岩石学报  2018, Vol. 34 Issue (10): 2956-2972   PDF    
内蒙锡林浩特晚石炭世辉长质岩体的成因:陆内伸展背景下富水地幔源区熔融的产物
庞崇进1 , 王选策2,3 , 温淑女1 , Krapez Bryan1 , 王炎阳4 , 廖闻4     
1. 桂林理工大学地球科学学院, 广西有色金属隐伏矿床勘查及材料开发协同创新中心, 广西隐伏金属矿产勘查重点实验室, 桂林 541004;
2. 澳大利亚科廷大学地球与行星科学学院, 地球科学研究所, 珀斯 WA6845;
3. 长安大学地球与资源学院, 西安 710054;
4. 北京大学造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京 100871
摘要:内蒙中部晚石炭世岩浆活动的成因及动力学背景对于揭示古亚洲洋俯冲和兴蒙造山带演化的具有重要意义。本文选取锡林浩特南部晚石炭世辉长质侵入体为研究对象,开展高精度SIMS锆石U-Pb定年、全岩主微量和Sr-Nd-Hf同位素分析,旨在讨论其岩石成因,为制约兴蒙造山带的演化和理解深部流体循环过程提供更多信息。辉长质岩体样品的锆石CL图像呈弱环状结构、条带状或岩浆生长带(Th/U=0.3~2.5)。SIMS锆石U-Pb定年结果表明,锡林浩特辉长质岩体的侵位年龄为316.9±2.2Ma,为兴蒙造山带晚石炭世区域性岩浆活动的产物。该岩体经历了橄榄石和单斜辉石的分离结晶作用,但受堆晶作用和地壳物质混染作用的影响较小;同时具有较低的87Sr/86Sr初始比值(0.7034~0.7041),但相对高的εNdt)(+5.58~+6.88)和εHft)值(+12.07~+13.44),并显示Rb、Sr、U和Pb等流体活动性元素相对富集,但Nb和Ta等非流体活动性元素相对亏损的特征,暗示其起源于遭受含水流体交代富集的地幔源区。流体交代富集作用很可能发生在源区部分熔融过程中或者在部分熔融之前较短的时间内,即反映较为年轻的交代事件。锡林浩特辉长闪长岩具有相对较高的SiO2(51.7%~53.2%)、Cr(138.4×10-6~757.2×10-6)和Ni(50.4×10-6~141.1×10-6)含量以及Zn/Fe比值(10.8~11.5),但相对较低的Al2O3(13.1%~16.8%)含量,暗示源区可能富含斜方辉石,由橄榄岩+辉石岩脉组成。通过对比总结兴蒙造山带晚石炭世岩浆岩岩石组合的地球化学特征以及其他地质资料,本文认为古亚洲洋在晚石炭世之前已经闭合,而锡林浩特辉长质岩体形成于陆内伸展的构造背景。结合同期玄武岩母岩浆的高含水量特征(高达4.41%),本文认为锡林浩特及其邻区晚石炭世岩浆活动是遭受地幔转换带滞留俯冲板块析出富水流体交代的地幔源区部分熔融的产物,从而建立了深部流体循环过程与造山后伸展背景下岩浆活动的成因联系。
关键词: 晚石炭世侵入岩     流体活动性元素     辉长岩     深部流体循环     兴蒙造山带    
Petrogenesis of Late Carboniferous gabbroic intrusions in the Xilinhot region of Inner Mongolia: Products of partial melting of a hydrous mantle source in an intra-continental extensional setting
PANG ChongJin1, WANG XuanCe2,3, WEN ShuNv1, KRAPEZ Bryan1, WANG YanYang4, LIAO Wen4     
1. Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, College of Earth Sciences, Guilin University of Technology, Guilin 541004, China;
2. The Institute for Geoscience Research(TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
3. School of Earth Science and Resources, Chang'an University, Xi'an 710054;
4. MOE Key Laboratory of Orogenic Belts and Crustal Evolution; School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: The petrogenesis and geodynamic setting of Late Carboniferous magmatism in Inner Mongolia, China, hold a key to understanding the final closure of the Paleo-Asian Ocean and formation of the Xing'an-Inner Mongolia Orogenic Belt (XMOB). This study carried out secondary ion mass spectrometer (SIMS) zircon U-Pb geochronological, and bulk-rock geochemical and Sr-Nd-Hf isotopic analyses of gabbroic diorites sampled in the Xilinhot region with the aim of investigating its petrogenesis and unravelling the geodynamic setting of its emplacement. Cathodoluminescence (CL) images show that the analyzed zircon grains are euhedral to subhedral in shape, with paint zoning or oscillatory zoning (Th/U=0.3~2.5). SIMS U-Pb zircon dating shows that Xilinhot gabbroic diorites were intruded at 316.9±2.2Ma, suggesting a Late Carboniferous magmatic event in the XMOB. The effects of crystal accumulation and crustal contamination on the whole-rock composition of the gabbroic rocks are insignificant, whereas fractional crystallization of olivine and clinopyroxene played an important role in magma differentiation. The source of the rocks display depleted signatures as evidenced by presence of low initial 87Sr/86Sr ratios (0.7034~0.7041) and MORB-mantle source-like positive εNd(t) (+5.58~+6.88) and εHf(t) values (+12.07~+13.44), and they also have enriched features as characterized by enrichment of fluid-mobile elements (Rb, U, Sr, Pb), but depletion of fluid-immobile elements (Nb, Ta). Such co-existence of depleted Sr-Nd-Hf isotopes and enriched trace element signatures suggests the enrichment of mantle source by water-rich fluids may occur during or shortly prior to the melting event, i.e. a recent metasomatic event. The gabbroic rocks are also characterized by relatively high SiO2 (51.7%~53.2%), Cr (138.4×10-6~757.2×10-6), Ni (50.4×10-6~141.1×10-6) and Zn/Fe ratios (10.8~11.5), but relatively low Al2O3 (13.1%~16.8%) contents, indicating that they derived from a mixed source composed of an orthopyroxene-rich pyroxenite vein-plus-peridotite source. A range of geological evidence indicates an intracontinental extensional origin for the Late Carboniferous gabbroic intrusions in Xilinhot area, rather than a subduction setting. Together with the high water contents (up to 4.41%) of contemporaneous basalts, the geochemical and isotopic characteristics of the studied gabbroic rocks indicate that the Late Carboniferous magmatism in Xilinhot and adjacent areas was generated by partial melting of mantle sources hydrated by water-rich fluids released from subducted slabs stagnated in mantle transition zone. Therefore, we proposed a deep-Earth water cycling process to account for mantle hydration and subsequent Late Carboniferous magmatism in XMOB, supporting a geodynamic link between deep-Earth water cycling, and post-orogenic magmatism and lithospheric extension.
Key words: Late Carboniferous intrusive rocks     Fluid-mobile elements     Gabbroic rock     Deep-Earth fluid cycling     Xing'an-Inner Mongolia Orogenic Belt    

兴蒙造山带位于西伯利亚板块、华北板块和古太平洋板块之间,是一条裹挟有多个前寒武纪变质岩块体的古生代构造-岩浆岩带,属于中亚巨型造山带的东段,分布于我国内蒙古-东北地区,是东北亚地区的重要构造单元(图 1a)(内蒙古自治区地质矿产局, 1991; 李锦轶等, 2009; 聂凤军等, 2014; 徐备等, 2014)。兴蒙造山带是由与古亚洲洋南北双向俯冲-闭合有关的弧岩浆带、前陆盆地、混杂岩、褶皱带以及微古陆等组成的增生造山带,同时发育了显生宙以来的大规模新生地壳(Jahn et al., 2000; Xiao et al., 2003; Jahn, 2004; Windley et al., 2007)。目前关于古亚洲洋闭合的时限及相关的块体拼贴过程仍存在着广泛的争议(Şengör et al., 1993; Xiao et al., 2003, 2009; Windley et al., 2007; Jian et al., 2010; Xu et al., 2013; Chu et al., 2013; Zhou and Wilde, 2013; Li et al., 2016, 2017)。例如,有些学者认为古亚洲洋俯冲从早古生代开始一直持续到晚二叠世(Chen et al., 2000; Xiao et al., 2003; Jian et al., 2010),而另一些学者则认为古亚洲洋在中泥盆世已经闭合,晚古生代进入伸展阶段(Xu et al., 2013徐备等,2014)。因此,晚古生代尤其是石炭纪岩浆活动的性质及其构造背景研究成为争议的焦点,已被用作揭示古亚洲洋俯冲和兴蒙造山带演化的关键证据之一。

