岩石学报  2018, Vol. 34 Issue (12): 3709-3720   PDF    
大氧化事件在山西滹沱群中的记录:碳酸盐岩碳同位素资料分析
陈威宇 , 陈衍景     
北京大学造山带与地壳演化教育部重点实验室, 北京 100871
摘要:古元古代早期爆发了全球性大氧化事件(GOE),诱发了休伦冰川事件(Huronian Glaciation Event,HGE)和2.3~2.06Ga的拉玛岗地-瓦图里碳酸盐碳同位素正漂移事件(Lomagundi-Jatuli Event,LJE)。滹沱群是华北克拉通最具代表性的古元古代沉积地层,变质程度最低,地层学研究程度高,是探索GOE以及HGE和LJE的理想研究对象。通过总结和分析滹沱群碳酸盐岩碳同位素研究结果,我们发现:(1)滹沱群主体未显示δ13Ccarb正漂移现象,但下部大石岭组有高达3.5‰的δ13Ccarb正异常;(2)显示δ13Ccarb正异常的大石岭组可能形成于2.08Ga之前,未显示δ13Ccarb正异常的东冶亚群可能形成于2.06Ga之后;(3)五台地区记录休伦冰川事件的冰碛岩应发育在大石岭组之下,即四集庄组砾岩。总之,滹沱群形成于2.3Ga之后,下部豆村亚群沉积于HGE或LJE期间,可能保留了更显著的δ13Ccarb正漂移信息及冰川沉积记录,中部的东冶亚群沉积于LJE之后,不存在δ13Ccarb正漂移。
关键词: 古元古代     碳同位素正漂移事件     大氧化事件     滹沱群     华北克拉通    
Records of the Great Oxidation Event in the Hutuo Group, Shanxi, China: A reassessment of the δ13Ccarb data
CHEN WeiYu, CHEN YanJing     
MOE Key Laboratory of Crustal and Orogenic Evolution, Peking University, Beijing 100871, China
Abstract: The Great Oxidation Event (GOE) happened in Palaeoprotorozoic era induced the global Huronian Glaciation Event (HGE) which was followed by the global positive δ13Ccarb excursion event (Lomagundi-Jatuli Event, LJE) around 2.3~2.06Ga. The Hutuo Group is the most representative and least metamorphosed Paleoproterozoic sedimentary sequence in North China Craton. It is well investigated in stratigraphy, and taken as the best window to insight GOE, HGE and LJE in China. Based on a compilation and synthesis of the available δ13Ccarb data of the Hutuo Group, we propose that:(1) the global positive δ13Ccarb excursion is not recorded in the Hutuo Group, except for the Dashiling Formation, whose δ13Ccarb values are up to +3.5‰; (2) the Dashiling Formation displayed weakly positive δ13Ccarb excursion and possibly deposited before 2.08Ga, whilst the Dongye Subgroup without positive δ13Ccarb excursion might deposit after 2.06Ga; and (3) a glacigenic diamictite succession recording the HGE could be observed below the Dashiling Formation, most likely, the Sijizhuang Formation conglomerate suite. Therefore, the Dongye Subgroup deposited after LJE does not show positive δ13Ccarb excursion; the Doucun Subgroup, as the lower portion of the Hutuo Group, deposited during HGE and LJE, may preserve the positive δ13Ccarb excursion and glacial sedimentation; and the Hutuo Group generally deposited after 2300Ma.
Key words: Paleoproterozoic     Positive δ13Ccarb excursion event     Great Oxidation Event     Hutuo Group     North China Craton    

古元古代早期的大氧化事件(Great Oxidation Event, GOE)是地球表生环境的首次大规模充氧事件,导致海洋与大气圈从还原状态突变为氧化状态,诱发了全球性休伦冰川事件(Huronian Glaciation Event, HGE)和2.3~2.06Ga(层侵纪)碳酸盐岩碳同位素(δ13Ccarb)正向漂移事件(又称为拉玛岗地-瓦图里事件,Lomagundi-Jatuli Event, LJE)。LJE是已知最古老、漂移幅度最大的一次全球性δ13Ccarb正漂移事件,在全球各古老克拉通古元古代沉积碳酸盐岩中均有记录(唐国军等,2004Melezhik et al., 2005),我国辽北、辽东、胶东和河南登封地区也有此事件的报道(陈衍景等,2000汤好书等, 2008, 2009Tang et al., 2011, 2013; Tang and Chen, 2013)。五台山滹沱群是华北克拉通保存相对完整、变质程度较低的古元古界沉积岩地层,它大量发育碳酸盐岩,沉积年龄是2.5~1.9Ga(白瑾,1986),很可能记录了LJE,因此,一些学者对滹沱群碳酸盐岩进行了碳同位素研究(钟华等,1993钟华和马永生,1995王颖嘉,2008She et al., 2016)。遗憾的是,迄今尚无学者确定滹沱群存在碳同位素正漂移现象,由此引起如下问题:(1)LJE是否具有全球性?具体发生在什么时间?(2)滹沱群是否属于古元古代?具体属于古元古代的哪个时间段?为何已有资料没有明显的δ13Ccarb正漂移?(3)如果滹沱群有δ13Ccarb正漂移现象,应出现在哪个层位?

基于上述疑问,本文作者全面收集、统计分析了滹沱群碳酸盐岩已有碳同位素研究数据,结合世界其他地区LJE及大氧化事件研究进展,讨论了滹沱群碳酸盐岩碳同位素变化规律与趋势,推测了LJE与HGE在滹沱群中的可能层位。

1 层侵纪碳酸盐岩碳同位素正漂移事件

地质历史上,海相碳酸盐岩δ13C值始终保持在0.5±2.5‰,但在古元古代2.3~2.06Ga(层侵纪)和新元古代0.6Ga左右(震旦纪或埃迪卡拉纪)出现了明显正异常(Schidlowski et al., 1975, 1976; Schidlowski,1988唐国军等,2004Tang et al., 2013, 2016Chen and Tang, 2016Condie,2016)。层侵纪δ13Ccarb正漂移事件最早发现于津巴布韦的拉玛岗地群(Lomagundi)和Fennoscandia的瓦图里群(Jatuli)(Schidlowski et al., 1975, 1976),因此被称为LJE事件(Lomagundi-Jatuli Event)。由于渐变论学术思想的影响,该发现长期被忽视。20世纪80年代以来,由于白垩纪-第三纪界线铱异常的发现,科学家们尝试从突变或灾变的角度认识地球演化历史和重要地质事件,揭示出多个重要突变事件(陈衍景等,1994Zhai and Santosh, 2011Condie,2016陆松年等,2016)。例如,1988年之前,学者们普遍认为富氧大气圈在2.6~1.9Ga期间逐渐形成;20世纪80年代后期,则被解释为2.3Ga左右的环境突变事件(Chen,1988陈衍景,1990),包括还原性大气圈-水圈系统突变为氧化性(也称大氧化事件),全球冰川事件发生,叠层石及厚层碳酸盐沉积大爆发,苏必利尔湖型BIF快速发育,红层、磷块岩和蒸发岩普遍出现,石墨矿床开始大量发育等(陈衍景,1990Tang et al., 2016)。突变观点提出后立即引起国际前寒武纪研究者的重视,致使国际前寒武纪分会于1988年建议增设2.3Ga为成铁纪(2.5~2.3Ga)与层侵纪(2.3~2.05Ga)的界线,进一步激发了学者们探讨2.3Ga界线地质事件的兴趣,导致各克拉通2.33~2.06Ga的沉积碳酸盐中普遍发现了碳同位素正异常现象(Baker and Fallick, 1989abKarhu,1993Karhu and Holland, 1996Melezhik and Fallick, 1996Bekker et al., 2006汤好书等,2008Guo et al., 2009Frauenstein et al., 2009Maheshwari et al., 2010)。据统计(Shields and Veizer, 2002),δ13Ccarb值通常变化于-5‰~5‰之间,但LJE期间沉积的碳酸盐岩δ13Ccarb通常为5‰~16‰;尤其甚者,巴西Minas超群的δ13Ccarb值高达+28‰(Bekker et al., 2003a)。

