离子的金属化合物(Vaughan and Corkhill, 2017)。金属硫化物广泛分布于岩石和矿石中,是过渡族金属的重要载体矿物,其中黄铜矿、辉钼矿、方铅矿和闪锌矿等金属硫化物是最为重要的矿石矿物类型,是工业所需金属的重要来源。由于金属硫化物往往形成于还原条件,当金属硫化物暴露于地表,则发生氧化作用而分解,转化为硫酸盐矿物和一系列氧化物。岩石露头中的黄铁矿等金属硫化物氧化形成次生矿物的同时,亦释放出酸性岩石排水(Runnells et al., 1992; Silva et al., 2017);富含金属硫化物的矿体出露地表经氧化往往形成铁帽,淋滤出的金属和硫酸盐会渗入地下形成次生富集型矿床(Zammit et al., 2015)。随着矿业发展,人类在获取有用金属的同时也排放了大量废石和尾矿,所含金属硫化物在矿山范围内快速氧化形成大量酸性矿山排水,在美国加州Iron Mountain酸性矿山排水的pH值可以低至-2.5(Nordstrom, 2011)。由于金属硫化物一般富含多种类质同像替代的重金属元素,导致酸性岩石排水和酸性矿山排水通常富含重金属元素(Herbel and Fendorf, 2006),成为矿山重金属污染的主要来源,并通过水系联接导致更大区域的生态环境危害(Diaby et al., 2007; Lottermoser, 2007; Lu and Wang, 2012)。
大量研究表明,微生物是金属硫化物地表氧化的主要营力(Edwards et al., 2004)。金属硫化物微生物氧化速率要比单纯的化学氧化高数倍甚至数百倍(Olson, 1991; Sand et al., 1999),并且微生物参与的金属硫化物矿物氧化形成的次生产物、同位素特征和元素氧化路径均不同于纯化学过程(Pisapia et al., 2008; Mendoza et al., 2016; Muhammad et al., 2018)。因此,揭示金属硫化物微生物氧化机制是理解金属硫化物矿山环境污染成因的基础,也可为重金属污染防治技术的研究提供新理念和新技术,对矿山废石喷洒杀菌剂和抗生素和调节尾矿微生物功能群组成都是有效控制矿山重金属污染的方法(Whitehead and Prior, 2005; Lottermoser, 2007; Lindsay et al., 2009; Ňancucheo and Johnson, 2011)。同时,微生物氧化分解金属硫化物是生物冶金技术的核心步骤,该技术成功解决了低品位金属硫化物矿石加工问题,具有成本低、污染轻、易调控的特点(Rohwerder et al., 2003);这一技术的发展也推动了金属硫化物微生物氧化机制的研究,优选培育了一系列高效菌株(Ghosh et al., 2016; Johnson, 2018),不断优化技术流程,得到了较好的推广。与此同时,金属硫化物微生物氧化机制研究还对认识地球表层地球化学过程和元素循环有着重要的意义,例如因构造隆升促进硫化物氧化导致碳酸盐岩被酸性矿山排水侵蚀而排放CO2,会对全球变化和硫、碳、氧循环有不可忽视的影响(Torres et al., 2014)。综上所述,金属硫化物微生物氧化作用作为具有多重研究价值的课题得到了多个学科的高度重视,相关的模拟实验和机制研究已有大量报道,本文拟结合笔者近年来开展的研究工作,综述金属硫化物微生物氧化机制研究的进展,并试述金属硫化物微生物氧化的环境效应和意义。
1 氧化金属硫化物的微生物微生物是地球上最早出现的生命形式,具有分布广、适应性强、种类多、生长迅速等特点。微生物与矿物长期共存于地球表层,微生物可以通过分解矿物获得能量和营养,微生物分泌的有机物质还会改变矿物所处的微环境,进而促进矿物溶解和元素的迁移和沉淀(Gadd, 1990)。与金属硫化物氧化分解有关的微生物多为适应酸性环境的氧化菌,往往分布于酸性矿山排水之中,极度嗜酸的中温细菌氧化硫嗜酸硫杆菌(Acidithiobacillus thiooxidans)及嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)是最早从中分离出来的氧化菌(Vuorinen et al., 1983; Schrenk et al., 1998),后者既能氧化Fe2+,又能氧化元素硫、H2(Kai et al., 2007)、H2S(Oprime et al., 2001)以及其它无机成分(Quatrini et al., 2006)。这些菌株的发现和成功培养,激发了对极端酸性环境微生物的研究,从酸性矿山排水中先后发现了种类多样的细菌、古生菌和真菌,参与了Fe、S、C、N、H等元素的地球化学循环(Méndez-García et al., 2015)。其中硫氧化和铁氧化细菌被认为是控制金属硫化物氧化的主要微生物,其中嗜酸硫杆菌属Acidithiobacillus spp.是能够氧化Fe2+和硫化物的化能自养细菌,包括能够同时氧化铁和硫的细菌Acidithiobacillus ferrooxidans、Acidithiobacillus ferridurans和Acidithiobacillus ferrivorans以及仅氧化硫的Acidithiobacillus caldus、Acidithiobacillus thiooxidans和Acidithiobacillus albertensis(Williams and Kelly, 2013),另外还有硫氧化细菌Thiobacillus caldus和铁氧化细菌Leptospirillum ferrooxidans和古生菌Ferroplasma acidarmanus也被用于实验研究和生物冶金过程(Harneit et al., 2006;Kelly and Wood, 2000)。大量研究表明,Acidithiobacillus ferrooxidans是矿山酸性环境中最重要、最具代表性的微生物类型(Pisapia et al., 2008; Tu et al., 2013)。虽然真菌亦为酸性矿山排水中的重要微生物类型,可以形成微生物膜并营造特殊的微环境,但是目前多认为真菌主要参与碳的循环,能够降解吸收环境中有机质(Méndez-García et al., 2015)。尽管发现部分化能自养古生菌具有氧化铁和硫的能力(Edwards et al., 2000a, b; Ziegler et al., 2013),但由于古生菌的分离培养还是存在技术挑战,目前对其氧化金属硫化物的能力尚未有系统研究。
