岩石学报  2019, Vol. 35 Issue (1): 99-118, doi: 10.18654/1000-0569/2019.01.07   PDF    
中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展
陈伟1 , 赵新福2 , 李晓春3 , 周美夫3     
1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081;
2. 中国地质大学资源学院, 武汉 430074;
3. 香港大学地球科学系, 香港
摘要:铁氧化物-铜-金(Iron Oxide-Copper-Gold,IOCG)矿床是Hitzman et al.(1992)提出的一个新矿床类型。该概念的提出与澳大利亚Olympic Dam超大型矿床的发现有关,一定程度上促进了世界上同类新矿床的发现,引起工业界和学术界的广泛关注。中国IOCG矿床的研究起步较晚,在IOCG概念提出后很长一段时间内,并没有国内外公认的IOCG矿床报道。近年来,通过对一些Fe-Cu矿床的实例研究,目前已初步确立中国西南康滇地区、东准噶尔北缘和东天山阿齐山-雅满苏等Fe-Cu成矿带具有类似于IOCG的成矿特征,并且在矿床形成时代、机制及构造背景等成因问题上取得诸多进展。成矿时代上,康滇Fe-Cu成矿省形成于元古代,包括有~1.65和~1.0Ga两期主成矿事件,分别对应于区域上的两期板内岩浆作用,说明Fe-Cu矿化与大陆裂谷背景相关。东准噶尔北缘和东天山阿齐山-雅满苏成矿带均形成于古生代,分别为295~320Ma和~380Ma,被认为可能与陆缘盆地闭合有关。三个成矿带中Fe-Cu矿床围岩均为火山-沉积地层、均具有早期Fe矿化和晚期Cu矿化为主的特征且大部分矿床与同期侵入岩体没有明显空间关系,但在蚀变矿物组合及金属元素富集程度、流体特征等方面仍存在一些差别。例如康滇成矿省的蚀变组合以成矿前区域Na化、Fe矿化期Fe-Na-(Ca)化及铜矿化期K化和碳酸盐化等为特点;矿体在空间上常与大小不等的热液角砾岩筒共生;各矿床不同程度地富集REE、Mo、Au、Co等金属;成矿流体上早期以高温、中高盐度的岩浆热液为主,而成矿晚期则有更多非岩浆流体(盆地水、地层水或大气降水等)的加入。这些特点与世界上典型的IOCG矿床(特别是前寒武纪矿床)基本一致,因此目前为止,康滇成矿省作为中国的典型IOCG矿床而受国内外认可的程度相对较高。东准噶尔北缘与东天山阿齐山-雅满苏成矿带矿化特征较为相似,最新研究显示这些矿床中非岩浆流体(如盆地卤水、地层水等)对Fe-Cu矿化的贡献更大、成矿发生于陆缘盆地闭合期等,可能与南美中安第斯成矿带IOCG矿床更为类似。但是,部分矿床在成矿前均显示有明显的矽卡岩化,甚至个别矿床中矿体、岩体和矽卡岩具紧密时空关系而类似于矽卡岩矿床;多数矿床除Fe和Cu外,所含金属元素比较单一。这些特点一定程度上导致这两个矿带Fe-Cu矿床归属于矽卡岩还是IOCG矿床的问题上仍存在不少争议,尚待进一步的探索和讨论。基于目前的研究现状,本文也对中国IOCG矿床今后研究中值得关注的问题提出了一些设想和展望,包括不少矿床Fe-Cu矿化空间上分离的原因、不同地球化学行为差异较大的成矿元素(如Co、Ni与REE、U、Mo等)在矿床中均有富集的原因等方面。
关键词: IOCG矿床     康滇成矿省     东准噶尔北缘成矿带     东天山阿齐山-雅满苏成矿带    
An overview on the characteristics and origin of iron-oxide copper gold (IOCG) deposits in China
CHEN Wei1, ZHAO XinFu2, LI XiaoChun3, ZHOU MeiFu3     
1. Stage Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China;
3. Department of Earth Sciences, University of Hong Kong, Hong Kong, China
Abstract: Iron oxide copper-gold (IOCG) deposits are a new group of hydrothermal Fe-Cu deposits, the concept of which was recently proposed by Hitzman et al. (1992) initially due to the discovery of the giant Olympic Dam Fe-Cu-U deposit in Australia. Such a definition has triggered new discoveries of similar deposits worldwide, thus attracting extensive concerns from academy and industry societies. Researches on IOCG deposits in China are rare in past few years, and no typical IOCG deposits were reported for a long time until recent. Recent case studies on some Fe-Cu deposits in China have revealed several potential IOCG provinces in China, including the Kangdian in SW China, northern margin of East Junggar and Aqishan-Yamansu (Eastern Tianshan) Fe-Cu belts in East Tianshan, NW China. The Fe-Cu deposits in the Kangdian province are Proterozoic in ages, but involving two mineralization events of~1.65Ga and~1.0Ga. Both events are synchronous with within-plate rifting-related magmatism in the region, and thus were considered to be related to continental rifting setting. On the other hand, the Fe-Cu deposits in both the northern margin of Eastern Junggar and Aqishan-Yamansu (Eastern Tianshan) Fe-Cu belts are Plaeozoic in ages, forming at~380Ma and 295~320Ma, respectively. Geochemical studies on the coeval magmatism in both belts indicated that the Fe-Cu deposits in the northern margin of Eastern Junggar and Aqishan-Yamansu belts have formed during closure of rifting basins in continental margins. The Fe-Cu deposits in the three belts are broadly similar in terms of mineralization styles, such as the hosting rocks as volcanic-sedimentary sequences, a paragenetic sequence of early Fe and late Cu mineralization stages, and no clearly spatial relationships of ore bodies with synchronous intrusions. However, there are also minor differences in terms of alteration and metal assemblages. For example, compared to the other two belts, Fe-Cu deposits in the Kangdian Fe-Cu province were characterized by pre-ore, regional Na alteration, Fe-Na-(Ca) ateration in Fe stage and K-carbonate alteration in Cu stage; by the close associations of ore bodies with breccia pipes; by variably enrichments of REE, Mo, Au and Co; and by a fluid evolution involving magmatic-hydrothermal fluids at early stages and more contributions of nonmagmatic fluids (basinal brines, meteoric water) at late stages. These characteristics of the Kangdian Fe-Cu deposits are similar to those of typical IOCG deposits worldwide (particularly the Precambrian ones), thus the Kangdian province as typical IOCG province is well recognized in the research society. In contrast, recent studies indicated that Fe-Cu deposits in the northern margin of Eastern Junggar and Aqishan-Yamansu belts were similarly formed during closure of basins in continental margins, and nonmagmatic fluids play relatively important roles on the Fe-Cu mineralization. These studies show that the deposits are more likely comparable with the Mesozoic IOCG deposits in central Andes. However, it is important to note that some of deposits in the two belts contain remarkable, pre-ore skarn-type alteration that is, in few cases, temperally and spatially associated with ore bodies and intrusions, and most of them do not contain a number of metals in addition to Fe and Cu. These features are more or less responsible for the dabate on the affinities of these deposits (IOCG or skarn). In this paper, we have also proposed that some important issues regarding the origin of IOCG deposit in China still desever further studies, including the mechanisms for spatially separation of Fe and Cu mineralization in some deposits and factors controlling enrichments of various elements that have different geochemical behaviors (e.g., Co-Ni & REE-U-Mo).
Key words: IOCG deposit     Kangdian metallogenic province     Northern margin of East Junggar metallogenic belt     Aqishan-Yamansu metallogenic belt in East Tianshan    

铁氧化物-铜-金(Iron Oxide-Copper-Gold,IOCG)矿床是近20年来提出的重要矿床类型(Hitzman et al., 1992),该概念曾把奥林匹克坝(世界第一的U、第五的Cu)、基鲁纳及白云鄂博(世界第一的REE)等世界上具有巨大经济价值,但成因争论较大的矿床联系在一起,引起国际上的巨大反响和关注。这类矿床储量巨大,含大量低Ti铁氧化物并伴生具有重大经济价值的Cu和Au,且不同程度地富集REE、U、P和Co等金属(Williams et al., 2005; Groves et al., 2010)。应该说,该类矿床是过去50年间继斑岩铜矿、块状硫化物矿、浅成低温热液金矿、卡林型金矿床之后的又一个重要矿床类型,具有显著的学术和勘查意义(毛景文等,2008)。国际上著名的IOCG矿床分布区域包括澳大利亚Gawler克拉通和Cloncurry地区、加拿大Great Bear地区、巴西Carajás地区以及南美洲中安第斯成矿带等。

经几十年的研究,国际上有关IOCG矿床的成因及勘查标志等方面已经取得不少进展(Barton and Johnson, 1996; Oliver et al., 2004; Xavier et al., 2008; Chen et al., 2010; Groves et al., 2010)。但相比于国外研究,国内的IOCG矿床研究起步较晚。在1992年IOCG概念提出后相当长的一段时间内,因缺乏详细、系统的个例研究,国内报道的典型IOCG矿床还很少。中国是否有典型的IOCG矿床?它们的成因如何?近年来,随着工作的深入,不少学者重新审视并详细厘定了国内不少区域的Fe-Cu矿床可能与IOCG矿床类似,并在矿床成因研究上取得不少重要进展(Zhao and Zhou, 2011; Chen and Zhou, 2012; Zhu and Sun, 2013; Li et al., 2014; Zhou et al., 2014; Hou et al., 2015; Hu et al., 2017; Zhao et al., 2017a, b; Liang et al., 2018),也逐渐受到国内外同行的认可。本文在这些研究进展的基础上,概括中国IOCG矿床的分布及基本特征,并总结近些年来有关中国IOCG矿床成因方面的主要研究成果。除此之外,笔者就IOCG矿床的研究现状,对中国IOCG矿床的未来研究提出一些设想和展望。

1 IOCG矿床的定义和特点及成因进展简述

铁氧化物-铜-金矿床概念的提出与20世纪70年代在澳大利亚南部Gawler克拉通中发现的奥林匹克坝(Olympic Dam)超大型铜-铁-金-铀矿床(含20亿吨矿石,包括35%铁、1.6%铜、0.06%铀氧化物、0.6g/t金及3.5g/t银)(Robert and Hudson, 1983)相关。最初提出的概念比较宽泛,把一系列看似没有成因联系的元古代富铁氧化物矿床如奥林匹克坝矿床、加拿大Wernecke和Great Bear矿床、美国Missouri东南矿床、瑞典的基鲁纳型铁矿(IOA)及中国的白云鄂博Fe-REE矿床等均归入其中。尽管如此,该矿床类型的提出促使学术界和工业界重新审视一些现有大型-超大型矿床的成因,并成功指导了一系列类似矿床的研究和勘查找矿。经过二十多年的研究,IOCG型矿床的定义逐渐完善(Williams et al., 2005; Groves et al., 2010),不少学者把IOCG矿床进一步分成不同的亚类(Williams et al., 2005; Chen, 2013)。这些定义中,Williams et al. (2005)的提法认可度较高,其把IOCG型矿床进一步界定为具有大量低Ti磁铁矿-赤铁矿且伴生经济品位的铜(和/或金)矿化、构造控矿明显、与同期侵入岩无明显空间关系的热液矿床。之后,Groves et al. (2010)进一步深化并提出了狭义(sensu stricto)的IOCG概念,具体包括以下特点:1)发育大量低Ti磁铁矿-赤铁矿和/或铁硅酸盐矿物;2)伴生有经济价值的Cu和/或Au,且稍晚于Fe矿化;3)具明显的热液成因特点,且成矿受构造控制,常与角砾岩共生;4)常常不同程度富集REE、U、Ag、Co或P等其他金属;5)不含或极少含与硫化物同期的石英脉;6)与同期侵入岩无明显空间关系。基于该概念,一些含铁氧化物的矿床如磁铁矿-磷灰石(IOA)矿床、矽卡岩型Fe-Cu-Au矿床以及白云鄂博Fe-REE矿床等被剔除出去。从应用角度上而言,狭义的IOCG矿床概念不仅细化了判别标准,而且对之前有争议的矿床做了成因分类,使得IOCG矿床有了更明确的成因意义。

IOCG矿床的赋矿围岩类型多样,可包含近于同期或较老的火山碎屑沉积岩-火山岩、碳酸盐岩、基性-中酸性侵入岩、片岩-片麻岩等(Williams et al., 2005; Corriveau, 2007),因此一定程度上也导致了不同IOCG矿床在矿化-蚀变特点上存在较大差别。但通常而言,IOCG矿床的成矿前主要是区域性/深部的钙-钠化蚀变,形成一些包括碱性长石如钠长石和/或钾长石或钙硅酸盐如角闪石等矿物(Skirrow et al., 2002; Corriveau, 2007),甚至当围岩为碳酸盐时出现类似于矽卡岩的矿物组合(石榴石或透辉石等,如智利Candelaria矿床;Ray and Lefebure, 2000);随后是铁氧化物的沉淀阶段,并伴随大量富Fe矿物的形成如铁-碳酸盐(菱铁矿和铁白云石)、富铁硅酸盐(绿泥石和阳起石)等(Williams et al., 2005; Corriveau, 2007);之后的铜(金)成矿阶段主要有钾化而形成如钾长石、绢云母、黑云母等矿物以及碳酸盐化、电气石化、赤铁矿化等(Hitzman et al., 1992)。