图 1 兴蒙造山带区域地质图 (a)兴蒙造山带分布特征(据Xu et al., 2013); (b)锡林浩特及邻区地质图(据李承东等, 2013修改); (c)锡林浩特南部地质简图(据葛梦春等,2009修改) Fig. 1 Geological maps of the Xing'an-Inner Mongolia Orogenic Belt (XMOB) (a) locations of XMOB (after Xu et al., 2013); (b) regional geological map for Xilinhot and adjacent areas (modified after 1:500 000 map); (c) geological map for southern Xilinhot area

① 李承东, 许绍忠, 赵利刚. 2013. 1:50万索伦山-霍林郭勒地区地质图.天津:中国地质调查局天津地质调查中心

② 葛梦春, 张雄华, 廖群安, 周汉文, 谢德凡, 赵温霞, 周文孝. 2009. 1:25万锡林浩特市幅(K50C001002)区域地质调查报告.武汉:中国地质大学, 1-204

兴蒙造山带锡林浩特及邻区普遍发育石炭纪岩浆活动,形成分布较广的火山岩和中基性侵入岩(图 1b, c)。关于锡林浩特及邻区石炭纪中基性侵入岩的形成时代、岩石类型以及成因的研究已取得了重要的进展(Chen et al., 2000, 2009; Song et al., 2015; Zhou et al., 2016),但目前对这些中基性岩的成因及构造背景的认识仍存在诸多争议。例如,Chen et al.(2000, 2009)提出苏左旗宝力道晚石炭世辉长闪长岩为安第斯型弧岩浆活动的产物;Zhou et al. (2016)也认为锡林浩特晚石炭世辉长闪长岩的形成与古亚洲洋俯冲作用有关。然而,通过对苏右旗-西乌旗地区晚石炭世火山岩的研究,越来越多的学者认为内蒙中部晚古生代处于造山后陆内伸展的构造背景(汤文豪等, 2011; 李可等, 2014; Wang et al., 2015, 2016; 邵济安等, 2015; Pang et al., 2016; Zhu et al., 2017)。

锡林浩特南部晚石炭世辉长岩、辉长闪长岩和花岗闪长岩出露较好(Zhou et al., 2016),是揭示内蒙中部晚石炭世侵入岩岩石成因的理想地区。因此,本文对该区晚石炭世辉长质侵入岩进行了岩相学、锆石年代学、主微量元素和Sr-Nd-Hf同位素分析,讨论其源区组成和岩石成因;结合文献资料,探讨其形成的大地构造背景及深部地球动力学过程。

1 地质背景及岩石学特征

锡林浩特地区位于兴蒙造山带中段,属艾力格庙-锡林浩特地块。该地块呈东西向展布,其与南部的松辽-浑善达克地块的界线为艾力格庙-锡林浩特-黑河缝合带(徐备等, 2014)。地块内发育中元古代条带状花岗片麻岩(1516±31Ma;孙立新等, 2013),表明其存在前寒武纪变质基底。沿艾力格庙-本巴图-二道井-锡林浩特-达青牧场一带普遍出露晚石炭世(335~300Ma)基性岩,包括本巴图组和阿木山组玄武岩以及辉长岩和基性岩脉(Chen et al., 2000, 2009; 汤文豪等, 2011; 潘世语等, 2012; Liu et al., 2013; Pang et al., 2016; Zhou et al., 2016; 康健丽等, 2016)。Xiao et al. (2003)将该带划归晚古生代二道井增生杂岩带,而Xu et al. (2013)则称之为早古生代双冲造山带北部的北造山带(图 1a)。由于这些晚石炭世基性岩出露良好且位置特殊,故成为研究古亚洲洋闭合、兴蒙造山带演化的关键地区(Chen et al., 2000, 2009; Xiao et al., 2003, 2009; Xu et al., 2013)。

本次工作的研究区位于锡林浩特市南部,出露的地层主要有锡林郭勒杂岩、中奥陶统包尔汗图群、上志留统徐尼乌苏组、中二叠统哲斯组以及中生代地层(图 1c;葛梦春等, 2009)。近年来,许多学者对研究区锡林郭勒杂岩开展了大量的研究(Shi et al., 2003; 薛怀民等, 2009; Li et al., 2011, 2014, 2017; 葛梦春等, 2011; Zhang et al., 2018a, b)。该杂岩主要由黑云母片麻岩组成,夹角闪岩以及少量花岗片麻岩,普遍发育混合岩化。最新的研究表明锡林郭勒杂岩为一套低压高温变质的早古生代弧前沉积,变质时代为石炭纪(348~305Ma)(薛怀民等, 2009; Li et al., 2011, 2017; Zhang et al., 2018a)。角闪岩的原岩为基性火山岩、辉长岩和辉长闪长岩,其形成时间为334~321Ma(康健丽等, 2016; Li et al., 2017),与锡林郭勒杂岩变质时间一致。侵入岩类包括中奥陶世花岗质片麻岩、晚石炭世辉长闪长岩-花岗质侵入岩以及中生代花岗质侵入岩(葛梦春等, 2009; Zhou et al., 2016)。本次分析样品采自锡林浩特市白音锡勒牧场附近的辉长闪长岩体(图 1c图 2)。锆石U-Pb定年结果表明,该岩体的侵入时间为319±1Ma,属晚石炭世(Zhou et al., 2016)。

图 2 锡林浩特辉长闪长岩显微照片 (a)样品14NM10; (b)样品14NM11; (c)样品14NM14; (d)样品14NM16. Amp-角闪石; Cpx-单斜辉石; Pl-斜长石 Fig. 2 Micro-photographs of the Xilinhot gabbroic diorites Amp-amphibole; Cpx-clinopyroxene; Pl-plagioclase

手标本和显微镜下特征显示,辉长闪长岩样品较为新鲜,中-粗粒,呈暗灰色,辉长结构和块状构造,由斜长石(40%~45%)、角闪石(30%~35%)、单斜辉石(15%~20%)以及副矿物组成(例如Ti-Fe氧化物、锆石等;图 2)。斜长石呈自形-半自形板状,Ⅰ级灰白干涉色,具有卡钠双晶、聚片双晶,部分长石发育环带结构,长度为0.1~2.3mm(图 2),部分斜长石包含在单斜辉石或者角闪石矿物中。斜长石主要由中长石(An=31~51)组成,部分为培长石至拉长石(An=57~72),可见少量钠长石(Ab=98)(未发表数据)。大多数辉石为他形晶,少数半自形晶,干涉色达Ⅱ级蓝,长度为0.1~1.5mm,部分细小的单斜辉石颗粒包裹在斜长石中(图 2)。角闪石呈自形-半自形,两组解理发育,解理角接近56°或124°,大小为0.2~1.0mm(图 2)。

本次工作对样品14NM10进行SIMS锆石U-Pb年代学分析,同时选取其他较为新鲜的样品开展全岩的主微量元素和Sr-Nd-Hf同位素分析。

2 分析方法

在河北廊坊诚信地质服务公司通过常规的重选和磁选技术分选出用于U-Pb年龄测定的锆石样品。将锆石样品颗粒和锆石标样Plésovice(337Ma; Sláma et al., 2008)和Qinghu(159.5Ma; Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。对锆石进行透射光、反射光以及阴极发光显微照相,通过图像检查锆石的内部结构、帮助选择适宜的测试点位。样品靶在真空下镀金以备分析。

U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行(详细分析方法见Li et al., 2009),锆石样品与锆石标样以3:1比例交替测定。U-Th-Pb同位素比值以及U-Th含量用标准锆石Plésovice (337Ma, Sláma et al., 2008)校正获得,采用标准锆石91500 (81×10-6, Wiedenbeck et al., 1995)校正获得。206Pb/238U比值的分析误差在~1%(1SD)或低于特定值,长期监测锆石标准的标准偏差为1.5%(1SD=1.5%, Li et al., 2010),以标准样品Qinghu作为未知样监测数据的精确度。普通Pb校正采用实测204Pb值。由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成作为普通Pb组成进行校正。同位素比值及年龄误差均为1σ。数据结果处理采用Isoplot/Ex v.2.49软件(Ludwig, 2001)。

为了减小成岩后风化作用的影响,首先把样品的表皮去掉,选取中心新鲜的样块破碎成小块(< 5mm),然后在双目镜下把其中可能受风化蚀变影响的小碎块挑除干净。将小碎块放入烧杯中,用0.2N盐酸浸泡10min,再用去离子水清洗,烘干后磨制岩石粉末(200目)。主量元素成分分析在北京大学造山带与地壳演化重点实验室X射线荧光光谱仪(XRF)上完成。主量元素分析前先测定样品的烧失量(LOI)。将盛有样品的坩埚置于马沸炉中900℃灼烧数小时后冷却再称重。主量元素含量分析误差小于1%。