2 金属硫化物微生物氧化机制 2.1 金属硫化物微生物氧化的阶段性特征自然界中金属硫化物发生微生物氧化有显著的表现,往往形成铁帽和“火烧皮”等现象,关于该过程的研究主要依赖模拟实验。利用多种金属硫化物开展的微生物氧化模拟实验均表明该过程可以划分为多个阶段(Zhu et al., 2014; Li et al., 2016; Moon et al., 2017)。Zhu et al. (2014)和Li et al.(2016)分别系统研究了Acidithiobacillus ferrooxidans氧化分解毒砂和黄铁矿的过程,通过对反应溶液的检测和矿物表面形貌以及表面化学的分析,提出了3阶段作用模型(图 1):(1)无机氧化为主的阶段。微生物首先通过氧化流体中的Fe2+离子而快速生长,形成的Fe3+离子进一步氧化金属硫化物表面的硫,矿物表面出现微弱的溶蚀现象。该阶段持续的时间一般长于微生物生长的静止期。(2)微生物膜形成和表面溶蚀。微生物细胞不断附着于金属硫化物表面并发育形成微生物膜,矿物表面出现侵蚀坑和少量次生沉淀。该阶段较短,与微生物膜的发育周期相当,可延续2~5天不等,具体时间与金属硫化物类型有关。(3)微生物和Fe3+离子协同氧化阶段。表面附着的微生物强烈侵蚀金属硫化物表面,形成大量侵蚀坑,扩大了溶液接触矿物的面积,使得矿物溶蚀不断向深部发展(Fowler et al., 1999; Holmes et al., 1999; Jones et al., 2003);释放出的Fe2+亦被微生物膜细胞和悬浮细胞快速氧化生成Fe3+离子,作为黄铁矿表面与溶解氧之间电子传递的媒介使金属硫化物持续氧化(Tributsch, 2001)。该阶段以形成大量次生沉淀和表面侵蚀坑为基本特征,反应溶液中Fe2+离子浓度低于或邻近检测线,这均与表面微生物膜发育有关。该阶段是金属硫化物微生物氧化分解的主要阶段,这与前人的实验结果类似(Rodríguez et al., 2003a, b)。
金属硫化物微生物氧化分解机制一直是研究的焦点问题,先后提出了间接机制、接触机制和协同机制等三种模式。间接机制认为微生物通过氧化溶液Fe2+离子生成的Fe3+离子氧化金属硫化物,微生物与矿物间没有直接的化学作用(Lilova and Karamanev, 2005);接触机制强调微生物细胞在金属硫化物表面的附着(Rohwerder et al., 2003),微生物通过细胞表面的含Fe3+醛酸氧化硫化物表面的硫并形成溶蚀坑;而在协同机制中,悬浮细胞和矿物表面细胞共同发挥作用,前者通过氧化溶液中的Fe2+离子和微细颗粒提供Fe3+离子,与矿物表面细胞共同氧化溶蚀金属硫化物(Sand et al., 1995; Rawlings, 2002; Rohwerder et al., 2003)。
为了验证和评估上述三种机制的氧化作用,笔者在模拟实验体系中引入透析膜,成功实现了矿物表面和微生物细胞之间的隔离,进而开展了无菌组、隔离组和接触组黄铜矿氧化分解的模拟实验。实验结果表明:微生物的参与显著提高了黄铜矿氧化分解,而微生物能够与矿物直接接触的实验组释放的Cu2+是隔离组的2倍以上(苏贵珍,2009)。这表明接触机制是金属硫化物微生物氧化的主导机制。
通过黄铁矿微生物氧化后样品的扫描电镜和荧光显微镜观察,发现微生物膜的形成和发育是微生物与矿物直接接触的结果,矿物表面会形成规则六边形和杆状细菌形态两种侵蚀坑(图 2)(Lu et al., 2006; Lu and Wang, 2012),类似的现象在毒砂、黄铜矿体系亦有发现(Zhao et al., 2013; Zhu et al., 2014),毒砂的表面侵蚀更为强烈。可以认为微生物通过形成微生物膜侵蚀金属硫化物表面是关键步骤(Mielk et al., 2003; Lu et al., 2006)。微生物膜是微生物-矿物相互作用过程中的普遍现象,一般认为首先由静电力驱动微生物在矿物表面附着,而后诱导粘附蛋白表达加强细胞附着并促进微生物膜的形成(Tu et al., 2013)。微生物膜与矿物界面为化学梯度大、反应活性分子集中、氧化还原作用活跃的微观界面,是矿物发生表面侵蚀和氧化分解的活跃界面(Mielk et al., 2003;Zhu et al., 2014)。两种类型的侵蚀坑分别形成于不同的氧化机制,具细胞形态的侵蚀坑被认为是细胞-矿物接触界面处微生物代谢驱动的直接侵蚀,其形态受控于细胞的轮廓和空间分布;规则六边形侵蚀坑则是Fe3+离子化学氧化矿物表面的产物,其形态受控于金属硫化物的结晶学特征。
Fe、S、As等元素的电子转移是驱动金属硫化物氧化分解与次生矿物沉淀的核心环节。根据硫元素与金属元素的成键方式,金属硫化物可以划分为单硫化物和对硫化物。黄铁矿和辉钼矿等对硫化物中对硫原子与金属不形成键合作用,其可以被Fe3+氧化而不与质子作用,在氧化过程中通常形成硫代硫酸根;而黄铜矿、方铅矿、闪锌矿和毒砂等单硫化物不仅可以被Fe3+离子氧化,也可与氢离子作用而造成硫和金属键的断开,在氧化过程中往往形成自然硫(Schippers and Sand, 1999; Sand et al., 2001; Vera et al., 2013)。因此,金属硫化物微生物氧化作用具有硫代硫酸根机制和多硫化物机制两种不同的反应动力学路径。
对硫化物的氧化遵循硫代硫酸根机制。以黄铁矿为例,Fe2+、S22-的微生物氧化可以分解为多阶段电子转移过程(Li et al., 2016),可概括为三个主要反应步骤(反应1~3),Fe2+被氧气或者微生物氧化失去电子形成Fe3+(氧气为电子受体),随后Fe3+进一步氧化黄铁矿中S22-形成硫代硫酸根,最后被氧化为终产物SO42-。其中S2O32-的形成是特征步骤,S2O32-通常发生歧化反应生成自然硫和SO32-。对微生物氧化后黄铁矿进行XPS深度剖面分析,检测到S22-/S2-、Sn2-、S0,S2O32-及SO32-和SO42-等物种,反映了S的氧化路径为S22-→S2O32-→SO42-,S2O32-歧化反应使物种更为多样化(Li et al., 2016; 向婉丽,2018)。
(1) |
(2) |
(3) |
单硫化物的氧化路径存在明显的差异,遵循多硫化物机制。单硫化物溶解时金属-硫键断开在S离子被氧化之前,低pH值条件下,硫化物中S通过多硫化物被氧化形成单质硫(Schippers and Sand, 1999; McGuire et al., 2001), 虽然形成的单质硫在环境中比较稳定,但可以进一步被微生物氧化为硫酸根,主要反应可概括为反应(4)和(5)。Fe3+第一步将硫化物氧化成单质硫,随后单质硫中电子传递到最终电子受体氧气,该过程不形成S2O32-。
(4) |
(5) |
对微生物氧化后黄铜矿和毒砂表面进行XPS分析发现,黄铜矿中硫经历S2-/S22-→Sn2-/S0→SO32-→SO42-的反应路径(Liu et al., 2018),黄铜矿中Cu为+1价,其被Fe3+氧化形成Cu2+释放到溶液中,而Fe3+被还原形成Fe2+构成Fe元素循环(Li et al., 2016; Liu et al., 2018)。毒砂(FeAsS)中的As和S一样均为变价元素,在微生物氧化过程中从-1价氧化成+5价,因此Fe和S在氧化过程中伴随着As的逐渐氧化,As和S电子传递路径可写作反应(6)和(7),其中硫优先砷发生氧化反应,这有别于无菌条件(朱婷婷等,2011; Zhu et al., 2014)。
(6) |
(7) |
根据对金属硫化物表面微生物膜和侵蚀坑的观察,结合XPS深度剖面揭示的元素氧化动力学特征,我们认为金属硫化物的微生物氧化过程包括以生物氧化为主的接触机制和以化学氧化为主的间接机制,前者对后者有显著促进作用,微生物膜-矿物界面是主要的反应场所(Lu and Wang, 2012)。金属硫化物表面存在一个微生物作用驱动的电子传递过程,在此过程中各元素逐步氧化(图 3)。