现有研究结果显示,IOCG矿床基本上产出于克拉通或者大陆边缘的构造环境,并且大多数情况下与拉张背景密切相关,包括大陆裂谷环境(如Olympic Dam矿床)或者大陆边缘弧后盆地(如安第斯地区的IOCG矿床)等(Hitzman, 2000; Groves et al., 2010)。形成时代上,先前研究倾向于认为IOCG矿床具有前寒武纪成矿的时限性(如最初Hitzman et al., 1992及后来Groves et al., 2010的总结性文章),也有学者把那些与岩浆-热液相关的IOCG矿床与斑岩铜矿相类比,认为他们代表了同类成矿系统在地球演化不同时期的产物(Richards and Mumin, 2013)。但无论如何,针对安第斯地区中生代(Chen et al., 2010, 2011, 2013a)和北美新生代(如美国Iron Spring矿床;Williams et al., 2005)及近年来新疆东天山古生代(Zhao et al., 2017a; Liang et al., 2018)IOCG矿床的很多个例研究,说明IOCG矿床在地质历史演化不同时期均可产生。但需要提及的是,在矿床的数量及规模上前寒武纪IOCG矿床确实更为显著(Groves et al., 2010)。

有关IOCG矿床金属及成矿流体的来源,虽然多年来积累了大量相关的研究资料,但该问题仍存在很大的争议,也因此在一定程度上影响到IOCG矿床定义的准确界定。例如Groves et al. (2010)的综述文章中突出了岩浆热液在IOCG矿床中的关键作用,他们认为狭义的IOCG矿床应为岩浆-热液型Fe-Cu-(Au)矿床,并且Fe、Cu、Au、REE等金属元素及金属络阴离子(如F、S、Cl等)等主要来源于岩浆(Groves et al., 2010)。相反,近年来不少研究证实,除了岩浆热液本身之外,矿床中的一些常见成矿元素如Fe、U、Co、S以及REE等可能有围岩或外来流体的巨大贡献(Chen and Zhou, 2015; Corriveau et al., 2016)。实际上,因缺乏直接的金属来源示踪方法,目前为止仍不清楚IOCG矿床中不同金属元素是否均来自同一种岩浆热液、抑或有多个源区。总体而言,有关流体来源主要有以下三种不同认识,包括: (1)成矿流体以岩浆-热液流体为主,外来流体(如盆地水)的加入对成矿并非关键(Pollard, 2000, 2006; Sillitoe, 2003);(2)流体具混合来源(岩浆水、盆地卤水、层间水等的混合),但岩浆水对早期铁矿化相对更重要(Kendrick et al., 2007, 2008; Baker et al., 2008; Chen et al., 2010, 2011);(3)非岩浆流体(如海水、盆地卤水、大气水等)对成矿(特别是铜成矿)起主导作用(Barton and Johnson, 1996, 2000; Monteiro et al., 2008; Xavier et al., 2008)。

2 中国IOCG矿床的研究沿革

Hitzman et al. (1992)提出IOCG矿床概念不到4年,国内已有学者把该篇论文翻译成中文(李上森, 1996),但当时并没有引起国内学者的广泛关注。直到李泽琴等(2002)首次提出四川拉拉Fe-Cu矿床为IOCG型矿床以来,有学者开始对国内外IOCG矿床的研究进展进行了总结,包括张兴春(2003)王绍伟(2004)毛景文等(2008)聂风军等(2008)。这些综述文章比较详细地介绍了全球IOCG矿床的特征和相关研究进展,并且对中国可能存在IOCG矿床的区域提出了一些展望,例如康滇、长江中下游、新疆东天山等地区。尽管这些文章把矽卡岩型Fe-Cu-Au矿、磁铁矿-磷灰石矿(玢岩铁矿或IOA)以及白云鄂博Fe-REE矿等目前看来不能归类为IOCG的矿床也归为其中,但一定程度上促进了国内学者对中国IOCG矿床的关注和研究(许德如等, 2008; 应立娟等, 2008; 路彦明等, 2010; 杜保峰等, 2012)。近些年来,国内有关IOCG矿床的详细、系统个例研究逐渐增多,取得不少重要进展,很多成果陆续在国内外的一些重要矿床杂志发表,引起国内外同行的广泛关注(Zhao and Zhou, 2011; Chen and Zhou, 2012; Zhao et al., 2013, 2017a, b; Zhu and Sun, 2013; Li et al., 2014, 2015b; Hou et al., 2015; Su et al., 2016; Liang et al., 2018)。上述研究表明,我国西南康滇地区、新疆东天山地区和东准噶尔北缘等地可能是重要的IOCG成矿带(图 1),其具体分布特征如下:(1)西南康滇Fe-Cu成矿省,典型矿床包括四川拉拉、云南大红山及云南迤纳厂Fe-Cu矿床(Zhao and Zhou, 2011; Chen and Zhou, 2012; Zhao et al., 2015; Li et al., 2015b);(2)新疆东天山阿齐山-雅满苏Fe-Cu成矿带,典型矿床包括黑尖山(Zhao et al., 2017a)、沙泉子(Jiang et al., 2018)、多头山Fe-Cu矿床(Zhang et al., 2018)等;(3)新疆东准噶尔北缘Fe-Cu成矿带,典型例子有老山口和乔夏哈拉Fe-Cu矿床(路彦明等, 2010; Li et al., 2015a; Liang et al., 2018; 梁培,2018)。其它矿区或矿带如新疆西天山阿吾拉勒成矿带(Hou et al., 2014a)、海南石碌Fe-Cu-Co矿区虽然也有部分矿床具有类似IOCG的特点(许德如等, 2008),但目前仍存在不少争议且缺少从IOCG角度上进行的系统研究,它们是否属于IOCG矿床仍需更多的约束。

图 1 中国大地构造略图及IOCG和似IOCG矿床的分布 Fig. 1 Simplified tectonic map of China and distributions of IOCG or IOCG-like deposits
3 中国典型IOCG矿床的基本特征 3.1 康滇Fe-Cu成矿省

康滇Fe-Cu成矿省位于扬子克拉通西南缘(图 1),南起元阳、北至会理,横跨四川南部、云南北部,多年来一直是中国重要的Fe、Cu产地(孙克祥等, 1991)。该区前寒武纪地层主要包括古元古代大红山群、东川群以及河口群和中-新元古代会理群、苴林群及昆阳群等;这些地层被一系列大大小小的元古代基性-酸性岩体所侵入(图 2a),其中以新元古代花岗岩为主(830~760Ma; Zhou et al., 2002)。该成矿省有规模不一的Fe-Cu矿床20多个,包括大红山、拉拉、稀矿山、迆纳厂等大中型Fe-Cu矿床(图 2a),主要赋存于古元古代沉积-火山岩地层中(即大红山群、河口群和东川群)。不完全统计,该成矿带已探明至少6亿吨Fe以及5百万吨Cu(孙克祥等, 1991; Zhao and Zhou, 2011)。除Fe-Cu矿床以外,区域上还分布有一套赋存于沉积岩中的层状Cu矿床(图 2a),例如著名的东川和易门铜矿等(冉崇英, 1988; 华仁民, 1989; Ruan et al., 1991),其矿化特点及矿物组合与Fe-Cu矿床明显不同,被认为沉积岩型层状Cu矿床(即SSC矿床;Zhao et al., 2012)。

图 2 中国西南康滇(a, 据Chen and Zhou, 2012)、东天山阿齐山-雅满苏成矿带(b, 据Zhao et al., 2017a)和新疆东准噶尔北缘成矿带(c, 据Liang et al., 2018)地质略图及Cu-Fe矿床分布 Fig. 2 Simiplified geological maps and the distributions of major Fe-Cu deposits of the Kangdian Fe-Cu province (a, modified after Chen and Zhou, 2012), Aqishan-Yamansu metallogenic belt of East Tianshan (b, modified after Zhao et al., 2017a) and northern margin metallogenic belt of East Junggar (c, modified after Liang et al., 2018)

该成矿省的Fe-Cu矿床在规模、围岩类型、金属品位和元素组合等方面虽有一定差别,但蚀变和矿化特征总体相似(表 1)。例如各矿床的矿体受构造控制明显(断裂、岩性界面等),多呈透镜状、似层状(图 3a, b);不少矿床中矿体与热液角砾岩空间关系密切,例如大红山矿床的部分矿体直接产于可能与同期辉长岩有关的角砾岩体中(图 3a图 4a)(Zhao et al., 2017b);大部分矿床与同期岩体没有明显的空间共生关系(Zhou and Zhou, 2011)等。矿石矿物为铁氧化物(磁铁矿/赤铁矿)和铜的硫化物(黄铜矿、斑铜矿)(图 4b),但不同矿床中不同程度富集Au、Ag、Co以及REE等金属(孙克祥等, 1991; Zhao and Zhou, 2011)。例如拉拉矿床富集Mo、Co、LREE,其中Mo达到经济品位(Chen and Zhou, 2012),而迆纳厂富集LREE和Co(Yang et al., 2005; Li et al., 2015b)等。研究显示,这些矿床均包括早期Fe和晚期Cu成矿阶段(图 5b),并伴随早期区域性的钠化(钠长石、方柱石等)、Fe矿化期的Fe-Na-(Ca)蚀变(角闪石、钠长石、磷灰石等;图 5a)及铜矿化期的K化、碳酸盐化等(菱铁矿、云母、方解石等)(Zhao and Zhou, 2011; Chen and Zhou, 2012; Zhou et al., 2014)。

表 1 中国IOCG矿床与世界典型IOCG矿床对比 Table 1 A brief comparison of China's and global IOCG deposits

图 3 不同IOCG成矿带中典型矿床的剖面图 (a)康滇地区大红山Fe-Cu矿床(据Zhao et al., 2017b修改);(b)康滇地区拉拉Fe-Cu矿床(据Chen and Zhou, 2012修改);(c)东准噶尔北缘老山口Fe-Cu矿床(据梁培, 2018修改) Fig. 3 Cross-sections of typical deposits in different IOCG metallogenic belts (a) Dahongshan Fe-Cu deposit in Kangdian (modified after Zhao et al., 2017b); (b) Lala Fe-Cu deposit in Kangdian (modified after Chen and Zhou, 2012); (c) Laoshankou Fe-Cu deposit in northern margin of East Junggar (modified after Liang, 2018)

图 4 不同IOCG成矿带中典型矿床的部分矿石野外特点 (a)康滇大红山矿床中块状Fe矿石与蚀变围岩(辉长岩)呈截然的接触关系(照片来自Zhao, 2010);(b)康滇拉拉矿床中条带状Fe-Cu矿石被晚期富铜硫化物脉切穿;(c)东天山黑尖山矿床的Fe-Cu矿石中硫化物呈斑杂状分布于磁铁矿晶隙中(照片来自赵联党, 2018);(d)东准噶尔北缘乔夏哈拉矿床Fe-Cu矿石中磁铁矿和硫化物与帘石矿物和石榴石紧密共生(照片来自梁培, 2018).矿物缩写:Mag-磁铁矿;Ccp-黄铜矿;Py-黄铁矿;Ep-绿帘石 Fig. 4 Field photos of Fe-Cu ores from different IOCG metallogenic belt (a) massive Fe ores in the Dahongshan deposit showing sharp contacts with hosting rocks (gabbro); (b) banded Fe-Cu ores in the Lala deposit crosscut by Cu-rich veins; (c) Fe-Cu ores in the Heijianshan deposit. Note that sulfides are present as interstitial phases in the magnetite matrix; (d) Fe-Cu ores in the Qiaoxiahala deposit, the magnetite and sulfides are associated with epidote and garnet. Mineral abbr.: Mag-magnetite; Ccp-chalcopyrite; Py-pyrite; Ep-epidote

图 5 不同IOCG成矿带中典型矿床的部分矿石镜下特点 (a)康滇大红山Fe矿石中磁铁矿与钠长石共生,交代早期铁白云石(照片来自Zhao, 2010);(b)康滇拉拉Fe-Cu矿石中早期磁铁矿、磷灰石和钠长石被晚期硫化物、方解石和黑云母等交代、切穿,且磷灰石中还包裹细小的独居石颗粒(照片来自Chen and Zhou, 2012);(c)东天山黑尖山Fe-Cu矿石中晚期黄铜矿切穿黄铁矿、磁铁矿及石英(照片来自赵联党, 2018);(d)东准噶尔北缘乔夏哈拉Fe-Cu矿石中早期石榴石被磁铁矿、黄铁矿等交代(照片来自梁培, 2018).矿物缩写:Qtz-石英;Grt-石榴石;Ab-钠长石;Cal-方解石;Mnz-独居石;Ank-铁白云石;Ap-磷灰石;Bt-黑云母 Fig. 5 Photomicrographs of various ores in different metallogenic belts (a) Dahongshan Fe ore where early ankerite is replaced by magnetite and albite; (b) Lala Fe-Cu ore where early magnetite, apatite and albite are replaced by sulfides, calcite and biotite. The apatite contains abundant monazite grains; (c) Heijianshan Fe-Cu ore where early pyrite, magnetite and quartz are crosscut by chalcopyrite; (d) Qiaoxiahala Fe-Cu ore where early garnet is crosscut by pyrite and magnetite. Mineral abbr.: Qtz-quartz; Grt-garnet; Ab-albite; Cal-calcite; Mnz-monazite; Ank-ankerite; Ap-apatite; Bt-biotite
3.2 东天山阿齐山-雅满苏Fe-Cu成矿带

