岩石学报  2018, Vol. 34 Issue (12): 3525-3538   PDF    
藏南喜马拉雅造山带造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床流体包裹体He-Ar同位素组成:对成矿流体来源的制约
翟伟1,2 , 郑思琦1 , 孙晓明1,2,3 , 韦慧晓3 , 莫儒伟4 , 张凌宇1 , 周峰3 , 易建洲5     
1. 中山大学海洋科学学院, 广州 510006;
2. 广东省海洋资源与近岸工程重点实验室, 广州 510006;
3. 中山大学地球科学与工程学院, 广州 510275;
4. 广东省有色金属地质勘查局地质调查院, 广州 510080;
5. 西藏地质矿产勘查局地质调查院, 拉萨 851400
摘要:马扎拉Au-Sb矿床和沙拉岗Sb矿床是藏南金锑成矿带中典型的造山型矿床。马扎拉Au-Sb矿床中矿体以含金辉锑矿石英脉的形式产于下中侏罗统陆热组地层中,主要组成矿物有自然金、辉锑矿、石英和碳酸盐矿物;沙拉岗Sb矿床中矿体主要以辉锑矿石英脉的形式产于下白垩统多久组地层和辉长岩体中,主要组成矿物为辉锑矿、辰砂、锑华、石英和少量碳酸盐矿物。在两个矿床的矿脉石英和辉锑矿中均发现有三类原生和假次生包裹体:水溶液包裹体、CO2-水溶液包裹体和有机包裹体。流体包裹体显微测温结果显示:马扎拉Au-Sb矿床的成矿温度为160~280℃,沙拉岗Sb矿床的成矿温度为140~240℃。He-Ar同位素分析显示马扎拉Au-Sb矿辉锑矿石英脉矿石中辉锑矿和石英以及赋矿地层中沉积层状硫化物中黄铁矿的流体包裹体均具有低的3He/4He比值,分别为0.01382~0.05642Ra和0.03353~0.08744Ra,40Ar/36Ar比值具有比较大的变化范围,分别为346.8~4770.1和349.4~2689.1;沙拉岗Sb矿床中辉锑矿样品的3He/4He比值为0.02385~0.11488Ra,40Ar/36Ar比值变化小,为300.6~537.5。与藏南Au-Sb成矿带中造山型Au矿床成矿流体中含一定量的幔源挥发份相对比,马扎拉Au-Sb矿床和沙拉岗Sb矿床成矿流体中均无幔源流体的参与,马扎拉Au-Sb矿床成矿流体为壳源变质流体与改造型饱和大气水形成的混合流体;沙拉岗Sb矿床成矿流体以改造型饱和大气水为主,并有壳源变质流体的加入。
关键词: 造山型Au-Sb矿床     He-Ar同位素     幔源流体     变质流体     改造型饱和大气水    
He-Ar isotope compositions of orogenic Mazhala Au-Sb and Shalagang Sb deposits in Himalayan orogeny, southern Tibet: Constrains to ore-forming fluid origin
ZHAI Wei1,2, ZHENG SiQi1, SUN XiaoMing1,2,3, WEI HuiXiao3, MO RuWei4, ZHANG LingYu1, ZHOU Feng3, YI JianZhou5     
1. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China;
2. Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510006, China;
3. China School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
4. Survey Institute of Guangdong Nonferrous Metals Geological Survey Bureau, Guangzhou 510080, China;
5. Geological Survey of Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa 851400, China
Abstract: The Mazhala Au-Sb and Shalagang Sb deposits are two typical orogenic deposits in the southern Tibet Au-Sb metallogenic belt in the Himalayan orogeny. At Mazhala, the gold-and stibnite-bearing quartz vein orebodies are hosted in Lower to Middle Jurassic Lure Formation. Minerals comprising the ore are native gold, stibnite, quartz and carbonate. At Shalagang, the host rocks are Lower Cretaceous Duojiu Formation and gabbro body. Orebodies consist mainly of stibnite-bearing quartz veins. Minerals comprising the ore are stibnite, cinnabar, valentinite, quartz and trace amount of carbonate. Three types of primary and/or pseudosecondary fluid inclusions were recognized in quartz and/or stibnite from the ore vein of the both deposits:type Ⅰ aqueous inclusions, type Ⅱ CO2-aqueous inclusions and type Ⅲ hydrocarbon inclusions. The microthermometric results show the mineralization temperatures are from 160℃ to 280℃ for Mazhala, and from 140℃ to 240℃ for Shalagang. Isotopic rations of He and Ar show, at Mazhala, 3He/4He of inclusion fluids in stibnites and quartzs from gold-and stibnite-bearing quartz vein, and pyrites from sedimentary sulfide layer are low, varying from 0.01382Ra to 0.05642Ra and 0.03353Ra to 0.08744Ra, respectively, 40Ar/36Ar varies widely, from 346.8 to 4770.1 and from 349.4 to 2689.1; at Shalagang, 3He/4He of inclusion fluids in stibnites are also low, varying from 0.02385Ra to 0.11488Ra, 40Ar/36Ar varies narrowly, from 300.6 to 537.5. Contrasting with a certain amount of mantle volatile involvement in ore fluid of orogenic gold deposits in the southern Tibet Au-Sb metallogenic belt, there are no occurrence of mantle component in ore-forming fluid of Mazhala Au-Sb and Shalagang Sb deposits. The ore-forming fluid for Mazhala and Shalagang consisted of a mixture of crustal metamorphic fluid and modified air-saturated water, and predominantly modified air-saturated water with involvement of crustal metamorphic fluid, respectively.
Key words: Orogenic Au-Sb deposit     He-Ar isotope     Mantle fluid     Metamorphic fluid     Modified air-saturated water    

造山型金矿床是全球范围内最重要的一类金矿床,根据Groves et al. (2003)的统计,大多数巨型(the giant)金矿床(金≥250t)或世界级的金矿床(金≥100t)都属于造山型金矿床。自从“造山型金矿床”这一术语被提出以来(Groves et al., 1998),已经广泛被矿床学家所接受。虽然造山型金矿床具有相似的地质与地球化学特征(Groves et al., 1998, 2003; Goldfarb et al., 2001, 2005),但是对于其成矿流体和成矿物质的来源却存在不同的认识。成矿流体来源于变质流体是被大多数学者支持的观点,如Pitcairn et al. (2006)Phillips and Powell (2009)认为成矿流体来源于赋矿变质地体的深部变质去挥发分作用;而一些造山型金矿床在空间和时间上都与花岗质侵入岩有关,所以成矿流体被认为来自岩浆流体,如我国胶东的金矿床以及韩国的Samhwanghak金矿床(姚凤良等, 1990; So and Yun, 1997);美国西部科迪勒拉造山带中的造山型Au-Sb-Hg矿床和澳大利亚晚太古代的Wiluna金矿床其成矿流体被为是循环的大气降水(Nesbitt et al., 1986, 1989; Hagemann et al., 1994);Rock and Groves (1988)Cameron (1988)支持含金成矿流体来自地幔。不同来源的流体混合也被不同的学者提出,如西非Loulo造山带中的造山型金矿床成矿流体来源于变质流体和岩浆流体的混合(Lawrence et al., 2013);江西金山金矿的成矿流体以变质流体为主,含有少于5%的地幔组分(Zhao et al., 2013; Li et al., 2010);云南哀牢山造山带中的大坪金矿床成矿流体来自变质流体和幔源流体的混合(Sun et al., 2009);幔源基性岩浆脱水形成的岩浆水与浅部的大气降水混合被认为是胶东金矿的成矿流体(范宏瑞等, 2005; 姜晓辉等, 2011);河台金矿的成矿流体早期以变质水为主,而晚期以岩浆水为主,混有幔源流体和大气水(Jiao et al., 2017)。造山型金矿床形成于增生型或碰撞型造山作用过程中,在此过程中伴随着强烈的壳-幔相互作用,如板块的俯冲导致的地壳增厚、洋中脊的俯冲、俯冲板片的回转以及岩石圈地幔的侵蚀和拆沉作用等(Goldfarb et al., 2001; Chung et al., 2005),然而在此作用过程中是否存在地幔流体参与造山型矿床的成矿作用仍然是不清楚的。