值得说明,层侵纪碳酸盐地层序列中普遍发现了δ13Ccarb正异常,并不是层侵纪碳酸盐地层的所有层位都显示δ13Ccarb正异常,因此,一些学者开始研究出现δ13Ccarb正异常的具体层位或时间。通过对全球35个古元古代含碳酸盐岩地层剖面进行的年龄统计和分析,Karhu(1993)Karhu and Holland (1996)将LJE的时限确定在2.2~2.06Ga。Martin et al.(2013)认为LJE的最长持续时间为2306±9Ma~2057±1Ma,最短持续时间为2221±5Ma~2106±8Ma。学者们普遍认为LJE晚于休伦冰川事件(Tang and Chen, 2013Young,2014Condie,2016Tang et al., 2016Chen et al., 2019)。

拉玛岗地-瓦图里δ13Ccarb正异常事件(LJE)从发现至今一直被作为古元古代大气氧含量增高的标志(Schidlowski et al., 1975, 1976)。该异常事件在全球范围内普遍发现,有力地证明了2.3Ga左右全球环境突变的客观性,加大了大氧化事件及相关研究的广度和深度(Holland,1994Melezhik et al., 2005, 2013Young,2013Fru et al., 2015Piper,2015Chen and Tang, 2016Condie, 2016, 2018Zhai et al., 2016陆松年等,2016)。例如,更深刻地认识到条带状铁建造(BIF)沉积与环境变化的关系(Trendall,2002Huston and Logan, 2004Bekker et al., 2010Zhu et al., 2014Tang et al., 2016),揭示了有机碳大量快速埋藏事件(Shunga Event)(Melezhik et al., 2004)和红层广泛出现(Rainbird et al., 1990Eriksson and Cheney, 1992),论证了休伦冰川事件的全球性、同时性(Kirschvink et al., 2000Melezhik,2006Strand,2012Tang and Chen, 2013Young,2014),特别是确定了HGE时限为2.3~2.25Ga,滞后于全球苏必利尔湖型BIF发育,早于LJE,与大气成分变化密切相关,提出了先水圈氧化、后气圈充氧的两阶段大氧化模式(Tang and Chen, 2013Young,2014Condie,2016)。这些进展为正确理解GOE的发生机制和过程,开始和结束时间及地质标志(Bekker et al., 2004Bekker and Holland, 2012Tang and Chen, 2013),提供了依据。

2 滹沱群岩石组合及年龄 2.1 岩石地层学

滹沱群主要分布于五台山南坡(图 1),由变质砾岩、石英岩、板岩、千枚岩、碳酸盐岩和少量变玄武岩夹层组成,总体构成一个海侵沉积旋回。滹沱群不整合于太古宙基底五台群之上,在1.85Ga时的吕梁运动中遭受了总体为绿片岩相、局部达角闪岩相的变质作用(白瑾,1986)。滹沱群自下而上划分为豆村、东冶和郭家寨等3个亚群(图 2白瑾,1986),岩性分别以碎屑岩、碳酸盐岩和红色磨拉石建造为主。重点依据白瑾(1986)和我们的研究结果,简述如下。

图 1 五台山区滹沱群地质图(据伍家善等,2008陈威宇等,2018修改) Fig. 1 Geological map of the Huotuo Group in Wutaishan area (modified after Wu et al., 2008; Chen et al., 2018)

图 2 滹沱群地层柱状图(据白瑾,1986修改)与碳酸盐岩碳氧同位素组成 年龄数据来源:1. Wilde et al. (2004);2. Du et al. (2010);3. 杜利林等(2011);4. Liu et al. (2011);5. 陈威宇等(2018).碳氧同位素数据来自钟华和马永生(1995), She et al. (2016), 孔凡凡等(2011), 王颖嘉(2008) Fig. 2 The stratigraphic column of Hutuo Group (modified after Bai, 1986) and the carbon and oxygen isotope ratios of carbonate rocks Sources of isotope ages: 1. Wilde et al. (2004); 2. Du et al. (2010); 3. Du et al. (2011); 4. Liu et al. (2011); 5. Chen et al. (2018). Carbon and oxygen isotope data are cited from from Zhong and Ma (1995), She et al. (2015), Kong et al. (2011) and Wang (2008)

豆村亚群由下而上划分为四集庄组、南台组、大石岭组和青石村组。四集庄组不整合于五台群之上,以变质砾岩为主,砾岩结构成熟度与矿物成熟度均较低,砾石成分复杂,大小相差悬殊。最新研究表明(陈威宇等,2018Chen et al., 2019),四集庄组砾岩属于冰成陆源碎屑混杂岩,个别砾石表面具有冰川擦痕,细碎屑岩(细砂岩、泥岩)中常见巨型落石构造。南台组主要由石英岩、千枚岩、碳酸盐岩和钙质石英岩组成;大石岭组自下而上由石英岩、千枚岩逐渐过渡为白云岩。青石村组是以千枚岩为主,顶部发育薄层变玄武岩,即“刘定寺变火山岩”。变玄武岩是豆村亚群和东冶亚群的分界标志(伍家善等,1986)。

东冶亚群以白云岩为主,次为千枚岩,由下而上分为纹山组、河边村组、建安村组、大关山组、槐荫村组、北大兴组和天蓬垴组。纹山组自下而上由石英岩、板岩和结晶白云岩组成。河边村组为泥晶白云岩,顶部出现稳定的玄武岩层(伍家善等,2008)。建安村组主要为千枚岩和板岩。大关山组为板岩和泥晶白云岩的互层。北大兴组以泥晶白云岩为主,含少量板岩。顶部天蓬垴组由千枚岩、变质粉砂岩和白云岩组成。东冶亚群大量发育厚层白云岩,适合于碳同位素研究,也被认为是滹沱群最可能记录LJE的层位,因此前人开展了大量碳同位素研究(王颖嘉,2008She et al., 2016)。

郭家寨亚群角度不整合于东冶亚群及其下伏岩石之上,包括自下而上的红石头组、西河里组、黑山背组、雕王山组,总体为一套微弱变质的红色粗碎屑岩建造,尤其以红石村组附近的岩石为代表,包括砾岩、砂岩、千枚岩等,砾石粒径可达50cm,可见泥裂、交错层、斜层理等浅水沉积相的构造。该亚群可能沉积于华北克拉通化过程的末期(杜利林等,2011)。

