岩石学报  2018, Vol. 34 Issue (10): 2917-2930   PDF    
大兴安岭中段晚三叠世安第斯型安山岩:蒙古-鄂霍茨克大洋板片南向俯冲作用的产物
纪政 , 葛文春 , 杨浩 , 毕君辉 , 于倩 , 董玉     
吉林大学地球科学学院, 长春 130061
摘要:本文报道了大兴安岭中段火龙沟地区晚三叠世安山岩的锆石U-Pb年龄、Lu-Hf同位素组成以及全岩地球化学数据,以揭示蒙古-鄂霍茨克大洋板片早中生代期间南向俯冲作用的过程。火龙沟地区安山岩的锆石均呈自形-半自形,具有典型的振荡生长环带和高Th/U(0.48~1.47)比值的特征,暗示其为岩浆成因锆石。锆石LA-ICP-MS U-Pb同位素定年结果显示,火龙沟地区安山岩形成于236±1Ma的晚三叠世。这些晚三叠世安山岩的SiO2含量为51.44%~66.67%,全碱(Na2O+K2O)含量为5.01%~6.88%,Al2O3含量为13.14%~19.20%,Fe2O3T含量为5.11%~9.55%,TiO2含量为0.65%~1.66%,具有较高的MgO(2.15%~4.64%)、Cr(43.7×10-6~212.0×10-6)和Ni(20.2×10-6~100.0×10-6)含量以及Mg#值(45~55),为钙碱性系列岩石。安山岩样品富集大离子亲石元素(Rb、K、Sr等)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti等)和重稀土元素,且具有微弱的Eu异常(δEu=0.84~1.13),与俯冲带岩浆岩地球化学特征相似。安山岩中的锆石εHft)值为+8.9~+11.6,相应的Hf同位素一阶段模式年龄(tDM1)为525~414Ma。上述特征表明火龙沟地区晚三叠世安山岩岩浆可能起源于俯冲流体交代的亏损地幔楔,源区可能还存在少量俯冲沉积物的贡献,并在岩浆演化的过程中经历了角闪石、斜长石和磷灰石等矿物的分离结晶作用。结合区域地质资料,认为研究区晚三叠世安山岩形成于蒙古-鄂霍茨克大洋板片南向俯冲作用相关的安第斯型活动大陆边缘环境,且蒙古-鄂霍茨克大洋板片在晚三叠世期间经历了低角度俯冲到高角度俯冲的转变。
关键词: 晚三叠世安山岩     兴蒙造山带     蒙古-鄂霍茨克洋     岩石成因     地球化学    
The Late Triassic Andean-type andesite from the central Great Xing'an Range: Products of the southward subduction of the Mongol-Okhotsk oceanic plate
JI Zheng, GE WenChun, YANG Hao, BI JunHui, YU Qian, DONG Yu     
College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: This paper presents zircon U-Pb ages, Lu-Hf isotope compositions and whole-rock geochemical data of the Late Triassic andesite from the Huolonggou area, central Great Xing'an Range, in order to reveal the processes of southward subduction of the Mongol-Okhotsk oceanic plate. Zircons from the andesite in the Huolonggou area are euhedral to subhedral in shape, and are characterized by typical oscillatory growth zoning and high Th/U (0.48~1.47) ratios, indicating a magmatic origin. Zircon LA-ICP-MS U-Pb dating result indicates that the andesite from the Huolonggou area formed during the Late Triassic with the age of 236±1Ma. These andesite have SiO2 contents of 51.44%~66.67%, total alkali (Na2O+K2O) concentrations of 5.01%~6.88%, Al2O3 contents of 13.14%~19.20%, Fe2O3T contents of 5.11%~9.55%, and TiO2 contents of 0.65%~1.66%, with high MgO (2.15%~4.64%), Cr (43.7×10-6~212.0×10-6) and Ni (20.2×10-6~100.0×10-6) contents and Mg# values (45~55), and belong to calc-alkaline series. The andesite samples are enriched in large ion lithophile elements (e.g., Rb, K and Sr) and light rare earth elements, and depleted in high field strength elements (e.g., Nb, Ta and Ti) and heavy rare earth element, with weak Eu anomalies (δEu=0.84~1.13), similar to those of igneous rocks that form in subduction zone. Zircons of the andesite have εHf(t) values of +8.9~+11.6, and corresponding single-stage model (tDM1) ages range from 525Ma to 414Ma. These characteristics suggest that the Late Triassic andesite from the Huolonggou area were derived from the partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids, possibly with a few additions of subducting sediments, then fractional crystallization of amphibole, plagioclase and apatite occurred during magmatic evolution. Combined with regional geological data, we conclude that the Late Triassic andesite in the study area formed in an Andean-type active continental margin related to the southward subduction of the Mongol-Okhotsk oceanic plate, and the subduction style of the Mongol-Okhotsk oceanic plate changed from low-angle to high-angle during the Late Triassic.
Key words: Late Triassic andesite     Xing'an-Mongolian Orogenic Belt     Mongol-Okhotsk ocean     Petrogenesis     Geochemistry    

兴蒙造山带为中亚造山带的重要组成部分,分布于我国境内的内蒙古-东北地区(Şengör et al., 1993; Zhang et al., 2010; 徐备等, 2014),古生代期间,伴随着古亚洲洋的闭合,其经历了俯冲增生、碰撞造山以及地体汇聚等一系列复杂的构造演化(Xiao et al., 2003; Li, 2006; Windley et al., 2007),最终形成了多地体拼合的构造格局。在东北地区兴蒙造山带自西向东依次可划分为额尔古纳地块、兴安地块、松辽地块以及佳木斯-兴凯地块(图 1a),其间以蛇绿岩带和古缝合带分隔(Wu et al., 2011; Liu et al., 2017; Zhou et al., 2017)。早前的研究主要集中在古亚洲洋构造域及其之后的古太平洋构造域对东北地区的影响和改造(Chen et al., 2000; Wu et al., 2002; Li, 2006; Xu et al., 2009; Zhang et al., 2010; Liu et al., 2012; 刘希雯等, 2015; Dong et al., 2016)。但是,近年来部分学者相继报道额尔古纳地块发育与蒙古-鄂霍茨克洋俯冲作用相关的晚二叠世-早侏罗世火成岩以及同时期的斑岩型矿床(Chen et al., 2011; Wu et al., 2011; Sun et al., 2013; Tang et al., 2014, 2016; Wang et al., 2015b),暗示蒙古-鄂霍茨克洋南向俯冲作用对东北地区早中生代构造-岩浆演化,尤其是大兴安岭地区的相关研究具有不可忽视的重要意义(Wu et al., 2011; Wang et al., 2015a; Tang et al., 2016)。目前,尽管在额尔古纳地块发现了大量的早中生代弧岩浆岩,但是在兴安地块只存在少量与俯冲作用相关的早中生代火山岩报道(马永非等, 2017; 李世超等, 2017; Li et al., 2017a),严重制约了蒙古鄂霍茨克洋南向俯冲作用对东北地区时空影响范围的认识。