新疆东天山地区是中亚造山带的重要组成部分,在古生代发育多个弧-盆单元,从北向南如大南湖-头苏泉岛弧带、阿齐山-雅满苏弧后盆地(或裂谷盆地)和中天山大陆弧等(图 2b)。该区域含有大量金属矿产,如Fe、Cu、Au、Ag、Pb、Zn等,是我国重要的铁铜多金属成矿带(Han and Zhao, 2003; Mao et al., 2005; 张维峰, 2016)。其中,阿齐山-雅满苏成矿带主要发育大量Fe和Fe-Cu矿床,它们赋存于石炭系海相火山岩地层中,因此曾被统称为海相火山岩型Fe-(Cu)矿床(图 2b),典型例子包括雅满苏、多头山、黑尖山、双龙、沙泉子、双峰山、黑峰山等(Hou et al., 2014a; Zhang et al., 2014)。而新近研究所认为的IOCG矿床主要是指Fe-Cu矿床,如黑尖山、多头山、沙泉子等(Zhao et al., 2017a; Zhang et al., 2018; 赵联党, 2018)。该矿带上除主要发育这套赋矿火山岩外,还广泛分布有一系列中-酸性侵入岩体,但其与矿体之间无明显的空间共生关系。

相比于康滇IOCG矿床,该带的Fe-Cu矿床在规模上相对较小(多数 < 1万吨铜),但矿体形态和主要矿石矿物组合与康滇矿床类似,例如其Fe-Cu矿体呈透镜状和似层状;矿石矿物主要是铁氧化物(磁铁矿/赤铁矿)和铜硫化物(黄铜矿、斑铜矿等)(图 4c)(赵联党,2018及其中参考文献)。矿化阶段均包括早期的Fe矿化(磁铁矿和/赤铁矿)和晚期的Cu矿化(黄铜矿和黄铁矿以及少量斑铜矿)阶段(图 5c),但与康滇Fe-Cu矿床不同的是,不少矿床在Fe矿化之前都有明显的矽卡岩化(如多头山、沙泉子)而形成典型矽卡岩矿物如石榴石、透辉石、闪石等;Fe矿化具K化和Ca-Mg化而形成钾长石、角闪石、绿帘石等;Cu矿化期则有强烈的绿泥石化和/或绿帘石化等。除此之外,这些Fe-Cu矿床所含金属比较单一,除个别矿床局部富集Au(如黑尖山; Zhao et al., 2017a),均无其它金属如REE、Co、P或Mo等的富集。

3.3 东准噶尔北缘Fe-Cu成矿带

东准噶尔北缘位于东准噶尔地体北部的杜兰特岛弧带上,并以额尔齐斯大断裂为界北邻阿尔泰造山带南缘。该区主要发育一套上古生界火山-沉积系列,下古生界地层发育较少;岩浆岩广泛发育,以晚古生代碱性-钙碱性花岗岩和闪长岩为主、镁铁质-超镁铁质侵入岩次之(梁培, 2018)。该区矿产资源丰富,产出Fe、Cu、Au、Mo和Ni等多种金属,是新疆北部重要的矿集区。其中,前人所认为的类IOCG型Fe-Cu矿床产于上古生界火山-沉积地层中,典型例子包括老山口和乔夏哈拉Fe-Cu矿床(图 2c)(应立娟等, 2008, 2009; 吕书君等, 2012; Li et al., 2014; 尚海军等, 2017; Liang et al., 2018),但其矿床规模均不大(表 1)。

这些矿床中,Fe-Cu矿体均赋存于泥盆纪北塔山组火山-火山角砾岩(以及少量沉积岩夹层)中,但部分矿床在时空上与闪长玢岩等岩体有一定共生关系;矿体呈似层状、透镜状产出(梁培, 2018)。Fe和Cu矿化在空间上并非完全重叠,因此矿体可分为Fe-(Cu)和Cu矿体,但两者呈渐变过渡关系且空间上呈现富铁矿体在上、富铜矿体在下的“上铁下铜”特点(图 3c)(李泰德和王梓嘉, 2009; 吕书君等, 2012; 梁培, 2018)。主要矿石矿物为磁铁矿和黄铜矿;成矿/蚀变期次包括成矿前矽卡岩化(或钙硅酸盐化)、Fe矿化阶段(磁铁矿)以及晚期的Cu矿化阶段(黄铜矿)。矽卡岩化形成大量石榴石、透辉石以及/或角闪石和绿帘石等(图 4d),Fe矿化阶段蚀变矿物主要为角闪石、绿帘石和/或钠长石、钾长石等,而Cu矿化阶段的蚀变矿物则以绿泥石为主、绿帘石和石英等矿物次之(图 5d)(Li et al., 2014, 2015a; Liang et al., 2018)。总体而言,该成矿带除Fe、Cu矿化之外,金属组合比较单一,仅局部Au或LREE富集(应立娟等, 2006; 梁培, 2018)。这些矿床的矿化特点与阿齐山-雅满苏成矿带中的Fe-Cu矿床有很多相似点,例如一些矿床中出现显著的矽卡岩化(如老山口和乔夏哈拉)且其矽卡岩、矿体及岩体三者的时空关系密切(马玉鑫等, 2013; 梁培, 2018)。

4 中国典型IOCG矿床的成因研究进展

虽然中国IOCG矿床的研究起步较晚,但近年来仍取得不少进展。总体而言,新疆东天山阿齐山-雅满苏和东准噶尔北缘成矿带相比于康滇成矿省在IOCG成因方面的研究相对较晚、研究程度稍低,并且在两矿带是否归属于IOCG矿床的问题上仍存在争议(如Mao et al., 2005; Li et al., 2014, 2015a; Jiang et al., 2018)。据于此,本文将以康滇IOCG成矿省为主,从矿床形成时代和构造背景、成矿流体特点等方面简要总结该区矿床的成因研究进展,而对东天山和准噶尔北缘的Fe-Cu矿床本文只做初步的总结。

4.1 康滇Fe-Cu成矿省 4.1.1 构造-岩浆-成矿时空格架

新近不到10年的研究在康滇成矿省的赋矿地层、区域岩浆岩和矿床的形成时代上获得不少精确数据,基本完善了该区的构造-岩浆-成矿时空格架。首先在赋矿地层上,此前认为大红山群和河口群在时代上可能要老于东川群,而新近的锆石U-Pb精确定年基本确定三套地层的下部均形成于古元古代晚期(1750~1680Ma; Greentree and Li, 2008; Zhao et al., 2010; 周家云等, 2011; 王冬兵等, 2012; Chen et al., 2013b; 杨红等, 2012; 金廷福等, 2017),代表了扬子陆块西缘古元古代晚期裂谷盆地沉积的一套火山-沉积建造(Wang et al., 2014)。一系列铁镁质岩体或岩脉等侵入至这套古元古代地层,它们的形成时代与地层近乎同时或稍晚(1750~1650Ma),代表了一套大陆裂谷环境下的岩浆岩(Zhao et al., 2010; 关俊雷等, 2011; Chen et al., 2013b; Hou et al., 2015)。不整合覆盖于这套赋矿地层是昆阳群、会理群及苴林群,对其上部火山岩夹层的锆石U-Pb定年显示,它们形成于1100~960Ma左右(Zhang et al., 2007; 耿元生等, 2007; Chen et al., 2014a, 2018a)。但是最近对昆阳群和会理群下部火山岩地层获得了~1500Ma的年龄(耿元生等, 2012; 庞维华等, 2015),限定其最老沉积年龄可达1.5Ga。该最老年龄与在东川群上部黑山组凝灰岩中获得的锆石U-Pb年龄(1503±17Ma)相当(孙志明等, 2009),因此有学者认为东川群的上部与昆阳群的下部地层可能是连续的或者代表了同一个旋回沉积的产物(高林志等, 2018)。除此之外,新近研究也在康滇地区识别出一系列零星分布、形成于中元古代晚期的辉绿岩、辉长岩体及花岗岩体(~1050Ma; 如杨崇辉等, 2009; 朱志敏, 2011; 王子正等, 2012; Chen et al., 2018a)。这些岩浆岩的地球化学特征与该区同期火山岩(如苴林群和会理群天宝山组火山岩)一致,指示了它们可能形成于大陆裂谷环境(王子正等, 2012; Chen et al., 2014a, 2018a)。

近些年来,不少学者对这些矿床开展了系统的硫化物Re-Os、锆石U-Pb、褐帘石U-Pb等定年工作,获得不少可靠、精确的成矿年代数据(Zhao and Zhou, 2011; Chen and Zhou, 2012, 2014; Zhao et al., 2013; Zhu and Sun, 2013; 叶现韬等, 2013; Chen et al., 2018b; Zhu et al., 2018)。这些新数据显示,康滇Fe-Cu成矿省经历了多期成矿/热液事件,其中主成矿期包括~1.65Ga和~1.0Ga两期(图 6)。前一期的典型代表为大红山和迆纳厂矿床,与区域上一系列形成于板内环境的辉长岩/辉绿岩体同期,说明这些矿床形成于大陆裂谷环境;而后一期则以拉拉矿床为代表,时代上与区域~1.05Ga铁镁质-长英质岩体及相关火山岩相近,也说明该期矿化形成于大陆裂谷环境。有意思的是,该期矿化在大红山矿床有叠加,主要形成一些矿化脉体(宋昊, 2014; Zhao et al., 2017b)。除这两期主成矿年龄外,在迆纳厂和鹅头厂矿床的晚期脉中也获得~1.45Ga的硫化物Re-Os年龄(图 6)(Huang et al., 2013a),可对应于区域上局部产出的同期基性岩体及昆阳群的火山岩夹层等,但该期矿化较弱,可能仅代表局部的热液活化或叠加事件。Zhu and Sun (2013)Zhu et al. (2018)在拉拉矿床的Fe-Cu矿石中获得了一期~1.3Ga的硫化物Re-Os年龄,但区域上并未有相关岩浆事件与其对应,该年龄所代表的意义仍需进一步的研究和探讨。此外,早期Ar-Ar定年研究获得的大部分是新元古代的年龄(830~760Ma)(如邱华宁等, 1997, 2002; 叶霖等, 2004a, b)。目前已证实这些年龄代表了一期与该区新元古代岩浆岩相关的热液改造事件(Chen and Zhou, 2014; Zhou et al., 2014; Zhu et al., 2018)。

图 6 中国不同IOCG成矿带中典型矿床的形成时代数据汇总 年龄数据来源: Zhao and Zhou, 2012; Chen and Zhou, 2011; 张志欣等, 2012; Huang et al., 2013a, b, 2014; Zhao et al., 2013, 2017b; Zhu and Sun, 2013; Zhu et al., 2018; Zhou et al., 2014; Li et al., 2014, 2015b; 赵联党, 2018; 梁培, 2018 Fig. 6 Summary of ages of Fe-Cu deposits in different metallogenic belts
4.1.2 成矿流体特点及来源

前人对康滇Fe-Cu矿床的流体包裹体开展大量研究,在成矿流体盐度、温度、成分等方面积累了丰富资料,提出了诸多认识(孙燕和李承德, 1990; 金明霞和沈苏, 1998)。近年来,不少学者又补充了流体包裹体的相关研究,进一步完善了该区矿床成矿流体的特征(侯林等, 2013; Li et al., 2015b)。这些研究显示不同矿床中Fe阶段成矿流体以高温(达500℃)、高盐度(达40% NaCleqv)的流体为主,显示岩浆来源的特点,而Cu矿化流体的盐度和温度明显降低。部分矿床(如迤纳厂)Cu阶段硫化物δ34S的值在0‰左右(图 7),呈现典型岩浆硫的特征(Li et al., 2015b),但是也有部分矿床硫化物δ34S的值呈现较大的变化,例如大红山矿床硫化物δ34S的值介于-3.4‰~12.4‰之间,拉拉矿床硫化物δ34S的值介于-5.3‰~10.5‰之间(图 7),部分数值明显高于岩浆硫的范围(-5‰~+5‰)(Zhao and Zhou, 2011; Chen and Zhou, 2012)。这些数据显示,Cu矿化流体可能有岩浆流体和非岩浆流体或地层组分(如膏岩层; 华仁民, 1993)的加入有关。此外,不同矿床的C和O同位素也得到类似的结论。例如大部分碳酸盐矿物的δ13C和δ18O值与岩浆值比较接近(图 8),说明有岩浆流体曾参与成矿;但也有部分δ13C和δ18O值与碳酸岩地层或地层水、盆地卤水及海水等比较接近(图 8),说明岩浆流体可能与地层强烈相互作用或有外来非岩浆流体的加入导致成矿有关。