微量元素和Sr-Nd-Hf同位素分别在澳大利亚昆士兰大学放射性同位素实验室Thermal XSeries II ICP-MS和Nu Plasma MC-ICP-MS上完成。微量元素分析流程见Eggins et al. (1997)Kamber et al. (2003), 采用W-2和BIR-1等标样进行计算,分析精度一般优于5%。使用Sr-spec和Thru-spec离子交换树脂分别将Sr、Nd和Hf从微量元素分析剩余溶液中分离出来,分析流程见Deniel and Pin (2001)Miková and Denková (2007)以及Pin and Zalduegui (1997)。测得的86Sr/88Sr、143Nd/144Nd和179Hf/177Hf比值分别用86Sr/88Sr=0.1194、143Nd/144Nd=0.7219、179Hf/177Hf=0.7325进行质量分馏效应校正。

3 分析结果 3.1 锆石U-Pb年代学

锡林浩特辉长质侵入岩样品14NM10的锆石自形-半自形,长度为50~240μm,长宽比为1:1至4:1。阴极发光(CL)图像显示锆石显示弱环状结构、条带状结构或岩浆生长环带(图 3)。18颗锆石上18个分析点的U-Th-Pb含量及同位素比值分析结果见表 1。分析锆石Th和U含量分别为20.3×10-6~4365×10-6和61×10-6~1751×10-6(绝大部分锆石Th=20.3×10-6~1493×10-6;U=61×10-6~962.8×10-6),Th/U比值为0.3~2.5,与典型岩浆锆石特征一致。所分析的18颗锆石的206Pb/238U年龄集中分布在309.5~330.2Ma(表 1),均落在谐和线上(图 4)。18个年龄数据给出的谐和年龄为316.9±2.2Ma(图 4),代表侵入岩的形成年龄。

图 3 锡林浩特辉长闪长岩(样品14NM10)锆石CL图像特征 Fig. 3 CL images of zircon grains from Xilinhot gabbroic diorite (Sample 14NM10)

图 4 锡林浩特辉长闪长岩(样品14NM10)SIMS锆石U-Pb谐和图 Fig. 4 SIMS zircon U-Pb concordia of Xilinhot gabbroic diorite (Sample 14NM10))

表 1 锡林浩特辉长闪长岩(样品14NM10)SIMS锆石U-Pb定年结果 Table 1 SIMS zircon U-Pb age-dating results of Xilinhot gabbroic diorite (Sample 14NM10)
3.2 主量和微量元素特征

本次分析的锡林浩特晚石炭世辉长质侵入岩样品的烧失量(LOI)较低,为0.68%~1.14%(表 2)。样品的TiO2(0.9%~1.2%)、Fe2O3T(7.2%~8.7%)、全碱(Na2O+K2O=3.6%~4.6%)相对较低,在TAS图解中落入辉长闪长岩范围内,属于钙碱性系列(图 5)。样品SiO2、MgO、Al2O3和CaO含量分别为51.7%~53.2%、6.8%~9.2%、13.1%~16.8%和9.4%~10.7%,Mg# [100×Mg/(Mg+Fe2+)]值为62.4~67.7(表 2图 6)。样品具有相对高的Ni(50×10-6~141×10-6)和Cr含量(138×10-6~757×10-6表 2图 6)。样品具有低的稀土元素含量(∑REE=58.55×10-6~82.64×10-6),在稀土配分图解(图 7a)中,样品相对富集轻稀土元素(LREE)而亏损重稀土元素(HREE),(La/Yb)N比值为2.80~4.39,无明显Eu负异常。在微量元素蛛网图(图 7b)中,样品整体显示高场强元素(HFSE;如Nb、Ta、Ti)和P相对亏损,而Pb和Sr相对富集的特征。样品14NM16明显富集Rb、U等大离子亲石元素(LILE)。

表 2 锡林浩特辉长闪长岩主量(wt%)、微量(×10-6)元素组成 Table 2 Major (wt%) and trace (×10-6) element contents of Xilinhot gabbroic diorites

图 5 锡林浩特及其邻区石炭纪岩浆岩TAS图解 数据来源:早石炭世变质玄武岩(康健丽等, 2016)、晚石炭世火山岩(汤文豪等, 2011; Liu et al., 2013; 潘世语等, 2012; 邵济安等, 2015; Pang et al., 2016)、晚石炭世宝力道辉长岩(Chen et al., 2009)、晚石炭世锡林浩特辉长-辉长闪长岩和花岗闪长岩(Zhou et al., 2016);后图数据来源同此图 Fig. 5 TAS diagram of Carboniferous magmatic rocks in Xilinhot and adjacent areas Data sources: Early Carboniferous meta-basalts (Kang et al., 2016); Late Carboniferous volcanic rocks (Tang et al., 2011; Liu et al., 2013; Pan et al., 2012; Shao et al., 2015; Pang et al., 2016); Late Carboniferous Baolidao gabbros (Chen et al., 2009); Late Carboniferous gabbro, gabbroic diorite and granites (Zhou et al., 2016); Data sources in following figures are the same as those in this figure

图 6 锡林浩特及其邻区石炭纪玄武岩和基性侵入岩的SiO2、CaO、TiO2、Fe2O3T、Cr、Ni与MgO协变图解 已发表的晚石炭世高MgO含量玄武岩无Cr和Ni的含量数据 Fig. 6 SiO2, CaO, TiO2, Fe2O3T, Cr, Ni vs. MgO diagrams of Carboniferous basalts and mafic-medium intrusive rocks in Xilinhot and adjacent areas There is no Cr and Ni data for the published high MgO basalts of Late Carboniferous

图 7 锡林浩特及其邻区晚石炭世玄武岩和中基性侵入岩的稀土元素配分图(a)和微量元素蛛网图(b) Fig. 7 REE pattern (a) and spider diagram (b) of Late Carboniferous basalts and mafic-medium intrusive rocks in Xilinhot and adjacent areas
3.3 Sr-Nd-Hf同位素特征

本次分析的锡林浩特晚石炭世辉长闪长岩样品的Sr-Nd-Hf同位素组成见表 3。样品具有一致的87Sr/86Sr317MaεNd(317Ma)值,分别为0.7034~0.7041和+5.58~+6.88,与宝力道辉长岩样品的(87Sr/86Sri=0.7037~0.7062、εNd(t)=+3.5~+6.2)接近,落在DMM(depleted MORB mantle)范围内(图 8a)。锡林浩特晚石炭世辉长闪长岩样品具有较高的εHf(317Ma)值(+12.07~+13.44),在Hf-Nd同位素图解上,落在了地球演化线左侧之上(图 8bεHf(t)=1.36×εNd(t)+2.95;Vervoort et al., 1999)。

表 3 锡林浩特辉长闪长岩Sr-Nd-Hf同位素组成 Table 3 Sr-Nd-Hf isotopic compositions of Xilinhot gabbroic diorites

图 8 锡林浩特及其邻区石炭纪玄武岩和中基性侵入岩的Sr-Nd-Hf组成 MORB (Meyzen et al., 2007); Nd-Hf地球演化线(Vervoort et al., 1999); 地壳混染两端元模拟参数DMM:Sr=20×10-6; Nd=1.2×10-6; 87Sr/86Sr=0.703、εNd(t)=+9.6,(Workman and Hart, 2005);上地壳Sr=320×10-6; Nd=26×10-6; 87Sr/86Sr=0.712、εNd(t)=-12 (Taylor and McLennan, 1985) Fig. 8 Sr-Nd-Hf compositions of Carboniferous basalts and mafic-medium intrusive rocks in Xilinhot and adjacent areas MORB (Meyzen et al., 2007); Nd-Hf terrestrial array (Vervoort et al., 1999)
4 讨论 4.1 锡林浩特侵入岩的形成时代