喜马拉雅造山带形成于印度大陆与欧亚大陆自新生代以来的碰撞造山作用,而且造山作用过程目前仍在进行(Wang et al., 2001; Zhang et al., 2004),这就使得喜马拉雅造山带成为研究地球表面大陆碰撞造山作用与相关的构造变形变质作用、岩浆作用以及成矿作用过程的最佳天然实验室(Molnar et al., 1993; Chung et al., 2005; Yin, 2006)。形成于喜马拉雅造山带中的造山型矿床具有相对年轻的成矿年龄且很少遭受后期的地质作用叠加改造,使之成为研究造山作用过程与伴随的造山型矿床成矿流体来源与矿床成因的理想场所。本文中我们选取了喜马拉雅造山带中两个典型的造山型矿床:马扎拉Au-Sb矿床和沙拉岗Sb矿床(Zhai et al., 2014),对与成矿相关矿物中流体包裹体的He、Ar同位素组成进行了分析,并结合该成矿带中马攸木、邦布等其它典型造山型金矿床的He-Ar同位素资料,对成矿流体的来源与幔源流体对造山型Au-Sb矿床的成矿意义进行了讨论。

1 区域地质与成矿背景

喜马拉雅造山带北部以印度板块与欧亚板块之间的印度河-雅鲁藏布江缝合线(ITS)为界,自北向南划分为特提斯喜马拉雅、高喜马拉雅、低喜马拉雅和亚喜马拉雅四个带(图 1)。在印度河-雅鲁藏布江缝合线(ITS)以北的拉萨地体中发育一系列新生代的形成于后碰撞拉张构造环境的斑岩型Cu-Mo-Au矿床、矽卡岩型Cu多金属矿床以及与花岗岩有关的脉状Ag-Pb-Zn矿床,形成冈底斯多金属成矿带(Hou and Cook, 2009; Hou et al., 2009)。在印度河-雅鲁藏布江缝合线(ITS)以南、藏南拆离系断裂以北的特提斯喜马拉雅带中,发育超过50个Au、Au-Sb和Sb矿床,形成典型的藏南Au-Sb成矿带(西藏自治区地质调查院, 2003; 聂凤军等, 2005; Zhai et al., 2014)。典型的Au矿床包括马攸木(Jiang et al., 2009)、邦布(Au >20t)(Sun et al., 2016)、折木朗(Zhai et al., 2014)和查拉普(郑有业等, 2007),Au-Sb矿床包括马扎拉(王军和张钧, 2001; Zhai et al., 2014)、哲古(Yang et al., 2009),Sb矿床包括沙拉岗(Zhai et al., 2014)和车穷卓布(聂凤军等, 2005)。虽然对于这些矿床的成因类型已经提出了浅成低温热液型或卡林型的观点,Zhai et al. (2014)Sun et al. (2016)认为邦布Au矿、折木朗Au矿、马扎拉Au-Sb矿和沙拉岗Sb矿等这些矿床都是典型的浅带中的造山型矿床。

①  西藏自治区地质调查院. 2003.西藏自治区江孜-隆子金、锑多金属成矿带资源调查评价地质报告. 1-186

图 1 藏南金锑成矿带区域地质图(据西藏自治区地质调查院, 2003;Yin, 2006改编) ITS-印度河-雅鲁藏布江缝合带;MBT-主边界逆冲断层;MCT-主中央逆冲断裂;STD-藏南拆离断层;TH-特提斯喜马拉雅;HH-高喜马拉雅;LH-低喜马拉雅;SH-亚喜马拉雅 Fig. 1 Geological map of southern Tibet gold-antimony metallogenic belt (modified after Yin, 2006) ITS-Indus-Tsangpo Suture fault; MBT-Main Boundary Thrust fault; MCT-Main Central Thrust fault; STD-South Tibet Detachment Fault; TH-Tethyan Himalayan; HH-High Himalayan; LH-Lower Himalayan; SH-Sub-Himalayan

在特提斯喜马拉雅造山带中发育一系列褶皱和逆冲断裂,组成特提斯喜马拉雅褶皱-逆冲断裂带,这些褶皱和逆冲断裂又被晚期近南北向的张性断裂所切割。特提斯喜马拉雅带的中部自西向东发育一系列的穹隆构造,如也拉香波、然巴、康马穹隆等(图 1)。在这些穹隆的核部出露前寒武系中级到高级变质的岩石构成变质核杂岩,核杂岩的中部又有喜马拉雅期的浅色花岗岩侵入。穹隆构造的外部主要由古生代到中生代的浅变质到未变质的沉积地层组成,这些地层与变质杂岩之间以低角度的拆离断层为界。

根据1:20万及1:25万区域地质资料(陕西省地矿局区域地质调查大队, 1994; 云南省地质调查院, 2004; 中国地质大学(北京)地质调查研究院, 2005),前寒武系的地层主要由片岩、片麻岩、混合岩和变粒岩组成,主要分布在藏南拆离系断裂以南以及穹隆构造核部的变质核杂岩中。奥陶系地层由石英大理岩和条带状大理岩组成,小范围分布在康马穹隆的周边;二叠系为大陆架沉积,主要由砾岩、砂岩、生物碎屑大理岩和粉砂质板岩组成,主要围绕康马穹隆分布;下中三叠统地层由变质砂岩、含黄铁矿的炭质板岩和粉砂质板岩组成,厚度超过5000m;上三叠统地层由变质砂岩、炭质板岩、粉砂质板岩、千枚岩和片岩组成,上部夹变质玄武岩和安山岩,厚度大于8400m;侏罗系地层总厚度超过9000m,主要由变质砂岩、变质粉砂岩、泥晶灰岩和砂岩夹玄武岩和英安岩组成;白垩系地层主要由泥晶灰岩、泥岩、粉砂岩、砂岩、硅质岩和泥灰岩夹玄武岩组成,厚度大于3200m。中生界地层主要为形成于被动大陆边缘的浊流相沉积和浅海大陆架沉积,遭受了喜马拉雅期不同程度的变质作用,三叠系地层变质程度较深为绿片岩相,白垩系地层几乎无变质。现在一般认为印度大陆与欧亚大陆的碰撞具穿时性,在西部的巴基斯坦,最初的碰撞大约发生在65Ma(Klootwijk et al., 1991, 1992),超高压变质的峰期年龄为47~46Ma(Smith et al., 1994; Foster et al., 2002),超高压变质岩折返后发生绿片岩相退变质的时代为46Ma到40Ma(Tonarini et al., 1993; Treloar et al., 2003)。特提斯喜马拉雅造山带内出露的侵入岩主要为喜马拉雅期的浅色花岗岩,它们分布于变质核杂岩的核部,具有高的87Sr/86Sr比值,为泥质沉积物深熔作用形成,年龄为35~12Ma(Harrison et al., 1997; Searle et al., 1997; Searle and Godin, 2003; Aoya et al., 2005; Zeng et al., 2009)。喜马拉雅期的近东西向分布的基性辉长岩、中性闪长岩和石英闪长岩脉或岩墙侵入于中生界的地层中(云南省地质调查院, 2004; 中国地质大学(北京)地质调查研究院, 2005)。

①  陕西省地矿局区域地质调查大队. 1994.西藏1:20万浪卡子幅、泽当幅区域地质调查报告. 1-293

②  云南省地质调查院. 2004.西藏1:25万隆子县幅区域地质调查报告. 1-270

③  中国地质大学(北京)地质调查研究院. 2005.西藏1:25万江孜幅、亚东幅区域地质调查报告. 1-459

在藏南Au-Sb成矿带中,Au矿床主要产于三叠系的地层中,砂金矿床也分布于三叠系地层出露区,而Au-Sb矿床产于侏罗系地层中,锑矿床产于侏罗系和白垩系的地层与岩石中(图 1),显示出成矿作用具有分带性,相对成矿温度高的Au矿床产于下部相对较老的地层中,Sb矿床产于上部较年轻的地层中,而Au-Sb矿床的产出层位介于两者之间。同时侵入于中生界地层中的闪长岩脉和基性岩体、岩脉也是这些矿床的赋矿围岩。这些矿床均以脉状的形式产于近东西向的断裂、裂隙中,或产于由近东西向主断裂派生的次一级断裂构造中(Zhai et al., 2014)。