图 7 中国西南康滇IOCG成矿省中典型矿床Cu成矿期的硫同位素组成(数据引自Zhao, 2010; Chen and Zhou, 2012) Fig. 7 Summary of S isotopic compositions of Cu-stage sulfides from typical deposits in the Kangdian IOCG metallogenic province (data from Zhao, 2010; Chen and Zhou, 2012)

图 8 康滇Fe-Cu矿床中不同阶段流体C-O同位素比值(数据引自Chen and Zhou, 2012; 王赕, 2013; Li and Zhou, 2015; Zhao et al., 2017b) Fig. 8 C and O isotopic compositions of carbonate minerals from typical deposits in the Kangdian region (data from Chen and Zhou, 2012; Wang, 2013; Li and Zhou, 2015; Zhao et al., 2017b)

新近对热液矿物进行的原位B和Sr同位素研究也对康滇矿床的流体来源提供了新的制约。例如,Su et al.(2016)对大红山矿床中不同阶段电气石的B同位素做了细致的研究,其结果显示不同阶段电气石的B同位素组成具有系统的变化:早期钠化和Fe矿化阶段电气石具较轻的δ11B值(-14.7‰~-5.7‰),与岩浆来源的硼非常接近;而Cu矿化阶段及最晚期热液脉阶段的硼同位素明显变重(分别为-4.4‰~-0.6‰和+2.9‰~+5.9‰),说明有更多非岩浆流体参与成矿。同样,Chen et al. (2014b)Zhao et al. (2015)分别对拉拉和迤纳厂矿床中不同阶段磷灰石进行原位Sr同位素分析。其结果均显示,早期铁矿化阶段磷灰石具低的87Sr/86Sr初始值(如迤纳厂:0.70377~0.71074),与区域同时代岩浆岩比较接近,暗示岩浆流体参与成矿;而铜矿化阶段磷灰石具明显高的87Sr/86Sr初始值(如迤纳厂:0.71021~0.72114),说明有外来非岩浆流体加入或发生过强烈水岩相互作用。总之,这些同位素分析结果与流体包裹体数据一致,均指示岩浆流体对早期Fe矿化成矿起主导作用,而晚期Cu矿化阶段则有更多的非岩浆流体参与成矿,并且流体混合或水岩反应可能促进了Cu成矿(侯林等, 2013; Zhao et al., 2015; Su et al., 2016)。

4.2 东天山阿齐山-雅满苏成矿带

通过多年研究,获得不少有关该带赋矿地层和矿床形成时代的精确数据,基本完善了该区的岩浆-成矿时空格架。例如,大量的锆石U-Pb年龄新数据显示矿体围岩如雅满苏组和马头滩组火山岩分别形成于350~325Ma和325~305Ma(罗婷等, 2012; 张达玉等, 2012; Hou et al., 2014b; Zhang et al., 2016; 赵联党, 2018);侵入至地层的中-酸性岩体主要以晚石炭世为主(如矿带较大的百灵山复式岩体),最新年龄数据显示它们主要形成于330~300Ma且峰值为325±10Ma(徐璐璐等, 2014; Zhang et al., 2016; Jiang et al., 2017; 张维峰等, 2017; 赵联党, 2018)。多年来针对这些石炭系火山岩围岩及同期中-酸性侵入岩体开展了不少岩石成因和形成环境等方面的研究,但目前为止有关该矿带晚古生代的构造背景及演化仍然存在很大争议,包括有岛弧、弧后盆地以及后碰撞环境三种主要认识(赵联党,2018及其中参考文献)。除此之外,新近针对该区晚古生代岩浆岩的详细研究显示阿齐山-雅满苏矿带的晚古生代构造背景可能为弧前盆地,而Fe-Cu成矿主要发生于弧前盆地闭合期(Zhang et al., 2016; 赵联党, 2018)。成矿时代上,通过对部分Fe-Cu矿床(沙泉子、雅满苏、黑尖山等矿床)的精确定年研究基本限定这些矿床形成于295~320Ma(图 6)(Huang et al., 2013b, 2018; 赵联党, 2018),大致与晚石炭世中-酸性侵入体同期。但是这些同期岩浆岩在构造环境上的争议一定程度上也间接导致了Fe-Cu矿床的成矿背景存在不少争议(袁峰等, 2010; 周涛发等, 2010; Pirajno, 2013; Hou et al., 2014a; Zhao et al., 2017a; Jiang et al., 2018)。

流体包裹体研究显示,阿奇山-雅满苏矿带中Fe-Cu矿床的成矿流体在Fe和Cu阶段存在明显差异性:早期Fe矿化流体具有高温(达590℃)、中高盐度(达56% NaCleqv)的特点,而Cu矿化流体则显示低温(低至160℃)、中-低盐度的特点(Zhao et al., 2017a; Jiang et al., 2018; 赵联党, 2018)。新近C-H-O-S同位素进一步显示,早期流体具有岩浆水为主的特点,而到后期Cu矿化流体则受到盆地卤水和/或大气降水的贡献较大(Zhang et al., 2018; Jiang et al., 2018)。

4.3 东准噶尔北缘成矿带

该矿带赋矿地层以晚古生代火山-沉积岩为主,被一系列稍年轻的晚古生代中-酸性岩体侵入。新近锆石U-Pb定年结果显示,这些火山岩及岩体主要形成于两个期次:390~370Ma和360~325Ma(吕书君等, 2012; Wu et al., 2015; Liang et al., 2016; 梁培等, 2017; 梁培, 2018及其参考文献)。390~370Ma期岩浆岩显示有岛弧的地球化学特征,但其形成的构造背景存在有岛弧、弧后盆地甚至洋中脊环境等不同认识(Zhang et al., 2009; Long et al., 2012; Xu et al., 2013)。新近梁培(2018)对该矿带老山口和乔夏哈拉两个典型Fe-Cu矿床中的该期岩浆岩开展详细的岩石地球化学研究,证实它们形成于弧后盆地的构造背景,且整体处于盆地闭合的弧盆转化体系下。另一方面,360~325Ma的岩浆岩表现为A型花岗岩的特征,被认为可能形成于后碰撞至板内环境转化的过渡期(周刚等, 2009; 梁培等, 2017; 梁培, 2018)。对于Fe-Cu矿床的成矿时代,目前针对老山口和乔夏哈拉两个典型矿床的辉钼矿Re-Os、黄铜矿Sm-Nd定年工作显示Fe-Cu成矿时代为~380Ma(图 6)(张志欣等, 2012; Li et al., 2014, 2015a)。该年龄说明该矿带Fe-Cu成矿与区域390~370Ma岩浆作用同期,因此部分学者认为它们可能形成于弧后盆地的构造背景(Liang et al., 2018; 梁培, 2018)。

近年来有关该矿带成矿流体特点及来源的研究主要集中于老山口和乔夏哈拉Fe-Cu矿床,积累了大量数据(吕书君等, 2012; Li et al., 2014, 2015a; Liang et al., 2018; 梁培, 2018)。尽管不同学者对两个矿床的成矿期次划分不尽相同,但总体上主要包括成矿前的矽卡岩化阶段、Fe成矿和Cu成矿阶段(表 1)。研究显示矽卡岩化阶段的流体具高温(>550℃)、低-中盐度(< 20% NaCleqv)和类似于岩浆热液C-H-O同位素组成的特点(吕书君等, 2012; Li et al., 2014, 2015a; Liang et al., 2018);Fe矿化流体具中-高温(< 530℃)、低-中盐度、高Mg/Fe的特点,但同位素数据显示除了岩浆流体外,海水的贡献明显增加;Cu矿化流体则具低-中温(低至160℃)、低-中盐度、富Ca或富Na的特点,稳定同位素及卤族元素组成数据显示该矿化流体具有大量盆地卤水或地层水的贡献,且晚期大气降水增多(Liang et al., 2018; 梁培, 2018)。

5 与全球IOCG矿床对比

表 1总结了中国IOCG矿床与全球典型IOCG矿床在一些基本特征上的异同点,包括蚀变和元素组合、赋矿围岩类型、流体来源及演化、金属来源、成矿时代和构造背景等方面。与全球典型IOCG相比,西南康滇、新疆阿齐山-雅满苏和东准噶尔北缘等三个矿带的Fe-Cu矿床在矿化和蚀变特点上各有异同。但总体而言,康滇Fe-Cu矿床与世界上典型IOCG矿床(特别是前寒武纪矿床)更为相似,例如早期发育明显的区域性Na化、Fe矿化出现角闪石-钠长石化、晚期的Cu矿化出现K化等,矿体空间上常与角砾岩筒共生;除Fe和Cu之外,不少矿床含有经济价值的或明显富集Mo、LREE、U、P、Co、Au等(李泽琴等, 2002; Zhao and Zhou, 2011; Chen and Zhou, 2012; Hou et al., 2015; Li and Zhou, 2015);矿化流体以岩浆流体为主、Cu矿化期外来流体贡献增加等。

另一方面,阿齐山-雅满苏和东准噶尔北缘矿带中不少Fe-Cu矿床矿化特点确实与典型的IOCG矿床(如前寒武纪矿床;Groves et al., 2010)存在一定差异。例如,两个矿带中Cu矿化相对较弱,金属元素组合单一(表 1);大部分矿床早期都发育了显著的矽卡岩化,例如东准噶尔北缘的乔夏哈拉和老山口矿床,其矿体、矽卡岩及同期岩体在时空上紧密共生;部分矿床中矿体呈现“上铁下铜”的特点(如乔夏哈拉和老山口矿床),与典型IOCG矿床正好相反。这些差异性一定程度上导致了这两矿带Fe-Cu矿床在是否能归属IOCG矿床的问题上目前仍存在不少争议,甚至部分学者根据这些矿床中普遍出现的矽卡岩类蚀变矿物更倾向于认为它们为矽卡岩型矿床(Mao et al., 2005; Li et al., 2015a)。但值得注意的是,这些矿床与典型矽卡岩矿床亦存在重要差别,例如多数矿床缺少空间上与矿体紧密共生的致矿岩体、缺少特征性的碳酸盐围岩、个别矿床并没有出现石榴石和辉石的干矽卡岩蚀变作用、另外很多矿床没有显示岩浆流体的明显贡献等(Hou et al., 2014a; Zhao et al., 2017a; Jiang et al., 2018)。因此,近年来不少学者通过对两个矿带构造演化的深入理解以及对部分矿床的详细对比,认为该带Fe-Cu矿床在蚀变和矿化特点、成矿流体特征以及构造背景上与南美中安第斯成矿带IOCG型矿床(如Mina Justa和Mantoverde矿床)相类似(Huang et al., 2013a; Li et al., 2014; Zhao et al., 2017a; Jiang et al., 2018; Liang et al., 2018Zhang et al., 2018; 赵联党, 2018)。总之,随着今后研究的深入,有关两矿带的成因属性将得到进一步的约束和确认。

6 研究展望

有关中国IOCG矿床的系统研究时间尚短,目前发现的IOCG或类IOCG成矿带还为数不多,但已有研究表明其分布广、时代跨度大、成矿差异明显。进一步加强我国类似矿床的研究,包括典例矿床的详细剖析和成矿带规律识别,不仅能极大促进我国IOCG成矿研究,也能丰富全球IOCG成矿理论的发展和相关矿产勘查的突破。笔者总结了以下几个今后中国IOCG研究可以进一步关注的方面:

(1) 东天山阿齐山-雅满苏和东准噶尔北缘成矿带Fe-Cu矿床的IOCG成因归属仍需进一步的确认。尽管近几年不少学者针对这两个矿带中几个典型Fe-Cu矿床的个例研究显示它们在蚀变组合、流体特点等与典型矽卡岩矿床存在明显差异(Zhao et al., 2017a; Liang et al., 2018),但如前所述,部分矿床中侵入体、矽卡岩和矿体之间紧密的时空关系与典型的IOCG矿床存在差别。实际上,两个矿带中除这些类似IOCG的Fe-Cu矿床之外,区域上也分布有一些矽卡岩Fe矿床,这些Fe矿床与该区类IOCG型的Fe-Cu矿床在矿物和蚀变组合、成矿流体等方面究竟有何异同?显然,开展这两类矿床的相关对比研究可能为进一步确认这些Fe-Cu矿床的成因属性提供重要帮助。