微生物氧化分解金属硫化物是由一系列的电子传递过程构成的,多种蛋白质的参与构成了电子传递链(图 4)(Valdes et al., 2006; Emerson et al., 2010; Yin et al., 2014; Castillo et al., 2018)。已报道petI和rus操纵子编码铁氧化功能相关蛋白,这些蛋白协调运作完成胞内外电子跨膜转运,实现电子从Fe(II)或者其他硫化物到氧气的传递(Cyc2→Rus→Cyc1→aa3CytOx→O2),并产生电子供体NADH(Cyc2→Rus→CycA1→bc1→sdrA1→NADH)(图 4a)(Yarzábal et al., 2002; Castelle et al., 2008)。
Acidithiobacillus ferrooxidans氧化硫的分子机制以及电子传递路径更为复杂(Rohwerder and Sand, 2003),由于硫的价态和物种较多,往往多个氧化步骤同时发生(图 4b)。已有研究表明,硫氧化代谢过程涉及pet-II操纵子及一些重要氧化酶等,可以将硫化物氧化为单质硫或可以氧化为硫酸盐,两种功能分别对应于两种硫氧化路径S2-→S0→SO32-→SO42-和S2-→S2O32-→S4O62-→SO42-,同时将电子传递给最终电子受体O2(Wakai et al., 2004, 2007; Kanao et al., 2007; Valdés et al., 2008; Yin et al., 2014)。
另外,还有对比实验表明金属硫化物表面微生物膜的发育与P30、PILQ和Adhesin三类粘附蛋白有关,P30和Adhesin是细菌菌毛的结构蛋白,而PILQ则与菌毛的合成代谢有密切关系,这三种蛋白均具有半胱氨酸残基,能与金属硫化物表面形成对硫键,强化了微生物细胞在金属硫化物表面的附着作用(Tu et al., 2014)。
2.5 金属硫化物微生物氧化的次生产物金属硫化物微生物氧化的产物与原生矿物存在密切联系,在微生物氧化过程中呈现出一定的继承性和演化性。表 1总结了部分金属硫化物微生物氧化实验中观察到的次生矿物。由于铁元素在金属硫化物中广泛存在,因此铁矾是最普遍的次生矿物,往往先沉淀生成亚稳定的施威特曼石,然后转化为黄钾铁矾;若环境中缺乏足够的钾,则可能形成黄铵铁矾或草黄铁矾等,随着环境流体pH值和化学组成的变化,铁矾类矿物还会转化为针铁矿和赤铁矿等;若环境流体中含有较多的PO43-时,还会形成红磷铁矿等磷酸盐矿物。元素硫在形成SO42-离子或沉淀为硫酸盐矿物之前,还可以形成自然硫或铜蓝、辉铜矿、斑铜矿等中间产物,这取决于金属硫化物的类型和丰度(Liu et al., 2018);硫酸盐矿物是稳定的次生矿物类型,包括石膏、硫酸铅矿、锌矾等矿物。原生金属硫化物中的砷多转化为砷酸盐或亚砷酸盐,模拟实验和矿山样品中可以观察到臭葱石、含砷黄钾铁矾、含砷石膏等矿物,更多的砷则以化学吸附形式固定于铁氧化物表面(Lu and Wang, 2012);而在发生风化的雄黄-雌黄矿尾矿中,砷矿物的类型更为多样,已检测到毒石、镁毒石、三斜砷钙石、砷镁石和砷华等次生矿物(Zhu et al., 2015)。
在矿山环境中金属硫化物微生物氧化形成的次生矿物通常比模拟实验中检测到的更为复杂,由于多种微生物功能群共同作用并且金属硫化物往往与硅酸盐矿物和碳酸盐矿物共生,除金属硫化物氧化分解外,形成的酸性流体还与其他矿物反应,从而导致环境流体化学特征的空间差异性和次生矿物的多样化。在此过程中,元素的地球化学行为和同位素分馏作用往往是流体-矿物反应和微生物代谢综合作用的结果,对此开展研究有着重要的环境意义和地球化学意义。
3 金属硫化物微生物氧化的影响因素金属硫化物微生物氧化作用的速率和产物受多种因素制约,不同的微生物种类具有不同的氧化速率和次生产物(表 1),金属硫化物矿物组合不同以及共生矿物的多样性都会导致不同的氧化程度和次生产物(张雪艾等,2017)。另外,环境温度和流体化学都对金属硫化物的微生物氧化作用有显著影响(Lu et al., 2006; Mendoza et al., 2016),主要通过影响微生物代谢作用而制约金属硫化物的氧化分解。
由于微生物可以从Fe2+氧化生成Fe3+过程中获得能量,Fe3+又是氧化金属硫化物的关键组分(Hiroyoshi et al., 2000, 2001; Bevilaqua et al., 2002; Mousavi et al., 2008),因此,向微生物-硫化物作用体系中加入Fe2+离子对金属硫化物氧化速率具有显著的调控作用(Liu et al., 2018; Mishra et al., 2018)。在Acidithiobacillus ferrooxidans氧化黄铜矿的过程中,外加的Fe2+可直接被微生物氧化获取能量而生长(Gómez et al., 1996),生成的Fe3+与微生物可协同促进黄铜矿的溶解和氧化(Liu et al., 2018),显著提高了Cu2+的释放速率,比未添加Fe2+的体系中黄铜矿氧化的程度更强;在Acidithiobacillus ferrooxidans氧化黄铁矿的体系中也观察到了类似的现象,加入Fe2+离子的体系中黄铁矿表层的氧化深度约2000nm,显著高于未添加Fe2+体系的700nm(Li et al., 2016)。Aguirre et al.(2018)研究发现高Fe2+离子浓度条件下,微生物细胞在矿物表面的吸附量增加、附着力增强,有助于微生物膜发育并促进金属硫化物的表面侵蚀。
近年来,光照对金属硫化物微生物氧化作用的影响开始得到重视。众所周知,金属硫化物大多属于半导体矿物,在光照条件下可被激发发生光化学反应(Vaughan and Craig, 1978; Xu and Schoonen, 2000)。已有研究表明,在光照条件下闪锌矿能够显著促进Acidithiobacillus ferrooxidans细胞的生长,认为闪锌矿产生的光电子为微生物生长提供了能量(Lu et al., 2012)。黄铁矿在光照条件下可产生大量羟基自由基并合成过氧化氢,pH和光照都是影响黄铁矿产生ROS物质的重要因素,光照强度越大、pH值越低越有利于促进ROS物质和过氧化氢的产生(Cohn et al., 2006; Schoonen et al., 2010),黄铁矿微生物氧化会导致环境流体的酸化,有利于过氧化氢的产生,进而促进化黄铁矿的氧化。最近有实验研究表明,紫外线辐照可以显著促进毒砂氧化和As的释放,光照下诱发的As(III)的氧化、Fe(II)/FeOH2+的光芬顿反应以及OH。/O2。-的转化产生O2。-/HO2。活性氧自由基均表现为促进作用(Hong et al., 2018)。但是,在微生物氧化硫化物过程中,光照产生的自由基与半导体矿物释放的光生电子之间的协同作用还有待进一步深入研究。
4 金属硫化物微生物氧化的效应和研究意义 4.1 金属硫化物矿石的生物冶金微生物对金属硫化物氧化分解的促进作用被冶金工业高度重视。随着经济发展对金属需求快速增加,从低品位矿石中经济地提取有用金属成为冶金工业的重要方向,因为微生物浸矿技术具有投资少、提取效率高、设备要求低等特点,被率先应用于斑岩型铜矿和富铜尾矿的加工。十余年来,应用多种微生物技术从矿山酸性排水和废弃矿石中分离获得大量微生物菌株,通过对微生物代谢特性、生长动力学以及浸矿能力进行表征和评估,已经优选获得大量具有工业价值的菌株,并在美国和南美多个斑岩铜矿的开发中得到应用(Watling, 2006)。