本次分析的锡林浩特辉长闪长岩锆石的加权平均年龄为316.9±2.2Ma,表明该岩体的侵位结晶年龄为晚石炭世。这与Zhou et al. (2016)报道的该岩体中辉长岩和花岗闪长岩的锆石U-Pb定年结果(分别为319±1Ma和318±1Ma)相一致。已有的报道表明,锡林浩特以西的苏左旗宝力道辉长岩的侵位结晶年龄为310±5Ma(Chen et al., 2009),而同期的苏右旗本巴图组玄武岩、安山岩和英安岩的形成时间为315~300Ma(汤文豪等, 2011; 潘世语等, 2012)。锡林浩特以东的西乌旗达青牧场地区则普遍发育~315Ma玄武岩(Liu et al., 2013)。此外,康健丽等(2016)Li et al. (2017)获得了锡林浩特南部锡林郭勒杂岩中遭受角闪岩相变质的基性火山岩和辉长岩-辉长闪长岩的锆石U-Pb年龄,分别为334~323Ma和340~321Ma。这些年龄结果表明,锡林浩特地区石炭纪发生了较为强烈的岩浆事件。结合已发表的数据,本次工作试图通过对比早石炭世变质玄武岩(康健丽等, 2016)、晚石炭世玄武岩(汤文豪等, 2011; 潘世语等, 2012; Liu et al., 2013; Pang et al., 2016)、晚石炭世宝力道辉长岩(Chen et al., 2000, 2009)与锡林浩特辉长岩、辉长闪长岩的地球化学特征,揭示其岩石成因并进一步探讨内蒙中部石炭纪岩浆活动的性质及其构造背景。

4.2 锡林浩特辉长闪长岩的岩石成因 4.2.1 蚀变作用、分离结晶/堆晶作用和地壳混染作用

锡林浩特辉长闪长岩样品较为新鲜,斜长石、角闪石和单斜辉石等保存较好,长石呈现灰白色干涉色并发育典型的双晶和环带特征,角闪石解理发育,表明受后期蚀变的影响较弱。样品的LOI相对较低(0.68%~1.14%),且与SiO2、MgO、TiO2、FeOT、CaO、Al2O3等之间没有明显的负相关关系,表明这些元素在成岩后没有发生活动。通常认为,Zr在低级变质作用和蚀变作用过程中是不活动的,可以用来示踪蚀变作用对玄武质岩石地球化学成分变化的影响(Polat et al., 2002; Wang et al., 2008, 2010)。除14NM16外,样品Zr含量与REE、HFSE(Hf、Nb、Ta)、Sc、Sr、Y、Ni、Cr含量之间显示明显的相关关系,表明这些微量元素基本是不活动的。因此,后期蚀变作用对锡林浩特辉长闪长岩矿物和地球化学组成的影响较小。与其他样品不同,14NM16具有明显Rb和U富集特征(图 7)。

锡林浩特辉长闪长岩样品整体具有相对高的SiO2(51.7%~53.2%),相对低的MgO(6.8%~9.2%),且变化大的Cr(138×10-6~757×10-6)和Ni(50×10-6~141×10-6)(表 2图 6),表明其可能经历了分离结晶作用。结合已发表数据(Zhou et al., 2016),锡林浩特辉长闪长岩Ni、Cr含量与MgO含量明显的负相关关系说明其母岩浆经历了橄榄石和单斜辉石的分离结晶作用。当MgO≥8%时,Ni含量快速下降,而CaO含量的变化不大(图 6b, f),反映了橄榄石为岩浆演化早期的主要结晶相。而当MgO < 8%时,CaO含量快速降低(图 6b),反映单斜辉石为岩浆演化晚期的主要结晶相。这与镜下观察到的单斜辉石的含量相对较少的岩相学特征相符。在稀土元素配分图解上(图 7),样品没有明显的Eu负异常特征,暗示岩浆演化过程中斜长石没有发生明显的分离结晶。如图 6所示,锡林浩特晚石炭世辉长闪长岩的化学组成与同期火山岩的组成相一致。与典型堆晶辉长岩的斜长石(An≥60;Beard, 1986)不同,锡林浩特辉长闪长岩的斜长石以更长石-拉长石为主(An < 60),而且样品未显示明显的Eu异常。结合显微镜下特征,这些特征表明锡林浩特辉长闪长岩的化学组成特征受堆晶作用的影响较弱。因此,锡林浩特辉长闪长岩的母岩浆在演化过程中经历了橄榄石、单斜辉石的分离结晶作用。然而,仅仅是分离结晶作用并不能解释样品较高的Mg#值(62~68)、Ni (50×10-6~141×10-6)和Cr (138×10-6~757×10-6)含量以及LILE富集和HFSE亏损的特征(图 6图 7)。因此,下面讨论地壳物质的混染作用以及源区组成的贡献。

幔源岩浆在上升过程中不可避免会受到地壳物质的混染作用(DePaolo, 1981),这一过程可以通过岩浆结晶分异过程中元素及同位素组成的变化关系来判断。与软流圈地幔来源的基性岩(如MORB)相比,地壳物质具有更低的Nb/La、Nb/Ta、Sm/Nd、Mg#εNd(t)值,更高的Th/La、La/Sm和SiO2值,因此,Mg#εNd(t)与Nb/La、Nb/Ta、Sm/Nd比值的正相关关系,而Mg#εNd(t)与Th/La、La/Sm比值的负相关关系可以指示地壳物质同化混染(Wang et al., 2013)。锡林浩特辉长闪长岩样品的MgO含量与εNd(t)值之间显示正相关关系,暗示其母岩浆上升或侵位过程中可能存在地壳物质的加入。然而,样品的εNd(t)值与Nb/La、Mg#、SiO2值之间没有明显的相关性,而且SiO2含量与87Sr/86Sr初始比值之间也未见相关性(图 8c, e, f),表明它们没有经历明显的地壳物质混染。样品高的εNd(t)值(+5.58~+6.88)以及相对较低并且均一的87Sr/86Sr初始比值(0.7034~0.7041)也反映其母岩浆受地壳物质混染程度低。样品中缺乏继承锆石也反映没有明显的地壳物质的加入。简单的两端元模拟计算结果表明,约1%上地壳物质的加入可以解释样品Sr-Nd同位素组成的变化趋势(图 8a)。因此,样品母岩浆遭受地壳物质混染的影响较小,其87Sr/86Sr、εNd(t)值、εHf(t)值以及不相容元素比值可以用来示踪岩浆源区的性质。同样的,如图 8所示,本文所选取进行对比的苏右旗等地区晚石炭世本巴图组玄武岩的母岩浆在上升过程中亦未遭受明显的地壳物质的混染作用(Pang et al., 2016)。

4.2.2 源区性质

锡林浩特辉长闪长岩具有较低的87Sr/86Sr初始比值(0.7034~0.7041),但相对高的εNd(t)(+5.58~+6.88)和εHf(t)值(+12.07~+13.44)(图 8),表明其母岩浆很可能起源于同位素组成亏损的地幔源区。然而,锡林浩特辉长闪长岩显示了LILE(如Rb、Sr、U)和LREE相对富集,HFSE(如Nb、Ta、Ti)相对亏损的特征,暗示其起源于遭受再循环洋壳和沉积物熔体或含水流体交代富集的地幔源区。锡林浩特辉长闪长岩样品的Nd-Hf同位素组成落在了地幔演化线附近(图 8b),表明地幔源区未遭受明显的俯冲再循环沉积物熔体的交代改造,因为沉积物熔体的加入会造成Nd-Hf同位素组成的解耦。那么,地幔源区LILE相对于HFSE和REE富集的特征极有可能与含水流体的加入有关,因为LILE为流体活动性元素而HFSE和REE为非活动性元素,而且含水流体的加入不会造成源区Lu/Hf和Sm/Nd的分馏,即Nd-Hf同位素的解耦现象。锡林浩特辉长闪长岩中角闪石普遍而且颗粒大,自形程度高,也反映其母岩浆是富水的,因为只有达到水饱和的情况下角闪石等含水矿物才结晶(Berndt et al., 2005; Botcharnikov et al., 2008)。富水流体交代造成了源区Rb、U等流体活动性元素的富集以及Nb、Ta等流体不活动元素的亏损(图 7)。电子探针分析结果表明,样品中普遍存在Ti-Fe氧化物(未发表数据),暗示母岩浆具有较高的氧逸度。因此,锡林浩特辉长闪长岩母岩浆起源于遭受富水流体交代、高氧逸度的地幔源区。样品的高εNd(t)、εHf(t)值和低87Sr/86Sr初始比值表明,富水流体交代以及LILE富集作用很可能发生在源区部分熔融过程中或者在部分熔融之前较短的时间内,即反映较为年轻的交代事件。Wang et al. (2016)利用Al2O3-LLD(liquid lines of descent)方法获得了苏右旗晚石炭世本巴图组N-MORB型玄武岩母岩浆的含水量高达4.41%。本巴图组玄武岩具有类似于亏损地幔的Sr-Nd-Hf同位素组成,但同时富集流体活动性元素(图 7图 8)。这些特征也暗示其地幔源区发生了较为年轻的富水交代事件(Pang et al., 2016)。因此,锡林浩特及其邻区晚石炭世岩浆活动可能与地幔源区遭受富水流体的交代作用密切相关。