(2) 进一步关注哀牢山-红河剪切带老基底中Fe-Cu矿床的成因研究。中国云南南部-越南西北部哀牢山-红河剪切带的老基底岩石中也发育一系列Fe-Cu矿床,典型例子包括中国境内的龙脖河和越南境内的新泉(Sin Quyen)矿床。不少研究认为这些矿床的矿化特征与IOCG矿床非常类似,并且有学者进一步推测它们可能原先是康滇IOCG成矿省的一部分,只不过后期被红河断裂沿东南方向错断且位移至目前位置(崔银亮等, 2004, 2005; Zhou et al., 2014)。然而,目前为止仍缺乏详细的相关对比研究。笔者最近对该带越南境内新泉矿床开展了定年研究,结果显示其主要矿化时代可能为新元古代(约840Ma)(Li et al., 2018; Li and Zhou, 2018),可对应于康滇成矿省的后期热液改造年龄,但比成矿年龄略年轻。该年龄结果是否预示哀牢山-红河剪切带上的IOCG矿床与康滇成矿省没有联系?抑或有联系但代表了一期单独的矿化事件?显然,未来需加强哀牢山-红河剪切带上IOCG矿床的成因和成矿构造背景的研究,不仅对区域Fe-Cu勘探有重要作用,也将拓展中国IOCG的研究内涵。

(3) 深入研究矿床中铁和铜矿化的成因相关性。目前为止,有关中国IOCG矿床早期Fe矿化与后期Cu矿化的成因相关性仍存在不少问题没有解决。例如无论在康滇、东准噶尔北缘和东天山阿齐山-雅满苏地区,虽然成矿特点上均是以早期Fe矿化、晚期Cu矿化为主,但在空间上两者并没有完全重叠,稍有分离。究竟何种因素导致Fe和Cu矿化在空间上有部分分离、两者成因相关性如何?这些问题的解决不仅对了解IOCG矿床的成因提供重要的帮助,而且对完善世界IOCG矿床的成因有重要贡献。

(4) 关注中国IOCG矿床中多金属矿化的机制。中国不少IOCG矿床(尤其康滇成矿省)除Fe和Cu之外,还明显富集有REE、Mo、Co、Ni、U、Au、Ag等,与世界上典型IOCG矿床一致(Groves et al., 2010)。部分矿床中部分金属已达到工业开采或回收标准,例如康滇地区拉拉矿床中的Mo和Co等(王祝彬等, 2009)。实际上,这些元素的地球化学行为存在不少差别,例如Co、Ni通常与铁美质-超铁美质岩石相关,而REE、Mo、U等更倾向于在一些长英质或碱性岩中富集。究竟在何种条件、何种机制下这些元素均能富集于IOCG矿床中?遗憾的是,目前为止国内外针对此问题的研究仍然比较薄弱。笔者近几年来已经开始关注康滇地区IOCG矿床中的REE矿化,在REE活化特点及来源问题已经获得一些初步认识(Chen and Zhou, 2015; Li and Zhou, 2015, 2018),但有关导致不同矿床中REE富集和矿化有差异的原因及REE与其它富集元素的关系等问题仍尚待进一步的约束。针对这些问题的研究,不仅能揭示IOCG矿床中不同金属的赋存状态及各元素富集之间的成因联系,还能为国家资源增储及金属选冶提供重要依据。

致谢      资料收集过程中,得到中国科学院广州地球化学研究所陈华勇研究员团队梁培和赵联党博士的慷慨帮助,在此表示衷心感谢。感谢硕士研究生刘磊在论文准备过程中完成了部分图件的绘制和数据收集。陈华勇研究员、李建威教授和胡瑞忠研究员审阅全文,并提出了许多建设性的意见和建议,在此致以诚挚的谢意!