实践发现,金属硫化物表面形成的次生矿物呈现出显著的“钝化”效应,成为制约微生物浸矿效率关键因素。由于金属硫化物微生物氧化过程中各元素逐步氧化并形成一系列的中间产物,其中自然硫、施威特曼石是最常出现于金属硫化物表面形成“钝化层”,阻止了微生物对硫化物的表面侵蚀(He et al., 2009),从而使浸矿效率大幅下降。工业界提出了多种技术避免“钝化层”的形成或去除“钝化层”,例如,引入硫氧化菌分解矿物表面形成的自然硫,或用表面活性剂溶解分散自然硫,获得了一定的成效(Jorjani and Ghahreman, 2017),但由于矿石成分的多样性和处理条件的不同,钝化层的问题并没有彻底解决,构建浸矿系统微生态、调控微生物功能群结构是高效去除次生矿物沉淀的潜在方向,尚需进一步理解次生矿物形成和溶解的微观机制。
4.2 重金属污染防治技术研究重金属污染是世界性环境难题,矿山开发是造成重金属污染的重要原因。地表金属硫化物微生物氧化直接导致酸性矿山排水和酸性岩石排水,以类质同像形式赋存于金属硫化物的重金属离子随之排放至环境并形成重金属污染。以铜陵狮子山矿田杨山冲尾矿库为例,尾矿中硫化物分解释放出多种重金属和酸性排水,酸性排水进一步溶解尾矿中的碳酸盐矿物,排水中高度富集Cu、Pb、Zn、Co、Sc、Th、U、Ga等元素(陆建军等,2005),这些金属被输送到土壤、河流和地下水中,从而对生态环境构成威胁。
查明金属硫化物微生物氧化机制有助于从源头上控制重金属的释放。国内外已经采用多种防治策略,一方面通过尾矿回填、向尾矿添加秸秆等有机物、在尾矿库上建设生活垃圾处置场等,使金属硫化物处于相对还原的环境,避免氧化分解(Lottermoser, 2007);另一方面,向尾矿和废石定期喷洒抗生素和表面活性剂等,起到杀菌和阻止微生物细胞与金属硫化物直接接触的现象(Kleinmann, 1999)。最近,一些矿山开始采用生态修复的策略,在尾矿库之上构建湿地系统,改变尾矿的物理化学环境、调控微生物群落结构,显著抑制了金属硫化物的分解和重金属的释放(Sheoran and Sheoran, 2006)。
金属硫化物微生物氧化形成的次生矿物具有重要的环境应用潜力。尾矿库顶部形成的铁氧化物富集层中通常含有大量的As、Cd、Co、Pb等有害元素(Lottermoser, 2007),主要以被铁氧化物(如水铁矿、针铁矿等)吸附形式或以铁矾类矿物晶格替代形式存在(陆现彩等,2005;朱长见等, 2005),甚至会形成臭葱石、铅矾等稳定的次级矿物(Lu and Wang, 2012)。如西班牙西南部伊比利亚黄铁矿带的酸性矿山排水中接近50%的砷通过共沉淀的方式进入施威特曼石(Acero et al., 2006)。这些次生矿物为重金属污染治理提供了模式矿物,利用这些矿物的吸附性能或类质同像替代能力可以实现重金属元素的地质处置和长期固定,显著降低有害元素的生物有效性(鲁安怀,2005),并且矿山环境中存在适合不同pH、Eh条件的矿物系列,具有广阔的适用性。利用酸性矿山排水中的极端嗜酸菌可以高效合成目标矿物,直接用于废水的生物治理及循环利用(Silverman and Ehrlich, 1964; Wichlacz and Unz, 1981; Vreeland et al., 2000; Borkowski et al., 2013; van den Brand et al., 2016)。
4.3 表生地球化学意义矿物-微生物相互作用是地球表层最为活跃的地球化学过程,影响着多种元素的地球化学循环,进而影响着全球变化的多个过程。金属硫化物的微生物氧化直接影响着全球Fe、S循环,并且产生的酸会对地表碳酸盐矿物产生侵蚀,从而影响全球碳循环(Berner and Berner, 2012)。大量研究表明,以山脉隆升为代表的全球构造事件可能刺激了硅酸盐风化的CO2消耗。但是,同时暴露地表的硫化物经微生物氧化和引发的碳酸盐溶解、CO2释放(Calmels et al., 2007),在平衡硅酸盐风化驱动的CO2消耗方面发挥重要作用,这一过程也解释了“新生代同位素-风化悖论”(Torres et al., 2014)。由于金属硫化物的微生物风化是耗氧的过程,在地球早期大气氧化过程中,金属硫化物和其他含Fe2+矿物在微生物作用下的氧化分解会消耗大量大气O2,这会抑制大气氧化的进程,但相关的模型研究尚鲜有报道。
由于金属硫化物广泛存在于各类岩石和矿石中,微生物参与的金属硫化物氧化分解过程会深刻影响硫和多种金属同位素的分馏行为,导致风化壳、土壤和地表水、海水和地下水之间具有不同的同位素特征。因此,包括金属硫化物在内的矿物微生物风化作用对地球表层乃至大陆演化过程的同位素的调控作用和示踪意义值得深入研究。
致谢 本文研究过程中多次得到叶大年先生的指导和鼓励,他给出的宝贵建议和教导不仅让我们少走了很多弯路,还启发了我们的科研思想,衷心感谢叶先生的指导和支持!谨以此文恭贺叶大年先生八十华诞。
Acero P, Ayora C, Torrentó C and Nieto JM. 2006. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70(16): 4130-4139. DOI:10.1016/j.gca.2006.06.1367 |
Aguirre P, Guerrero K, Sanchez-Rodriguez A, Gentina JC and Schippers A. 2018. Making sticky cells:Effect of galactose and ferrous iron on the attachment of Leptospirillum ferrooxidans to mineral surfaces. Research in Microbiology. DOI:10.1016/j.resmic.2018.08.005 |
Baba AA, Adekola FA, Atata RF, Ahmed RN and Panda S. 2011. Bioleaching of Zn(Ⅱ) and Pb(Ⅱ) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria. Transactions of Nonferrous Metals Society of China, 21(11): 2535-2541. DOI:10.1016/S1003-6326(11)61047-9 |
Bai J. 2014. The study of the thermophiles bioleaching behaviours and mechanisms of chalcopyrite with distinct genetic types.Ph. D. Dissertation.. Beijing: Beijing General Research Institute for Nonferrous Metals: 1-112.