图 1 研究区地质图 (a)东北及邻区大地构造图(据Wu et al., 2007);(b)额尔古纳和兴安地块地质简图(据Li et al., 2017a);(c)火龙沟地区地质简图.标注的三叠纪岩浆岩年龄数据引自Wu et al., 2011; Tang et al., 2016; Yang et al., 2016; Li et al., 2017a; 马永非等, 2017 Fig. 1 Geological sketch map of study area (a) tectonic map of Northeast China and its adjacent area (after Wu et al., 2007); (b) geological sketch map of the Erguna and Xing'an blocks (after Li et al., 2017a); (c) geological sketch map of the Huolonggou area. The marked ages of Triassic igneous rocks are referenced from Wu et al., 2011; Tang et al., 2016; Yang et al., 2016; Li et al., 2017a; Ma et al., 2017

本文报道了大兴安岭中段火龙沟地区晚三叠世安山岩的锆石U-Pb年龄、Hf同位素组成以及全岩地球化学数据,以探讨其岩石成因、岩浆源区及构造背景。结合额尔古纳地块和兴安地块同期的岩浆岩资料,最终揭示蒙古-鄂霍茨克大洋板片早中生代期间南向俯冲作用的过程。

1 区域地质背景及样品描述

兴安地块夹持于新林-喜桂图缝合带和贺根山-黑河缝合带之间(Wu et al., 2011; 徐备等, 2014; Liu et al., 2017),包含了海拉尔盆地和大兴安岭的大部分区域(Zhang et al., 2010)。传统观点认为,兴安地块是具有前寒武纪变质结晶基底的古老微陆块(内蒙古自治区地质矿产局, 1991; 黑龙江省地质矿产局, 1993)。但是近年来的研究显示兴安地块之上原定寒武纪结晶基底的变质岩系实际是由古生代-中生代不同类型的岩浆岩、变质岩以及沉积岩组成(Miao et al., 2007; Sun et al., 2014),暗示兴安地块可能并不存在大规模的前寒武纪变质结晶基底。兴安地块的地壳增生时间以新元古代-显生宙为主,明显有别于发生中-新元古代显著地壳增生事件的额尔古纳地块(隋振民等, 2007, 2009; Dong et al., 2017)。同时,大兴安岭北段早古生代后碰撞花岗岩的发现(葛文春等, 2007),表明兴安地块与额尔古纳地块于早古生代早期已经完成碰撞拼贴(Wu et al., 2011; Liu et al., 2017)。此外,已识别出两条呈北东向沿兴安地块东缘展布的古生代弧岩浆岩带(ca.480~420Ma早古生代弧岩浆岩带和ca.360~330Ma的晚古生代弧岩浆岩带;赵芝等, 2010; Shi et al., 2015; Liu et al., 2017),二者与兴安地块和松辽地块间古亚洲洋的长期俯冲作用密切相关,暗示两地块的碰撞拼贴可能发生在早二叠世之前(Wu et al., 2011)。中生代以来,兴安地块进入到蒙古-鄂霍茨克构造域和古太平洋构造域的演化阶段(Xu et al., 2013),以发育大量的中生代火山岩及花岗岩为特征(图 1b)(Wu et al., 2011; Zhang et al., 2010)。

研究区位于内蒙古自治区阿尔山市与扎兰屯市交界的火龙沟地区,大地构造上属于兴安地块的东缘,靠近黑河-贺根山缝合带(图 1c)。研究区出露的地层主要为上石炭统火龙沟组(C2h)、下二叠统大石寨组(P1d)和晚中生代火山-沉积地层。近年研究表明,研究区部分前人划为下二叠统大石寨组和上侏罗统满克头鄂博组的火山岩的形成时代分别为晚侏罗世和早白垩世(Ji et al., 2016, 2018)。研究区中生代花岗质岩浆活动强烈,发育大量的早白垩世花岗质岩石,同时分布少量的三叠纪花岗质岩石(刘希雯等, 2015)。本文所采样品为原定早二叠世大石寨组的安山岩,其不整合覆盖于火龙沟组(C2h)砂岩之上,并与早白垩世花岗岩呈侵入接触。安山岩样品呈斑状结构,块状构造,斑晶含量较少,约为3%~5%,以斜长石为主,含少量角闪石。基质中长条状斜长石微晶呈交织状排列,其间有少量绿泥石化角闪石、辉石、磁铁矿等微晶以及玻璃质分散分布,构成玻晶交织结构(图 2)。

图 2 火龙沟地区安山岩显微照片 Hb-角闪石;Pl-斜长石 Fig. 2 Photomicrographs of andesite in the Huolonggou area Hb-hornblende; Pl-plagioclase
2 分析方法 2.1 锆石U-Pb定年

锆石分选工作是在廊坊市宇能岩石矿物分选技术服务有限公司完成,并分别于中国科学院地质与地球物理研究所和北京大学物理学院电镜室进行锆石靶的制备和阴极发光(CL)图像的采集工作。锆石U-Pb定年在中国地质大学(北京)地质过程与矿产资源国家重点实验利用LA-ICP-MS测定。仪器采用美国New Wave Research Inc.公司的UPI93SS激光剥蚀进样系统和美国AGILENT公司的Agilent 7500a型ICP-MS。实验过程中的仪器工作参数:激光剥蚀束斑直径为36μm,频率为10Hz,有效采集时间为45s。采用国际标准锆石91500进行分馏校正,使用TEM和QH作为监控标样。运行Glitter 4.4程序进行样品的同位素比值和元素含量数据处理。最后,通过Isoplot(ver3.0)(Ludwig, 2003)宏程序完成年龄计算与谐和图的生成。本文安山岩的锆石ICP-MS U-Pb分析结果列于表 1