参考文献
Baker T, Mustard R, Fu B, Williams PJ, Dong GY, Fisher L, Mark G and Ryan CG. 2008. Mixed messages in iron oxide-copper-gold systems of the Cloncurry district, Australia:Insights from PIXE analysis of halogens and copper in fluid inclusions. Mineralium Deposita, 43: 599-608. DOI:10.1007/s00126-008-0198-y
Barton MD and Johnson DA. 1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24(3): 259-262. DOI:10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2
Barton MD and Johnson DA. 2000. Alternative brine sources for Fe-oxide (-Cu-Au) systems: Implications for hydrothermal alteration and metals. In: Porter TM (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Adelaide: Australian Mineral Foundation, 43-60
Bastrakov EN, Skirrow RG and Davidson GJ. 2007. Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler Craton, South Australia. Economic Geology, 102(8): 1415-1440. DOI:10.2113/gsecongeo.102.8.1415
Belperio A, Flint R and Freeman H. 2007. Prominent Hill:A hematite-dominated, iron oxide copper-gold system. Economic Geology, 102(8): 1499-1510. DOI:10.2113/gsecongeo.102.8.1499
Bowden B, Fraser G, Davidson GJ, Meffre S, Skirrow R, Bull S and Thompson J. 2017. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia. Mineralium Deposita, 52(6): 863-881. DOI:10.1007/s00126-016-0689-1
Cave BW, Lilly R, Glorie S and Gillespie J. 2018. Geology, apatite geochronology, and geochemistry of the Ernest Henry inter-lens:Implications for a re-examined deposit model. Minerals, 8(9): 405. DOI:10.3390/min8090405
Chen HY, Clark AH, Kyser TK, Ullrich TD, Baxter R, Chen YM and Moody TC. 2010. Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, south-central Peru. Economic Geology, 105(1): 155-185. DOI:10.2113/gsecongeo.105.1.155
Chen HY, Kyser TK and Clark AH. 2011. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú. Mineralium Deposita, 46(7): 677-706. DOI:10.1007/s00126-011-0343-x
Chen HY. 2013. External sulphur in IOCG mineralization:Implications on definition and classification of the IOCG clan. Ore Geology Reviews, 51: 74-78. DOI:10.1016/j.oregeorev.2012.12.002
Chen HY, Cooke DR and Baker MJ. 2013a. Mesozoic iron oxide copper-gold mineralization in the central Andes and the Gondwana supercontinent breakup. Economic Geology, 108(1): 37-44. DOI:10.2113/econgeo.108.1.37
Chen WT and Zhou MF. 2012. Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, southwest China. Economic Geology, 107(3): 459-480. DOI:10.2113/econgeo.107.3.459
Chen WT, Zhou MF and Zhao XF. 2013b. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77. DOI:10.1016/j.precamres.2013.03.011
Chen WT and Zhou MF. 2014. Ages and compositions of primary and secondary allanite from the Lala Fe-Cu deposit, SW China:Implications for multiple episodes of hydrothermal events. Contributions to Mineralogy and Petrology, 168(2): 1043. DOI:10.1007/s00410-014-1043-1
Chen WT, Sun WH, Wang W, Zhao JH and Zhou MF. 2014a. "Grenvillian" intra-plate mafic magmatism in the southwestern Yangtze Block, SW China. Precambrian Research, 242: 138-153. DOI:10.1016/j.precamres.2013.12.019
Chen WT, Zhou MF and Gao JF. 2014b. Constraints of Sr isotopic compositions of apatite and carbonates on the origin of Fe and Cu mineralizing fluids in the Lala Fe-Cu-(Mo, LREE) deposit, SW China. Ore Geology Reviews, 61: 96-106. DOI:10.1016/j.oregeorev.2014.01.008
Chen WT and Zhou MF. 2015. Mineralogical and geochemical constraints on mobilization and mineralization of rare earth elements in the Lala Fe-Cu-(Mo, REE) deposit, SW China. American Journal of Science, 315(7): 671-711. DOI:10.2475/07.2015.03
Chen WT, Zhou MF, Li XC, Gao JF, Bao ZA and Yuan HL. 2018b. In situ Pb-Pb isotopic dating of sulfides from hydrothermal deposits: A case study of the Lala Fe-Cu deposit, SW China. Mineralium Deposita, doi: 10.1007/s00126-018-0833-1
Corriveau L. 2007. Iron oxide copper-gold deposits: A Canadian perspective. In: Goodfellow WD (ed.). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Canada: Geological Association of Canada, Mineral Deposits Division, 307-328
Corriveau L, Montreuil JF and Potter EG. 2016. Alteration facies linkages among iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the Great Bear Magmatic Zone, Northwest Territories, Canada. Economic Geology, 111(8): 2045-2072. DOI:10.2113/econgeo.111.8.2045
Cui YL, Qin DX, Chen YG and Mao YZ. 2004. A preliminary comparison between Longbohe copper deposit of Jinping of Yunnan Province, China, and Shengquan copper deposit, Vietnam. Geology and Prospecting, 40(6): 20-23.
Cui YL, Qin DX, Gao J, Yang XS and Chen YG. 2005. An introductory comparative discussion between Longbohe copper deposit and Dahongshan iron-copper deposit in Yunnan Province. Engineering Science, 7(Suppl.): 195-201.
de Haller A, Corfu F, Fontboté L, Schaltegger U, Barra F, Chiaradia M, Frank M and Alvarado JZ. 2006. Geology, geochronology, and Hf and Pb isotope data of the Raúl-Condestable iron oxide-copper-gold deposit, central coast of Peru. Economic Geology, 101(2): 281-310. DOI:10.2113/gsecongeo.101.2.281
de Haller A and Fontboté L. 2009. The Raúl-Condestable iron oxide copper-gold deposit, central coast of Peru:Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Economic Geology, 104(3): 365-384. DOI:10.2113/gsecongeo.104.3.365
Du BF, Wei JH, Li YJ, Shi WJ, Yan CH, Zhao SQ, Pei ZC and Bai GD. 2012. Ore genesis and metallogenic model of the Shilu Fe-Co-Cu deposit in Hainan Province. Geology in China, 39(1): 170-182.
Gao LZ, Zhang H, Zhang CH, Ding XZ, Yin CY, Wu ZJ and Song B. 2018. Collate and stipulate the sequences of the Mesoproterozoic Kunyang Group in eastern Yunnan and its position in stratigraphic column of China. Geological Review, 64(2): 477-492.
Geng YS, Yang CH, Du LL, Wang XS, Ren LD and Zhou XW. 2007. Chronology and tectonic environment of the Tianbaoshan Formation:New evidence from zircon SHRIMP U-Pb age and geochemistry. Geological Review, 53(4): 556-563.
Geng YS, Liu YQ, Gao LZ, Peng N and Jiang XJ. 2012. Geochronology of the Mesoproterozoic Tong'an Formation in southwestern margin of Yangtze Craton:New evidence from zircon LA-ICP-MS U-Pb ages. Acta Geologica Sinica, 86(9): 1479-1490.
Greentree MR and Li ZX. 2008. The oldest known rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6): 289-302. DOI:10.1016/j.jseaes.2008.01.001
Groves DI, Bierlein FP, Meinert LD and Hitzman MW. 2010. Iron oxide copper-gold (IOCG) deposits through earth history:Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105(3): 641-654. DOI:10.2113/gsecongeo.105.3.641
Guan JL, Zheng LL, Liu JH, Sun ZM and Cheng WH. 2011. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan Province, China and its geological significance. Acta Geologica Sinica, 85(4): 482-490.
Han CM and Zhao GC. 2003. Major types and characteristics of Late Paleozoic ore deposits, East Tianshan, Northwest China. International Geology Review, 45(3): 798-813.
Hitzman MW, Oreskes N and Einaudi MT. 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58(1-4): 241-287. DOI:10.1016/0301-9268(92)90121-4
Hitzman MW. 2000. Iron oxide-Cu-Au deposits: What, where, when and why. In: Porter TM (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 9-25
Hou L, Ding J, Wang CM, Liao ZW, Guo Y, Wang SW and Wang ZZ. 2013. Ore-forming fluid and metallogenesis of the Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunnan Province, China. Acta Petrologica Sinica, 29(4): 1187-1202.
Hou L, Ding J, Deng J and Peng HJ. 2015. Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China:Evidence for a Paleo-Mesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block. Journal of Asian Earth Sciences, 103: 129-149. DOI:10.1016/j.jseaes.2014.09.016
Hou T, Zhang ZC, Pirajno F, Santosh M, Encarnacion J, Liu JL, Zhao ZD and Zhang LJ. 2014a. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China:An overview. Ore Geology Reviews, 57: 498-517. DOI:10.1016/j.oregeorev.2013.08.007
Hou T, Zhang ZC, Santosh M, Encarnacion J, Zhu J and Luo WJ. 2014b. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China:Constraints on the metallogenesis. Ore Geology Reviews, 56: 487-502. DOI:10.1016/j.oregeorev.2013.03.008
Hu RZ, Chen WT, Xu DR and Zhou MF. 2017. Reviews and new metallogenic models of mineral deposits in South China:An introduction. Journal of Asian Earth Sciences, 137: 1-8. DOI:10.1016/j.jseaes.2017.02.035
Hua RM. 1989. On the "sedimentation-transformation" genesis of the Dongchuan type stratiform copper deposits. Mineral Deposits, 8(2): 3-13.
Hua RM. 1993. Some characteristics of sedimentation of the Yinmin Formation. Acta Sedimentologica Sinica, 11(1): 32-40.
Huang XW, Zhao XF, Qi L and Zhou MF. 2013a. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China. Chemical Geology, 347: 9-19. DOI:10.1016/j.chemgeo.2013.03.020
Huang XW, Qi L, Gao JF and Zhou MF. 2013b. First reliable Re-Os ages of pyrite and stable isotope compositions of Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China. Resource Geology, 63(2): 166-187. DOI:10.1111/rge.12003
Huang XW, Qi L, Wang YC and Liu YY. 2014. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, Eastern Tianshan, NW China. Science China (Earth Sciences), 57(2): 267-277. DOI:10.1007/s11430-013-4660-z
Huang XW, Zhou MF, Beaudoin G, Gao JF, Qi L and Lyu C. 2018. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China:Constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Mineralium Deposita, 53(7): 1039-1060. DOI:10.1007/s00126-018-0794-4
Jiang HJ, Han JS, Chen HY, Zheng Y, Lu WJ, Deng G and Tan ZX. 2017. Intra-continental back-arc basin inversion and Late Carboniferous magmatism in Eastern Tianshan, NW China:Constraints from the Shaquanzi magmatic suite. Geoscience Frontiers, 8(6): 1447-1467. DOI:10.1016/j.gsf.2017.01.008
Jiang HJ, Han JS, Chen HY, Zheng Y, Zhang WF, Lu WJ, Deng G and Tan ZX. 2018. Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe-Cu deposit, Eastern Tianshan:Implications for deposit type and metallogenesis. Ore Geology Reviews, 100: 385-400. DOI:10.1016/j.oregeorev.2016.09.025
Jin MX and Shen S. 1998. Fluid features and metallogenic conditions in Lala copper deposit, Huili, Sichuan, China. Geological Science and Technology Information, 17(Suppl.): 46-49.
Jin TF, Li YG, Fei GC, Feng YC, Zhou H, Sha XB and Wu K. 2017. Geochronology of zircon U-Pb from Hongshan formation in the Dahongshan Group in the Southwest Yangtze Block for the Redefinitions of the forming age of the protolith and metamorphic age. Geological Review, 63(4): 896-910.
Johnson JP and Cross KC. 1995. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Economic Geology, 90(5): 1046-1063. DOI:10.2113/gsecongeo.90.5.1046
Kendrick MA, Mark G and Phillips D. 2007. Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia:Evidence from Ar, Kr, Xe, Cl, Br, and I. Earth and Planetary Science Letters, 256(3-4): 328-343. DOI:10.1016/j.epsl.2006.12.032
Kendrick MA, Honda M, Gillen D, Baker T and Phillips D. 2008. New constraints on regional brecciation in the Wernecke Mountains, Canada, from He, Ne, Ar, Kr, Xe, Cl, Br and I in fluid inclusions. Chemical Geology, 255(1-2): 33-46. DOI:10.1016/j.chemgeo.2008.05.021
Kirchenbaur M, Maas R, Ehrig K, Kamenetsky VS, Strub E, Ballhaus C and Münker C. 2016. Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit, South Australia. Geochimica et cosmochimica Acta, 180: 15-32. DOI:10.1016/j.gca.2016.01.035
Li Q, Zhang ZX, Geng XX, Li C, Liu F, Chai FM and Yang FQ. 2014. Geology and geochemistry of the Qiaoxiahala Fe-Cu-Au deposit, Junggar region, Northwest China. Ore Geology Reviews, 57: 462-481. DOI:10.1016/j.oregeorev.2013.08.003
Li Q. 2015. Metallogenesis of iron polymetallic deposits in Altay, Xinjiang. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Li Q, Lü SJ, Yang FQ, Geng XX and Chai FM. 2015a. Geological characteristics and genesis of the Laoshankou Fe-Cu-Au deposit in Junggar, Xinjiang, Central Asian Orogenic Belt. Ore Geology Reviews, 68: 59-78. DOI:10.1016/j.oregeorev.2015.01.006
Li RC, Chen HY, Xia XP, Yang Q, Danyushevsky LV and Lai C. 2018a. Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids:Example from the Mina Justa IOCG deposit (southern Perú). Ore Geology Reviews, 101: 165-179. DOI:10.1016/j.oregeorev.2018.06.010
Li SS. 1996. Proterozoic iron oxide (Cu-U-Au-REE) deposits. Oversea Precambrian Geology, (2): 29-38.
Li TD and Wang ZJ. 2009. Analysis on Fe-Cu-Au mineralization style of the No. 5 section in the Laoshankou mine, Qinghe County, Xinjiang Province. Xinjiang Nonferrous Metal, 32(2): 19-21, 25.
Li XC and Zhou MF. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166: 53-73. DOI:10.1016/j.gca.2015.06.008