2.2 年代地层学

普遍认为滹沱群沉积于2.5~1.85Ga(白瑾,1986徐朝雷,1987)。滹沱群不整合于五台群(含高凡亚群)之上,五台群(不含高凡亚群)被锆石U-Pb年龄为2.52Ga的光明寺花岗岩侵入(徐朝雷,1987),说明滹沱群的基底五台群年龄不小于2.52Ga。滹沱群底部四集庄组中的花岗岩砾石给出锆石U-Pb年龄为~2.52Ga,石英质砾石的碎屑锆石U-Pb年龄普遍大于2.5Ga(伍家善等,2008万渝生等,2010杜利林等,2013),说明滹沱群沉积年龄的上限为2.5Ga,即不早于2.5Ga。Peng et al.(2017)最新获得原五台群上部的高凡亚群凝灰岩夹层的SIMS锆石U-Pb年龄为2198±13Ma,说明高凡亚群已不应属于太古宇五台群,并限定滹沱群开始沉积时间不早于2.2Ga。

滹沱群底部四集庄组上部变质玄武安山岩的SHRIMP锆石U-Pb年龄为2140±14Ma(杜利林等,2010),表明四集庄组沉积作用结束于2140Ma左右。四集庄组之上的南台组砂岩样品给出了多件最小碎屑锆石年龄,分别为2134±5Ma(杜利林等,2011)、2180±19Ma(Liu et al., 2011)、2121±21Ma和2140(14Ma(陈威宇等,2018),表明南台组沉积时间不早于2.12Ga。此外,Wilde et al.(2004)报道了2件滹沱群变质长英质凝灰岩SHRIMP锆石207Pb/206Pb年龄分别为2180±5Ma和2087±9Ma,该凝灰岩层位相当于豆村亚群青石村组顶部的“刘定寺变火山岩”,指示青石村组形成于2087Ma左右。综上所述,滹沱群豆村亚群形成于2198~2087Ma,属于层侵纪(2.3~2.05Ga)的晚期。其中,四集庄组形成于2198~2140Ma,南台组和大石岭组形成于2121~2087Ma,青石村组形成于2087Ma左右或略早。

东冶亚群底部纹山组岩屑石英砂岩的最小碎屑锆石年龄为2068±3Ma(杜利林等,2011),与豆村亚群顶部凝灰岩SHRIMP锆石207Pb/206Pb年龄2087±9Ma相一致,说明东冶亚群开始沉积时间不早于2068Ma。侵入东冶亚群的变闪长岩脉绢云母K-Ar年龄为1870Ma,层状变闪长岩角闪石K-Ar年龄为1928.4Ma(徐朝雷,1987),给出了东冶亚群乃至整个滹沱群的沉积年龄上限。因此,以碳酸盐岩为特征的东冶亚群可能形成于2068~1928Ma,属造山纪(2050~1800Ma)早期。根据杜利林等(2011)获得郭家寨亚群底部西河里组碎屑锆石U-Pb年龄1958±10Ma,结合前述侵入东冶亚群变闪长岩1870Ma的绢云母钾氩年龄,认为郭家寨亚群沉积于1958~1870Ma,应属造山纪晚期。

3 滹沱群碳同位素研究进展

不少学者(钟华等,1993钟华和马永生,1995王颖嘉,2008孔凡凡等,2011She et al., 2016)对滹沱群开展了碳同位素研究,特别是以厚层碳酸盐岩为特征的东冶亚群,获得了大量碳同位素数据(电子版附表 1表 1图 2图 3),但未能确证显著δ13Ccarb正异常的存在。

附表 1 滹沱群碳酸盐岩碳氧同位素组成 Appendix1 The δ13Ccarb and δ18Ocarb data of carbonate rocks from the Hutuo Group

表 1 滹沱群不同层位δ13Ccarbδ18Ocarb组成 Table 1 The δ13Ccarb and δ18Ocarb composition of different formations of the Hutuo Group

图 3 滹沱群δ13Ccarbδ18Ocarb直方图 Fig. 3 The δ13Ccarb and δ18Ocarb histograms of the Hutuo Group

总体而言,滹沱群下部层位的碳酸盐岩碳同位素值(δ13Ccarb)较高,上部层位δ13Ccarb值较低。豆村亚群包括自下而上的四集庄、南台、大石岭、青石村4个组,四集庄组和南台组缺乏碳酸盐岩地层,故已有碳酸盐碳同位素研究仅涉及大石岭组和青石村组。大石岭组顶部南大贤段厚层白云岩δ13Ccarb最高,变化于0.6‰~3.5‰,平均+2.1‰。青石村组碳酸盐岩仅获得2个碳同位素数据,δ13Ccarb分别为0.3‰和0.7‰。可见,虽然豆村亚群没有给出显著的δ13Ccarb正异常,但其δ13Ccarb为正值。

东冶亚群自下而上划分为纹山组、河边村组、建安村组、大关山组、槐荫村组、北大兴组、天蓬垴组,已积累δ13Ccarb数据669件,相应δ18Ocarb分析数据295件(附表 1表 1)。δ18Ocarb值最小为-16.3‰,最大为-2.7‰,变化范围较大;δ13Ccarb值最小为-5.2‰,最大为2.8‰,极差为8.0‰,变化范围也较大。其中,底部纹山组44件白云岩δ13Ccarb为0.1‰~2.8‰,平均值为0.9‰,由下至上有增高趋势。河边村组泥晶白云岩δ13Ccarb值变化于-5.2‰~2.7‰之间,平均值为0.3‰。建安村组、大关山组、槐荫村组、北大兴组、天蓬垴组碳酸盐的平均δ13Ccarb值分别为-0.5‰、0.1‰、-2.3‰、-0.4‰和0.7‰,未见明显异常,以槐荫村组厚层白云岩的δ13Ccarb值最低。

就整个滹沱群而言,本文作者所收集的846件碳酸盐岩δ13Ccarb值中,除1件δ13Ccarb值低至-5.2‰外,其余845件δ13Ccarb值的总平均值为0.2‰,变化于-3.7‰~3.5‰之间(表 1),609件δ13Ccarb值分布在-1‰~2‰之间(图 3),与地质历史时期正常海相碳酸盐岩δ13Ccarb总体为0(2.5‰(Schidlowski,1988Shields and Veizer, 2002)相一致,可能在较大程度上保留了原始沉积碳酸盐岩的碳同位素特征。而且,滹沱群各岩性组δ13Ccarb平均值变化于-2.3‰~2.1‰之间(表 1),显示其与全球范围不同地质历史时期δ13Ccarb整体特征一致,并未表现出明显的碳同位素正异常。但是,滹沱群底部大石岭组(主要是南大贤段)δ13Ccarb呈现弱正漂移趋势,She et al.(2016)因此认为大石岭组可能是LJE末期沉积的地层。

王颖嘉(2008)对滹沱群碳酸盐岩进行了微钻取样测试,发现微钻取样与全岩分析所获得的碳同位素值并不存在明显差异,但氧同位素值变化较大,据此认为后期地质作用没有显著改变碳同位素组成。

4 讨论 4.1 后期地质作用对碳氧同位素体系的干扰

海相碳酸盐岩沉积之后的成岩、变质和热液蚀变作用都可能导致δ13Ccarbδ18Ocarb变化。准确评估或排除这种后期地质作用对碳酸盐δ13Ccarbδ18Ocarb的影响,有助于科学揭示碳酸盐初始沉积时的同位素组成及环境。