2 矿床地质与流体包裹体特征 2.1 马扎拉Au-Sb矿床

矿床产于下中侏罗统陆热组由板岩夹变质砂岩、变质粉砂岩和石灰岩组成的地层中。矿区共发现39条含金辉锑矿石英脉矿体,矿脉主要产于北西向、东西向和北东向的张性裂隙中。单个矿脉长10~400m,最厚可达2.5m(西藏地矿厅第二地质大队, 2000)。已发现的近地表矿体目前已被采完,8号矿体是正在地下开采的矿体,本文的研究样品主要采于此矿体。另外在矿区赋矿地层中存在有10~30cm厚的与地层呈整合关系的由石英、碳酸盐、黄铁矿和毒砂组成的沉积层状富硫化物层,这些富硫化物层又被后期的含金辉锑矿石英脉叠加(图 2a)。

①  西藏地矿厅第二地质大队. 2000.西藏自治区措美县马扎拉矿区金锑矿普查报告. 1-51

图 2 马扎拉金锑矿床和沙拉岗锑矿床的典型矿石照片 (a)马扎拉金锑矿区赋矿围岩中层状硫化物,与地层呈整合接触关系,后期含金辉锑矿石英脉穿插在其中;(b)马扎拉金锑矿中含金辉锑矿石英脉矿石;(c)沙拉岗锑矿中产于辉长岩体中石英辉锑矿脉,显示有强烈围岩蚀变作用;(d)沙拉岗锑矿中石英(Qtz)辉锑矿(Stb)矿石 Fig. 2 Photographs of typical ores from Mazhala gold-antimony and Shalagang antimony deposits (a) sedimentary sulfide layer in conformable contact with metasiltstone and slate, and overprinted by gold- and stibnite-bearing quartz vein; (b) gold- and stibnite-bearing quartz vein ore of Mazhala; (c) quartz stibnite vein in gabbro of Shalagang; (d) quartz stibnite ore of Shalagang. Qtz-quartz; Stb-stibnite

矿石中的主要矿石矿物有自然金、辉锑矿、黄铁矿、毒砂、褐铁矿,自然金主要以包裹体的形式存在于石英、硫化物中或矿物颗粒间;脉石矿物主要有石英、方解石、绿泥石、绿帘石、绢云母和叶腊石,单个矿体Sb平均品位为25.6%~67.1%,伴生Au的品位为1.4×10-6~49.49×10-6(西藏地矿厅第二地质大队, 2000)。围岩蚀变有碳酸盐化、黄铁矿化、叶腊石化、绿泥石化、绢云母化以及表生的褐铁矿化。金锑热液成矿作用可划分为两个阶段,早期主要形成石英、方解石和自然金,晚期的辉锑矿和自然金充填在早期矿物的空隙中(图 2b)。

2.2 沙拉岗Sb矿床

矿体主要赋存于下白垩统多久组地层中,多久组自下而上划分为四个岩性段:依次为岩屑砂岩、粉砂岩夹石英砂岩段,泥灰岩、泥质岩夹含泥硅质岩段,石英长石砂岩夹泥岩段和泥灰岩、泥质岩段。在矿区7号矿脉下部出露喜马拉雅期的辉长岩体和闪长岩体。矿床由12个矿体组成,矿体呈脉状产于近东西向和北东向的断裂裂隙中,长40~350m,厚0.5~3m。矿体主要由辉锑矿石英脉、网脉及角砾岩矿石组成(图 2c, d)。

矿石矿物主要有辉锑矿、辰砂、锑华和褐铁矿,少量的黄铁矿、毒砂和雄黄,其中黄铁矿和毒砂主要出现在蚀变的断层角砾岩中。脉石矿物有石英、方解石、绢云母、绿泥石和绿帘石。单个矿体的锑平均品位为1.98%~29.0%,沉积岩中的围岩蚀变有硅化、碳酸盐化和绢云母化,在辉长岩和闪长岩体中形成的围岩蚀变有碳酸盐化、绿泥石化、绿帘石化、黄铁矿化和表生褐铁矿化。锑成矿作用可划分为两个连续的阶段,早期形成石英和少量浸染状的辉锑矿和辰砂,晚期形成的石英和针状、长板状的辉锑矿充填在早期阶段形成石英的空洞和孔隙中。

2.3 流体包裹体特征

通过流体包裹体显微岩相学观察、显微测温及激光拉曼光谱分析,在马扎拉Au-Sb矿和沙拉岗Sb矿床成矿阶段形成的脉石矿物石英和矿石矿物辉锑矿中同时鉴定出三种类型的原生和假次生流体包裹体。Ⅰ型:为水溶液包裹体,在室温下为一相或气液两相(图 3a, b);Ⅱ型:为CO2-水溶液包裹体,包括室温下一相CO2包裹体和两相或三相CO2-水溶液包裹体(图 3c, d),后者含CO2相体积不同,CO2相体积 < 50%时均一到水溶液相,CO2相体积>50%时均一到CO2相;激光拉曼光谱分析显示CO2相含少量的CH4和N2。Ⅲ型:为有机包裹体,室温下为气液两相或一相(图 3e),液相为浅绿色或淡绿色,部分包裹体具有荧光效应,激光拉曼光谱分析显示主要由烷烃和多环芳香烃组成(图 3f)。三类包裹体以前两类为主,Ⅲ型有机包裹体很少。显微测温显示马扎拉Au-Sb矿床中CO2-水溶液包裹体的CO2相冰点温度为-59.5~-56.6℃,全均一温度为170~320℃,水溶液包裹体的盐度为2.5%~4.1% NaCleqv,均一温度为160~280℃;沙拉岗Sb矿中CO2-水溶液包裹体的CO2相冰点温度为-61.2~-57.0℃,全均一温度主要为170~290℃,水溶液包裹体的盐度为4.1% ~6.4% NaCleqv,均一温度为140~240℃(Zhai et al., 2014)。藏南马扎拉Au-Sb矿床和沙拉岗锑矿床具有相似的成矿流体化学组成,为低盐度含有机质的H2O-CO2-CH4-N2流体。马扎拉和沙拉岗的石英和辉锑矿中同时发现以上三类流体包裹体共生指示成矿作用过程中发生了流体的不混溶作用,水溶液包裹体的均一温度可以代表成矿温度,以此温度估算的成矿深度马扎拉为3~5km,沙拉岗为2~4km(Zhai et al., 2014),可以代表成矿时的压力(Ramboz et al., 1982)。这一成矿压力值也与两个矿床实际的赋矿地层的层位和厚度相一致。

图 3 马扎拉金锑矿床和沙拉岗锑矿床中的典型流体包裹体显微照片 (a)沙拉岗锑矿床石英中的气液二相水溶液包裹体;(b)沙拉岗锑矿床辉锑矿中的液相和气液二相水溶液包裹体;(c)马扎拉金锑矿石英中的三相含CO2包裹体;(d)马扎拉金锑矿辉锑矿中的三相含CO2包裹体;(e)马扎拉金锑矿床石英中的气液二相有机包裹体;(f)石英中有机包裹体激光拉曼光谱图,464cm-1和127cm-1是主矿物石英的特征峰,2800~3000cm-1是烷烃类的特征峰,3069cm-1和1609cm-1是多环芳香烃的特征峰,600~1600cm-1的峰是烷烃和多环芳香烃的混合峰(Zhai et al., 2014).直线比例尺为20μm Fig. 3 Photomicrographs of fluid inclusion from Mazhala and Shalagang deposits (a) two-phase aqueous inclusions in quartz from Shalagang; (b) one-phase and two-phase aqueous inclusions in stibnite from Shalagang; (c) three-phase aqueous-carbonic inclusions in quartz from Mazhala; (d) three-phase aqueous-carbonic inclusions in stibnite from Mazhala; (e) isolated Two-phase hydrocarbon inclusion in quartz from Mazhala; (f) Laser Raman spectra of liquid-phase hydrocarbon in two-phase hydrocarbon inclusions. The peaks at 2800 to 3000cm-1 and about 3069cm-1 and 1609cm-1 are the characteristic peaks of alkanes, and polycyclic aromatic hydrocarbons, the peaks at about 600 to 1600cm-1 are mixed peaks of alkanes and polycyclic aromatic hydrocarbons (Zhai et al., 2014). The scale bar is 20μm
3 He-Ar同位素分析 3.1 样品特征与分析方法