表 1 火龙沟地区安山岩的锆石LA-ICP-MS U-Pb分析结果 Table 1 Zircon LA-ICP-MS U-Pb data for andesite in the Huolonggou area
2.2 全岩主量元素和微量元素

在详细的岩相学观察的基础上,我们挑选了18个新鲜的样品进行全岩地球化学测试。全岩主、微量元素分析在核工业北京地质研究院分析测试中心进行。使用PW2404型荧光光谱仪(XRF)进行主量元素的测定,实验流程依据国家标准GB/T14506.14—2010;采用ELEMENT XR型电感耦合等离子质谱仪(ICP-MS)进行微量元素的测定,实验流程依据国家标准GB/T14506.30—2010。经国家标样GDW07104的监控,全岩主、微量元素的分析精度分别优于5%和10%。本文全岩主、微量元素的分析结果见表 2

表 2 火龙沟地区安山岩的主量元素(wt%)与微量元素(×10-6)组成 Table 2 Major (wt%) and trace (×10-6) element contents of andesite in the Huolonggou area
2.3 锆石原位Hf同位素

锆石Hf同位素原位分析在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室LA-MC-ICP-MS实验室Neptune多接收电感耦合等离子体质谱仪测上完成。仪器的运行条件和详细的实验流程参数见Wu et al. (2006)。测定时用国际标准锆石91500(176Hf/177Hf=0.282294±0.000015,176Lu/177Hf=0.00031)作为外标,激光剥蚀束斑直径为63μm,频率为10Hz,能量值为100mJ。安山岩样品的锆石Hf同位素数据列于表 3

表 3 火龙沟地区安山岩的锆石Lu-Hf同位素组成分析结果 Table 3 Lu-Hf isotopic compositions of zircons from andesite in the Huolonggou area
3 分析结果 3.1 锆石U-Pb定年

本文对火龙沟地区的1件安山岩样品(BL1-1)进行了锆石LA-ICP-MS U-Pb定年,采样位置为N47°11′57.3″、E120°44′42.1″。所测安山岩锆石均呈自形-半自形,长宽比介于1:1~3:1,并在CL图像中呈现出岩浆成因锆石所具有的振荡生长环带(图 3)。此外,锆石的Th和U的含量分别为65×10-6~437×10-6和77.88×10-6~346×10-6,其较高的Th/U比值(0.48~1.47)也与岩浆锆石相吻合。对锆石进行的24个分析点均位于一致曲线上(图 4),206Pb/238U年龄变化于240~231Ma,给出的加权平均年龄为236±1Ma(MSWD=0.48, n=24),表明安山岩形成于晚三叠世。除此之外,还存在1个较老的锆石,其206Pb/238U年龄为251±4Ma,可能为安山岩中的捕获锆石年龄。

图 3 火龙沟地区安山岩的代表性锆石阴极发光图像 Fig. 3 CL images of the representative zircons from andesite in the Huolonggou area

图 4 火龙沟地区安山岩的锆石U-Pb谐和图 Fig. 4 Zircon U-Pb concordia diagrams of andesite in the Huolonggou area
3.2 全岩地球化学特征

火龙沟地区安山岩的SiO2含量变化范围较大,介于51.44%~66.67%,平均值为56.18%;全碱(Na2O+K2O)含量中等,变化于5.01%~6.88%,平均值为5.01%;Al2O3含量为13.14%~19.20%,平均值为17.55%;Fe2O3T含量为5.11%~9.55%,平均值为7.16%;MgO含量介于2.15%~4.64%,平均值为3.44%,相应的Mg#值为45~55;TiO2含量变化于0.65%~1.66%,其平均值(1.37%)与钙碱性系列安山岩平均值相似(1.16%)(Pearce et al., 1984)。在0.0001×Zr/TiO2-Nb/Y图解中,绝大部分样品落入安山岩区域,少量落入粗安岩区域(图 5a)。在Th-Co图解中,样品主体投影在钙碱性系列中,少量落入高钾钙碱性和橄榄粗玄岩系列区域(图 5b)。

图 5 火龙沟地区安山岩的0.0001×Zr/TiO2-Nb/Y图解(a, 据Winchester and Floyd, 1976)和Th-Co图解(b, 据Hastie et al., 2007) Fig. 5 0.0001×Zr/TiO2 vs. Nb/Y diagram (a, after Winchester and Floyd, 1976) and Th vs. Co diagram (b, after Hastie et al., 2007) for andesite in the Huolonggou area

火龙沟地区安山岩稀土元素总量(∑REE)介于145×10-6~213×10-6,平均值为185×10-6;稀土元素配分曲线具明显的右倾型(图 6a),轻重元素比值(HREE/LREE)变化于7.79~14.2,(La/Yb)N介于7.20~19.3;具有微弱的Eu异常,δEu=0.84~1.13。原始地幔标准化蛛网图中,所有样品呈现出一致的变化趋势,以富集大离子亲石元素(LILEs;Rb、K、Sr等),亏损高场强元素(HFSEs;Nb、Ta、Ti、Y等)为特征(图 6b),与俯冲带岩浆岩地球化学特征类似(Wilson, 1989)。

图 6 火龙沟地区安山岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989;阴影部分数据引自Winter, 2001) Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for andesite in the Huolonggou area (normalization values after Sun and McDonough, 1989; Data of shade areas from Winter, 2001)
3.3 锆石Hf同位素

安山岩样品(BL1-1)中的锆石具有较均一的Hf同位素组成,其176Hf/177Hf值变化于0.282882~0.282956,通过其结晶年龄236Ma计算,εHf(t)值为+8.9~+11.6 (图 7),相应的Hf同位素一阶段模式年龄(tDM1)介于525~414Ma之间。