研究表明,后期地质作用通常造成δ13Ccarbδ18Ocarb降低,且δ18Ocarbδ13Ccarb更灵敏,δ18Ocarb的降低幅度大于δ13Ccarb(Veizer and Hoefs, 1976;Husdon,1977;Guerrera et al., 1997陈衍景等,2000Bekker et al., 2005Melezhik et al., 2005Knauth and Kennedy, 2009)。由于后期地质作用过程中的热流体作用非常活跃,热流体δ18O值一般低于-12‰(V-PDB),因此Aharon(2005)建议用δ18Ocarb=-12‰(V-PDB)或18‰(V-SMOW)作为判别碳酸盐岩是否遭受后期地质作用改造的阈值。

不同类型的地质作用伴随不同成分类型的流体(碳质流体、水溶液、高盐度卤水等),流体活动强度或含量(流体/岩石之比或水/岩比值)也不同,决定了碳酸盐岩碳氧同位素体系被改造的程度和样式(陈衍景等,2000汤好书等,2008Tang et al., 2011, Tang and Chen, 2013),碳氧同位素变化及其相关性也可指示流体类型及流体作用强度。研究表明,即使水/岩比值低于10时,碳酸盐矿物就能与流体之间达到氧同位素的分馏平衡,引起δ18Ocarb变化;只有当水/岩比高达1000时,才能使碳酸盐矿物与流体之间达到碳同位素分馏平衡,引起δ13Ccarb降低(Banner and Hanson, 1990Banner,1995Jacobsen and Kaufman, 1999Ray et al., 2003Melezhik,2006)。因此,若碳酸盐岩δ18Ocarbδ13Ccarb呈正相关关系,则表示改造过程中的流体水/岩比值较高;若δ13Ccarb不随δ18Ocarb变化,则水/岩比值较低(Veizer and Hoefs, 1976Guerrera et al., 1997Jacobsen and Kaufman, 1999Knauth and Kennedy, 2009)。另一种极为罕见的情况是,δ13Ccarb变化巨大,而δ18Ocarb变化较弱,这种情况可能缘于碳质流体作用(Melezhik et al., 2005汤好书等,2008)。

4.2 滹沱群碳酸盐岩碳氧同位素特征

前已述及,除1件样品δ13Ccarb值低至-5.2‰外,滹沱群其余845件δ13Ccarb数据分布于-3.7‰~3.5‰之间(图 3),平均0.2‰,与正常海相碳酸盐岩δ13Ccarb总体为0.5(2.5‰相一致,较大程度地保留了原始沉积碳酸盐岩的碳同位素特征。虽然滹沱群5个岩性组出现了δ18Ocarb小于-12‰的数据(表 1),指示滹沱群不均匀地遭受了一定程度的后期流体改造。虽然如此,滹沱群多数样品的δ18Ocarb值高于-12‰,而且不同岩性组δ18Ocarb平均值均高于-12‰(图 3),指示同位素体系所遭受的后期地质作用的改造并不强烈。与δ18Ocarb相比,滹沱群δ13Ccarb变化范围较小,至少没显示平行δ13Ccarb轴的变化趋势(图 4),表明后期地质作用过程中的流体在成分上可能是水溶液,而不是碳质流体,相关地质作用可能属于绿片岩相变质作用或浅成作用(Chen et al., 2017)。

图 4 滹沱群碳氧同位素组成及后期变化(底图据Knauth and Kennedy, 2009) Fig. 4 The δ13Ccarb vs. δ18Ocarb plot of the Hutuo Group (base map after Knauth and Kennedy, 2009)

在所有δ13Ccarb分析数据中,δ13Ccarb值大于3‰者仅有10件,它们来自于豆村亚群大石岭组(表 1附表 1),表明大石岭组具有较高的δ13Ccarb值。表 1显示,大石岭组所有175件样品的δ13Ccarb均为正值,最高达3.5‰,平均为2.1‰。而且,青石村组2件样品的δ13Ccarb值分别为0.7‰和0.3‰。由此可见,豆村亚群所有δ13Ccarb数据(共177件)均为正值。

就东冶亚群而言,除槐荫村组之外,其它各组δ13Ccarb平均值变化于-0.5‰与0.9‰之间,即0.2(0.7‰(表 1);同时,δ18Ocarb变化范围较大。以上说明后期流体作用明显改变了东冶亚群碳酸盐岩氧同位素组成,但对碳同位素组成影响不大。槐荫村组δ13Ccarb值平均为-2.3‰,在滹沱群各组中最低,该组δ13Ccarbδ18Ocarb呈同步降低趋势,表明成岩或变质过程中的流体作用强烈,造成δ13Ccarb低于原始沉积时的碳酸盐岩δ13Ccarb值。其次,北大兴组和建安村组的平均δ13Ccarb相对较低,分别为-0.4‰和-0.5‰,且与δ18Ocarb微弱正相关。

图 2显示了滹沱群样品δ13Ccarbδ18Ocarb值随地层层位的变化。东冶亚群的厚层碳酸盐岩的碳同位素组成相对稳定,没有明显的异常现象,但槐荫村组δ13Ccarb偏低。豆村亚群上部大石岭组顶部南大贤段δ13Ccarb值明显正向漂移,青石村组样品也具有较低的δ13Ccarb正值,整个豆村亚群由上至下δ13Ccarb值逐渐升高,再南大贤段最高可达3.5‰,该正漂移虽然不如LJE期间典型的δ13Ccarb正漂移显著,但已显示出了LJE末期或者之后的碳同位素正漂移趋势。因此,推断大石岭组甚至豆村亚群具有δ13Ccarb正异常,可能记录了LJE。

综合上述,滹沱群碳酸盐岩受到一定程度后期流体作用的影响,氧同位素遭受了较强的改造,但碳同位素变化较弱,已有碳同位素数据可以较好反映原始沉积碳酸盐岩的碳同位素特征。大石岭组δ13Ccarb较高,普遍为正值,表明碳酸盐岩原始沉积时就具备了δ13Ccarb正向漂移。碳酸盐岩δ18Ocarb变化范围大,说明后期流体作用较强烈、普遍。

4.3 滹沱群与全球碳同位素正漂事件

层侵纪碳酸盐岩碳同位素正漂事件(LJE)已在全球各大陆发现,表 2图 5汇总世界范围内碳同位素研究程度较高、LJE表现突出的地区或地层剖面。由表 2可见,LJE期间形成的碳酸盐岩地层δ13Ccarb普遍高于5‰,多数高达10‰以上,个别地区的δ13Ccarb值异常高,北美Nash Fork组的δ13Ccarb竟然高达28‰(Bekker et al., 2003b)。在LJE末期或结束之后,很多地区的δ13Ccarb并没有立即降至0‰左右,而是降至0‰~5‰之间。

表 2 全球记录LJE时期碳酸盐地层δ13Ccarb和年龄 Table 2 The δ13Ccarb values and ages of the syn-LJE carbonate strata in the world

图 5 全球古元古代碳酸盐地层碳同位素组成(从下向上地层时代变新) Fig. 5 Global δ13Ccarb values of Paleoproterozoic carbonate strata (younging upward)