在马扎拉Au-Sb矿床中,矿脉中的辉锑矿和石英呈半自形到自形状晶体,石英晶体可达1~2cm长,针状或长板状的辉锑矿长可达2~3cm(图 2b)。在沉积的层状硫化物中的黄铁矿和毒砂多呈自形晶,颗粒直径0.3~1.0mm。在马扎拉Au-Sb矿中共选取了10个He-Ar同位素分析样品,其中6个辉锑矿和1个石英样品来自含金辉锑矿石英脉,3个黄铁矿样品来自沉积地层中的层状硫化物。在沙拉岗Sb矿床中,辉锑矿石英脉中的辉锑矿和石英也为自形和半自形晶,单晶体最长可达2~5cm(图 2d)。9个He-Ar同位素分析样品均为辉锑矿。两个矿床中的样品均采自地下开采的坑道中,详细的样品特征见表 1

表 1 He-Ar同位素分析样品特征表 Table 1 Location and brief descriptions of the samples used for He-Ar isotope analyze

所有He-Ar同位素分析样品先破碎到0.3~1.0mm,然后在双目显微镜下挑纯,以除去分析矿物中所含的杂质和包裹体矿物。He、Ar同位素分析在中国科学院油气资源研究重点实验室完成,测试仪器为英国Micromass公司生产的MM5400型稀有气体同位素质谱仪,实验条件:发射电流It4=800μA,It40=200μA,高压为9.000kV。实验流程:将样品称重(约0.2~0.5g)后用铝箔包好置于样品台中,随后密封抽真空,当压力达1×10-5Pa时,加热样品到130℃并烘烤10h以上,以除去样品表面吸附和次生包裹体中的气体,后用电阻炉加热熔样坩锅中的样品至1600℃,释放出的气体被扩散至超高真空气体净化系统。先把样品释放出的气体送入高温海绵钛炉去除活性气体比如O2、N2、CO2、SO2等,然后进入ZrA吸气泵去除H2,随后用液氮温度下的活性碳冷阱将剩余的稀有气体分离为He+Ne和Ar+Ke+Xe两部分,并分别送进质谱计测定其同位素组成。分析标样为采自兰州市皋兰山顶的大气(AIRLZ2003)。所有的分析结果均进行了标准校准和热本底校正。检测仪器的热本底(1600℃)为:4He=2.46×10-10(cm3STP),20Ne=4.08×10-10(cm3STP),40Ar=1.39×10-8(cm3STP),84Kr=3.07×10-12(cm3STP),132Xe=1.26×10-13(cm3STP)。热本底中各种稀有气体的同位素组成接近于空气值。详细的测定流程参见相关的文献(叶先仁等, 2001, 2007)。

为了定量评估石英中原位放射性成因的He对成矿流体的贡献,我们还对马扎拉金锑矿和沙拉岗锑矿床中石英样品的Th和U的含量进行了分析,测试工作在广州澳实矿物实验室完成,样品用酸溶方法消解、ICP-MS方法测定。

3.2 结果与讨论

马扎拉Au-Sb矿床和沙拉岗Sb矿床He-Ar同位素及石英样品的Th、U分析结果如表 2。马扎拉Au-Sb矿床辉锑矿石英脉矿石中辉锑矿的4He含量为42×10-7~133.3×10-7cm3STP,40Ar/36Ar比值具有比较大的变化范围,介于346.8~4770.1之间,与辉锑矿共生石英的4He含量高,为300.6×10-7cm3STP,40Ar/36Ar比值为2689.1;沉积层状硫化物中的3个黄铁矿样品的4He含量变化于36.4×10-7~786×10-7cm3STP,40Ar/36Ar比值变化也大,为349.4~1267.7;辉锑矿石英脉中的辉锑矿和石英样品以及沉积层状硫化物中的黄铁矿均具有低的3He/4He比值,分别为0.01382~0.05642Ra(Ra为大气的3He/4He比值,为1.399×10-6)和0.03353~0.08744Ra。

表 2 He-Ar同位素及石英样品Th、U分析结果表 Table 2 He-Ar abundance, isotopic compositions and Th, U concentration of quartz for samples from Mazhala and Shalagang deposits

沙拉岗Sb矿床中辉锑矿样品的4He含量介于10.73×10-7~146×10-7cm3STP,40Ar/36Ar比值变化很小,为340.8~537.5;大部分样品的3He/4He比值小且变化范围也小,为0.02385~0.05805Ra,其中一个样品其赋矿围岩为辉长岩,其3He/4He比值为0.11488Ra,略高于地壳值的上限(0.1Ra)(Andrews, 1985)。

马扎拉Au-Sb矿床和沙拉岗Sb矿床中两个石英脉样品的Th、U分析结果分别为0.2×10-6、0.11×10-6和0.01×10-6、< 0.1×10-6(表 2)。

3.3 矿物中稀有气体的存在形式及捕获后的变化

在矿物中稀有气体He、Ar主要有三种存在形式,一是赋存于矿物的流体包裹体中,二是矿物晶格或流体包裹体中存在的Th、U、K等元素衰变产生的4He和40Ar,三是矿物中愈合的裂隙中或表面吸附的来自大气的组分。已有的矿物中稀有气体研究的大量实例证实,热液矿床形成的硫化物等矿物中的稀有气体主要存在于其中的流体包裹体中(Turner and Stuart, 1992; Stuart et al., 1995; Hu et al., 1998, 2009; Burnard et al., 1999; Burnard and Polya, 2004)。而矿物形成以后由于稀有气体的扩散丢失或加入,或因矿物中放射性成因的稀有气体的累积增加以及核反应或宇宙射线成因的3He的加入等原因,其稀有气体同位素和丰度也可能改变。

根据Kurz (1986)的研究,宇宙射线成因的3He只产生在近地表 1.5m的范围内,而本研究的样品均采自矿区不同中段的地下坑道中,可以排除宇宙射线成因的He。同时核反应6Li(n, α)3H(β)3He也可以产生的3He,反应所需的α粒子来自Th、U的衰变反应以及由此产生的子同位素的衰变反应,而同时Th、U的衰变反应又是4He的主要来源,因此矿物或岩石形成后其中3He/4He的比值的变化主要取决于Li及Th、U的含量(Mamyrin and Tolstikhin, 1984)。本文所分析的黄铁矿、辉锑矿和石英均为晶格中不含Li及Th、U的矿物,且马扎拉Au-Sb矿和沙拉岗Sb矿的成矿年龄小(< 45Ma, Zhai et al., 2014),样品中由核反应产生的3He和Th、U衰变产生的4He的产率很低,可以忽略不计(Kendrick and Burnard, 2013; Pettke et al., 1997; Burnard et al., 1999)。但文本用熔融法测定He、Ar同位素含量和比值,样品晶格或样品中固体包裹体中原位产生的4He与流体包裹体中的He同时释放出来,有可能影响流体包裹体捕获时流体的原始同位素比值。为了定量评估原位放射性成因的4He影响,我们对马扎拉Au-Sb矿床和沙拉岗Sb矿床中的两个石英样品进行了Th、U含量分析,并根据计算原位放射性成因4He的公式(4He atoms/g·yr=(3.115×106+1.272×105)[U]+7.71×105[Th], Ballentine and Burnard, 2002),以最大成矿年龄45Ma计算得马扎拉和沙拉岗二个石英样品原位产生的放射性成因4He为8.4×10-13atoms/g和0.6×10-13atoms/g,与样品的实际含量相比(表 2)完全可以忽略不计。而黄铁矿、毒砂及自然金等矿物对He具有良好的保存能力,即使地质历史时期经历了107~109年的地质样品(Turner and Stuart, 1992; Kendrick and Burnard, 2013),如形成于晚古生代的葡萄牙PanasqueiRa钨铜锡矿床和新疆阿希金矿床、中生代的粤北瑶玲-梅子窝钨矿中的黄铁矿等硫化物保存了其形成时的He同位素特征,矿物形成后基本上没有He丢失(Burnard and Polya, 2004; 翟伟等, 2006, 2012)。虽然石英不被认为是一个很好的稀有气体保存矿物,但一般认为石英中He的扩散丢失不会引起同位素比值的变化,除非丢失量达到70%以上时会引起3He/4He的变化(Stuart et al., 1994; Kendrick et al., 2011)。本文研究样品中石英的4He含量与其它样品的一致,甚至略高于其它样品;且在4He-3He/4He图中(图 4),3He/4He的比值并没有随4He含量的变化而发生变化,也显示流体包裹体捕获后并没有发生不同程度的He的丢失或原位放射成矿He的加入。

图 4 4He-3He/4He (Ra)关系图 Fig. 4 Plot of 4He vs. 3He/4He (Ra)