与实验熔体相比,锡林浩特辉长闪长岩样品的FeOT、TiO2和CaO含量落在干体系下橄榄岩熔体的范围内或附近(图 9a, b, e;例如Xu et al., 2012)。不同的是,在相同的MgO含量情况下,锡林浩特辉长闪长岩具有相对高的SiO2含量,但相对低的Al2O3含量(图 9c, d)。正如前所述,这可能与源区的富水特征有关,因为在含水条件下橄榄岩部分熔融产生的熔体比无水条件下形成的熔体具有更高的SiO2含量(Xu et al., 2004)。另一方面,锡林浩特辉长闪长岩样品的Al2O3与MgO含量之间显示明显的负相关关系,而且高MgO(~9%)的样品具有较低的Al2O3含量(~13%),表明其母岩浆很可能具有高的MgO含量但低的Al2O3含量,类似于榴辉岩或角闪岩熔体的组成(图 8d)。低的Al2O3含量特征可能与源区存在大量的斜方辉石或者源区经历大比例的部分熔融有关(Hirose and Kushiro, 1993; Kogiso et al., 1998; Wang et al., 2006)。橄榄岩的大比例部分熔融会产生Si不饱和岩浆,这与样品相对高的SiO2含量特征不符(图 9c)。因此,样品低Al2O3含量的特征很可能与源区存在大量的斜方辉石有关。大量斜方辉石的出现可能与源区遭受过富Si熔体的交代作用有关,即发生了橄榄石+SiO2=斜方辉石+角闪石的反应(Kelemen, 1995; Chalot-Prat and Boullier, 1997; Wang et al., 2006)。

图 9 内蒙锡林浩特地区石炭纪玄武岩、中基性侵入岩与实验熔体成分对比图 (a-e)FeOT、TiO2、SiO2、Al2O3、CaO与MgO图解(各种类型熔体范围据Xu et al., 2012及其参考文献); (f)Fe/Mn-MnO图解(各种类型熔体范围据Wang et al., 2012及其参考文献) Fig. 9 Comparison of Carboniferous basalts and mafic-medium intrusive rocks in Xilinhot and adjacent areas with experimental melts of various starting materials (a-e) FeOT, TiO2, SiO2, Al2O3, CaO vs. MgO diagrams (Xu et al., 2012 and references therein); (f) Fe/Mn vs. MnO diagram (Wang et al., 2012 and references therein)

熔体和橄榄石的Mn、Fe、Zn、Cr和Ni等元素含量及其比值可有效地鉴别源区中辉石岩和橄榄岩的相对贡献(Sobolev et al., 2005, 2007; Herzberg, 2011; Wang et al., 2012; Milidragovic and Francis, 2016)。实验岩石学研究表明,含石榴子石辉石岩或者含水橄榄岩大比例熔融可以生成高Fe/Mn比值(> 60)的玄武质岩浆(Liu et al., 2008; Wang et al., 2012)。如MnO-Fe/Mn图解(图 9f)所示,锡林浩特辉长闪长岩样品全部落在了含水橄榄岩和辉石岩熔体的范围内或附近。此外,Zn/Fe值对源区中榴辉岩和石榴子石辉石岩的贡献较为敏感(Le Roux et al., 2010)。锡林浩特辉长闪长岩样品的Zn/Fe值(10.8~11.5)明显高于上地幔的Zn/Fe平均值(~8.5;Le Roux et al., 2010)。这些特征指示源区很可能存在榴辉岩和/或石榴子石辉石岩(例如Wang et al., 2012)。样品的(La/Yb)N比值在2.8~4.39之间,也与母岩浆起源于石榴子石相稳定区相符。值得注意的是,锡林浩特地区晚石炭世高MgO玄武岩也普遍落在石榴子石辉石岩熔体范围内或附近(图 9),表明源区中石榴子石辉石岩的贡献不可忽视。但考虑到其较低的轻重稀土比值(0.4~1.8;汤文豪等, 2011; 潘世语等, 2012; Liu et al., 2013; 邵济安等, 2015; Pang et al., 2016),锡林浩特地区晚石炭世玄武岩高的Fe/Mn很可能是与含水橄榄岩的较大比例熔融有关(≥10%;Pang et al., 2016),而其源区是否存在石榴子石辉石岩则有待进一步探讨。

实验岩石学研究表明,与橄榄岩来源的熔体相比,辉石岩来源的熔体具有更高的SiO2和Ni含量(Sobolev et al., 2007)以及FC3MS值(FeO/CaO-3×MgO/SiO2Yang and Zhou, 2013)。如图 6所示,锡林浩特辉长-辉长闪长岩的Cr和Ni含量较高,明显高于晚石炭世玄武岩的Cr和Ni含量,也指示源区存在辉石岩组分的贡献。Yang and Zhou (2013)认为不同条件下(例如含有或者无挥发份)橄榄岩来源熔体的FC3MS值小于0.65,而辉石岩来源熔体的FC3MS值则大于0.65。结合前人已发表的数据进行计算,结果表明晚石炭世玄武岩的FC3MS值为0.3~1.94之间(大部分>0.65),而辉长岩、辉长闪长岩的FC3MS值为0.16~1.06之间(大部分 < 0.65),同样暗示了源区可能存在辉石岩。然而,需要指出的是,FC3MS值作为判别辉石岩或橄榄岩源区存在着不确定性,尤其是当源区组成变化较大(例如Fe-rich)以及含有流体时。综上所述,锡林浩特晚石炭世辉长质岩体可能起源于富水、富斜方辉石的地幔源区,即由橄榄岩+辉石岩脉组成。

4.3 构造背景及动力学过程

锡林浩特及其邻区晚石炭世中基性岩的岩石成因对于理解兴蒙造山带的演化具有重要意义。目前关于该区晚石炭世中基性岩的形成构造背景仍存在诸多争议,最为典型的是弧岩浆与陆内岩浆之争。例如,Chen et al.(2000, 2009)报道了苏左旗宝力道晚石炭世(310Ma)辉长闪长岩具有典型的弧岩浆特征(即相对富集Ba、Rb、Sr、Th和K,相对亏损Nb、Ta和Ti)(图 7),并提出晚石炭世存在安第斯型弧岩浆活动,与古亚洲洋向北俯冲至南蒙古微板块之下有关。这一观点也得到许多学者的认同(Xiao et al., 2003; 石玉若等, 2005; Windley et al., 2007; Jian et al., 2008)。随后,许多学者也将苏右旗-西乌旗地区具有亏损Nb-Ta和富集Th-U特征的晚石炭世(318~300Ma)本巴图组和阿木山组玄武岩解释为古亚洲洋向北俯冲的弧岩浆产物(潘世语等, 2012; Liu et al., 2013; Song et al., 2015)。Zhou et al. (2016)则将锡林浩特晚石炭世辉长闪长岩解释为古亚洲洋向南俯冲作用的产物。由此可见,无论何种俯冲极性,支持俯冲模式的关键证据之一是晚石炭世中基性岩普遍具有富集Rb、Th、U等流体活动性元素,亏损Nb、Ta等流体不活动性元素的特征。然而,仅依据这一特征来判断玄武质岩浆的构造背景存在不确定性(Xia, 2014; Wang et al., 2016),因为流体的参与会改变微量元素的地球化学行为。已有的研究表明,俯冲过程中俯冲板块析出含水流体或者是板内背景下深部流体循环过程释放的含水流体都可以导致地幔源区发生富水流体交代作用(Peacock, 1990; Sobolev et al., 2007; Ionov, 2010; Ivanov and Litasov, 2014; Wang et al., 2015, 2016; Yoshikawa et al., 2016),造成LILE富集和HFSE亏损的特征。