图 7 火龙沟地区安山岩εHf(t)-t图解(据Yang et al., 2006) Fig. 7 εHf(t) vs. t diagram for andesite in the Huolonggou area (after Yang et al., 2006)
4 讨论 4.1 形成时代

由于缺乏高精度年龄数据以及古生物年代学资料,早期关于大兴安岭地区含火山岩地层时代的划分主要依据岩石组合特征和区域地层对比。本文中火龙沟地区晚三叠世火山-沉积地层由一套巨厚层安山岩以及互层的砾岩、砂岩和中酸性火山岩组成,因其岩石组合与大石寨组地层相似同时缺乏同位素年龄资料,前人将其划为下二叠统大石寨组。为准确厘定火龙沟地区安山岩的形成时代,本文通过LA-ICP-MS锆石U-Pb同位素分析方法对其进行定年。本文中火龙沟地区安山岩的锆石均呈自形-自形晶,发育典型的振荡生长环带,并具有较高的Th/U比值(0.48~1.47),暗示测年结果(236±1Ma)可以代表安山岩的结晶年龄,表明其形成于晚三叠世。

传统观点认为大兴安岭地区普遍缺失三叠纪火山-沉积地层,仅在兴安盟西部五岔沟一带出露。但是近年来详细的野外地质调查和年代学研究,已在大兴安岭中北段识别出多套三叠纪火山岩,包括:(1)蘑菇气地区安山岩、粗安岩、石英粗安岩、英安岩和流纹岩(240~211Ma; 司秋亮等, 2017; 马永非等, 2017; Li et al., 2017a);(2)扎兰屯地区玄武安山岩(228Ma; Li et al., 2017a);(3)罕达汽地区高镁安山岩(225~223Ma; Li et al., 2017a);(4)黑河地区玄武安山岩(242Ma; Li et al., 2017a)。综上,认为包括研究区在内的大兴安岭中北段发育一次重要的三叠纪火山作用事件。此外,大兴安岭地区同样分布着大量的三叠纪侵入岩(Wu et al., 2011)。Yang et al. (2016)报道了库提和-查巴奇-塔尔气地区三叠纪正长花岗岩、二长花岗岩和石英闪长岩的中酸性岩石组合(244~206Ma)。Tang et al. (2015)在额尔古纳地块上识别出了一条呈北东向展布的三叠纪弧岩浆岩带。Liu et al. (2018)在大兴安岭中段发现了三叠纪I型花岗岩(241Ma)和A型花岗岩(216Ma)。同时Liu et al. (2018)系统总结了大兴安岭地区三叠纪岩浆活动,并将其划分为两期:250~225Ma和215~201Ma。综上所述,大兴安岭地区三叠纪岩浆活动强烈且存在一个明显的间歇期(Liu et al., 2018),同时形成大规模呈北东向带状展布的岩浆岩(Tang et al., 2016; Yang et al., 2016; Li et al., 2018),与晚中生代呈北北东向带状展布的岩浆岩在空间分布上具有明显的差异。

4.2 岩浆源区特征与岩石成因

钙碱性安山岩是造山带的重要组成部分,其相关的成因研究为揭示地壳形成、生长以及壳幔相互作用具有极其重要的意义(唐功建等, 2009; Chen and Zhao, 2017)。目前关于钙碱性安山岩的成因主要有以下观点:(1)幔源玄武质岩浆底侵导致下地壳物质部分熔融作用(Petford and Atherton, 1996; Guffanti et al., 1996; Jung et al., 2002);(2)幔源玄武质岩浆分离结晶作用(Bonin, 2004; Lee et al., 2014);(3)壳源长英质岩浆与幔源玄武质岩浆混合作用(Guo et al., 2007; Reubi and Blundy, 2009; 陈越等, 2010);(4)俯冲流体或熔体交代地幔楔的部分熔融(Kelemen, 2005; Dong et al., 2016; Yu et al., 2017)。

火龙沟地区晚三叠世安山岩样品具有相对较高的烧失量(1.40~3.52),暗示其经历了一定程度的后期蚀变。然而,安山岩样品中各主量元素的含量并未随烧失量的增加而发生显著的变化,结合Zr与稀土元素、高场强元素(如Th、Nb、Ta和Hf)以及大离子亲石元素(如Rb、Ba和Sr)之间明显的线性相关(表 2),表明在后期蚀变过程中安山岩的主量元素和微量元素并未发生明显的迁移,其可为探讨安山岩的源区性质以及岩石成因提供重要的依据。

本文火龙沟地区晚三叠世安山岩具较低的SiO2含量(51.44%~66.67%)和较高的MgO(2.15%~4.64%)、Cr(43.7×10-6~212.0×10-6)和Ni(20.2×10-6~100.0×10-6)含量以及Mg#值(45~55),与基性下地壳物质部分熔融产生的岩浆明显不同(Mg#值通常小于45)(Rapp and Watson, 1995; Rapp et al., 1999)。同时,壳源岩浆具有相对高的Lu/Yb(0.16~0.18)和Rb/Sr比值(>0.5),而研究区晚三叠世安山岩样品的Lu/Yb和Rb/Sr比值分别介于0.13~0.15和0.04~0.51,明显低于壳源岩浆的范围,而与幔源岩浆的Lu/Yb(0.14~0.15)和Rb/Sr(0.03~0.047)比值相近(Rudnick and Gao, 2003; Sun and McDonough, 1989)。因此,火龙沟地区晚三叠世安山岩并非基性下地壳物质部分熔融的产物。此外,大兴安岭中段晚三叠世火山岩以安山岩和玄武安山岩为主,含少量的粗安岩、英安岩及流纹岩,未见大规模的玄武质岩浆岩(马永非等, 2017; 李世超等, 2017; Li et al., 2017a),结合火龙沟地区安山岩具有微弱的Eu异常,暗示其非玄武质岩浆结晶分异的产物。锆石Lu-Hf同位素体系具有较高的封闭温度,当发生岩浆混合作用时,较早结晶的锆石能将混合端元的Hf同位素特征有效的记录下来(吴福元等, 2007; 黄玉等, 2012)。研究区晚三叠世安山岩样品的锆石具有相对均一的Hf同位素组成,其εHf(t)值介于+8.9~+11.6,暗示岩浆混合作用不是安山岩岩浆来源的主要途径。俯冲板片或拆沉下地壳部分熔融的产物与地幔反应同样可以形成安山质岩浆,该岩浆具有埃达克岩高Sr/Y比值以及低Y和Yb含量的特征。火龙沟地区安山岩具有相对较低的Sr/Y比值以及较高的Y和Yb含量(图 8a),明显不同于俯冲板片或拆沉下地壳来源的埃达克岩,而与典型的弧火山岩相似。