与流体包裹体中捕获的大量Ar相比,样品中原位放射性同位素产生的40Ar很少,且矿物中Ar的扩散系数更低(Burnard and Polya, 2004; Kendrick and Burnard, 2013),其形成后原位产生和扩散丢失的Ar可以忽略不计,因而表 2中的He-Ar同位素测量结果可以代表流体包裹体捕获时的同位素组成。

3.4 He、Ar同位素对成矿流体来源的制约

由于稀有气体在大气圈、地壳岩石和地幔岩石中具有明显不同的He、Ar同位素组成,所以被广泛用于示踪成矿流体的来源。(1)大气或大气饱和水(如天水,海水,沉积建造水):大气圈具有稳定的He-Ar同位素组成,其3He/4He=1.399×10-640Ar/36Ar=295.5。而大气饱和水在一定的温度、压力条件下与大气处于平衡,与大气具有相似的同位素组成。由于稀有气体He在空气中的含量低,且在水溶液中的溶解度是稀有气体中最低的,所以饱和大气水中He的含量更低,He/Ar≈1×10-4(Burnard et al., 1999; Simmons et al., 1987)。而由于Ar在大气中的含量相对高,岩石中矿物对Ar的封闭温度远高于He (McDougall and Harrison, 1988),所以浅层地下水中几乎不含放射性成因的Ar,具有大气Ar的同位素组成特征;而含水层岩石中U、Th等衰变产生的放射性成因4He扩散进入地下水或地热流体,来源于大气水或海水的地质流体其3He/4He低于大气值,其4He含量高于大气饱和水,所以浅层地下水或近地表低温流体具有比大气值低的3He/4He比值和与大气值相似的40Ar/36Ar比值,显示改造型大气饱和水特征(Ballentine and Burnard, 2002)。(2)幔源流体:来自大陆岩石圈地幔的流体其3He/4He为6~8Ra(Ra为大气值),大洋岩石圈地幔流体3He/4He为7~9Ra;幔源成因的Ar以放射性成因的40Ar*为主,40Ar/36Ar>40000 (Porcelli et al., 1992; Patterson et al., 1994; Reid and GRaham, 1996)。(3)壳源流体:由于地壳岩石中大离子亲石元素的含量高,这些元素产生的放射性成因和核成因的He和Ar,其40Ar/36Ar≥45000 (Fontes et al., 1991),3He/4He≤0.1Ra (Andrews, 1985),所以壳源成因的变质流体或岩浆流体具有与地壳岩石相似的He、Ar同位素组成。

3.4.1 低3He/4He比值与壳源流体成矿

马扎拉Au-Sb矿床成矿阶段形成的辉锑矿石英脉中的辉锑矿和石英样品均具有低的3He/4He比值,为0.01382~0.05642Ra,与赋矿地层中沉积层状硫化物中的黄铁矿的3He/4He比值0.03353~0.08744Ra相似,均小于地壳岩石的上限0.1Ra (Andrews, 1985)(图 5)显示为壳源流体成矿,并没有幔源流体的参与。而根据流体包裹体资料,成矿流体为低盐度含有机质的H2O-CO2-CH4-N2流体(Zhai et al., 2014),排除了壳源岩浆流体参与成矿的可能,壳源流体主要为变质流体。

图 5 40Ar/36Ar-3He/4He (Ra)关系图 壳源及幔源He据Andrews, 1985; Stuart et al., 1994; 邦布金矿床数据来自Sun et al., 2016 Fig. 5 Plot of 40Ar/36Ar vs. 3He/4He (Ra) Crustal and mantle He from Andrews, 1985; Stuart et al., 1994; Data of Bangbu gold deposit from Sun et al., 2016

沙拉岗Sb矿成矿阶段形成的辉锑矿样品大部分也具有低的3He/4He比值且变化范围小,为0.02385~0.05805Ra,显示为壳源流体成矿,没有幔源流体的参与;其中1个样品(编号:09SL-Ⅶ-2)其赋矿围岩为辉长岩(图 2c),其3He/4He比值为0.11488Ra,略高于地壳值的上限(0.1Ra)(Andrews, 1985),显示有幔源He的混入(图 5)。由于He在水中的溶解度较低且其在大气中的含量也很低,所以改造型饱和大气水的3He/36Ar一般低于1×10-7 (Burnard and Polya, 2004),对成矿流体的He同位素比值影响较小,可以认为成矿流体中的He主要来自地壳和地幔。所分析样品的F4He值(F4He=(4He/36Ar)样品/(4He/36Ar)大气)最小为3920,也说明样品中的He至少是大气值的3920倍,成矿流体中大气He的贡献可以忽略不计。根据壳-幔二元体系的He含量计算公式(Ballentine and Burnard, 2002):

(3He/4He)地幔值取大陆岩石圈的平均值6.5Ra,(3He/4He)地壳值取地壳岩石的平均产率0.02Ra (Stuart et al., 1995),计算得该样品幔源He含量为1.4%,其余样品的幔源氦的含量均小于1.0%,幔源He对成矿的贡献可以忽略不计。由于辉长岩为来自于地幔岩浆的结晶作用形成,因而其具有相对高的3He/4He比值,辉锑矿石英脉形成时含矿热水溶液与辉长岩有强烈的水/岩蚀变反应(图 2c),而使成矿流体的3He/4He比值升高,因而矿脉中的辉锑矿具有相对较高的3He/4He比值。但水/岩应并没有使壳源流体的He同位素比值有大的改变,这种岩水/反应引起的He同位素比例变化很小,可以忽略。

3.4.2 Ar同位素与He、Ar分异

马扎拉Au-Sb矿床辉锑矿石英脉中辉锑矿的40Ar/36Ar比值变化大,在300.6~4770.1之间,介于大气氩与壳源放射性成因氩之间,沉积地层中的黄铁矿40Ar/36Ar比值变化也大,介于349.4~1267.7之间(表 2)。放射性成因40Ar*的含量可由以下公式(Ballentine and Burnard, 2002)确定:

计算得到马扎拉Au-Sb矿样品中放射性成因40Ar*的含量为1.7%~93.8% (表 2),相应大气Ar的含量为7.3%~98.3%,显示出富含大气氩和壳源He的改造型饱和大气水和富含放射性成因的壳源Ar的壳源流体混合成矿的特征(图 5),而这种壳源流体正是前述的变质流体。赋矿地层中沉积黄铁矿中的放射性成因40Ar*的含量为15.4%~76.7%,由于赋矿地层遭受了喜马拉雅造山期不同程度的绿片岩相变质作用,也显示为壳源改造型饱和大气水和变质流体共同作用的结果。

而沙拉岗Sb矿床矿脉中辉锑矿的40Ar/36Ar比值变化小,在340.8~537.5之间,放射性成因40Ar*的含量为13.3%~45.0% (表 2),相应大气Ar的含量为55.0%~86.7%,显示成矿流体以壳源改造型饱和大气成矿为主,并有富含放射性成因40Ar*壳源流体的混入(图 5)。而沙拉岗Sb矿成矿流体为低盐度含有机质的H2O-CO2-CH4-N2流体,说明壳源流体也为变质流体。

马扎拉Au-Sb矿床中含金辉锑矿石英脉成矿流体的40Ar*/4He比值为0.0009~0.2228,沉积黄铁矿为0.03~0.0567;沙拉岗Sb矿辉锑矿石英脉成矿流体的40Ar*/4He值为0.0332~0.2264;而岩石圈地幔的40Ar*/4He=0.5,3He/4He=6~9Ra,地壳岩石40Ar*/4He=0.2,3He/4He < 0.1Ra (Andrews, 1985),在40Ar*/4He-3He/4He图上(图 6),两个矿床的样品投影点均在壳源区,且40Ar*/4He值位于壳源岩石产率的平均值与远低于地壳岩石产率的端元之间分布,也说明在马扎拉Au-Sb矿和沙拉岗Sb矿床中,除壳源成因的变质流体之外,有低40Ar*/4He比值的改造型饱和大气水的加入。其主要原因是地壳岩石中的矿物对Ar的封闭温度高于He,在低温条件下优先扩散丢失He,因而地下水将优先从含水层岩石中获得He。因为Ar主要赋存于含钾的矿物云母及钾长石中,在温度低于200℃条件下,Ar将保存于钾长石中;黑云母对Ar的封闭温度约为300℃, 白云母为350℃ (McDougall and Harrison, 1988),在低于此温度条件下含钾矿物对Ar基本是封闭的,而He则是活动的;此外He在大气中的丰度远低于Ar,且在饱和大气水的含量更低,因而循环的大气降水优先从含水层岩石中获的He (Stuart et al., 1995; 翟伟等, 2006, 2012),其He同位素显示为壳源特征,而Ar则基本继承了大气Ar的特征。根据马扎拉Au-Sb矿床成矿流体的氢、氧同位素分析资料(Zhai et al., 2014),其成矿流体的δDH2O为-119.0‰~-72.7‰,δ18OH2O为7.5‰~16.2‰,显示成矿流体为变质水与大气降水的混合流体;而沙拉岗Sb矿床中成矿流体的δDH2O为-173.4‰~-139.2‰,δ18OH2O为7.5‰~12.3‰,成矿流体以循环的大气降水为主,并有变质流体的加入。这与He-Ar同位素组成特征所指示的成矿流体来源完全一致。