如前所述,本次研究的辉长质岩体侵位时间为晚石炭世(316.9Ma),其与锡林浩特及其邻区的本巴图组、阿木山组和宝力格组火山岩以及花岗质侵入岩在时空上密切相关(图 5汤文豪等, 2011; 潘世语等, 2012; Liu et al., 2013; 李可等, 2014; Zhou et al., 2016),构成双峰式火山岩和侵入岩组合特征。据统计,双峰式火山岩可出现在大陆裂谷、洋岛、大陆拉张减薄、弧后扩张、造山后、洋内岛弧以及成熟岛弧等构造背景中(王焰等, 2000)。锡林浩特地区晚石炭世双峰式火山岩组合中以玄武质岩为主,而且显示了类似N-MORB的微量元素特征(Pang et al., 2016),与成熟岛弧/活动陆缘、弧后盆地的双峰式火山岩岩石组合以及元素地球化学特征不同。与弧岩浆不同,大陆裂谷以及造山后拉张构造背景常产出富碱质的岩石。研究表明,苏左旗地区晚石炭世(308~300Ma)基性到酸性火山岩呈现典型的钾玄质-高钾钙-碱性岩浆特征(李可等, 2014),而且苏左旗至西乌旗一带早二叠世(290~280Ma)也普遍发育双峰式、钾玄质-高钾钙-碱性火山岩(Zhang et al., 2008, 2011)。最新的研究结果表明,锡林浩特和达青地区锡林郭勒杂岩及侵入其中的石炭纪基性岩普遍发育高温低压变质,变质时间为348~305Ma,代表变质峰期后的冷却阶段,与兴蒙造山带晚石炭世的伸展作用有关(Zhang et al., 2018a, b)。结合古生物和沉积古地理资料(鲍庆中等, 2005; 周志广等, 2010; 邵济安等, 2014; Zhao et al., 2016, 2017),这些证据佐证了锡林浩特地区晚石炭世可能处于陆内伸展的构造背景。

与同期玄武岩相似,锡林浩特晚石炭世辉长质岩相对富集LILE(如Rb、U、Sr等)和LREE(La、Ce),亏损HFSE(如Nb、Ta),显示了类似弧岩浆的微量元素特征。研究表明,Zr-Zr/Y和Ti/V-Zr/Sm-Sr/Nd等判别图解可以有效地区分弧玄武岩和类似弧岩浆玄武岩,因为二者的Zr、Sr和Ti含量不同(Wang et al., 2016)。例如,在Zr-Zr/Y判别图解上,大部分的峨眉山玄武岩(87%)、德干玄武岩(92%)、哥伦比亚玄武岩(85%)以及北美盆-岭玄武岩(88%)样品落在板内玄武岩范围(图 10Wang et al., 2016)。在Ti/V-Zr/Sm-Sr/Nd等判别图解上,具有类似弧岩浆特征的大陆玄武岩近平行于Ti/V-Zr/Sm边界展布,而弧玄武岩的分布近垂直于具有类似弧岩浆特征的大陆玄武岩,呈Sr富集的趋势(图 10Wang et al., 2016)。在Zr-Zr/Y和Ti/V-Zr/Sm-Sr/Nd等判别图解上,晚石炭玄武岩均落在板内玄武岩区域,具有与北美盆-岭玄武岩相似的地球化学特征;而宝力道辉长岩以及锡林浩特辉长质岩样品Ti/V-Sr/Nd边界展布,也主要落在了板内岩浆和盆-岭岩浆的区域内或附近,暗示其很可能形成于陆内伸展的构造背景(图 10)。

图 10 锡林浩特及其邻区石炭纪玄武岩和中基性侵入岩的Zr-Zr/Y(a, 据Pearce and Norry, 1979)和Zr/Sm-Sr/Nd-Ti/V(b, 据Wang et al., 2016)构造判别图解 Fig. 10 Zr-Zr/Y (a, after Pearce and Norry, 1979) and Zr/Sm-Sr/Nd-Ti/V (b, after Wang et al., 2016) discrimination diagrams of Carboniferous basalts and mafic-medium intrusive rocks in Xilinhot and adjacent areas with experimental melts of various starting materials

综上所述,锡林浩特晚石炭世中基性侵入岩形成于陆内伸展的构造背景,而非俯冲作用的产物。其类似于弧岩浆的地球化学特征(LILE富集、HFSE亏损)与地幔源区遭受富水流体交代作用有关。由于锡林浩特晚石炭世中基性岩形成于陆内伸展背景,其地幔源区的富集交代作用可能与深部流体循环过程有关(Wang et al., 2015, 2016; Pang et al., 2016, 2017),即早古生代俯冲的古亚洲洋板片将水和其他流体到地幔过渡带,而这些含水流体在晚古生代造山后陆内伸展过程中释放并造成地幔源区富水。富水流体的加入大大地降低了橄榄岩固相线并发生部分熔融,从而产生晚石炭世大规模的岩浆活动。

5 结论

(1) 锡林浩特辉长闪长岩的SIMS锆石U-Pb年龄316.9±2.2Ma,表明其形成于晚石炭世。锡林浩特辉长闪长岩具有相对较高的SiO2、Cr和Ni含量以及Zn/Fe比值,以及相对较低的Al2O3含量,暗示源区可能是富含斜方辉石的,即由橄榄岩+辉石岩脉组成。

(2) 锡林浩特辉长闪长岩具有较低的87Sr/86Sr初始比值(0.7034~0.7041),相对高的εNd(t)(+5.58~+6.88)和εHf(t)值(+12.07~+13.44),同时相对富集Rb、Sr、U和Pb等流体活动性元素,亏损Nb和Ta,暗示其起源于遭受含水流体交代富集的类似MORB的地幔源区。

(3) 在Zr-Zr/Y和Ti/V-Zr/Sm-Sr/Nd等判别图解上,锡林浩特晚石炭世辉长闪长岩样品主要落在了板内岩浆和盆-岭岩浆的区域内。综合区域双峰式火山岩和侵入岩的地球化学特征以及其他地质资料,本文认为锡林浩特晚石炭世中基性岩形成于陆内伸展的构造背景,而非俯冲作用的产物。

致谢      感谢两位评审专家和编辑的宝贵修改意见;感谢澳大利亚昆士兰大学地球科学学院赵建新教授和俸月星博士协助完成全岩微量元素和Sr-Nd-Hf同位素分析;感谢中国科学院地质与地球物理研究所唐国强和凌潇潇博士协助完成SIMS锆石U-Pb定年分析。