Li XC, Zhao XF, Zhou MF, Chen WT and Chu ZY. 2015b. Fluid inclusion and isotopic constraints on the origin of the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Economic Geology, 110(5): 1339-1369. DOI:10.2113/econgeo.110.5.1339
Li XC and Zhou MF. 2018. The nature and origin of hydrothermal REE mineralization in the sin Quyen Deposit, Northwestern Vietnam. Economic Geology, 113(3): 645-673. DOI:10.5382/econgeo.2018.4565
Li XC, Zhou MF, Chen WT, Zhao XF and Tran M. 2018b. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam. MIneralium Deposita, 53(3): 399-416. DOI:10.1007/s00126-017-0746-4
Li ZQ, Hu RZ, Wang JZ, Liu JJ, Li CY, Liu YP and Ye L. 2002. Lala Fe-Oxide-Cu-Au-U-REE ore deposit, Sichuan China:An example of superimposed mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 21(4): 258-260.
Liang P, Chen HY, Hollings P, Xiao B, Wu C, Bao ZW and Cai KD. 2016. The Paleozoic tectonic evolution and metallogenesis of the northern margin of East Junggar, Central Asia Orogenic Belt:Geochronological and geochemical constraints from igneous rocks of the Qiaoxiahala Fe-Cu deposit. Journal of Asian Earth Sciences, 130: 23-45. DOI:10.1016/j.jseaes.2016.08.001
Liang P, Chen HY, Han JS, Wu C, Zhang WF, Zhao LD and Wang YF. 2017. The Early Carboniferous tectonic transition in the northern margin of East Junggar:Constrains from geochronology and geochemistry of alkali granites. Geotectonica et Metallogenia, 41(1): 202-221.
Liang P. 2018. Ore genesis of the Paleozoic Fe-Cu-Au deposits in the Central Asian Orogenic Belt: Case studies of Laoshankou and Qiaoxiahala deposits in the northern margin of East Junggar, Xinjiang, NW China. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Liang P, Chen HY, Wu C, Zhang WF, Xu DR, Xia XP, Liu ZJ and Zhang ZJ. 2018. Mineralization and ore genesis of the Qiaoxiahala Fe-Cu-(Au) deposit in the northern margin of East Junggar terrane, Central Asian Orogenic Belt:Constraints from fluid inclusions and stable isotopes. Ore Geology Reviews, 100: 360-384. DOI:10.1016/j.oregeorev.2017.03.014
Long XP, Yuan C, Sun M, Safonova I, Xiao WJ and Wang YJ. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China:Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21(2-3): 637-653. DOI:10.1016/j.gr.2011.05.015
Lu YM, Zhang D, Pan AJ, Chen XW, Zhang YJ, Fan JJ and Nie FJ. 2010. Laoshankou iron-oxide copper-gold (IOCG) deposit in East Junggar. Mineral Deposits, 29(Suppl.): 27-30.
Luo T, Liao QA, Chen JP, Zhang XH, Guo DB and Hu ZC. 2012. LA-ICP-MS zircon U-Pb dating of the volcanic rocks from Yamansu Formation in the Eastern Tianshan, and its geological significance. Earth Science (Journal of China University of Geosciences), 37(6): 1338-1352.
Lü SJ, Zhang ZX, Yang FQ, Chai FM, Zhang XB, Liu F, Jiang LP and Geng XX. 2012. Ore-forming fluids and mineralization mechanism of Laoshankou Fe-Cu-Au deposit in northern margin of Junggar. Mineral Deposits, 31(3): 517-534.
Ma YX, Niu YL and Sun WL. 2013. Preliminary study on the origin of the Qiaoxiahala Fe-(Cu) deposit in Fuyun County, Xinjiang. Acta Mineralogica Sinica, 33(Suppl.2): 479.
Mao JW, Goldfarb RJ, Wang YT, Hart CJ, Wang ZL and Yang JM. 2005. Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China:Characteristics and geodynamic setting. Episodes, 28(1): 23-36.
Mao JW, Yu JJ, Yuan SD, Chen YB, Xie GQ, Hou KJ, Xiang JF and Yang ZX. 2008. Iron oxide-copper-gold deposits:Characteristics, present research situation and ore prospecting. Mineral Deposits, 27(3): 267-278.
Mark G, Oliver NHS, Williams PJ, Valenta RK and Crookes RA. 2000. The evolution of the Ernest Henry Fe-oxide-(Cu-Au) hydrothermal system. In: Porter TM (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Adelaide: Australian Mineral Foundation, 123-136
Mark G, Oliver NHS and Williams PJ. 2006. Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, Northwest Queensland, Australia. Mineralium Deposita, 40(8): 769-801. DOI:10.1007/s00126-005-0009-7
Monteiro LVS, Xavier RP, de Carvalho ER, Hitzman MW, Johnson CA, de Souza Filho CR and Torresi I. 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil:Paragenesis and stable isotope constraints. Mineralium Deposita, 43(2): 129-159. DOI:10.1007/s00126-006-0121-3
Nie FJ, Jiang SH and Lu YM. 2008. Geological features, ore-forming processes and prospecting model of iron oxide-copper-gold deposits. Geology in China, 35(6): 1074-1087.
Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ and Baker T. 2004. Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa block, Australia. Economic Geology, 99(6): 1145-1176. DOI:10.2113/gsecongeo.99.6.1145
Pang WH, Ren GM, Sun ZM and Yin FG. 2015. Division and correlation of Paleo-Mesoproterozoic strata on the western margin of Yangtze Block:Evidence from the U-Pb age of tuff zircon in the Tongan Formation. Geology in China, 42(4): 921-936.
Pirajno F. 2013. The Geology and Tectonic Settings of China's Mineral Deposits. Netherlands: Springer
Pollard PJ. 2000. Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralization. In:Porter TM (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. Adelaide:PGC Publishing: 27-41.
Pollard PJ. 2006. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineralium Deposita, 41(2): 179-187. DOI:10.1007/s00126-006-0054-x
Qiu HN, Sun DZ, Zhu BQ and Chang XY. 1997. Isotope geochemistry study of Dongchuan copper deposits in middle Yunnan Province, SW China:Ⅱ. Dating the ages of mineralizations by Pb-Pb and 40Ar-39Ar methods. Geochimica, 26(2): 39-45.
Qiu HN, Wijbrans JR, Li XH, Zhu BQ, Zhu CL and Zeng BC. 2002. New 40Ar-39Ar evidence for ore-forming process during Jinning-Chengjiang period in Dongchuan type copper deposits, Yunnan. Mineral Deposits, 21(2): 129-136.
Ran CY. 1989. On Ore source and ore-forming fluid of Dongchuan-Yimen type copper deposits. Science in China (Series B), 32(9): 1117-1124.
Ray GE and Lefebure DV. 2000. A synopsis of iron oxide ±Cu ±Au ±P ±REE deposits of the Candelaria-Kiruna-Olympic Dam family. British Columbia Ministry of Energy and Mines: 267-272.
Richards JP and Mumin AH. 2013. Magmatic-hydrothermal processes within an evolving Earth:Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits. Geology, 41(7): 767-770. DOI:10.1130/G34275.1
Robert DE and Hudson GRT. 1983. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. Economic Geology, 78(5): 799-822. DOI:10.2113/gsecongeo.78.5.799
Ruan HC, Hua RM and Cox DP. 1991. Copper deposition by fluid mixing in deformed strata adjacent to a salt diapir, Dongchuan area, Yunnan Province, China. Economic Geology, 86(7): 1539-1545. DOI:10.2113/gsecongeo.86.7.1539
Schlegel TU and Heinrich CA. 2015. Lithology and hydrothermal alteration control the distribution of copper grade in the Prominent Hill iron oxide-copper-gold deposit (Gawler Craton, South Australia). Economic Geology, 110(8): 1953-1994. DOI:10.2113/econgeo.110.8.1953
Schlegel TU, Wagner T, Wälle M and Heinrich CA. 2018. Hematite breccia-hosted iron oxide copper-gold deposits require magmatic fluid components exposed to atmospheric oxidation:Evidence from Prominent Hill, Gawler Craton, South Australia. Economic Geology, 113(3): 597-644. DOI:10.5382/econgeo.2018.4564
Shang HJ, Li Q, Yu XB and Li Y. 2017. Analysis of magnetite composition and geological characteristics of Qiaoxiahala and Laoshankou Fe-Cu-Au deposits in the northern Junggar, Xinjiang. Xinjiang Geology, 35(1): 43-49.
Sillitoe RH. 2003. Iron oxide-copper-gold deposits:An Andean view. Mineralium Deposita, 38(7): 787-812. DOI:10.1007/s00126-003-0379-7
Skirrow RG, Raymond OL, Bastrakov EN, Davidson GJ and Heithersay P. 2002. The geological framework, distribution and controls of Fe-oxide Cu-Au mineralisation in the Gawler Craton, South Australia. Part Ⅱ: Alteration and mineralisation. In: Porter TM (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 33-47
Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning CM, Raymond OL and Davidson GJ. 2007. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton, South Australia. Economic Geology, 102(8): 1441-1470. DOI:10.2113/gsecongeo.102.8.1441
Song H. 2014. Precambrian copper-iron-gold-uranium polymetallic deposits and their regional metallogeny in southwestern margin of Yangtze Block. Ph. D. Dissertation. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Su ZK, Zhao XF, Li XC and Zhou MF. 2016. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems:The worldclass Dahongshan Fe-Cu deposit in SW China. Chemical Geology, 441: 265-279. DOI:10.1016/j.chemgeo.2016.08.030
Sun KX, Shen YR, Liu GQ, Li ZW and Pan XY. 1991. The Iron and Copper Deposits of Proterozoic in the Middle of Yunnan. Wuhan: China University of Geosciences Press: 1-25.
Sun Y and Li CD. 1990. Mineralization mechanism of Lala copper deposit in Sichuan Province. Journal of Chengdu College of Geology, 17(4): 1-9.
Sun ZM, Yin FG, Guan JL, Liu JH, Li JM, Geng QR and Wang LQ. 2009. SHRIMP U-Pb dating and its stratlgraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan Province, China. Geological Bulletin of China, 28(7): 896-900.
Wang D. 2013. Stable isotope geochemistry research of LaLa iron oxide-Cu-Au-U (IOCG) deposit. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Wang DB, Sun ZM, Yin FG, Wang LQ, Wang BD and Zhang WP. 2012. Geochronology of the Hekou Group on the western margin of the Yangtze Block:Evidence from zircon LA-ICP-MS U-Pb dating of volcanic rocks. Journal of Stratigraphy, 36(3): 630-635.
Wang SW. 2004. A kind of important hydrothermal deposits:Iron oxide Cu-Au-U-REE deposits. Information on Country Resources.
Wang W, Zhou MF, Zhao XF, Chen WT and Yan DP. 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent. Sedimentary Geology, 309: 33-47. DOI:10.1016/j.sedgeo.2014.05.004
Wang ZB, Xiao YF, Sun Y and Liu HQ. 2009. Comprehensive recovery of the Tailings from the Lala copper mine in Sichuan. Acta Geologica Sichuan, 29(4): 497-499.
Wang ZZ, Zhou BG, Guo Y, Yang B, Liao ZW and Wang SW. 2012. Geochemistry and zircon U-Pb dating of Tangtang granite in the western margin of the Yangtze Platform. Acta Petrologica et Mineralogica, 31(5): 652-662.
Wen LG. 2018. The modes of occurrence of rare earth elements and rare elements in the Precambrian Fe-Cu-REE deposits in central Yunnan province, Southwest China. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English summary)
Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS and Marschik R. 2005. Iron oxide copper-gold deposits:Geology, space-time distribution, and possible modes of origin. Economic Geology, 100: 371-405.
Wu C, Chen HY, Hollings P, Xu DR, Liang P, Han JS, Xiao B, Cai KD, Liu ZJ and Qi YK. 2015. Magmatic sequences in the Halasu Cu Belt, NW China:Trigger for the Paleozoic porphyry Cu mineralization in the Chinese Altay-East Junggar. Ore Geology Reviews, 71: 373-404. DOI:10.1016/j.oregeorev.2015.06.017
Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, De Araújo CEG and Torresi I. 2008. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology, 36(9): 743-746. DOI:10.1130/G24841A.1
Xu DR, Wang L, Xiao Y, Liu ZL, Fu QJ, Cai ZR and Huang JR. 2008. A preliminary discussion on metallogenic model for Shilu-type iron oxide-copper-gold-cobalt ore deposit. Mineral Deposits, 27(6): 681-694.
Xu LL, Chai FM, Li Q, Zeng H, Geng XX, Xia F and Deng G. 2014. Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in East Tianshan Mountains and their geological significance. Geology in China, 41(6): 1771-1790.
Xu XW, Jiang N, Li XH, Qu X, Yang YH, Mao Q, Wu Q, Zhang Y and Dong LH. 2013. Tectonic evolution of the East Junggar terrane:Evidence from the Taheir tectonic window, Xinjiang, China. Gondwana Research, 24(2): 578-600. DOI:10.1016/j.gr.2012.11.007
Yang CH, Geng YS, Du LL, Ren LD, Wang XS, Zhou XW and Yang ZS. 2009. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications. Geology in China, 36(3): 647-657.
Yang H, Liu FL, Du LL, Liu PH and Wang F. 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance. Acta Petrologica Sinica, 28(9): 2994-3014.
Yang YM, Tu GZ, Hu RZ and Shi XF. 2005. Sm-Nd isotopic geochronology of the Yinachang Fe-Cu-REE deposit at Wuding, Yunnan Province and its genetic significance. Chinese Science Bulletin, 50(18): 2090-2096. DOI:10.1360/04wd0145
Ye L, Liu YP, Li CY and Liu JJ. 2004a. Ar-Ar isotopic age Yinachang copper deposit, Wuding, Yunnan Province, China and its implications. Acta Mineralogica Sinica, 24(4): 411-414.
Ye L, Liu YP, Li CY and Liu JJ. 2004b. The Ar-Ar isotopic age in Dongchuan Taoyuan type copper deposit, Yunnan Province and its significance. Journal of Mineralogy and Petrology, 24(2): 57-60.
Ye XT, Zhu WG, Zhong H, He DF, Ren T, Bai ZJ, Fan HP and Hu WJ. 2013. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1167-1186.