图 8 火龙沟地区安山岩Sr/Y-Y图解(a, 据Defant and Drummond, 1990)、K2O/P2O5-SiO2图解(b)、K2O/TiO2-SiO2图解(c)和Th/Yb-Ba/La图解(d, 据Zhang et al., 2017) Fig. 8 Sr/Y vs. Y diagram (a, after Defant and Drummond, 1990), K2O/P2O5 vs. SiO2 diagram (b), K2O/TiO2 vs. SiO2 diagram (c), and Th/Yb vs. Ba/La diagram (d, after Zhang et al., 2017) for andesite in the Huolonggou area

幔源岩浆在上升侵位的过程中,不可避免的会遭受地壳物质的混染(Spera and Bohrson, 2001)。火龙沟地区晚三叠世安山岩样品明显亏损Nb和Ta,同时存在少量的捕获锆石,暗示其可能经历了地壳物质的混染。虽然个别安山岩样品具有较高的K2O/P2O5和K2O/TiO2比值,且二者与SiO2含量呈正相关性,但绝大部分样品的K2O/P2O5和K2O/TiO2比值变化范围较小,同时并未随SiO2含量的增加而增大(图 8b, c),结合其Zr和Hf亏损的特征,暗示安山质岩浆在上升过程中未遭受显著的地壳混染(吴华英等, 2008; Wang et al., 2010; Yu et al., 2017)。因此,火龙沟地区未遭受显著地壳混染的安山岩样品表现出富集大离子亲石元素和亏损高场强元素以及Hf同位素的特征,可能暗示其岩浆源区为俯冲流体或熔体交代的亏损地幔楔。在Th/Yb-Ba/La图解中(图 8d),火龙沟地区晚三叠世安山岩样品总体表现出俯冲流体交代作用的趋势(Woodhead et al., 2001; Zhang et al., 2017),而个别样品具有较高的Th/Yb比值,暗示岩浆源区可能存在俯冲沉积物的贡献(王智慧, 2017)。此外,火龙沟地区晚三叠世安山岩样品在Harker图解中具有明显的线性变化趋势(图 9),指示在岩浆演化过程中可能存在分离结晶作用。其中,这些安山岩样品中MgO、Fe2O3T和CaO与SiO2的负相关性表明其岩浆可能经历了角闪石的分离结晶,该推断也得到了Dy与Er的正相关性以及Nb与Nb/Ta的负相关性的佐证(Bi et al., 2016; Li et al., 2017b)。同时,SiO2与TiO2以及P2O5呈负相关性变化特征,并结合微量元素蛛网图中P和Ti的明显负异常,暗示磷灰石和Fe-Ti等氧化物也发生了分离结晶;SiO2与Al2O3的负相关性以及部分样品中微弱的Eu负异常,指示岩浆演化过程中斜长石发生了分离结晶作用。综上,本文认为火龙沟地区晚三叠世安山岩起源于俯冲流体交代的亏损地幔楔,源区可能还存在少量俯冲沉积物的贡献,并在岩浆演化的过程中经历了分离结晶作用。

图 9 火龙沟地区安山岩主量元素哈克图解 Fig. 9 Major element Harker diagrams for andesite in the Huolonggou area
4.3 构造意义

大兴安岭中段火龙沟地区晚三叠世安山岩具有典型的俯冲带弧岩浆岩的地球化学特征,其富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素,起源于受俯冲交代的亏损地幔。同时,火龙沟地区晚三叠世安山岩具有较高的Nb/Yb和Th/Yb比值,在Th/Yb-Nb/Yb图解中样品投影在大陆弧区域(图 10a; Aldanmaz et al., 2008; Li et al., 2017a),暗示其可能为活动大陆边缘环境下俯冲作用的产物。此外,研究区安山岩样品具有高La/Yb比值和低Sc/Ni比值的特征,类似于安第斯型活动大陆边缘安山岩(图 10b; Bailey, 1981)。结合兴安地块东缘北东向(黑河至火龙沟地区)三叠纪钙碱性玄武安山岩-安山岩-流纹岩岩石组合(马永非等, 2017; Li et al., 2017a),我们认为兴安地块三叠纪时期发育一条安第斯型活动大陆边缘火山岩带。该时期兴安地块同样发育一套钙碱性侵入岩组合(石英闪长岩-花岗闪长岩-花岗岩)(Wu et al., 2011; Yang et al., 2016; Liu et al., 2018; Li et al., 2018),其与火山岩带共同构成了呈北东向展布的岩浆岩带。尽管该岩浆岩带的展布方向与贺根山-黑河缝合带的走向一致(Yang et al., 2016),但是其形成可能与贺根山-黑河洋的演化无关。兴安地块早二叠世造山后A型花岗岩的发现(Wu et al., 2002, 2011),表明兴安地块与松辽地块间的贺根山-黑河洋于早二叠世之前已经闭合(Liu et al., 2017),因此两微陆块碰撞后的造山伸展作用很难持续至三叠纪。此外,虽然西伯利亚克拉通与华北克拉通于晚二叠世沿索伦-西拉木伦河-长春缝合带完成了碰撞拼贴(Wu et al., 2011),并于三叠纪进入碰撞后伸展阶段。但是该造山作用形成的岩浆岩带沿索伦-西拉木伦河-长春缝合带(呈东西向)展布(Li et al., 2017c),而与兴安地块呈北东向展布的岩浆岩带具有明显差异,暗示兴安地块岩浆岩带的形成与古亚洲洋闭合后的伸展作用无关。最近,王智慧(2017)在那丹哈达地体中识别出了一套早侏罗世钙碱性火山岩、富铌玄武安山岩、富铌安山岩以及高镁安山岩岩石组合,结合吉黑东部早-中侏罗世钙碱性火山岩组合(Xu et al., 2013; Guo et al., 2015),表明古太平洋板块向欧亚大陆下的俯冲始于早侏罗世。因此,古太平洋构造域在三叠纪期间并未影响兴安地块的构造-岩浆作用。