滹沱群豆村亚群大石岭组δ13Ccarb值为0.6‰~3.5%,与LJE末期的碳同位素特征相一致,说明大石岭组形成于LJE末期。如果大石岭组形成在LJE末期的话,大石岭组下伏碳酸盐岩地层的δ13Ccarb值可能高于3.5%,大石岭组上覆碳酸盐岩地层的δ13Ccarb应该低于大石岭组。与此相符的事实是,表 1中的数据显示大石岭组地层δ13Ccarb明显高于青石村组等上覆地层;遗憾的是,目前尚缺乏大石岭组南大贤段之下层位的碳同位素研究信息,值得研究补充。

最新建立的大氧化事件谱系(Tang and Chen, 2013)将LJE置于休伦冰川事件(HGE)之后。据此,如果滹沱群大石岭组南大贤段形成于LJE末期,南大贤段之下的钙质细碎屑岩或碳酸盐岩应更好记录LJE,而更下部层位可能出现冰川沉积物。与此认识完全相吻合的是,伏于大石岭组之下的四集庄组变质陆源碎屑混杂岩的砾石岩性复杂,分选和磨圆性差,砾石表面可见划痕和凹面,广泛发育落石构造,表明其沉积于冰-水过渡带环境,被确定为冰川作用沉积的冰碛岩(陈威宇等,2018Chen et al., 2019),可能是HGE在华北克拉通的记录。

已有资料表明,旨在检验滹沱群是否记录LJE的碳同位素研究集中于大石岭组以上的地层,特别是东冶亚群的各类厚层碳酸盐岩地层,但尚未获得δ13Ccarb>3.5%的结果。我们认为,若需进一步研究滹沱群对LJE响应最强烈的层位应在大石岭组南大贤段之下,即使这些层位可能缺乏厚层碳酸盐岩,其薄层碳酸盐岩夹层、砂质或泥质碳酸盐岩甚至碎屑岩的钙质胶结物,可能蕴含δ13Ccarb>3.5%的信息或记录。因此,以探索GOE或LJE为目标的碳氧同位素研究,应集中在滹沱群豆村亚群,特别是大石岭组及其以下层位,而非以厚层碳酸盐为特征的东冶亚群。

事实上,郭家寨亚群沉积于1958~1870Ma,属造山纪晚期,总体以粗碎屑岩为主,不可能记录LJE期间的δ13Ccarb正异常。东冶亚群沉积于2068~1928Ma,属造山纪,明显滞后于LJE高峰时间2306~2057Ma或2221~2106Ma (Martin et al., 2013),故没有显示δ13Ccarb正异常。豆村亚群形成于2198~2087Ma,属层侵纪,与LJE高峰时间大体一致,记录LJE期间δ13Ccarb显著正异常的可能性较大。因此,从沉积时间分析,未来以探索LJE或GOE的研究,应重点关注滹沱群的豆村亚群,甚至下伏高凡(亚)群。

5 总结和认识

(1) 前人对滹沱群开展了大量化学地层学研究,获得δ13Ccarb数据846件,δ18Ocarb数据362件。在δ13Ccarb值数据中,除1件为-5.2‰而明显偏低外,其余845件数据分布于-3.7‰~3.5‰之间,平均0.2‰,接近于全球海相碳酸盐岩平均δ13C值(0.5±2.5‰),没有显著的碳同位素正漂现象。多数样品δ18Ocarb值高于-12‰,各岩性组平均δ18Ocarb值也高于-12‰,指示后期改造作用不强烈。

(2) 已有δ13Ccarbδ18Ocarb数据集中在东冶亚群,次为豆村亚群,暂无郭家寨亚群。东冶亚群669件δ13Ccarb值变化于-5.2‰~2.8‰之间,各组δ13Ccarb平均值变化于-2.3‰~0.9‰之间,显然不存在正漂现象。豆村亚群177件δ13Ccarb值全部大于零,其中,大石岭组南大贤段175件δ13Ccarb值变化于0.6‰~3.5‰之间,平均2.1‰,且有10件样品的δ13Ccarb值大于3.0‰,清楚地显示了正漂趋势。

(3) 与世界各大陆LJE层位对比表明,滹沱群大石岭组南大贤段在形成年龄和δ13Ccarb值方面均与LJE末期相当,据此认为南大贤段之下的层位可能存在更显著的δ13Ccarb正异常(>3.5‰),更下部的四集庄组砾岩可能是休伦冰川事件期间形成的冰碛岩。

致谢      本文在成文和修改过程中得到翟明国院士、刘树文教授、董琳副教授、汤好书副研究员的指导;审稿专家和编辑提出的修改意见提升了本文文字表述和图件的质量;特此一并感谢。