图 6 40Ar*/4He-3He/4He (Ra)关系图 壳源与幔源He以及地壳与地幔岩石的He、Ar同位素产率据Andrews, 1985; Stuart et al., 1994 Fig. 6 Plot of 40Ar*/4He vs. 3He/4He (Ra) Crustal and mantle He and He, Ar isotope production rations from Andrews, 1985; Stuart et al., 1994
3.5 与喜马拉雅造山带中及其它造山型Au矿床对比

喜马拉雅造山带形成过程中伴随着强烈的壳-幔相互作用,如印度板块与欧亚板块碰撞前新特提斯洋板片的平板俯冲,碰撞后板片的回转拆沉、岩石圈的加厚和拆沉去根作用,在这一构造作用过程中同时有强烈的幔源钾质和超钾质岩浆作用(Chung et al., 2005; Hou and Cook, 2009),那么在这一过程中是否有幔源流体参与造山型Au-Sb矿床的成矿呢?本文研究证实赋存于喜马拉雅造山带藏南金-锑成矿带浅部的沙拉岗Sb矿床和马扎拉Au-Sb矿床成矿流体中没有地幔流体参与,成矿流体主要为造山作用同期的变质流体和循环的改造型饱和大气降水。而赋存于藏南Au-Sb成矿带下部的金矿床中均有少量地幔流体参与成矿,如邦布大型金矿床中黄铁矿的3He/4He比值0.174~1.010Ra,显示成矿流体中有2.7%~16.7%幔源He的加入(Sun et al., 2016)(图 5);折木朗金矿床含金石英脉中石英样品的3He/4He比值为0.052~0.454Ra,成矿流体中幔源He的比例占0.7%~7.5% (Zhou et al., 2014);查拉普金矿床含金石英脉中黄铁矿和石英样品的3He/4He比值0.01~1.32Ra;成矿流体中幔源挥发份的含量为0.1%~21.9% (张刚阳, 2012);藏南Au-Sb成矿带西段的马攸木大型金矿床中成矿阶段硫化物的3He/4He比值为0.0755~1.690Ra,也显示成矿流体中有一定量的幔源挥发份的加入(多吉等, 2009)。青藏高原东部的云南大坪造山型金矿床成矿期白钨矿中流体包裹体的3He/4He比值0.706~1.018Ra,成矿流体中也有幔源组份的参与(Sun et al., 2009)。

虽然对中亚南天山造山带中的超大型Muruntau(穆龙套)金矿床和Charmitan金矿床的成因存在争议,但这两个矿床成矿阶段硫化物中流体包裹体的3He/4He比值为0.02~0.4Ra,40Ar/36Ar比值为300~1200,显示成矿流体以改造型饱和大气水为主,并有少量幔源流体的加入(GRaupner et al., 2006, 2010);我国东部胶东地区的金矿床中黄铁矿的流体包裹体3He/4He比值0.43~2.36Ra,显示有一定量的幔源组份的加入(张连昌等, 2002);吉林夹皮沟金矿黄铁矿中流体包裹体的3He/4He比值为0.6~2.8Ra,40Ar/36Ar比值为1444~9805,成矿流体以幔源流体和大气降水为主(Zeng et al., 2014)。

根据Groves et al. (1998)提出的造山型矿床的垂直成矿分带模型,在5~6km以下,主要形成Au-As-Te的成矿,1~5km形成Au-Sb的成矿,而浅部主要形成Hg-Sb和Hg的成矿。在藏南Au-Sb成矿带Au矿床及砂金矿床主要产于三叠系地层中或三叠系地层分布区,而Au-Sb矿床主要产于侏罗系地层中,Sb矿床主要产于浅部的侏罗系和白垩系的地层与岩石中。形成于深部的Au矿床成矿流体中含有一定量的幔源挥发份,而形成于浅部的马扎拉Au-Sb矿床和沙拉岗Sb矿床成矿流体中均没有幔源流体的参与。在藏南喜马拉雅造山带中分布有一系列喜马拉雅期的中性、基性岩脉(图 1),这些岩脉大多形成于造山同期和后期的张性构造环境(云南省地质调查院, 2004; 中国地质大学(北京)地质调查研究院)。藏南Au-Sb成矿带金矿床中少量幔源挥发份的加入可能主要与这些中性、基性岩脉有关的幔源岩浆活动有关。

4 结论

(1) 藏南Au-Sb成矿带中典型的造山型马扎拉Au-Sb矿床和沙拉岗Sb矿床He-Ar同位素分析显示马扎拉Au-Sb矿中含金辉锑矿石英脉矿石中辉锑矿和石英以及赋矿地层中沉积层状硫化物黄铁矿中流体包裹体均具有低的3He/4He比值,分别为0.01382~0.05642Ra和0.03353~0.08744Ra;40Ar/36Ar比值具有比较大的变化范围,分别为346.8~4770.1和349.4~1267.7;沙拉岗Sb矿床中辉锑矿样品的3He/4He比值小且变化范围也小,为0.02385~0.05805Ra,其中赋矿围岩为辉长岩的一个样品3He/4He比值为0.11488Ra,略高于地壳值的上限0.1Ra;40Ar/36Ar比值变化小,为340.8~537.5。

(2) 与藏南Au-Sb成矿带中造山型Au矿床成矿流体中含一定量的幔源挥发份相对比,马扎拉Au-Sb矿床和沙拉岗Sb矿床成矿流体中均无幔源流体的参与,马扎拉Au-Sb矿床成矿流体为改造型饱和大气水与壳源变质流体形成的混合流体;沙拉岗Sb矿床成矿流体以改造型饱和大气水为主,并有壳源变质流体的加入。

致谢      野外工作中得到西藏地质矿产勘查开发局多吉院士的指导与帮助,马扎拉金锑矿和沙拉岗锑矿的地质技术人员对矿区地质调查和采样工作给予了大力协助;稀有气体同位素分析得到中国科学院兰州地质研究所叶先仁的帮助;中山大学海洋科学学院和地球科学与工程学院梁业恒、韩墨香、潘伟坚参与了野外工作;两位匿名审稿人对文章提出了非常有益的意见和修改建议;特此一并致谢!