图 10 火龙沟地区安山岩Th/Yb-Nb/Yb(a, 据Li et al., 2017a)和La/Yb-Sc/Ni图解(b, 据Bailey, 1981) Fig. 10 Th/Yb vs. Nb/Yb diagram (a, after Li et al., 2017a) and La/Yb vs. Sc/Ni diagram (b, after Bailey, 1981) for andesite in the Huolonggou area

近年来,随着额尔古纳地块地质研究程度的不断提高,一条平行于蒙古-鄂霍茨克缝合带(呈北东向展布)的早中生代弧岩浆岩带已被识别出来(Tang et al., 2016; Yang et al., 2016)。该弧岩浆岩带与一系列同期的斑岩型矿床共同揭示了蒙古-鄂霍茨克大洋板片南向俯冲作用形成的安第斯型活动大陆边缘(唐杰, 2016)。研究区晚三叠世安第斯型安山岩的发现,表明蒙古-鄂霍茨克大洋板片南向俯冲作用的影响范围可能已到达兴安地块的东部,兴安地块之上与额尔古纳地块走向一致的岩浆岩带均为该安第斯型活动大陆边缘环境下俯冲作用的产物(Li et al., 2017a, 2018; Liu et al., 2018)。经研究,蒙古-鄂霍茨克大洋板片在三叠纪早期(250~225Ma)低角度快速俯冲于额尔古纳和兴安地块之下(Liu et al., 2018),产生大规模的钙碱性岩浆活动(Wu et al., 2011; Tang et al., 2016; Yang et al., 2016),同时发育O型埃达克质岩石(李世超等, 2017)。蒙古-鄂霍茨克大洋板片长期持续的低角度俯冲,将会阻碍热能从地幔到上覆地壳的传导(Gutscher et al., 2000),从而导致岩浆活动进入间歇期(225~215Ma)(Tang et al., 2016; Liu et al., 2018)。伴随俯冲板片的回卷,蒙古-鄂霍茨克大洋板片在三叠纪晚期(215~201Ma)由低角度俯冲逐渐转变为高角度俯冲,导致大量的软流圈物质上涌,从而形成了大兴安岭中段三叠纪晚期A型花岗岩(Liu et al., 2018)和哈达陶盖组A型石英粗安岩(马永非等, 2017)。

5 结论

(1) 大兴安岭中段火龙沟地区安山岩形成于晚三叠世(236±1Ma),而非前人定义的早二叠世。

(2) 火龙沟地区安山岩起源于俯冲流体交代的亏损地幔楔,源区可能还存在少量俯冲沉积物的贡献,并在岩浆演化的过程中经历了分离结晶作用。

(3) 火龙沟地区安山岩形成于活动大陆边缘环境,为蒙古-鄂霍茨克大洋板片南向俯冲作用的产物。

致谢      感谢中国科学院地质与地球物理研究所杨进辉研究员和杨岳衡研究员在锆石Lu-Hf同位素测试过程中给予的帮助;锆石LA-ICP-MS U-Pb定年得到了中国地质大学(北京)地质过程与矿产资源国家重点实验工作人员的帮助;感谢核工业北京地质研究院分析测试研究中心在全岩主、微量分析过程中给予的支持。