参考文献
Aharon P. 2005. Redox stratification and anoxia of the Early Precambrian oceans:Implications for carbon isotope excursions and oxidation events. Precambrian Research, 137(3-4): 207-222.
Ashton KE, Hartlaub RP, Bethune KM, Heaman LM, Rayner N and Niebergall GR. 2013. New depositional age constraints for the Murmac Bay Group of the southern Rae craton, Canada. Precambrian Research, 232: 70-88. DOI:10.1016/j.precamres.2012.05.008
Babinski M, Chemale FJ and Van Schmus WR. 1995. The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Research, 72(3-4): 235-245. DOI:10.1016/0301-9268(94)00091-5
Bai J. 1986. The Early Precamnrian Geology of Wutaishan. Tianjin: Tianjin Science and Technology Press: 1-475.
Baker AJ and Fallick AE. 1989a. Heavy carbon in two-billion-year-old marbles from Lofoten-Vesterlen, Norway:Implications for the Precambrian carbon cycle. Geochimica et Cosmochimica Acta, 53(5): 1111-1115. DOI:10.1016/0016-7037(89)90216-0
Baker AJ and Fallick AE. 1989b. Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature, 337(6205): 352-354. DOI:10.1038/337352a0
Banner JL and Hanson GN. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. DOI:10.1016/0016-7037(90)90128-8
Banner JL. 1995. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 42(5): 805-824. DOI:10.1111/sed.1995.42.issue-5
Bekker A, Karhu JA, Eriksson KA and Kaufman AJ. 2003a. Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton:Tectonic forcing of biogeochemical change?. Precambrian Research, 120(3-4): 279-325. DOI:10.1016/S0301-9268(02)00164-X
Bekker A, Sial AN, Karhu JA, Ferreira VP, Noce CM, Kaufman AJ, Romano AW and Pimentel MM. 2003b. Chemostratigraphy of carbonates from the Minas Supergroup, Quadrilátero Ferryífero (Iron Quadrangle), Brazil:A stratigraphic record of Early Proterozoic atmospheric, biogeochemical and climactic change. American Journal of Science, 303(10): 865-904. DOI:10.2475/ajs.303.10.865
Bekker A, Holmden C, Patterson W, Eglington B, Coetzee LL and Beukes NJ. 2004. Chemostratigraphy of Early Paleoproterozoic carbonates of South Africa. Geological Society of America Abstracts with Program, 36(5): 341.
Bekker A, Kaufman AJ, Karhu JA and Eriksson KA. 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137(3-4): 167-206. DOI:10.1016/j.precamres.2005.03.009
Bekker A, Karhu JA and Kaufman AJ. 2006. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the great lakes area, North America. Precambrian Research, 148(1-2): 145-180. DOI:10.1016/j.precamres.2006.03.008
Bekker A, Slack JF, Planavsky N, Krapež B, Hofmann A, Konhauser KO and Rouxel OJ. 2010. Iron formation:The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3): 467-508. DOI:10.2113/gsecongeo.105.3.467
Bekker A and Holland HD. 2012. Oxygen overshoot and recovery during the Early Paleoproterozoic. Earth and Planetary Science Letters, 317-318: 295-304. DOI:10.1016/j.epsl.2011.12.012
Chen WY, Chen YJ, Li QG, Li JR, Li KY, Shu SP, Chen X and Tong ZD. 2018. Detrital zircon U-Pb ages of the Sijizhuang glacial diamictites of the Hutuo Group in Wutai Shan, Shanxi Province and implication for the Great Oxidation Event. Earth Science Frontiers, 25(5): 1-18.
Chen YJ. 1988. Catastrophe of the geologic environment at 2300Ma. Tianjin: Abstracts of International Symposium on Geochemistry and Mineralization of Proterozoic Mobile Belts, 11 https://www.researchgate.net/publication/283361762_Catastrophe_in_geological_environment_at_2300Ma
Chen YJ. 1990. Evidences for the catastrophe in geologic environment at about 2300Ma and the discussions on several problems. Journal of Stratigraphy, 14(3): 178-184.
Chen YJ, Ouyang ZY, Yang QJ and Deng J. 1994. A new idea of the Archean-Proterozoic boundary. Geological Review, 40(6): 483-488.
Chen YJ, Liu CQ, Chen HY, Zhang ZJ and Li C. 2000. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China:Implications for several geoscientific problems. Acta Petrologica Sinica, 16(2): 233-244.
Chen YJ and Tang HS. 2016. The great oxidation event and its records in North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 281-303 https://link.springer.com/chapter/10.1007%2F978-981-10-1064-4_11
Chen YJ, Wang P, Li N, Yang YF and Pirajno F. 2017. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405-430. DOI:10.1016/j.oregeorev.2016.03.025
Chen YJ, Chen WY, Li QG, Santosh M and Li JR. 2019. Discovery of the Huronian Glaciation Event in China:Evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan. Precambrian Research, 320: 1-12. DOI:10.1016/j.precamres.2018.10.009
Clark T. 1984. Géologie de la Région du lac Cambrien. Territoire du Nouveau-Québec, ET 83-2: 37
Condie KC. 2016. Earth as an Evolving Planetary System. London: Elsevier.
Condie KC. 2018. A planet in transition:The onset of plate tectonics on earth between 3 and 2 Ga?. Geoscience Frontiers, 9(1): 51-60.
Corfu F and Andrews AJ. 1986. A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Canada Journal of Earth Science, 23(1): 107-109. DOI:10.1139/e86-011
Du LL, Yang CH, Guo JH, Wang W, Ren LD, Wan YS and Geng YS. 2010. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton:SHRIMP zircon U-Pb dating of basaltic andesite. Chinese Science Bulletin, 55(17): 1782-1789. DOI:10.1007/s11434-009-3611-8
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Song HX, Geng YS and Hou KJ. 2011. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in the Wutai Mountains area, North China Craton:Evidences from geology and zircon U-Pb geochronology. Acta Petrologica Sinica, 27(4): 1037-1055.
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Song HX, Gao LZ, Geng YS and Hou KJ. 2012. Provenance of the Paleoproterozoic Hutuo Group basal conglomerates and Neoarchean crustal growth in the Wutai Mountains, North China Craton:Evidence from granite and quartzite pebble zircon U-Pb ages and Hf isotopes. Science China (Earth Sciences), 55(11): 1796-1814. DOI:10.1007/s11430-012-4407-2
Eriksson PG and Cheney ES. 1992. Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the Lower Proterozoic sequences of southern Africa. Precambrian Research, 54(2-4): 257-269. DOI:10.1016/0301-9268(92)90073-W
Frauenstein F, Veizer J, Beukes N, Van Niekerk HS and Coetzee LL. 2009. Transvaal Supergroup carbonates:Implications for Paleoproterozoic δ18O and δ13C records. Precambrian Research, 175(1-4): 149-160. DOI:10.1016/j.precamres.2009.09.005
Fru EC, Arvestål E, Callac N, El Albani A, Kilias S, Argyraki A and Jakobsson M. 2015. Arsenic stress after the Proterozoic glaciations. Scientific Reports, 5: 17789.
Guerrera Jr A, Peacock SM and Knauth LP. 1997. Large 18O and 13C depletions in greenschist facies carbonate rocks, western Arizona. Geology, 25(10): 943-946. DOI:10.1130/0091-7613(1997)025<0943:LOACDI>2.3.CO;2
Guo QJ, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin QS, Kim ST and Farquhar J. 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology, 37(5): 399-402. DOI:10.1130/G25423A.1