|
Ban JR, Gu GH and Hu KT. 2013. Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans. Transactions of Nonferrous Metals Society of China, 23(2): 494-500. DOI:10.1016/S1003-6326(13)62490-5 |
Berner KE and Berner RA. 2012. Global Environment:Water, Air, and Geochemical Cycles. 2nd Edition. Princeton: Princeton University Press: 369-382.
|
Bevilaqua D, Leite ALLC, Garcia Jr O and Tuovinen OH. 2002. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochemistry, 38(4): 587-592. DOI:10.1016/S0032-9592(02)00169-3 |
Bevilaqua D, Garcia Jr O and Tuovinen OH. 2010. Oxidative dissolution of bornite by Acidithiobacillus ferrooxidans. Process Biochemistry, 45(1): 101-106. DOI:10.1016/j.procbio.2009.08.013 |
Borkowski A, Parafiniuk J, Wolicka D and Kowalczyk P. 2013. Geomicrobiology of acid mine drainage in the weathering zone of pyrite-bearing schists in the Rudawy Janowickie Mountains (Poland). Geological Quarterly, 57(4): 601-612. |
Calmels D, Gaillardet J, Brenot A and France-Lanord C. 2007. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin:Climatic perspectives. Geology, 35(11): 1003-1006. DOI:10.1130/G24132A.1 |
Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M and Giudici-Orticoni MT. 2008. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. Journal Biological Chemistry, 283(38): 25803-25811. DOI:10.1074/jbc.M802496200 |
Castillo A, Tello M, Ringwald K, Acuña LG, Quatrini R and Orellana O. 2018. A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biology, 15(4-5): 492-499. DOI:10.1080/15476286.2017.1408765 |
Cohn CA, Mueller S, Wimmer E, Leifer N, Greenbaum S, Strongin DR and Schoonen MAA. 2006. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7: 3-11. DOI:10.1186/1467-4866-7-3 |
Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB and Hallberg KB. 2007. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environmental Microbiology, 9(2): 298-307. DOI:10.1111/emi.2007.9.issue-2 |
Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ and Banfield JF. 2000a. Geochemical and biological aspects of sulfide mineral dissolution:Lessons from Iron Mountain, California. Chemical Geology, 169(3-4): 383-397. DOI:10.1016/S0009-2541(00)00216-3 |
Edwards KJ, Bond PL, Gihring TM and Banfield JF. 2000b. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287(5459): 1796-1799. DOI:10.1126/science.287.5459.1796 |
Edwards KJ, Bach W, McCollum TM and Rogers DR. 2004. Neutrophilic iron-oxidizing bacteria in the ocean:Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21: 393-404. DOI:10.1080/01490450490485863 |
Emerson D, Fleming EJ and McBeth JM. 2010. Iron-oxidizing bacteria:An environmental and genomic perspective. Annual Review of Microbiology, 64: 561-583. DOI:10.1146/annurev.micro.112408.134208 |
Fowler TA, Holmes PR and Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 65(7): 2987-2993. |
Gadd GM. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8): 834-840. DOI:10.1007/BF01935534 |
Ghosh S, Mohanty S, Akcil A, Sukla LB and Das AP. 2016. A greener approach for resource recycling:Manganese bioleaching. Chemosphere, 154: 628-639. DOI:10.1016/j.chemosphere.2016.04.028 |
Gómez E, Blázquez ML, Ballester A and González F. 1996. Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria. Minerals Engineering, 9(9): 985-999. DOI:10.1016/0892-6875(96)00089-1 |
Harneit K, Gksel A, Kock D, Klock JH, Gehrke T and Sand W. 2006. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, 83(1-4): 245-254. DOI:10.1016/j.hydromet.2006.03.044 |
He H, Xia JL, Yang Y, Jiang HC, Xiao CQ, Zheng L, Ma CY, Zhao YD and Qiu GZ. 2009. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis. Hydrometallurgy, 99(1-2): 45-50. DOI:10.1016/j.hydromet.2009.06.004 |
Herbel M and Fendorf S. 2006. Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228(1-3): 16-32. DOI:10.1016/j.chemgeo.2005.11.016 |
Hiroyoshi N, Miki H, Hirajima T and Tsunekawa M. 2000. A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy, 57(1): 31-38. DOI:10.1016/S0304-386X(00)00089-X |
Hiroyoshi N, Miki H, Hirajima T and Tsunekawa M. 2001. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy, 60(3): 185-197. DOI:10.1016/S0304-386X(00)00155-9 |
Holmes PR, Fowler TA and Crundwell FK. 1999. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. An electrochemical study. Journal of the Electrochemical Society, 146(8): 2906-2912. DOI:10.1149/1.1392027 |
Hong J, Liu LH, Luo Y, Tan WF, Qiu GH and Liu F. 2018. Photochemical oxidation and dissolution of arsenopyrite in acidic solutions. Geochimica et Cosmochimica Acta, 239: 173-185. DOI:10.1016/j.gca.2018.07.034 |
Johnson DB. 2018. The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals, 8(8): 343. DOI:10.3390/min8080343 |
Jones RA, Koval SF and Nesbitt HW. 2003. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 67(5): 955-965. DOI:10.1016/S0016-7037(02)00996-1 |
Jorjani E and Ghahreman A. 2017. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues:A review. Hydrometallurgy, 171: 333-343. DOI:10.1016/j.hydromet.2017.06.011 |
Kai T, Nagano T, Fukumoto T, Nakajima M and Takahashi T. 2007. Autotrophic growth of Acidithiobacillus ferrooxidans by oxidation of molecular hydrogen using a gas-liquid contactor. Bioresource Technology, 98: 460-464. DOI:10.1016/j.biortech.2006.01.003 |
Kanao T, Kamimura K and Sugio T. 2007. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans. Journal of Biotechnology, 132(1): 16-22. DOI:10.1016/j.jbiotec.2007.08.030 |
Kelly DP and Wood AP. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.. International Journal of Systematic and Evolutionary Microbiology, 50(2): 511-516. |