参考文献
Andrews JN. 1985. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chemical Geology, 49(1-3): 339-351. DOI:10.1016/0009-2541(85)90166-4
Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33(11): 853-856. DOI:10.1130/G21806.1
Ballentine CJ and Burnard PG. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47(1): 481-538. DOI:10.2138/rmg.2002.47.12
Burnard PG, Hu R, Turner G and Bi XW. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595-1604. DOI:10.1016/S0016-7037(99)00108-8
Burnard PG and Polya DA. 2004. Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira. Geochimica et Cosmochimica Acta, 68(7): 1607-1615. DOI:10.1016/j.gca.2003.10.008
Cameron EM. 1988. Archean gold:Relation to granulite formation and redox zoning in the crust. Geology, 16(2): 109-112. DOI:10.1130/0091-7613(1988)016<0109:AGRTGF>2.3.CO;2
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196.
Duo J and Wen CQ, et al. 2009. Mayoumu Gold Deposit, Tibet. Beijing: Geological Publishing House: 1-218.
Fan HR, Hu FF, Yang JH, Shen K and Zhai MG. 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province. Acta Petrologica Sinica, 21(5): 1317-1328.
Fontes JC, Andrews JN and Walgenwitz F. 1991. Evaluation de la production naturelle in situ d'argon-36 via le chlore-36; implications geochimiques et geochronologiques; Evaluation of natural in situ production of argon-36 via chlorine-36; Geochemical and geochronological implications. Comptes Rendus de l'Academie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 313(6): 649-654.
Foster G, Vance D, Argles T and Harris N. 2002. The tertiary collision-related thermal history of the NW Himalaya. Journal of Metamorphic Geology, 20(9): 827-843. DOI:10.1046/j.1525-1314.2002.00410.x
Goldfarb RJ, Groves DI and Gardoll S. 2001. Orogenic gold and geologic time:A global synthesis. Ore Geology Reviews, 18(1-2): 1-75. DOI:10.1016/S0169-1368(01)00016-6
Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR and Gosselin P. 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology One Hundredth Anniversary Volume. Colorado: Society of Economic Geologists, 407-450
Graupner T, Niedermann S, Kempe U, Klemd R and Bechtel A. 2006. Origin of ore fluids in the Muruntau gold system:Constraints from noble gas, carbon isotope and halogen data. Geochimica et Cosmochimica Acta, 70(21): 5356-5370. DOI:10.1016/j.gca.2006.08.013
Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams CT and Klemd R. 2010. Multiple sources for mineralizing fluids in the Charmitan gold (-tungsten) mineralization (Uzbekistan). Mineralium Deposita, 45(7): 667-682. DOI:10.1007/s00126-010-0299-2
Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG and Robert F. 1998. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5): 7-27. DOI:10.1016/S0169-1368(97)00012-7
Groves DI, Goldfarb RJ, Robert F and Hart CJR. 2003. Gold deposits in metamorphic belts:Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98(1): 1-29.
Hagemann SG, Gebre-Mariam M and Groves DI. 1994. Surface-water influx in shallow-level Archean lode-gold deposits in Western, Australia. Geology, 22(12): 1067-1070. DOI:10.1130/0091-7613(1994)022<1067:SWIISL>2.3.CO;2
Harrison TM, Lover OM and Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25(10): 899-902. DOI:10.1130/0091-7613(1997)025<0899:NIITOO>2.3.CO;2
Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2-24. DOI:10.1016/j.oregeorev.2009.05.001
Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. DOI:10.1016/j.oregeorev.2008.09.006
Hu RZ, Burnard PG, Turner G and Bi XW. 1998. Helium and Argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan Province, China. Chemical Geology, 146(1-2): 55-63. DOI:10.1016/S0009-2541(98)00003-5
Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC and Zhao JH. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China:Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86-95. DOI:10.1016/j.chemgeo.2008.07.017
Jiang SH, Nie FJ, Hu P, Lai XR and Liu YF. 2009. Mayum:An orogenic gold deposit in Tibet, China. Ore Geology Reviews, 36(1-3): 160-173. DOI:10.1016/j.oregeorev.2009.03.006
Jiang XH, Fan HR, Hu FF, Yang KF, Lan TG, Zhen XL and Jin NH. 2011. Comparative studies on fluid inclusion in different depths and ore genesis of the Sanshandao gold deposit, Jiaodong Peninsula. Acta Petrologica Sinica, 27(5): 1327-1340.
Jiao QQ, Wang LX, Deng T, Xu DR, Chen GW, Yu DS, Ye TW and Gao YW. 2017. Origin of the ore-forming fluids and metals of the Hetai goldfield in Guangdong Province of South china:Constraints from C-H-O-S-Pb-He-Ar isotopes. Ore Geology Reviews, 88: 674-689. DOI:10.1016/j.oregeorev.2017.04.005
Kendrick MA, Honda M, Walshe J and Petersen K. 2011. Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization:Constraints from noble gases and halogens. Precambrian Research, 189(3-4): 313-327. DOI:10.1016/j.precamres.2011.07.015
Kendrick MA and Burnard P. 2013. Noble gases and halogens in fluid inclusions: A journey through the Earth's crust. In: Burnard P (ed.). The Noble Gases as Geochemical Tracers. Berlin: Springer, 319-369
Klootwijk CT, Gee JS, Peirce JW and Smith GM. 1991. Constraints on the India-Asia convergence: Paleomagnetic results from Ninetyeast Ridge. In: Weissel JK, Peirce JW, Taylor E and Alt J (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 777-884
Klootwijk CT, Gee JS, Peirce JW, Smith GM and McFadden PL. 1992. An early India-Asia contact:Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20(5): 395-398. DOI:10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2
Kurz MD. 1986. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochimica et Cosmochimica Acta, 50(12): 2855-2862. DOI:10.1016/0016-7037(86)90232-2
Lawrence DM, Treloar PJ, Rankin AH, Boyce A and Harbidge P. 2013. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa:Implications for multifluid sources in the generation of orogenic gold deposits. Economic Geology, 108(2): 229-257. DOI:10.2113/econgeo.108.2.229
Li XF, Wang CZ, Hua RM and Wei XL. 2010. Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit, South China. Mineralium Deposita, 45(6): 583-597. DOI:10.1007/s00126-010-0293-8
Mamyrin BA and Tolstikhin IN. 1984. Helium Isotopes in Nature. Amsterdam:Elsevier: 1-273.
McDougall I and Harrison TM. 1988. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford: Oxford University Press: 1-269.
Molnar P, England P and Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357-396. DOI:10.1029/93RG02030
Nesbitt BE, Murowchick JB and Muehlenbachs K. 1986. Dual origins of lode gold deposits in the Canadian Cordillera. Geology, 14(6): 506-509. DOI:10.1130/0091-7613(1986)14<506:DOOLGD>2.0.CO;2
Nesbitt BE, Muehlenbachs K and Murowchick JB. 1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. Economic Geology, 84(6): 1489-1506. DOI:10.2113/gsecongeo.84.6.1489
Nie FJ, Hu P, Jiang SH, Li ZQ, Liu Y and Zhou YZ. 2005. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in southern Tibet, China. Acta Geologica Sinica, 79(3): 373-385.
Patterson DB, Honda M and McDougall I. 1994. Noble gases in mafic phenocrysts and xenoliths from New Zealand. Geochimica et Cosmochimica Acta, 58(20): 4411-4427. DOI:10.1016/0016-7037(94)90344-1
Pettke T, Frei R, Kramers JD and Villa IM. 1997. Isotope systematics in vein gold from Brusson, Val d'Ayas (NW Italy) 3. (U+Th)He and KAr in native Au and its fluid inclusions. Chemical Geology, 135(3-4): 173-187. DOI:10.1016/S0009-2541(96)00114-3
Phillips GN and Powell R. 2009. Formation of gold deposits:Review and evaluation of the continuum model. Earth-Science Reviews, 94(1-4): 1-21. DOI:10.1016/j.earscirev.2009.02.002
Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R and Brewer TS. 2006. Sources of metals and fluids in orogenic gold deposits:Insights from the Otago and Alpine schists, New Zealand. Economic Geology, 101(8): 1525-1546. DOI:10.2113/gsecongeo.101.8.1525