Halilovic J, Cawood PA, Jones JA, Pirajno F and Nemchin AA. 2004. Provenance of the Earaheedy Basin:Implications for assembly of the Western Australian Craton. Precambrian Research, 128(3-4): 343-366. DOI:10.1016/j.precamres.2003.09.007
Holland HD. 1994. Early Proterozoic atmospheric change. In: Bengston S (ed.). Early Life on Earth. Nobel Symposium No. 84. New York: Columbia University Press, 237-244
Huston DL and Logan GA. 2004. Barite, BIFs and bugs:Evidence for the evolution of the Earth's early hydrosphere. Earth and Planetary Science Letters, 220(1-2): 41-55. DOI:10.1016/S0012-821X(04)00034-2
Jacobsen SB and Kaufman AJ. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161(1-3): 37-57. DOI:10.1016/S0009-2541(99)00080-7
Karhu JA. 1993. Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geological Survey of Finland Bulletin, 371: 1-87.
Karhu JA and Holland HD. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24(10): 867-870. DOI:10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2
Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN and Steinberger RE. 2000. Paleoproterozoic snowball earth:Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1400-1405. DOI:10.1073/pnas.97.4.1400
Knauth LP and Kennedy MJ. 2009. The Late Precambrian greening of the Earth. Nature, 460(7256): 728-732.
Kong FF, Yuan XL and Zhou CM. 2011. Paleoproterozoic glaciation:Evidence from carbon isotope record of the Hutuo Group in the Wutai area, Shanxi Province, China. Chinese Science Bulletin, 56(32): 2699-2707.
Lajoinie MF, Lanfranchini ME, Recio C, Sial AN, Cingolani CA, Justiniano CB and Etcheverry RO. 2018. The Lomagundi-Jatuli carbon isotopic event recorded in the marble of the Tandilia System basement, Río de la Plata Craton, Argentina. Precambrian Research, https://doi.org/10.1016/j.precamres.2018.03.012
Lindsay JF and Brasier MD. 2002. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2. 6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Research, 114(1-2): 1-34.
Liu CH, Zhao GC, Sun M, Zhang J, He YH, Yin CQ, Wu FY and Yang JH. 2011. U-Pb and Hf isotopic study of detrital zircons from the Hutuo Group in the Trans-North China Orogen and tectonic implications. Gondwana Research, 20(1): 106-121. DOI:10.1016/j.gr.2010.11.016
Lu SN, Hao GJ and Xiang ZQ. 2016. Precambrian major geological events. Earth Science Frontiers, 23(6): 140-155.
Maheshwari A, Sial AN, Gaucher C, Bossi J, Bekker A, Ferreira VP and Romano AW. 2010. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion:A review of occurrences in Brazil, India, and Uruguay. Precambrian Research, 182(4): 274-299. DOI:10.1016/j.precamres.2010.06.017
Martin AP, Condon DJ, Prave AR and Lepland A. 2013. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli event). Earth-Science Reviews, 127: 242-261. DOI:10.1016/j.earscirev.2013.10.006
McDonald B and Partin CA. 2016. Is the Lomagundi Event present on the Rae craton? A case study from the Murmac Bay Group. Canadian Journal of Earth Sciences, 53(5): 457-465. DOI:10.1139/cjes-2015-0186
Melezhik VA and Fallick AE. 1996. A widespread positive δ13Ccarb anomaly at around 2.33~2.06Ga on the Fennoscandian Shield:A paradox?. Terra Nova, 8(2): 141-157. DOI:10.1111/ter.1996.8.issue-2
Melezhik VA, Fallick AE and Clark T. 1997. Two-billion-year-old isotopically heavy carbon:Evidence from the Labrador Trough, Canada. Canada Journal of Earth Science, 34(3): 271-285. DOI:10.1139/e17-025
Melezhik VA, Filippov MM and Romashkin AE. 2004. A giant Palaeoproterozoic deposit of shungite in NW Russia:Genesis and practical applications. Ore Geology Review, 24(1-2): 135-154. DOI:10.1016/j.oregeorev.2003.08.003
Melezhik VA, Fallick AE, Hanski EJ, Kump LR, Lepland A, Prave AR and Strauss H. 2005. Emergence of the aerobic biosphere during the Archean-Proterozoic transition:Challenges of future research. GSA Today, 15: 4-11.
Melezhik VA. 2006. Multiple causes of Earth's earliest global glaciation. Terra Nova, 18(2): 130-137. DOI:10.1111/j.1365-3121.2006.00672.x
Melezhik VA, Huhma H, Condon DJ, Fallick AE and Whitehouse MJ. 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology, 35(7): 655-658. DOI:10.1130/G23764A.1
Melezhik VA, Kump LR, Fallick AE, Strauss H, Hanski EJ, Prave AR and Lepland A. 2013. Reading the Archive of Earth's Oxygenation:Volume 3:Global Events and the Fennoscandian Arctic Russia Drilling early Earth project. Berlin, Heidelberg: Springer-Verlag.
Peng P, Feng LJ, Sun FB, Yang SY, Su XD, Zhang ZY and Wang C. 2017. Dating the Gaofan and Hutuo Groups:Targets to investigate the Paleoproterozoic Great Oxidation Event in North China. Journal of Asian Earth Sciences, 138: 535-547. DOI:10.1016/j.jseaes.2017.03.001
Perttunen V and Vaasjoki M. 2001. U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. Geological Survey of Finland, Special Paper, 33: 45-84.
Piper JDA. 2015. The Precambrian supercontinent Palaeopangaea:Two billion years of quasi-integrity and an appraisal of geological evidence. International Geology Review, 57(11-12): 1389-1417. DOI:10.1080/00206814.2014.942710
Puchtel IS, Arndt NT, Hofmann AW, Haase KM, Kröener A, Kulikov VS, Kulikova VV, Garbe-Schönberg CD and Nemchin AA. 1998. Petrology of mafic lavas within the Onega Plateau, central Karelia:Evidence for 2. 0Ga plume-related continental crustal growth in the Baltic Shield. Contributions to Mineralogy and Petrology, 130(2): 134-153.
Rainbird RH, Nesbitt HW and Donaldson JA. 1990. Formation and diagenesis of a sub-Huronian saprolith:Comparison with a modern Weathering profile. Journal of Geology, 98(6): 801-822. DOI:10.1086/629455
Rasmussen B, Bekker A and Fletcher IR. 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth and Planetary Science Letters, 382: 173-180. DOI:10.1016/j.epsl.2013.08.037
Ray JS, Veizer J and Davis WJ. 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India:Age, diagenesis, correlations and implications for global events. Precambrian Research, 121(1-2): 103-140. DOI:10.1016/S0301-9268(02)00223-1
Rohon ML, Vialette Y, Clark T, Roger G, Ohnenstetter D and Vidal P. 1993. Aphebian mafic-ultramafic magmatism in the Labrador Trough (New Quebec):Its age and the nature of its mantle source. Canada Journal of Earth Sciences, 30(8): 1582-1593. DOI:10.1139/e93-136
Schidlowski M, Eichmann R and Junge CE. 1975. Precambrian sedimentary carbonates:Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Research, 2(1): 1-69. DOI:10.1016/0301-9268(75)90018-2
Schidlowski M, Eichmann R and Junge CE. 1976. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. Geochimica et Cosmochimica Acta, 40: 449-455. DOI:10.1016/0016-7037(76)90010-7
Schidlowski M. 1988. A 3, 800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333(6171): 313-318. DOI:10.1038/333313a0
She ZB, Yang FY, Liu W, Xie LH, Wan YS, Li C and Papineau D. 2016. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science, 27(2): 297-316. DOI:10.1007/s12583-015-0654-4