Kleinmann RLP. 1999. Bactericidal control of acidic drainage. In: Brady KBC, Smith MW and Schueck J (eds.). Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania. Harrisburg: Pennsylvania Department of Environmental Protection, 15.1-15.6
|
Li J, Lu JJ, Lu XC, Wang RC and Su GZ. 2009. Experimental study on the oxidation of chalcopyrite by Acidothiobacillus ferrooxidans. Journal of Nanjing University (Natural Sciences), 45(2): 315-322. |
Li J, Lu JJ, Lu XC, Tu BW, Ouyang BJ, Han XD and Wang RC. 2016. Sulfur transformation in microbially mediated pyrite oxidation by Acidithiobacillus ferrooxidans:Insights from X-ray photoelectron spectroscopy-based quantitative depth profiling. Geomicrobiology Journal, 33(2): 118-134. DOI:10.1080/01490451.2015.1041182 |
Lilova K and Karamanev D. 2005. Direct oxidation of copper sulfide by a biofilm of Acidithiobacillus ferrooxidans. Hydrometallurgy, 80(3): 147-154. DOI:10.1016/j.hydromet.2004.12.010 |
Lindsay MBJ, Blowes DW, Condon PD and Ptacek CJ. 2009. Managing pore-water quality in mine tailings by inducing microbial sulfate reduction. Environmental Science & Technology, 43(18): 7086-7091. |
Liu H, Lu XC, Zhang LJ, Xiang WL, Zhu XY, Li J, Wang XL, Lu JJ and Wang RC. 2018. Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite. Chemical Geology, 493: 109-120. DOI:10.1016/j.chemgeo.2018.05.032 |
Liu HC, Nie ZY, Xia JL, Zhu HR, Yang Y, Zhao CH, Zheng L and Zhao YD. 2015. Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans. International Journal of Mineral Processing, 137: 1-8. DOI:10.1016/j.minpro.2015.02.008 |
Lottermoser BG. 2007. Mine Wastes:Characterization, Treatment and Environmental Impacts. 2nd Edition . Berlin Heidelberg: Springer-Verlag: 43-198.
|
Lu AH. 2005. New advances in the study of environmental mineralogical materials:Pollution treatment by inorganic minerals:The fourth category of pollution treatment methods. Earth Science Frontiers, 12(1): 196-205. |
Lu AH, Li Y, Jin S, Wang X, Wu XL, Zeng CP, Li Y, Ding HR, Hao RX, Lv M, Wang CQ, Tang YQ and Dong HL. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications, 3: 768. DOI:10.1038/ncomms1768 |
Lu JJ, Lu XC, Zhu CJ, Sun DP, Gao JF and Wang RC. 2005. The effect of Thiobacillus ferrooxidans on the distribution of metal trace elements of acid mine drainage resulting in environmental pollution. Journal of Nanjing University (Natural Sciences), 41(2): 113-119. |
Lu JJ, Lu XC, Wang RC, Li J, Zhu CJ and Gao JF. 2006. Pyrite surface after Thiobacillus ferrooxidans leaching at 30℃. Acta Geologica Sinica, 80(3): 451-455. |
Lu XC, Lu JJ, Zhu CJ, Liu XD, Wang RC, Li Q and Xu ZW. 2005. Preliminary study on surface properties of iron sulfate formed by microbially induced mineralization. Geological Journal of China Universities, 11(2): 194-198. |
Lu XC and Wang HM. 2012. Microbial oxidation of sulfide tailings and the environmental consequences. Elements, 8(2): 119-124. DOI:10.2113/gselements.8.2.119 |
McGuire MM, Edwards KJ, Banfield JF and Hamers RJ. 2001. Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochimica et Cosmochimica Acta, 65: 1243-1258. DOI:10.1016/S0016-7037(00)00601-3 |
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV and Ferrer M. 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontier in Microbiology, 6: 475. |
Mendoza OT, Ruiz J, Villaseñor ED, Guzmán AR, Cortés A, Souto SAS, Almazán AD and Bustos RR. 2016. Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico):A multi-isotopic approach. Applied Geochemistry, 66: 73-81. DOI:10.1016/j.apgeochem.2015.12.002 |
Mielke RE, Pace DL, Porter T and Southam G. 2003. A critical stage in the formation of acid mine drainage:Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology, 1(1): 81-90. DOI:10.1046/j.1472-4669.2003.00005.x |
Mishra S, Akcil A, Panda S and Erust C. 2018. Biodesulphurization of Turkish lignite by Leptospirillum ferriphilum:Effect of ferrous iron, Span-80 and ultrasonication. Hydrometallurgy, 176: 166-175. DOI:10.1016/j.hydromet.2018.01.021 |
Moon HS, Kim BA, Hyun SP, Lee YH and Shin D. 2017. Effect of the redox dynamics on microbial-mediated As transformation coupled with Fe and S in flow-through sediment columns. Journal of Hazardous Materials, 329: 280-289. DOI:10.1016/j.jhazmat.2017.01.034 |
Mousavi SM, Yaghmaei S, Vossoughi M, Roostaazad R, Jafari A, Ebrahimi M, Chabok OH and Turunen I. 2008. The effects of Fe(Ⅱ) and Fe(Ⅲ) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresource Technology, 99(8): 2840-2845. DOI:10.1016/j.biortech.2007.06.009 |
Muhammad SN, Kusin FM and Madzin Z. 2018. Coupled physicochemical and bacterial reduction mechanisms for passive remediation of sulfate-and metal-rich acid mine drainage. International Journal of Environmental Science and Technology, 15(11): 2325-2336. DOI:10.1007/s13762-017-1594-6 |
Ňancucheo I and Johnson DB. 2011. Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering. Applied and Environmental Microbiology, 77(23): 8201-8208. DOI:10.1128/AEM.06155-11 |
Nordstrom DK. 2011. Mine waters:Acidic to circumneutral. Elements, 7(6): 393-398. DOI:10.2113/gselements.7.6.393 |
Olson GJ. 1991. Rate of pyrite bioleaching by Thiobacillus ferrooxidans:Results of an interlaboratory comparison. Applied Environmental Microbiology, 57(3): 642-644. |
Oprime MEAG, Garcia Jr O and Cardoso AA. 2001. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process of Biochemistry, 37(2): 111-114. DOI:10.1016/S0032-9592(01)00179-0 |