参考文献
Bao QZ, Zhang CJ, Wu ZL, Wang H, Li W, Su YZ, Sang JH and Liu YS. 2005. The Carboniferous-Permian lithostratigraphic division of West Ujimqin, Inner Mongolia. Journal of Stratigraphy, 29(Suppl.): 512-519.
Beard JS. 1986. Characteristic mineralogy of arc-related cumulate gabbros:Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14(10): 848-851. DOI:10.1130/0091-7613(1986)14<848:CMOACG>2.0.CO;2
Berndt J, Koepke J and Holtz F. 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200MPa. Journal of Petrology, 46(1): 135-167.
Botcharnikov RE, Almeev RR, Koepke J and Holtz F. 2008. Phase relations and liquid lines of descent in hydrous ferrobasalt:Implications for the Skaergaard intrusion and Columbia River flood basalts. Journal of Petrology, 49(9): 1687-1727. DOI:10.1093/petrology/egn043
Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. Beijing: Geological Publishing House: 1-725.
Chalot-Prat F and Boullier AM. 1997. Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania):New evidence from trace element geochemistry. Contributions to Mineralogy and Petrology, 129(4): 284-307. DOI:10.1007/s004100050338
Chen B, Jahn BM, Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182. DOI:10.1016/S0040-1951(00)00182-7
Chen B, Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257. DOI:10.1016/j.jseaes.2008.05.007
Chu H, Zhang JR, Wei CJ, Wang HC and Ren YW. 2013. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia. Chinese Science Bulletin, 58(28-29): 3580-3587. DOI:10.1007/s11434-013-5862-7
Deniel C and Pin C. 2001. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Analytica Chimica Acta, 426(1): 95-103. DOI:10.1016/S0003-2670(00)01185-5
DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2): 189-202. DOI:10.1016/0012-821X(81)90153-9
Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM and Handler MR. 1997. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4): 311-326. DOI:10.1016/S0009-2541(96)00100-3
Ge MC, Zhou WX, Yu Y, Sun JJ, Bao JQ and Wang SH. 2011. Dissolution and supracrustal rocks dating of Xilin Gol complex, Inner Mongolia, China. Earth Science Frontiers, 18(5): 182-195.
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary islands:Implications for origins. Journal of Petrology, 52(1): 113-146. DOI:10.1093/petrology/egq075
Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures:Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477-489. DOI:10.1016/0012-821X(93)90077-M
Ionov DA. 2010. Petrology of mantle wedge lithosphere:New data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. Journal of Petrology, 51(1-2): 327-361. DOI:10.1093/petrology/egp090
Ivanov AV and Litasov KD. 2014. The deep water cycle and flood basalt volcanism. International Geology Review, 56(1): 1-14. DOI:10.1080/00206814.2013.817567
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the central Asian Orogenic belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. DOI:10.1017/S0263593300007367
Jahn BM. 2004. The Central Asian Orogenic belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds. ). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 73-100
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth. Lithos, 101(3-4): 233-259. DOI:10.1016/j.lithos.2007.07.005
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, central Asian Orogenic belt, China and Mongolia. Lithos, 118(1-2): 169-190. DOI:10.1016/j.lithos.2010.04.014
Kamber BS, Greig A, Schoenberg R and Collerson KD. 2003. A refined solution to Earth's hidden niobium:Implications for evolution of continental crust and mode of core formation. Precambrian Research, 126(3-4): 289-308. DOI:10.1016/S0301-9268(03)00100-1
Kang JL, Xiao ZB, Wang HC, Chu H, Ren YW, Liu H, Gao ZR and Sun YW. 2016. Late Paleozoic subduction of the Paleo-Asian Ocean:Geochronological and geochemical evidence from the meta-basic volcanics of Xilinhot, Inner Mongolia. Acta Geologica Sinica, 90(2): 383-397.
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. DOI:10.1007/BF00311004
Kogiso T, Hirose K and Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt:Application to the genesis of ocean island basalts. Earth and Planetary Science Letters, 162(1-4): 45-61. DOI:10.1016/S0012-821X(98)00156-3
Le Roux V, Lee CTA and Turner SJ. 2010. Zn/Fe systematics in mafic and ultramafic systems:Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796. DOI:10.1016/j.gca.2010.02.004
Li JY, Zhang J, Yang TN, Li YP, Sun GH, Zhu ZX and Wang LJ. 2009. Crustal tectonic division and evolution of the southern part of the north Asian Orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605.
Li K, Zhang ZC, Feng ZS, Li JF, Tang WH and Luo ZW. 2014. Zircon SHRIMP U-Pb dating and its geological significance of the Late-Carboniferous to Early-Permian volcanic rocks in Bayanwula area, the central of Inner Mongolia. Acta Petrologica Sinica, 30(7): 2041-2054.
Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107-1113. DOI:10.1039/b923444f
Li S, Chung SL, Wilde SA, Wang T, Xiao WJ and Guo QQ. 2016. Linking magmatism with collision in an accretionary orogen. Scientific Reports, 6: 25751. DOI:10.1038/srep25751
Li XH, Li WX, Wang XC, Li QL, Liu Y and Tang GQ. 2009. Role of mantle-derived magma in genesis of Early Yanshanian granites in the Nanling Range, South China:In situ zircon Hf-O isotopic constraints. Science in China (Series D), 52(9): 1262-1278. DOI:10.1007/s11430-009-0117-9
Li YL, Zhou HW, Brouwer FM, Wijbrans JR, Zhong ZQ and Liu HF. 2011. Tectonic significance of the Xilin Gol complex, Inner Mongolia, China:Petrological, geochemical and U-Pb zircon age constraints. Journal of Asian Earth Sciences, 42(5): 1018-1029. DOI:10.1016/j.jseaes.2010.09.009
Li YL, Zhou HW, Brouwer FM, Xiao WJ, Wijbrans JR, Zhao JH, Zhong ZQ and Liu HF. 2014. Nature and timing of the Solonker suture of the Central Asian Orogenic Belt:Insights from geochronology and geochemistry of basic intrusions in the Xilin Gol Complex, Inner Mongolia, China. International Journal of Earth Sciences, 103(1): 41-60. DOI:10.1007/s00531-013-0931-3
Li YL, Brouwer FM, Xiao WJ, Wang KL, Lee YH, Luo BJ, Su YP and Zheng JP. 2017. Subduction-related metasomatic mantle source in the eastern Central Asian Orogenic Belt:Evidence from amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research, 43: 193-212. DOI:10.1016/j.gr.2015.11.015
Liu JF, Li JY, Chi XG, Qu JF, Hu ZC, Fang S and Zhang Z. 2013. A Late-Carboniferous to early Early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia:Evidence of northward subduction beneath the Siberian paleoplate southern margin. Lithos, 177: 285-296. DOI:10.1016/j.lithos.2013.07.008
Liu YS, Gao S, Kelemen PB and Xu WL. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376. DOI:10.1016/j.gca.2008.02.018
Ludwig KR. 2001. Users manual for Isoplot/Ex (rev. 2. 49): A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1-56
Meyzen CM, Blichert-Toft J, Ludden JN, Humler E, Mével C and Albaréde F. 2007. Isotopic portrayal of the Earth's upper mantle flow field. Nature, 447(7148): 1069-1074. DOI:10.1038/nature05920
Miková J and Denková P. 2007. Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. Journal of Geosciences, 52(3-4): 221-226.
Milidragovic D and Francis D. 2016. Ca. 2.7Ga ferropicritic magmatism:A record of Fe-rich heterogeneities during Neoarchean global mantle melting. Geochimica et Cosmochimica Acta, 185: 44-63. DOI:10.1016/j.gca.2015.09.023
Nie FJ, Cao Y, Ding CW and Liu YF. 2014. Preliminary discussions on the rejuvenated metallogenesis of the Da Hinggan-Mongolia Paleozoic orogenic belt as deduced from the studies on Sn, W and Mo-polymetallic deposits occurring within the Xilinhot and Ergun massifs. Acta Petrologica Sinica, 30(7): 2063-2080.
Pan SY, Chi XG, Sun W, Quan JY, Hu ZC and Da JW. 2012. Geochemical characteristics and tectonic significance of Late Carboniferous volcanic rocks in Benbatu Formation of Sonid Youqi, Inner Mongolia. Global Geology, 31(1): 40-50.
Pang CJ, Wang XC, Xu B, Zhao JX, Feng YX, Wang YY, Luo ZW and Liao W. 2016. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China:Products of hydrous melting in an intraplate setting?. Lithos, 261: 55-71. DOI:10.1016/j.lithos.2016.05.005
Pang CJ, Wang XC, Xu B, Luo ZW and Liu YZ. 2017. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China:New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 144: 184-204. DOI:10.1016/j.jseaes.2017.03.012
Peacock SA. 1990. Fluid processes in subduction zones. Science, 248(4953): 329-337. DOI:10.1126/science.248.4953.329
Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. DOI:10.1007/BF00375192
Pin C and Zalduegui JS. 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography:Application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339(1-2): 79-89. DOI:10.1016/S0003-2670(96)00499-0
Polat A, Hofmann AW and Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7~3.8Ga Isua greenstone belt, West Greenland:Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3-4): 231-254. DOI:10.1016/S0009-2541(01)00363-1
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shao JA, Tang KD and He GQ. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866.
Shao JA, Tian W, Tang KD and Wang Y. 2015. Petrogenesis and tectonic settings of the Late Carboniferous high Mg basalts of Inner Mongolia. Earth Science Frontiers, 22(5): 171-181.
Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR and Tao H. 2003. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin, 48(24): 2742-2748. DOI:10.1007/BF02901768
Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC, Shi GH, Zhang LQ and Tao H. 2005. The petrogenesis and SHRIMP dating of the Baiyinbaolidao adakitic rocks in southern Suzuoqi, Inner Mongolia. Acta Petrologica Sinica, 21(1): 143-150.
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35. DOI:10.1016/j.chemgeo.2007.11.005
Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597. DOI:10.1038/nature03411
Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417. DOI:10.1126/science. 1138113
Song SG, Wang MM, Xu X, Wang C, Niu YL, Allen MB and Su L. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB:Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 34(10): 2221-2248. DOI:10.1002/2015TC003948
Sun LX, Ren BF, Zhao FQ, Ji SP and Geng JZ. 2013. Late Paleoproterozoic magmatic records in the Eerguna massif:Evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China, 32(2-3): 341-352.
Tang WH, Zhang ZC, Li JF, Feng ZS and Chen C. 2011. Geochemistry of the carboniferous volcanic rocks of Benbatu formation in Sonid Youqi, Inner Mongolia and its geological significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(2): 321-330.
Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1-312
Vervoort JD, Patchett PJ, Blichert-Toft J and Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168(1-2): 79-99. DOI:10.1016/S0012-821X(99)00047-3
Wang XC, Li XH, Li WX, Li ZX, Liu Y, Yang YH, Liang XR and Tu XL. 2008. The Bikou basalts in the northwestern Yangtze block, South China:Remnants of 820-810Ma continental flood basalts?. Geological Society of America Bulletin, 120(11-12): 1478-1492. DOI:10.1130/B26310.1
Wang XC, Li XH, Li ZX, Liu Y and Yang YH. 2010. The Willouran basic province of South Australia:Its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos, 119(3-4): 569-584. DOI:10.1016/j.lithos.2010.08.011
Wang XC, Li ZX, Li XH, Li J, Liu Y, Long WG, Zhou JB and Wang F. 2012. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia:A consequence of a young thermal mantle plume close to Subduction zones?. Journal of Petrology, 53(1): 177-233. DOI:10.1093/petrology/egr061
Wang XC, Li ZX, Li XH, Li J, Xu YG and Li XH. 2013. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume:Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 377-378: 248-259. DOI:10.1016/j.epsl.2013.07.003
Wang XC, Wilde SA, Li QL and Yang YN. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nature Communications, 6: 7700. DOI:10.1038/ncomms8700
Wang XC, Wilde SA, Xu B and Pang CJ. 2016. Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 261: 5-45. DOI:10.1016/j.lithos.2015.12.014
Wang Y, Qian Q, Liu L and Zhang Q. 2000. Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments. Acta Petrologica Sinica, 16(2): 169-173.
Wang YJ, Fan WM, Zhang HF and Peng TP. 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains:Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos, 86(3-4): 281-302. DOI:10.1016/j.lithos.2005.07.001
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23. DOI:10.1111/ggr.1995.19.issue-1
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. DOI:10.1016/j.epsl.2004.12.005
Xia LQ. 2014. The geochemical criteria to distinguish continental basalts from arc related ones. Earth-Science Reviews, 139: 195-212. DOI:10.1016/j.earscirev.2014.09.006
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069. DOI:10.1029/2002tc001484
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. DOI:10.1007/s00531-008-0407-z
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. DOI:10.1016/j.gr.2012.05.015
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857.
Xu YG, Ma JL, Huang XL, Iizuka Y, Chung SL, Wang YB and Wu XY. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province:Petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences, 93(6): 1025-1041. DOI:10.1007/s00531-004-0430-7
Xu YG, Zhang HH, Qiu HN, Ge WC and Wu FY. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China:Derived from the mantle transition zone?. Chemical Geology, 328: 168-184. DOI:10.1016/j.chemgeo.2012.01.027
Xue HM, Guo LJ, Hou ZQ, Zhou XW, Tong Y and Pan XF. 2009. The Xilingele complex from the eastern part of the Central Asian-Mongolia Orogenic Belt, China:Products of Early Variscan orogeny other than ancient block:Evidence from zircon SHRIMP U-Pb ages. Acta Petrologica Sinica, 25(8): 2001-2010.
Yang ZF and Zhou JH. 2013. Can we identify source lithology of basalt?. Scientific Reports, 3: 1856. DOI:10.1038/srep01856
Yoshikawa M, Tamura A, Arai S, Kawamoto T, Payot BD, Rivera DJ, Bariso EB, Mirabueno MHT, Okuno M and Kobayashi T. 2016. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines. Lithos, 262: 355-368. DOI:10.1016/j.lithos.2016.07.008
Zhang JR, Chu H, Wei CJ and Wang K. 2014. Geochemical characteristics and tectonic significance of Late Paleozoic-Early Mesozoic meta-basic rocks in the mélange zones, Central Inner Mongolia. Acta Petrologica Sinica, 30(7): 1935-1947.
Zhang JR, Wei CJ and Chu H. 2018a. High-T and low-P metamorphism in the Xilingol Complex of central Inner Mongolia, China:An indicator of extension in a previous orogeny. Journal of Metamorphic Geology, 36(4): 393-417. DOI:10.1111/jmg.2018.36.issue-4
Zhang JR, Wei CJ and Chu H. 2018b. Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, northern China: Implication for the tectonic evolution of the Xing'an-Inner Mongolia Orogenic Belt. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2018.04.007
Zhang XH, Zhang HF, Tang YJ, Wilde SA and Hu ZC. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281. DOI:10.1016/j.chemgeo.2008.01.005
Zhang XH, Wilde SA, Zhang HF and Zhai MG. 2011. Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China:Geochemistry, origin and tectonic implications. Journal of the Geological Society, 168(2): 525-543. DOI:10.1144/0016-76492010-094
Zhao P, Xu B, Tong QL, Chen Y and Faure M. 2016. Sedimentological and geochronological constraints on the Carboniferous evolution of central Inner Mongolia, southeastern Central Asian Orogenic Belt:Inland sea deposition in a post-orogenic setting. Gondwana Research, 31: 253-270. DOI:10.1016/j.gr.2015.01.010
Zhao P, Xu B and Zhang CH. 2017. A rift system in southeastern Central Asian Orogenic Belt:Constraint from sedimentological, geochronological and geochemical investigations of the Late Carboniferous-Early Permian strata in northern Inner Mongolia (China). Gondwana Research, 47: 342-357. DOI:10.1016/j.gr.2016.06.013
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. DOI:10.1016/j.gr.2012.05.012
Zhou WX, Li SC, Ge MC, Fu D, Chai XN and Yu Y. 2016. Geochemistry and zircon geochronology of a gabbro-granodiorite complex in Tongxunlian, Inner Mongolia:Partial melting of enriched lithosphere mantle. Geological Journal, 51(1): 21-41. DOI:10.1002/gj.2603
Zhou ZG, Gu YC, Liu CF, Yu YS, Zhang B, Tian ZJ, He FB and Wang BR. 2010. Discovery of Early-Middle Permian cathaysian flora in Manduhubaolage area, Dong Ujimqin Qi, Inner Mongolia, China and its geological significance. Geological Bulletin of China, 29(1): 21-25.
Zhu WP, Tian W, Wei CJ, Shao JA, Fu B, Fanning CM, Chen MM and Wang B. 2017. Late Paleozoic rift-related basalts from central Inner Mongolia, China. Journal of Asian Earth Sciences, 144: 155-170. DOI:10.1016/j.jseaes.2017.04.007
鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 苏养正, 桑家和, 刘永生. 2005. 内蒙古西乌珠穆沁旗地区石炭二叠纪岩石地层. 地层学杂志, 29(增): 512-519.
葛梦春, 周文孝, 于洋, 孙俊俊, 鲍建泉, 王世海. 2011. 内蒙古锡林郭勒杂岩解体及表壳岩系年代确定. 地学前缘, 18(5): 182-195.
康健丽, 肖志斌, 王惠初, 初航, 任云伟, 刘欢, 高知睿, 孙义伟. 2016. 内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据. 地质学报, 90(2): 383-397. DOI:10.3969/j.issn.0001-5717.2016.02.014
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605.
李可, 张志诚, 冯志硕, 李建锋, 汤文豪, 罗志文. 2014. 内蒙古中部巴彦乌拉地区晚石炭世-早二叠世火山岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 30(7): 2041-2054.
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社: 1-725.
聂凤军, 曹毅, 丁成武, 刘翼飞. 2014. 论兴蒙造山带叠生成矿作用——以锡林浩特和额尔古纳地块为例. 岩石学报, 30(7): 2063-2080.
潘世语, 迟效国, 孙巍, 权京玉, 胡兆初, 达佳伟. 2012. 内蒙古苏尼特右旗晚石炭世本巴图组火山岩地球化学特征及构造意义. 世界地质, 31(1): 40-50. DOI:10.3969/j.issn.1004-5589.2012.01.005
邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866.
邵济安, 田伟, 唐克东, 王友. 2015. 内蒙古晚石炭世高镁玄武岩的成因和构造背景. 地学前缘, 22(5): 171-181.
石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 施光海, 张履桥, 陶华. 2005. 内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究. 岩石学报, 21(1): 143-150.
孙立新, 任邦方, 赵凤清, 冀世平, 耿建珍. 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(2-3): 341-352.
汤文豪, 张志诚, 李建锋, 冯志硕, 晨辰. 2011. 内蒙古苏尼特右旗查干诺尔石炭系本巴图组火山岩地球化学特征及其地质意义. 北京大学学报(自然科学版), 47(2): 321-330.
王焰, 钱青, 刘良, 张旗. 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16(2): 169-173.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
薛怀民, 郭利军, 侯增谦, 周喜文, 童英, 潘晓菲. 2009. 中亚-蒙古造山带东段的锡林郭勒杂岩:早华力西期造山作用的产物而非古老陆块?锆石SHRIMP U-Pb年代学证据. 岩石学报, 25(8): 2001-2010.
张晋瑞, 初航, 魏春景, 王康. 2014. 内蒙古中部构造混杂带晚古生代-早中生代变质基性岩的地球化学特征及其大地构造意义. 岩石学报, 30(7): 1935-1947.
周志广, 谷永昌, 柳长峰, 於炀森, 张冰, 田志君, 何付兵, 王必任. 2010. 内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义. 地质通报, 29(1): 21-25. DOI:10.3969/j.issn.1671-2552.2010.01.003