Shields G and Veizer J. 2002. Precambrian marine carbonate isotope database:Version 1. 1. Geochemistry, Geophysics, Geosystems, 3(6): 1-12.
Silvennoinen A. 1991. Pre-Quaternary rocks of the Kuusamo and Rukatunturi map-sheet areas: Explanation to the maps of Prequaternary rocks, sheets 4524 + 4542. Geological map of Finland 1: 100, 000. Espoo: Geological Survey of Finland, 1-63 (in Finnish with English summary)
Strand K. 2012. Global and continental-scale glaciations on the Precambrian earth. Marine and Petroleum Geology, 33(1): 69-79. DOI:10.1016/j.marpetgeo.2012.01.011
Tang GJ, Chen YJ, Huang BL and Chen CX. 2004. Paleoprotoerozoic δ13Ccarb positive excursion event:Research progress on 2. 3Ga catastrophe. Journal of Mineralogy and Petrology, 24(3): 103-109.
Tang HS, Chen YJ, Wu G and Lai Y. 2008. The C-O isotope composition of the Liaohe Group, northern Liaoning Province and its geologic implications. Acta Petrologica Sinica, 24(1): 129-138.
Tang HS, Wu G and Lai Y. 2009. The C-O isotope geochemistry and genesis of the Dashiqiao magnesite deposit, Liaoning Province, NE China. Acta Petrologica Sinica, 25(2): 455-467.
Tang HS, Chen YJ, Wu G and Lai Y. 2011. Paleoproterozoic positive δ13Ccarb excursion in the northeastern Sino-Korean craton:Evidence of the Lomagundi event. Gondwana Research, 19: 471-481. DOI:10.1016/j.gr.2010.07.002
Tang HS and Chen YJ. 2013. Global glaciations and atmospheric change at ca. 2.3Ga. Geoscience Frontiers, 4: 583-596. DOI:10.1016/j.gsf.2013.02.003
Tang HS, Chen YJ, Santosh M, Zhong H, Wu G and Lai Y. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton:Implications for the Great Oxidation Event and ore genesis. Geological Journal, 48: 467-483. DOI:10.1002/gj.v48.5
Tang HS, Chen YJ, Li KY, Chen WY, Zhu XQ, Ling KY and Sun XH. 2016. Early Paleoproterozoic metallogenic explosion in North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Berlin: Springer, 305-327 https://link.springer.com/chapter/10.1007%2F978-981-10-1064-4_12
Treloar PJ. 1988. The geological evolution of the Magondi Mobile Belt, Zimbabwe. Precambrian Research, 38(1): 55-73. DOI:10.1016/0301-9268(88)90093-9
Trendall AF. 2002. The significance of iron-formation in the Precambrian stratigraphic record. In: Altermann W and Corcoran PL (eds.). Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Malden, MA: Blackwell Science, 33-66 https://onlinelibrary.wiley.com/doi/10.1002/9781444304312.ch3
Vallini DA, Cannon WF and Schulz KJ. 2006. Age constraints for Paleoproterozoic glaciation in the Lake Superior region:Detrital zircon and hydrothermal xenotime ages for the Chocolay Group, Marquette Range Supergroup. Canada Journal of Earth Sciences, 43(5): 571-591. DOI:10.1139/e06-010
Veizer J and Hoefs J. 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40(11): 1387-1395. DOI:10.1016/0016-7037(76)90129-0
Wan YS, Miao PS, Liu DY, Yang CH, Wang W, Wang HC, Wang ZJ, Dong CY, Du LL and Zhou HY. 2010. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons:Resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(13): 1278-1284. DOI:10.1007/s11434-009-0615-3
Wang YJ. 2008. The study on geochemistry of Paleoproterozoic carbonate rocks in Hutuo Group, Wutai Mountain. Master Degree Thesis. Beijing: Peking University: 1-60.
Wilde SA, Zhao GC, Wang KY and Sun M. 2004. First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan:Further evidence for Palaeoproterozoic amalgamation of North China Craton. Chinese Science Bulletin, 49(1): 83-90. DOI:10.1007/BF02901747
Wu JS, Liu DY and Jin LG. 1986. The zircon U-Pb age of metamorphosed basic volcanic lavas from the Hutuo Group in the Wutai mountain area, Shanxi Province. Geological Review, 32(2): 178-184.
Wu JS, Liu DY and Geng YS. 2008. Integrated research report on the establishment Paleoproterozoic Hutuo Group of China: Geochronological framework of Hutuo Group and sequences of major geological events. In: Wang ZJ and Huang ZG (eds.). Research Report on the Establishment of Major Stratigraphic Stages in China (2001-2005). Beijing: Geological Publishing House, 534-544 (in Chinese)
Xu CL. 1987. Discussion of maximum and minimum ages of Hutuo Group. Regional Geology of China, (1): 57-60, 96.
Young GM. 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontier, 4: 247-261. DOI:10.1016/j.gsf.2012.07.003
Young GM. 2014. Contradictory correlations of Paleoproterozoic glacial deposits:Local, regional or global controls?. Precambrian Research, 247: 33-44. DOI:10.1016/j.precamres.2014.03.023
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20: 6-25. DOI:10.1016/j.gr.2011.02.005
Zhai MG, Zhao Y and Zhao TP. 2016. Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer: 280-303.
Zhong H, Ma YS, Huo WG and Yao YY. 1994. Carbon isotope evolution of Early Proterozoic dolomites of Wutai mountain area, North China. Science in China (Series B), 37(12): 1525-1528.
Zhong H and Ma YS. 1995. Carbon isotope and Early Proterozoic strata correlation. Journal of Stratigraphy, 19(1): 30-35.
Zhu XQ, Tang HS and Sun XH. 2014. Genesis of banded iron formations:A series of experimental simulations. Ore Geology Reviews, 63: 465-469. DOI:10.1016/j.oregeorev.2014.03.009
白瑾. 1986. 五台山早前寒武纪地质. 天津:天津科学技术出版社: 1-475.
陈威宇, 陈衍景, 李秋根, 李建荣, 李凯月, 疏孙平, 陈西, 佟子达. 2018. 山西五台山滹沱群四集庄冰碛岩碎屑锆石年龄及其对大氧化事件研究意义. 地学前缘, 25(5): 1-18.
陈衍景. 1990. 23亿年地质环境突变的证据及若干问题的讨论. 地层学杂志, 14(3): 178-184.
陈衍景, 欧阳自远, 杨秋剑, 邓健. 1994. 关于太古宙-元古宙界线的新认识. 地质评论, 40(6): 483-488.
陈衍景, 刘丛强, 陈华勇, 张增杰, 李超. 2000. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论. 岩石学报, 16(2): 233-244.
杜利林, 杨崇辉, 郭敬辉, 王伟, 任留东, 万渝生, 耿元生. 2010. 五台地区滹沱群底界时代:玄武安山岩SHIRIMP锆石U(Pb定年. 科学通报, 55(3): 246-254.
杜利林, 杨崇辉, 王伟, 任留东, 万渝生, 宋会侠, 耿元生, 侯可军. 2011. 五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据. 岩石学报, 27(4): 1037-1055.
杜利林, 杨崇辉, 王伟, 任留东, 万渝生, 宋会, 高林志, 耿元生, 侯可军. 2013. 五台地区滹沱群砾岩物质源区及新太古代地壳生长:花岗岩和石英岩砾石锆石U-Pb年龄与Hf同位素制约. 中国科学(地球科学), 43(1): 81-96.
孔凡凡, 袁训来, 周传明. 2011. 古元古代冰期事件:山西五台地区滹沱群的碳同位素证据. 科学通报, 56(32): 2699-2707.
陆松年, 郝国杰, 相振群. 2016. 前寒武纪重大地质事件. 地学前缘, 23(6): 140-155.
唐国军, 陈衍景, 黄宝玲, 陈从喜. 2004. 古元古代δ13Ccarb正漂移事件:2. 3Ga环境突变研究的进展.矿物岩石, 24(3): 103-109.
汤好书, 陈衍景, 武广, 赖勇. 2008. 辽北辽河群碳酸盐岩碳-氧同位素特征及其地质意义. 岩石学报, 24(1): 129-138.
汤好书, 武广, 赖勇. 2009. 辽宁大石桥菱镁矿床的碳氧同位素组成和成因. 岩石学报, 25(2): 455-467.
万渝生, 苗培森, 刘敦一, 杨崇辉, 王伟, 王惠初, 王泽九, 董春艳, 杜利林, 周红英. 2010. 华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约. 科学通报, 55(7): 572-578.
王颖嘉. 2008.五台山元古界滹沱群碳酸盐岩地球化学研究.硕士学位论文.北京: 北京大学, 1-60 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1412733
伍家善, 刘敦一, 金龙国. 1986. 五台山区滹沱群变质基性熔岩中锆石U-Pb年龄. 地质论评, 32(2): 178-184. DOI:10.3321/j.issn:0371-5736.1986.02.011
伍家善, 刘敦一, 耿元生. 2008.中国古元古界建系综合研究报告——吕梁地区古元古代主要地质事件的厘定和古元古代的初步划分.见: 王泽九, 黄枝高编.中国主要断代地层建阶研究报告(2001-2005).北京: 地质出版社, 534-544
徐朝雷. 1987. 对滹沱群上、下时限的讨论. 中国区域地质, (1): 57-60, 96.
钟华, 马永生, 霍卫国, 姚御元. 1993. 山西五台山地区早元古代白云岩碳同位素演化及意义. 中国科学(B辑), 23(10): 1009-1014.
钟华, 马永生. 1995. 碳同位素与早元古代地层对比. 地层学杂志, 19(1): 30-35.