Ouyang BJ, Lu XC, Lu JJ, Li J, Wang ZH, Zhu TT, Wang RC and Geng JH. 2011. An experimental study of the interaction between Acidithiobacillus ferrooxidans and sulfide ores. Acta Petrologica et Mineralogica, 30(6): 1021-1030. |
Pisapia C, Humbert B, Chaussidon M and Mustin C. 2008. Perforative corrosion of pyrite enhanced by direct attachment of Acidithiobacillus ferrooxidans. Geomicrobiology Journal, 25(6): 261-273. DOI:10.1080/01490450802258105 |
Quatrini R, Appia-Ayme C, Denis Y, Ratouchniak J, Veloso F, Valdes J, Lefimil C, Silver S, Roberto F, Orellana O, Denizot F, Jedlicki E, Holmes D and Bonnefoy V. 2006. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy, 83(1-4): 263-272. DOI:10.1016/j.hydromet.2006.03.030 |
Rawlings DE. 2002. Heavy metal mining using microbes. Annual Review of Microbiology, 56: 65-91. DOI:10.1146/annurev.micro.56.012302.161052 |
Rodríguez Y, Ballester A, Blázquez ML, González F and Muñoz JA. 2003a. New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71(1-2): 37-46. DOI:10.1016/S0304-386X(03)00172-5 |
Rodríguez Y, Ballester A, Blázquez ML, González F and Muñoz JA. 2003b. New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71(1-2): 47-56. DOI:10.1016/S0304-386X(03)00173-7 |
Rohwerder T and Sand W. 2003. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium sp. Microbiology, 149(7): 1699-1710. DOI:10.1099/mic.0.26212-0 |
Rohwerder T, Gehrke T, Kinzler K and Sand W. 2003. Bioleaching review part A. Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63(3): 239-248. |
Runnells DD, Shepherd TA and Angino EE. 1992. Metals in water. Determining natural background concentrations in mineralized areas. Environmental Science & Technology, 26(12): 2316-2323. |
Sampson MI, van der Merwe JW, Harvey TJ and Bath MD. 2005. Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching. Minerals Engineering, 18(4): 427-437. DOI:10.1016/j.mineng.2004.07.001 |
Sand W, Gerke T, Hallmann R and Schippers A. 1995. Sulfur chemistry, biofilm, and the (in)direct attack mechanism:A critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43(6): 961-966. DOI:10.1007/BF00166909 |
Sand W, Gehrke T, Jozsa PG and Schippers A. 1999. Direct versus indirect bioleaching. In: Amils R and Ballester A (eds.). Biohydrometallurgy and the Environment toward the Mining of the 21st Century (Part A). Amsterdam: Elsevier, 27-49
|
Sand W, Gehrke T, Jozsa PG and Schippers A. 2001. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy, 59(2-3): 159-175. DOI:10.1016/S0304-386X(00)00180-8 |
Sasaki K, Tsunekawa M, Ohtsuka T and Konno H. 1998. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 133(3): 269-278. |
Sasaki K, Nakamuta Y, Hirajima T and Tuovinen OH. 2009. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy, 95(1-2): 153-158. DOI:10.1016/j.hydromet.2008.05.009 |
Schippers A and Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1): 319-321. |
Schoonen MAA, Harrington AD, Laffers R and Strongin DR. 2010. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochimica et Cosmochimica Acta, 74(17): 4971-4987. DOI:10.1016/j.gca.2010.05.028 |
Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ and Banfield JF. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for generation of acid mine drainage. Science, 279(5356): 1519-1522. DOI:10.1126/science.279.5356.1519 |
Sheoran AS and Sheoran V. 2006. Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review. Minerals Engineering, 19(2): 105-116. DOI:10.1016/j.mineng.2005.08.006 |
Silva JCM, dos Santos EC, Heine T, de Abreu HA and Duarte HA. 2017. Oxidation mechanism of arsenopyrite in the presence of water. Journal of Physical Chemistry C, 121(48): 26887-26894. DOI:10.1021/acs.jpcc.7b09706 |
Silverman MP and Ehrlich HL. 1964. Microbial formation and degradation of minerals. Advances in Applied Microbiology, 6: 153-206. DOI:10.1016/S0065-2164(08)70626-9 |
Su GZ. 2009. Influence of microbe-mineral contact model on the biological oxidation of chalcopyrite. Master Degree Thesis. Nanjing: Nanjing University, 1-61 (in Chinese)
|
Torres MA, West AJ and Li GJ. 2014. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492): 346-349. DOI:10.1038/nature13030 |
Tributsch H. 2001. Direct versus indirect bioleaching. Hydrometallurgy, 59(2-3): 177-185. DOI:10.1016/S0304-386X(00)00181-X |
Tu BW, Wang FQ, Li J, Sha JH, Lu XC and Han XD. 2013. Analysis of genes and proteins in Acidithiobacillus ferrooxidans during growth and attachment on pyrite under different conditions. Geomicrobiology Journal, 30(3): 255-267. DOI:10.1080/01490451.2012.668608 |
Tu BW, Li J, Guo YS, Guo XJ, Lu XC and Han XD. 2014. Compensation phenomena found in Acidithiobacillus ferrooxidans after starvation stress. Journal of Basic Microbiology, 54(6): 598-606. DOI:10.1002/jobm.v54.6 |
Tu ZH, Guo CL, Zhang T, Lu GN, Wan JJ, Liao CJ and Dang Z. 2017. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Hydrometallurgy, 167: 58-65. DOI:10.1016/j.hydromet.2016.11.001 |
Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake Ⅱ R, Eisen JA and Holmes DS. 2008. Acidithiobacillus ferrooxidans metabolism:From genome sequence to industrial applications. BMC Genomics, 9: 597. DOI:10.1186/1471-2164-9-597 |
van den Brand TPH, Roest K, Chen GH, Brdjanovic D and van Loosdrecht MCM. 2016. Adaptation of sulfate-reducing bacteria to sulfide exposure. Environmental Engineering Science, 33(4): 242-249. DOI:10.1089/ees.2015.0208 |
Vaughan DJ and Craig JR. 1978. Mineral Chemistry of Metal Sulfides. Cambridge: Cambridge University Press.