参考文献
Aldanmaz E, Yaliniz MK, Güctekin A and Göncüoglu MC. 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey:Implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1): 37-54.
Bailey JC. 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology, 32: 139-154. DOI:10.1016/0009-2541(81)90135-2
Bi JH, Ge WC, Yang H, Wang ZH, Xu WL, Yang JH, Xing DH and Chen HJ. 2016. Geochronology and geochemistry of Late Carboniferous-Middle Permian I-and A-type granites and gabbro-diorites in the eastern Jiamusi Massif, NE China:Implications for petrogenesis and tectonic setting. Lithos, 266-267: 213-232. DOI:10.1016/j.lithos.2016.10.001
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.042
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House: 1-734.
Bureau of Geology and Mineral Resources of Inner Mongolian Autonomous Region. 1991. Regional Geology of Inner Mongolian Autonomous Region. Beijing: Geological Publishing House: 1-725.
Chen B, Jahn BM, Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182. DOI:10.1016/S0040-1951(00)00182-7
Chen L and Zhao ZF. 2017. Origin of continental arc andesites:The composition of source rocks is the key. Journal of Asian Earth Sciences, 145: 217-232. DOI:10.1016/j.jseaes.2017.04.012
Chen Y, Zhu DC, Zhao ZD, Zhang LL, Liu M, Yu F, Guan Q and Mo XX. 2010. Geochronology, geochemistry and petrogenesis of the Bamco andesites from the northern Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2193-2206.
Chen ZG, Zhang LC, Wan B, Wu HY and Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geology Reviews, 43(1): 92-105. DOI:10.1016/j.oregeorev.2011.08.007
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665. DOI:10.1038/347662a0
Dong Y, Ge WC, Yang H, Xu WL, Zhang YL, Bi JH and Liu XW. 2016. Geochronology geochemistry and Hf isotopes of Jurassic intermediate-acidic intrusions in the Xing'an Block, northeastern China:Petrogenesis and implications for subduction of the Paleo-Pacific oceanic plate. Journal of Asian Earth Sciences, 118: 11-31. DOI:10.1016/j.jseaes.2016.01.006
Dong Y, Ge WC, Yang H, Bi JH, Wang ZH and Xu WL. 2017. Permian tectonic evolution of the Mudanjiang ocean:Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif, NE China. Gondwana Research, 49: 147-163. DOI:10.1016/j.gr.2017.05.017
Ge WC, Sui ZM, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China. Acta Petrologica Sinica, 23(2): 423-440.
Guffanti M, Clynne MA and Muffler LJP. 1996. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust. Journal of Geophysical Research:Solid Earth, 101(B2): 3003-3013. DOI:10.1029/95JB03463
Guo F, Nakamuru E, Fan WM, Kobayoshi K and Li CW. 2007. Generation of Palaeocene adakitic andesites by magma mixing in Yanji area, NE China. Journal of Petrology, 48(4): 661-692. DOI:10.1093/petrology/egl077
Guo F, Li HX, Fan WM, Li JY, Zhao L, Huang MW and Xu WL. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 224-225: 46-60. DOI:10.1016/j.lithos.2015.02.014
Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000. Can slab melting be caused by flatsubduction?. Geology, 28(6): 535-538. DOI:10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357. DOI:10.1093/petrology/egm062
Huang Y, Zhu DC, Zhao ZD, Zhang LL, DePaolo D, Hu ZC, Yuan HL and Mo XX. 2012. Petrogenesis and implication of the andesites at~113Ma in the Nagqu region in the northern Lhasa subterrane. Acta Petrologica Sinica, 28(5): 1603-1614.
Ji Z, Ge WC, Wang QH, Yang H, Zhao GC, Bi JH and Dong Y. 2016. Petrogenesis of Early Cretaceous volcanic rocks of the Manketouebo Formation in the Wuchagou region, central Great Xing'an Range, NE China, and tectonic implications:Geochronological, geochemical, and Hf isotopic evidence. International Geology Review, 58(5): 556-573.
Ji Z, Ge WC, Yang H, Wang QH, Zhang YL, Wang ZH and Bi JH. 2018. Late Jurassic rhyolites from the Wuchagou region in the central Great Xing'an Range, NE China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 158: 381-397. DOI:10.1016/j.jseaes.2018.03.011
Jung S, Hoernes S and Mezger K. 2002. Synorogenic melting of mafic lower crust:constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. DOI:10.1007/s00410-002-0366-5
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. DOI:10.1007/BF00311004
Lee CTA, Lee TC and Wu CT. 2014. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers:Implications for differentiation of arc magmas. Geochimica et Cosmochimica Acta, 143: 8-22. DOI:10.1016/j.gca.2013.08.009
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. DOI:10.1016/j.jseaes.2005.09.001
Li Y, Xu WL, Wang F, Pei FP, Tang J and Zhao S. 2017a. Triassic volcanism along the eastern margin of the Xing'an Massif, NE China:Constraints on the spatial-temporal extent of the Mongol-Okhotsk tectonic regime. Gondwana Research, 48: 205-223. DOI:10.1016/j.gr.2017.05.002
Li Y, Xu WL, Tang J, Pei FP, Wang F and Sun CY. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China:Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos, 304-307: 57-73. DOI:10.1016/j.lithos.2018.02.001
Li L, Xiong XL and Liu XC. 2017b. Nb/Ta fractionation by amphibole in hydrous basaltic systems:Implications for arc magma evolution and continental crust formation. Journal of Petrology, 58(1): 3-28.
Li S, Chung SL, Wilde SA, Jahn BM, Xiao WJ, Wang T and Guo QQ. 2017c. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt:Implications for ocean closure in accretionary orogens. Journal of Geophysical Research, 122(3): 2291-2309.
Li SC, Zhang LY, Li PC, Shi L and Zheng CQ. 2017. Discovery and tectonic implications of Early Triassic O-type adakite in middle of Great Xing'an Range. Earth Science, 42(12): 2117-2128.
Liu JF, Li JY, Chi XG, Zhao Z, Hu ZC and Feng QW. 2012. Petrogenesis of Middle Triassic post-collisional granite from Jiefangyingzi area, Southeast Inner Mongolia:Constraint on the Triassic tectonic evolution of the north margin of the Sino-Korean paleoplate. Journal of Asian Earth Sciences, 60: 147-159. DOI:10.1016/j.jseaes.2012.08.012
Liu XW, Yang H, Dong Y, Wang QH, Ge WC, Zhang YL and Tian DX. 2015. Zircon U-Pb ages and geochemical characteristics of the Triassic granites from the Mingshui area in the Da Hinggan Mountains and their tectonic implications. Acta Petrologica et Mineralogica, 34(2): 143-158.
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. DOI:10.1016/j.gr.2016.03.013
Liu HC, Li YL, He HY, Huangfu PP and Liu YZ. 2018. Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing'an massifs (NE China). Lithos, 304-307: 347-361. DOI:10.1016/j.lithos.2018.01.016
Ludwig KR. 2003. User's Manual for ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-70
Ma YF, Liu YJ, Wen QB, Zhang ZB, Li W, Si QL and Tang Z. 2017. Petrogenesis and tectonic settings of volcanic rocks from Late Triassic Hadataolegai Fm. at central part of Great Xing'an Range. Earth Science, 42(12): 2146-2173.
Miao LC, Liu DY, Zhang FQ, Fan WM, Shi YR and Xie HQ. 2007. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan mountains. Chinese Science Bulletin, 52(8): 1112-1134. DOI:10.1007/s11434-007-0131-2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element diserimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust:The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. DOI:10.1093/petrology/37.6.1491