Porcelli DR, O'Nions RK, Galer SJG, Cohen AS and Mattey DP. 1992. Isotopic relationships of volatile and lithophile trace elements in continental ultramafic xenoliths. Contributions to Mineralogy and Petrology, 110(4): 528-538. DOI:10.1007/BF00344086
Ramboz C, Pichavant M and Weisbrod A. 1982. Fluid immiscibility in natural processes:Use and misuse of fluid inclusion data:Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1-2): 29-48.
Reid MR and Graham DW. 1996. Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth and Planetary Science Letters, 144(1-2): 213-222. DOI:10.1016/0012-821X(96)00166-5
Rock NMS and Groves DI. 1988. Can lamprophyres resolve the genetic controversy over mesothermal gold deposits?. Geology, 16(6): 538-541. DOI:10.1130/0091-7613(1988)016<0538:CLRTGC>2.3.CO;2
Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW and Whitehouse MJ. 1997. Shisha Pangma Leucogranite, south Tibetan Himalaya:Field relations, geochemistry, age, origin, and emplacement. The Journal of Geology, 105(3): 295-318. DOI:10.1086/515924
Searle MP and Godin L. 2003. The South Tibetan detachment and the Manaslu leucogranite:A Structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5): 505-523. DOI:10.1086/376763
Simmons SF, Sawkins FJ and Schlutter DJ. 1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, 329(6138): 429-432. DOI:10.1038/329429a0
Smith HA, Chamberlain CP and Zeitler PK. 1994. Timing and duration of Himalayan metamorphism within the Indian plate, Northwest Himalaya, Pakistan. The Journal of Geology, 102(5): 493-508. DOI:10.1086/629694
So CS and Yun ST. 1997. Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea:Constraints on hydrothermal fluid geochemistry. Economic Geology, 92(1): 60-80. DOI:10.2113/gsecongeo.92.1.60
Stuart F, Turner G and Taylor RP. 1994. He-Ar isotope systematics of fluid inclusions: Resolving mantle and crustal contributions to hydrothermal fluids. In: Matsuda J (ed.). Noble Gas Geochemistry and Cosmochemistry. Tokyo: Terra Scientific Publishing Company, 261-277
Stuart FM, Burnard PG, Taylor RP and Turner G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochimica et Cosmochimica Acta, 59(22): 4663-4673. DOI:10.1016/0016-7037(95)00300-2
Sun XM, Zhang Y, Xiong DX, Sun WD, Shi GY, Zhai W and Wang SW. 2009. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235-249. DOI:10.1016/j.oregeorev.2009.05.002
Sun XM, Wei HX, Zhai W, Shi GY, Liang YH, Mo RW, Han MX, Yi JZ and Zhang XG. 2016. Fluid inclusion geochemistry and Ar-Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geology Reviews, 74: 196-210. DOI:10.1016/j.oregeorev.2015.11.021
Tonarini S, Villa IM, Oberli F, Meier M, Spencer DA, Pognante U and Ramsay JG. 1993. Eocene age of eclogite metamorphism in Pakistan Himalaya:Implications for India-Eurasia collision. Terra Nova, 5(1): 13-20. DOI:10.1111/ter.1993.5.issue-1
Treloar PJ, O'Brien PJ, Parrish RR and Khan MA. 2003. Exhumation of Early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. Journal of the Geological Society, 160: 367-376. DOI:10.1144/0016-764902-075
Turner G and Stuart F. 1992. Helium/heat ratios and deposition temperatures of sulphides from the ocean floor. Nature, 357(6379): 581-583. DOI:10.1038/357581a0
Wang J and Zhang J. 2001. Metallogenic characters and prospecting direction of the Mazhala gold-antimony deposit, Sourthern Tibet. Gold Geology, 7(3): 15-20.
Wang Q, Zhang PZ, Freymueller JT, Bilham R, Larson KM, Lai XA, You XZ, Niu ZJ, Wu JC, Li YX, Liu JN, Yang ZQ and Chen QZ. 2001. Present-day crustal deformation in China constrained by Global positioning system measurements. Science, 294(5542): 574-577. DOI:10.1126/science.1063647
Yang ZS, Hou ZQ, Meng XJ, Liu YC, Fei HC, Tian SQ and Gao W. 2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews, 36(1-3): 194-212. DOI:10.1016/j.oregeorev.2009.03.005
Yao FL, Liu LD, Kong QC and Gong RT. 1990. Gold Lodes in the Northwestern of the Jiaodong Peninsula. Changchun: Jilin Science & Technology Press: 1-234.
Ye XR, Wu MB and Sun ML. 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3): 174-178.
Ye XR, Tao MX, Yu CA and Zhang MJ. 2007. Helium and neon isotopic compositions in the ophiolites from the Yarlung Zangbo River, southwestern China:The information from deep mantle. Science in China (Series D), 50(6): 801-812. DOI:10.1007/s11430-007-0017-9
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1-131. DOI:10.1016/j.earscirev.2005.05.004
Zeng LS, Liu J, Gao L, Xia KJ and Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104-112. DOI:10.1007/s11434-008-0362-x
Zeng QD, Wang ZC, He HY, Wang YB, Zhang S and Liu JM. 2014. Multiple isotope composition (S, Pb, H, O, He, and Ar) and genetic implications for gold deposits in the Jiapigou gold belt, Northeast China. Mineralium Deposita, 49(1): 145-164. DOI:10.1007/s00126-013-0475-2
Zhai W, Sun XM, He XP, Su LW and Wu YL. 2006. Noble gas isotopic geochemistry of Axi gold deposit, and its metallogenic implications, Xinjiang, China. Acta Petrologica Sinica, 22(10): 2590-2596.
Zhai W, Sun XM, Wu YS, Sun YY, Hua RM and Ye XR. 2012. He-Ar isotope geochemistry of the Yaoling-Meiziwo tungsten deposit, North Guangdong Province:Constraints on Yanshanian crust-mantle interaction and metallogenesis in SE China. Chinese Science Bulletin, 57(10): 1150-1159. DOI:10.1007/s11434-011-4952-7
Zhai W, Sun XM, Yi JZ, Zhang XG, Mo RW, Zhou F, Wei HX and Zeng QG. 2014. Geology, geochemistry, and genesis of orogenic gold-antimony mineralization in the Himalayan orogen, South Tibet, China. Ore Geology Reviews, 58: 68-90. DOI:10.1016/j.oregeorev.2013.11.001
Zhang GY. 2012. Metallogenic model and prospecting potential in southern Tibet Au-Sb polymetallic belt. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-196 (in Chinese with English summary)
Zhang LC, Shen YC, Li HM, Zeng QD, Li GM and Liu TB. 2002. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrologica Sinica, 18(4): 559-565.
Zhang PZ, Shen ZK, Wang M, Gan WJ, Bürgmann R, Molnar P, Wang Q, Niu ZJ, Sun JZ, Wu JX, Sun HR and You XZ. 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809-812. DOI:10.1130/G20554.1
Zhao C, Ni P, Wang GG, Ding JY, Chen H, Zhao KD, Cai YT and Xu YF. 2013. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China. Geofluids, 13(4): 506-527. DOI:10.1111/gfl.12052
Zheng YY, Duo J, Ma GT, Chen J and Dai FH. 2007. Mineralization characteristics, discovery and age restriction of Chalapu hardrock gold deposit, Southern Tibet. Earth Science (Journal of China University of Geosciences), 32(2): 185-193.
Zhou F, Sun XM, Zhai W, Zhang XG and Yi JZ. 2014. Helium and argon isotope geochemistry of ore-forming fluids in Zhemulang gold deposit in Southern Tibet, China. Acta Geologica Sinica, 88(Suppl.2): 860-861.
多吉, 温春齐, 等. 2009. 西藏马攸木金矿床. 北京: 地质出版社: 1-218.
范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317-1328.
姜晓辉, 范宏瑞, 胡芳芳, 杨奎锋, 蓝廷广, 郑小礼, 金念宪. 2011. 胶东三山岛金矿中深部成矿流体对比及矿床成因. 岩石学报, 27(5): 1327-1340.
聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征. 地质学报, 79(3): 373-385. DOI:10.3321/j.issn:0001-5717.2005.03.009
王军, 张均. 2001. 西藏南部马扎拉金锑矿成矿特征及找矿方向. 黄金地质, 7(3): 15-20.
姚凤良, 刘连登, 孔庆存, 宫润谭. 1990. 胶东西北部脉状金矿. 长春: 吉林科学技术出版社: 1-234.
叶先仁, 吴茂炳, 孙明良. 2001. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 20(3): 174-178. DOI:10.3969/j.issn.0254-5357.2001.03.003
叶先仁, 陶明信, 余传螯, 张铭杰. 2007. 用分段加热法测定的雅鲁藏布江蛇绿岩的He和Ne同位素组成:来自深部地幔的信息. 中国科学(D辑), 37(5): 573-583.
翟伟, 孙晓明, 贺小平, 苏丽薇, 吴有良. 2006. 新疆阿希低硫型金矿稀有气体同位素地球化学及其成矿意义. 岩石学报, 22(10): 2590-2596.
翟伟, 孙晓明, 邬云山, 孙岩岩, 华仁民, 叶先仁. 2012. 粤北瑶岭-梅子窝钨矿He-Ar同位素地球化学:对华南燕山期壳幔作用过程与成矿的制约. 科学通报, 57(13): 1137-1146.
张刚阳. 2012.藏南金锑多金属成矿带成矿模式与找矿前景研究.博士学位论文.武汉: 中国地质大学, 1-196
张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪. 岩石学报, 18(4): 559-565.
郑有业, 多吉, 马国桃, 陈静, 代芳华. 2007. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学-中国地质大学学报, 32(2): 185-193. DOI:10.3321/j.issn:1000-2383.2007.02.005