|
Vaughan DJ and Corkhill CL. 2017. Mineralogy of sulfides. Elements, 13(2): 81-87. DOI:10.2113/gselements.13.2.81 |
Vera M, Schippers A and Sand W. 2013. Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation. Part A. Applied Microbiology and Biotechnology, 97(17): 7529-7541. DOI:10.1007/s00253-013-4954-2 |
Vreeland RH, Rosenzweig WR and Powers DW. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407(6806): 897-900. DOI:10.1038/35038060 |
Vuorinen A, Hiltunen P, Hsu JC and Tuovinen OH. 1983. Solubilization and speciation of iron during pyrite oxidation by Thiobacillus ferrooxidans. Geomicrobiology Journal, 3(2): 95-120. DOI:10.1080/01490458309377789 |
Wakai S, Kikumoto M, Kanao T and Kamimura K. 2004. Involvement of sulfide:Quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Bioscience, Biotechnology, and Biochemistry, 68(12): 2519-2528. DOI:10.1271/bbb.68.2519 |
Wakai S, Tsujita M, Kikumoto M, Manchur MA, Kanao T and Kamimura K. 2007. Purification and characterization of sulfide:Quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Bioscience, Biotechnology, and Biochemistry, 71(11): 2735-2742. DOI:10.1271/bbb.70332 |
Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides:A review. Hydrometallurgy, 84(1-2): 81-108. DOI:10.1016/j.hydromet.2006.05.001 |
Whitehead PG and Prior H. 2005. Bioremediation of acid mine drainage:An introduction to the Wheal Jane wetlands project. Science of the Total Environment, 338(1-2): 15-21. DOI:10.1016/j.scitotenv.2004.09.016 |
Wichlacz PL and Unz RF. 1981. Acidophilic, heterotrophic bacteria of acidic mine waters. Applied Environmental Microbiology, 41(5): 1254-1261. |
Williams KP and Kelly DP. 2013. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 63(8): 2901-2906. |
Xiang WL. 2018. Significant influences of light on the microbial oxidation of pyrite by Acidithiobacillus ferrooxidans. Master Degree Thesis. Nanjing: Nanjing University, 1-90 (in Chinese with English summary)
|
Xiong XX, Gu GH, Ban JR and Li SK. 2015. Bioleaching and electrochemical property of marmatite by Sulfobacillus thermosulfidooxidans. Transactions of Nonferrous Metals Society of China, 25(9): 3103-3110. DOI:10.1016/S1003-6326(15)63939-5 |
Xu Y and Schoonen MAA. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals?. American Mineralogist, 85(3-4): 543-556. DOI:10.2138/am-2000-0416 |
Yang Y, Liu WH and Chen M. 2013. A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles. Minerals Engineering, 48: 31-35. DOI:10.1016/j.mineng.2013.01.010 |
Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA and Bonnefoy V. 2002. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. Journal of Bacteriology, 184(1): 313-317. DOI:10.1128/JB.184.1.313-317.2002 |
Yin HQ, Zhang X, Li XQ, He ZL, Liang YL, Guo X, Hu Q, Xiao YH, Cong J, Ma LY, Niu JJ and Liu XD. 2014. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiology, 14: 179. DOI:10.1186/1471-2180-14-179 |
Zammit CM, Shuster JP, Gagen EJ and Southam G. 2015. The geomicrobiology of supergene metal deposits. Elements, 11(5): 337-342. DOI:10.2113/gselements.11.5.337 |
Zhang XA, Lu JJ, Zong MR, Xiang WL, Li J and Lu XC. 2017. Preliminary study on secondary minerals in supergene weathered skarn-type molybdenum ore in Nannihu district, Henan Province. Journal of Nanjing University (Natural Sciences), 53(5): 849-859. |
Zhao XQ, Wang RC, Lu XC, Lu JJ, Li CX and Li J. 2013. Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans. Minerals Engineering, 53: 184-192. DOI:10.1016/j.mineng.2013.08.008 |
Zhu CJ, Lu JJ, Lu XC, Wang RC and Li J. 2005. SEM study on jarosite mediated by Thiobacillus ferrooxidans. Geological Journal of China Universities, 11(2): 234-238. |
Zhu TT, Lu XC, Li J, Lu JJ, Wang RC and Xu ZW. 2011. Secondary minerals on arsenopyrite oxidized by Acidithiobacillus ferrooxidans. Acta Mineralogica Sinica, 31(4): 683-691. |
Zhu TT, Lu XC, Liu H, Li J, Zhu XY, Lu JJ and Wang RC. 2014. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 127: 120-139. DOI:10.1016/j.gca.2013.11.025 |
Zhu XY, Wang RC, Lu XC, Liu H, Li J, Ouyang BJ and Lu JJ. 2015. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineralogy and Petrology, 109(1): 1-15. DOI:10.1007/s00710-014-0344-4 |
Ziegler S, Dolch K, Geiger K, Krause S, Asskamp M, Eusterhues K, Kriews M, Wilhelms-Dick D, Goettlicher J, Majzlan J and Gescher J. 2013. Oxygen-dependent niche formation of a pyrite-dependent acidophilic Consortium built by archaea and bacteria. The ISME Journal, 7(9): 1725-1737. DOI:10.1038/ismej.2013.64 |
白静. 2014.不同成因黄铜矿极端嗜热菌浸出差异性及机理研究.博士学位论文.北京: 北京有色金属研究总院, 1-112 http://cdmd.cnki.com.cn/Article/CDMD-86403-1014268667.htm
|
李娟, 陆建军, 陆现彩, 王汝成, 苏贵珍. 2009. 氧化亚铁硫杆菌氧化黄铜矿的实验研究. 南京大学学报(自然科学版), 45(2): 315-322. DOI:10.3321/j.issn:0469-5097.2009.02.035 |
鲁安怀. 2005. 矿物法——环境污染治理的第四类方法. 地学前缘, 12(1): 196-205. DOI:10.3321/j.issn:1005-2321.2005.01.027 |
陆建军, 陆现彩, 朱长见, 孙东平, 高剑锋, 王汝成. 2005. 氧化亚铁硫杆菌对矿山酸矿水中金属污染元素分布的影响. 南京大学学报(自然科学), 41(2): 113-119. |
陆现彩, 陆建军, 朱长见, 刘显东, 王汝成, 李奇, 徐兆文. 2005. 微生物矿化成因的铁硫酸盐矿物表面特征初探. 高校地质学报, 11(2): 194-198. DOI:10.3969/j.issn.1006-7493.2005.02.006 |
欧阳冰洁, 陆现彩, 陆建军, 李娟, 王朝华, 朱婷婷, 王汝成, 耿建华. 2011. 嗜酸性氧化亚铁硫杆菌与硫化物矿石相互作用的实验研究. 岩石矿物学杂志, 30(6): 1021-1030. DOI:10.3969/j.issn.1000-6524.2011.06.008 |
苏贵珍. 2009.细菌-矿物接触形式影响黄铜矿微生物氧化作用的实验研究.硕士学位论文.南京: 南京大学, 1-61 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1859447
|
向婉丽. 2018.光对黄铁矿微生物氧化作用的影响——基于实验的认识.硕士学位论文.南京: 南京大学, 1-90
|
张雪艾, 陆建军, 宗美荣, 向婉丽, 李娟, 陆现彩. 2017. 河南南泥湖矽卡岩型钼矿石地表风化产物初探. 南京大学学报(自然科学版), 53(5): 849-859. |
朱长见, 陆建军, 陆现彩, 王汝成, 李奇. 2005. 氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究. 高校地质学报, 11(2): 234-238. DOI:10.3969/j.issn.1006-7493.2005.02.011 |
朱婷婷, 陆现彩, 李娟, 陆建军, 王汝成, 徐兆文. 2011. Acidithiobacillus ferrooxidans氧化分解毒砂的次生产物研究. 矿物学报, 31(4): 683-691. |