Ying LJ, Wang DH, Liang T and Zhou RH. 2006. Geological character and its particularity of the Qiaoxiahala iron-copper-gold deposit in Altay, China. Acta Geologica Sinica, 80(10): 1572-1577.
Ying LJ, Wang DH, Li JK, Chen ZH, Xi Z, Yang WH and Liu NZ. 2008. Comparisons between the Qiaoxiahala Fe-Cu-Au deposit in Xinjiang and other IOCG-type deposits. Geotectonica et Metallogenia, 32(3): 338-345.
Ying LJ, Wang DH, Liang T and Zhou RH. 2009. Ore genesis and metallogenie model of Qiaoxiahala Fe-Cu-Au deposit in Xinjiang. Mineral Deposits, 28(2): 211-217.
Yuan F, Zhou TF, Zhang DY, Fan Y, Liu S, Peng MX and Zhang JD. 2010. Source, evolution and tectonic setting of the basalts from the native copper mineralization area in eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 533-546.
Zhang CH, Gao LZ, Wu ZJ, Shi XY, Yan QR and Li DJ. 2007. SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan:Evidence for Grenvillian orogeny in South China. Chinese Science Bulletin, 52(11): 1517-1525. DOI:10.1007/s11434-007-0225-x
Zhang DY, Zhou TF, Yuan F, Liu S, Lu YJ, Xu C and Ning FQ. 2012. Geochronology and geological indication of the native copper mineralized basalt formation in Jueluotage area, Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 28(8): 2392-2400.
Zhang WF. 2016. The metallogenesis of the submarine volcanic rock-hosted Fe-Cu deposits in Eastern Tianshan, Xinjiang: Case studies of the Duotoushan and Bailingshan deposits. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Zhang WF, Chen HY, Han JS, Zhao LD, Huang JH, Yang JT and Yan XL. 2016. Geochronology and geochemistry of igneous rocks in the Bailingshan area:Implications for the tectonic setting of late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China. Gondwana Research, 38: 40-59. DOI:10.1016/j.gr.2015.10.011
Zhang WF, Chen HY, Jiang HJ, Lu WJ, Liang P, Xu C, Yan XL and Yang JT. 2017. Geochronology, geochemistry and petrogenesis of granitoids in the Duotoushan Fe-Cu deposit, Eastern Tianshan, Xinjiang:Implications on tectonic setting of late Paleozoic magmatism. Geotectonica et Metallogenia, 41(6): 1171-1191.
Zhang WF, Chen HY, Peng LH, Zhao LD, Lu WJ, Zhang ZJ, Yang JT and Sun J. 2018. Ore genesis of the Duotoushan Fe-Cu deposit, Eastern Tianshan, NW China:Constraints from ore geology, mineral geochemistry, fluid inclusion and stable isotopes. Ore Geology Reviews, 100: 401-421. DOI:10.1016/j.oregeorev.2017.02.021
Zhang XC. 2003. The characteristics of the overseas iron-oxide Cu-Au deposits and the present situation of the studies. Advance in Earth Sciences, 18(4): 551-560.
Zhang ZC, Zhou G, Kusky TM, Yan SH, Chen BL and Zhao L. 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, northwestern China:Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201-215. DOI:10.1016/j.gr.2009.03.004
Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview. Ore Geology Reviews, 57: 247-263. DOI:10.1016/j.oregeorev.2013.08.021
Zhang ZX, Yang FQ, Li C, Liu F, Geng XX, Liu GR, Chai FM and Ouyang LJ. 2012. Rock-forming and ore-forming ages of Qiaoxiahala Fe-Cu-Au deposit on northern margin of Junggar Basin, Xinjiang. Mineral Deposits, 31(2): 347-358.
Zhao LD, Chen HY, Zhang L, Xia XP, Zhang WF, Li DF, Lu WJ, Liang P, Li RC, Yang JT and Yan XL. 2017a. Geology and ore genesis of the Late Paleozoic Heijianshan Fe oxide-Cu (-Au) deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110-132. DOI:10.1016/j.oregeorev.2017.10.014
Zhao LD, Chen HY, Zhang L, Zhao ZJ, Zhang WF, Lu WJ, Yang JT and Yan XL. 2017. H-O isotope characteristics and geological significance of Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan, Xinjiang. Mineral Deposits, 36(1): 38-56.
Zhao LD. 2018. Tectonic evolution and metallogenesis of the Aqishan-Yamansu metallogenic belt, Eastern Tianshan: Case studies of the Heijianshan and Hongshanliang deposits. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Zhao XF. 2010. Paleoproterozoic crustal evolution and Fe-Cu metallogeny of the western Yangtze Block, SW China. Ph. D. Dissertation. Hong Kong: The University of Hong Kong
Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69. DOI:10.1016/j.precamres.2010.06.021
Zhao XF and Zhou MF. 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineralium Deposita, 46(7): 731-747. DOI:10.1007/s00126-011-0342-y
Zhao XF, Zhou MF, Hitzman MW, Li JW, Bennett M, Meighan C and Anderson E. 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China. Economic Geology, 107(2): 357-375. DOI:10.2113/econgeo.107.2.357
Zhao XF, Zhou MF, Li JW, Selby D, Li XH and Qi L. 2013. Sulfide Re-Os and Rb-Sr isotope dating of the Kangdian IOCG metallogenic province, Southwest China: Implications for regional metallogenesis. Economic Geology, 108(6): 1489-1498. DOI:10.2113/econgeo.108.6.1489
Zhao XF, Zhou MF, Gao JF, Li XC and Li JW. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871-884. DOI:10.1007/s00126-015-0578-z
Zhao XF, Zhou MF, Su ZK, Li XC, Chen WT and Li JW. 2017b. Geology, geochronology, and geochemistry of the Dahongshan Fe-Cu-(Au-Ag) deposit, Southwest China: Implications for the formation of iron oxide copper-gold deposits in intracratonic rift settings. Economic Geology, 112(3): 603-628. DOI:10.2113/econgeo.112.3.603
Zhou G, Zhang ZC, Wu GG, Dong LH, He YK, Dong YG, He LX, Qin JH, Zhao ZH and Liu GR. 2009. Postorogenic extension and continental growth of the northeastern margin of the Junggar: Evidences from petrography and geochemistry of the Hadansun intrusive complex. Acta Geologica Sinica, 83(3): 331-346.
Zhou JY, Mao JW, Liu FY, Tan HQ, Shen B, Zhu ZM, Chen JB, Luo LP, Zhou X and Wang Y. 2011. SHRIMP U-Pb zircon chronology and geochemistry of albitite from the Hekou Group in the western Yangtze Block. Journal of Mineralogy and Petrology, 31(3): 66-73.
Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67. DOI:10.1016/S0012-821X(01)00595-7
Zhou MF, Zhao XF, Chen WT, Li XC, Wang W, Yan DP and Qiu HN. 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth-Science Reviews, 139: 59-82. DOI:10.1016/j.earscirev.2014.08.013
Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX and Zhang JD. 2010. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478-502.
Zhu ZM. 2011. Lala iron oxide copper gold deposit: Metallogenic epoch and metal sources. Ph. D. Dissertation. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Zhu ZM and Sun YL. 2013. Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian copper belt, China. Economic Geology, 108(4): 871-882. DOI:10.2113/econgeo.108.4.871
Zhu ZM, Tan HQ, Liu YD and Li C. 2018. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China. Mineralium Deposita, 53(3): 311-322. DOI:10.1007/s00126-017-0740-x
崔银亮, 秦德先, 陈耀光, 毛云忠. 2004. 中国云南金平龙脖河铜矿与越南生权铜矿初步对比研究. 地质与勘探, 40(6): 20-23.
崔银亮, 秦德先, 高俊, 杨学善, 陈耀光. 2005. 云南金平龙脖河铜矿床与新平大红山铁铜矿床对比研究. 中国工程科学, 7(增刊): 195-201.
杜保峰, 魏俊浩, 李艳军, 石文杰, 燕长海, 赵少卿, 裴中朝, 白国典. 2012. 海南石碌铁钴铜矿床成因及其成矿模式. 中国地质, 39(1): 170-182. DOI:10.3969/j.issn.1000-3657.2012.01.017
高林志, 张恒, 张传恒, 丁孝忠, 尹崇玉, 武振杰, 宋彪. 2018. 滇东昆阳群地层序列的厘定及其在中国地层表的位置. 地质论评, 64(2): 477-492.
耿元生, 杨崇辉, 杜利林, 王新社, 任留东, 周喜文. 2007. 天宝山组形成时代和形成环境:锆石SHRIMP U-Pb年龄和地球化学证据. 地质论评, 53(4): 556-563. DOI:10.3321/j.issn:0371-5736.2007.04.014
耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代:锆石LA-ICPMS U-Pb年龄. 地质学报, 86(9): 1479-1490. DOI:10.3969/j.issn.0001-5717.2012.09.009
关俊雷, 郑来林, 刘建辉, 孙志明, 程万华. 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490.
侯林, 丁俊, 王长明, 廖震文, 郭阳, 王生伟, 王子正. 2013. 云南武定迤纳厂铁-铜-金-稀土矿床成矿流体与成矿作用. 岩石学报, 29(4): 1187-1202.
华仁民. 1989. 东川式层状铜矿的沉积-改造成因. 矿床地质, 8(2): 3-13.
华仁民. 1993. 论因民组的若干沉积建造特征. 沉积学报, 11(1): 32-40.
金明霞, 沈苏. 1998. 四川会理拉拉铜矿床流体特征及成矿条件研究. 地质科技情报, 17(增刊): 46-49.
金廷福, 李佑国, 费光春, 冯裕昌, 周恒, 沙小保, 吴愧. 2017. 扬子地台西南缘大红山群红山组的锆石U-Pb年代学研究. 地质论评, 63(4): 896-910.
李强. 2015.新疆阿尔泰铁多金属矿床成矿作用.博士学位论文.北京: 中国地质科学院
李上森. 1996. 元古宙铁氧化物(Cu-U-Au-REE)矿床. 国外前寒武纪地质, (2): 29-38.
李泰德, 王梓嘉. 2009. 新疆青河县老山口矿区Ⅳ矿段铁铜金矿成矿特征分析. 新疆有色金属, 32(2): 19-21, 25.
李泽琴, 胡瑞忠, 王奖臻, 刘家军, 李朝阳, 刘玉平, 叶霖. 2002. 中国首例铁氧化物-铜-金-铀-稀土型矿床的厘定及其成矿演化. 矿物岩石地球化学通报, 21(4): 258-260. DOI:10.3969/j.issn.1007-2802.2002.04.010
梁培, 陈华勇, 韩金生, 吴超, 张维峰, 赵联党, 王云峰. 2017. 东准噶尔北缘早石炭世构造体制转变:来自碱性花岗岩年代学和地球化学制约. 大地构造与成矿学, 41(1): 202-221.
梁培. 2018.中亚造山带古生代Fe-Cu-Au矿床成因机制研究爱——以新疆东准噶尔北缘老山口和乔夏哈拉矿床为例.博士学位论文.广州: 中国科学院广州地球化学研究所
路彦明, 张栋, 潘爱军, 陈晓吾, 张玉杰, 范俊杰, 聂凤军. 2010. 东准北缘老山口氧化铁型铜-金(IOCG)矿床. 矿床地质, 29(增刊): 27-30.
罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012. 东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义. 地球科学—中国地质大学学报, 37(6): 1338-1352.
吕书君, 张志欣, 杨富全, 柴凤梅, 张希兵, 刘锋, 姜丽萍, 耿新霞. 2012. 准噶尔北缘老山口铁铜金矿床成矿流体及成矿机制. 矿床地质, 31(3): 517-534. DOI:10.3969/j.issn.0258-7106.2012.03.010
马玉鑫, 牛耀龄, 孙文礼. 2013. 新疆富蕴县乔夏哈拉铁(铜)矿床成因初探. 矿物学报, 33(增2): 479.
毛景文, 余金杰, 袁顺达, 程彦博, 谢桂青, 侯可军, 向君峰, 杨宗喜. 2008. 铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状与找矿勘查. 矿床地质, 27(3): 267-278. DOI:10.3969/j.issn.0258-7106.2008.03.001
聂凤军, 江思宏, 路彦明. 2008. 氧化铁型铜-金(IOCG)矿床的地质特征、成因机理与找矿模型. 中国地质, 35(6): 1074-1087. DOI:10.3969/j.issn.1000-3657.2008.06.005
庞维华, 任光明, 孙志明, 尹福光. 2015. 扬子地块西缘古-中元古代地层划分对比研究:来自通安组火山岩锆石U-Pb年龄的证据. 中国地质, 42(4): 921-936. DOI:10.3969/j.issn.1000-3657.2015.04.010
邱华宁, 孙大中, 朱炳泉, 常向阳. 1997. 东川铜矿床同位素地球化学研究: Ⅱ. Pb-Pb, 40Ar-39Ar法成矿年龄测定.地球化学, 26(2): 39-45.
邱华宁, Wijbrans JR, 李献华, 朱炳泉, 朱崇林, 曾保成. 2002. 东川式层状铜矿40Ar-39Ar成矿年龄研究:华南地区晋宁-澄江期成矿作用新证据. 矿床地质, 21(2): 129-136. DOI:10.3969/j.issn.0258-7106.2002.02.005
冉崇英. 1988. 论东川-易门式铜矿的矿源与成矿流体. 中国科学(B辑), (12): 1305-1313.
尚海军, 李强, 于秀斌, 李彦. 2017. 新疆准噶尔北缘乔夏哈拉和老山口铁铜金矿床地质特征及磁铁矿成分分析. 新疆地质, 35(1): 43-49. DOI:10.3969/j.issn.1000-8845.2017.01.007
宋昊. 2014.扬子地块西南缘前寒武纪铜-铁-金-铀多金属矿床及区域成矿作用.博士学位论文.成都: 成都理工大学
孙克祥, 沈远仁, 刘国庆, 李志伟, 潘秀英. 1991. 滇中元古宙铁铜矿床. 武汉: 中国地质大学出版社: 1-25.
孙燕, 李承德. 1990. 四川拉拉铜矿床成矿机制研究. 成都地质学院学报, 17(4): 1-9.
孙志明, 尹福光, 关俊雷, 刘建辉, 李军敏, 耿全如, 王立全. 2009. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报, 28(7): 896-900. DOI:10.3969/j.issn.1671-2552.2009.07.009
王赕. 2013.四川会理拉拉铁氧化物-铜-金-铀(IOCG)矿床稳定同位素地球化学研究.硕士学位论文.成都: 成都理工大学
王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630-635.
王绍伟. 2004. 重视近20年认识的一类重要热液矿床——铁氧化物-铜-金(-铀)-稀土矿床. 国土资源情报, (2): 45-52.
王祝彬, 肖渊甫, 孙燕, 刘虹强. 2009. 四川拉拉铜矿床尾矿的综合利用与研究. 四川地质学报, 29(4): 497-499. DOI:10.3969/j.issn.1006-0995.2009.04.033
王子正, 周邦国, 郭阳, 杨斌, 廖震文, 王生伟. 2012. 扬子地台西缘淌塘花岗岩的地球化学特征及锆石U-Pb定年. 岩石矿物学杂志, 31(5): 652-662. DOI:10.3969/j.issn.1000-6524.2012.05.003
温利刚. 2018.滇中地区前寒武纪铁-铜-稀土矿床稀有稀土元素赋存状态研究.硕士学位论文.北京: 中国地质大学
许德如, 王力, 肖勇, 刘朝露, 符启基, 蔡周荣, 黄居锐. 2008. "石碌式"铁氧化物-铜(金)-钴矿床成矿模式初探. 矿床地质, 27(6): 681-694. DOI:10.3969/j.issn.0258-7106.2008.06.002
徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚. 2014. 东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义. 中国地质, 41(6): 1771-1790. DOI:10.3969/j.issn.1000-3657.2014.06.002
杨崇辉, 耿元生, 杜利林, 任留东, 王新社, 周喜文, 杨铸生. 2009. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义. 中国地质, 36(3): 647-657. DOI:10.3969/j.issn.1000-3657.2009.03.011
杨红, 刘福来, 杜利林, 刘平华, 王舫. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义. 岩石学报, 28(9): 2994-3014.
叶霖, 刘玉平, 李朝阳, 刘家军. 2004a. 云南武定迤腊厂铜矿含矿石英脉40Ar-39Ar年龄及其意义. 矿物学报, 24(4): 411-414.
叶霖, 刘玉平, 李朝阳, 刘家军. 2004b. 东川桃园式铜矿Ar-Ar同位素年龄及意义. 矿物岩石, 24(2): 57-60.
叶现韬, 朱维光, 钟宏, 何德锋, 任涛, 柏中杰, 范宏鹏, 胡文俊. 2013. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义. 岩石学报, 29(4): 1167-1186.
应立娟, 王登红, 梁婷, 周汝洪. 2006. 阿尔泰乔夏哈拉铁铜金矿床的地质特征及其特殊性. 地质学报, 80(10): 1572-1577. DOI:10.3321/j.issn:0001-5717.2006.10.012
应立娟, 王登红, 李建康, 陈郑辉, 席忠, 杨文华, 刘乃忠. 2008. 新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究. 大地构造与成矿学, 32(3): 338-345. DOI:10.3969/j.issn.1001-1552.2008.03.011
应立娟, 王登红, 梁婷, 周汝洪. 2009. 新疆乔夏哈拉铁铜金矿的矿床成因及其成矿模式. 矿床地质, 28(2): 211-217. DOI:10.3969/j.issn.0258-7106.2009.02.009
袁峰, 周涛发, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010. 东天山自然铜矿化带玄武岩的起源、演化及成岩构造背景. 岩石学报, 26(2): 533-546.
张达玉, 周涛发, 袁峰, 刘帅, Lu YJ, 许超, 宁福泉. 2012. 新疆东天山觉罗塔格地区自然铜矿化玄武岩的成岩年代及其地质意义. 岩石学报, 28(8): 2392-2400.
张维峰. 2016.新疆东天山海相火山岩赋存铁铜矿床成因机理研究——以多头山和百灵山矿床为例.博士学位论文.广州: 中国科学院广州地球化学研究所
张维峰, 陈华勇, 江宏君, 陆万俭, 梁培, 许超, 严学录, 杨俊弢. 2017. 新疆东天山多头山铁-铜矿区花岗岩类的年代学、地球化学、岩石成因及意义. 大地构造与成矿学, 41(6): 1171-1191.
张兴春. 2003. 国外铁氧化物铜-金矿床的特征及其研究现状. 地球科学进展, 18(4): 551-560. DOI:10.3321/j.issn:1001-8166.2003.04.011
张志欣, 杨富全, 李超, 刘锋, 耿新霞, 刘国仁, 柴凤梅, 欧阳刘进. 2012. 新疆准噶尔北缘乔夏哈拉铁铜金矿床成岩成矿时代. 矿床地质, 31(2): 347-358. DOI:10.3969/j.issn.0258-7106.2012.02.014
赵联党, 陈华勇, 张莉, 张增杰, 李登峰, 张维峰, 陆万俭, 杨骏弢, 闫学录. 2017. 新疆黑尖山Fe-Cu(-Au)矿床氢氧同位素特征及其地质意义. 矿床地质, 36(1): 38-56.
赵联党. 2018.东天山阿齐山-雅满苏成矿带构造演化与成矿作用——以黑尖山和红山梁矿床为例.博士学位论文.广州: 中国科学院广州地球化学研究所
周刚, 张招崇, 吴淦国, 董连慧, 贺永康, 董永观, 何立新, 秦纪华, 赵忠合, 刘国仁. 2009. 新疆准噶尔北东缘造山后伸展及陆壳生长:来自哈旦逊杂岩体的岩石学及地球化学的证据. 地质学报, 83(3): 331-346.
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73. DOI:10.3969/j.issn.1001-6872.2011.03.010
周涛发, 袁峰, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报, 26(2): 478-502.
朱志敏. 2011.拉拉铁氧化物铜金矿: 成矿时代和金属来源.博士学位论文.成都: 成都理工大学