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0
Reubi O and Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268): 1269-1273. DOI:10.1038/nature08510
Rudnick RL and Gao S. 2003. The Crust, 3. 01: The composition of the continental crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. Pergamon, Oxford: Elsevier, 1-64
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shi L, Zheng CQ, Yao WG, Li J, Cui FH, Cao F, Cao Y, Xu JL and Han XM. 2015. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing'an Range, China. Journal of Asian Earth Sciences, 113: 443-453. DOI:10.1016/j.jseaes.2014.12.013
Si QL, Tang Z, Ma YF, Zhang ZB, Sun W and Zang YQ. 2017. Chronology study on volcanic rocks of Hadataolegai Formation in Moguqi area, central Great Xing'an Mountains. Geological Review, 63(Suppl.1): 261-262.
Spera FJ and Bohrson WA. 2001. Energy-constrained open-system magmatic processes I:General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. Journal of Petrology, 42(5): 999-1018. DOI:10.1093/petrology/42.5.999
Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480.
Sui ZM, Ge WC, Xu XC and Zhang JH. 2009. Characteristics and geological implications of the Late Paleozoic post orogenic Shierzhan granite in the Great Xing'an Range. Acta Petrologica Sinica, 25(10): 2679-2686.
Sun DY, Gou J, Wang TH, Ren YS, Liu YJ, Guo HY, Liu XM and Hu ZC. 2013. Geochronological and geochemical constraints on the Erguna massif basement, NE China:Subduction history of the Mongol-Okhotsk oceanic crust. International Geology Review, 55(14): 1801-1816. DOI:10.1080/00206814.2013.804664
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313-345
Sun W, Chi XG, Zhao Z, Pan SY, Liu JF, Zhang R and Quan JY. 2014. Zircon geochronology constraints on the age and nature of "Precambrian metamorphic rocks" in the Xing'an block of Northeast China. International Geology Review, 56(6): 672-694. DOI:10.1080/00206814.2014.883183
Tang GJ, Wang Q, Zhao ZH, Wyman DA, Chen HH, Jia XH and Jiang ZQ. 2009. LA-ICP-MS zircon U-Pb geochronology, element geochemistry and petrogenesis of the andesites in the eastern Taerbieke gold deposit of the western Tianshan region. Acta Petrologica Sinica, 25(6): 1341-1352.
Tang J, Xu WL, Wang F, Wang W, Xu MJ and Zhang YH. 2014. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China:Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1-16. DOI:10.1016/j.lithos.2013.10.024
Tang J. 2016. Geochronology and geochemistry of the Mesozoic igneous rocks in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk suture zone. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Tang J, Xu WL, Wang F, Zhao S and Wang W. 2016. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate:Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240. DOI:10.1016/j.gr.2014.12.010
Wang T, Guo L, Zhang L, Yang QD, Zhang JJ, Tong Y and Ye K. 2015a. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences, 97: 365-392. DOI:10.1016/j.jseaes.2014.10.005
Wang W, Tang J, Xu WL and Wang F. 2015b. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, Northeast China:Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos, 218-219: 73-86. DOI:10.1016/j.lithos.2015.01.012
Wang XL, Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithosperic mantle:Evidence from the ca. 1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204-216. DOI:10.1016/j.precamres.2010.08.007
Wang ZH. 2017. The Mesozoic-early Cenozoic tectono-magmatic evolution of the Nadanhada Terrane. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Wilson W. 1989. Igneous Petrogenesis. London: Unwin Hyman: 327-373.
Winchester JA and Floyd PA. 1976. Geochemical magma type discrimination:Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459-469. DOI:10.1016/0012-821X(76)90207-7
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Winter JD. 2001. An Introduction to Igneous and Metamorphic Petrology. New York: Prentic Hall: 293-342.
Woodhead JD, Hergt JM, Davidson JP and Eggins SM. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331-346. DOI:10.1016/S0012-821X(01)00453-8
Wu FY, Sun DY, Li HM, Jahn BM and Wilde SA. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143-173. DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126. DOI:10.1016/j.chemgeo.2006.05.003
Wu FY, Zhao GC, Sun DY, Wilde SA and Zhang JH. 2007. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. DOI:10.1016/j.jseaes.2007.01.003
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220.
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Wu HY, Zhang LC, Zhou XH and Chen ZG. 2008. Geochronology and geochemical characteristics of Late Mesozoic andesites in the central Da-Hinggan Mountains, and its genesis. Acta Petrologica Sinica, 24(6): 1339-1352.
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069.
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857.
Xu WL, Ji WQ, Pei FP, Meng E, Yu Y, Yang DB and Zhang XZ. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402. DOI:10.1016/j.jseaes.2008.07.001
Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193. DOI:10.1016/j.jseaes.2013.04.003
Yang H, Ge WC, Yu Q, Ji Z, Liu XW, Zhang YL and Tian DX. 2016. Zircon U-Pb-Hf isotopes bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-type granitoids in the Xing'an Block, northeast China:Implications for Early Mesozoic tectonic evolution of the central Great Xing'an Range. Journal of Asian Earth Sciences, 119: 30-48. DOI:10.1016/j.jseaes.2016.01.012
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352. DOI:10.1016/j.epsl.2006.04.029
Yu Q, Ge WC, Zhang J, Zhao GC, Zhang YL and Yang H. 2017. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Research, 43: 164-177. DOI:10.1016/j.gr.2016.01.010
Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA and Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination. Chemical Geology, 276: 144-165. DOI:10.1016/j.chemgeo.2010.05.013
Zhou JB, Wilde SA, Zhao GC and Han J. 2017. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, doi: 10.1016/j.earscirev.2017.01.012
Zhao Z, Chi XG, Liu JF, Wang TF and Hu ZC. 2010. Late Paleozoic arc-related magmatism in Yakeshi region, Inner Mongolia:Chronological and geochemical evidence. Acta Petrologica Sinica, 26(11): 3245-3258.
Zhang ZC, Chen Y, Li K, Li JF, Yang JF and Qian XY. 2017. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China:Implications for the Late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 135: 370-389. DOI:10.1016/j.jseaes.2017.01.012
陈越, 朱弟成, 赵志丹, 张亮亮, 刘敏, 于枫, 管琪, 莫宣学. 2010. 西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因. 岩石学报, 26(7): 2193-2206.
葛文春, 隋振民, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社: 1-734.
黄玉, 朱弟成, 赵志丹, 张亮亮, DePaolo D, 胡兆初, 袁洪林, 莫宣学. 2012. 西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义. 岩石学报, 28(5): 1603-1614.
李世超, 张凌宇, 李鹏川, 施璐, 郑常青. 2017. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义. 地球科学, 42(12): 2117-2128.
刘希雯, 杨浩, 董玉, 王清海, 葛文春, 张彦龙, 田德欣. 2015. 大兴安岭明水地区三叠纪花岗岩的锆石U-Pb年龄、地球化学特征及构造意义. 岩石矿物学杂志, 34(2): 143-158. DOI:10.3969/j.issn.1000-6524.2015.02.002
马永非, 刘永江, 温泉波, 张志斌, 李伟, 司秋亮, 唐振. 2017. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景. 地球科学, 42(12): 2146-2173.
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社: 1-725.
司秋亮, 唐振, 马永非, 张志斌, 孙巍, 臧延庆. 2017. 大兴安岭中段蘑菇气地区哈达陶勒盖组火山岩年代学研究. 地质论评, 63(增1): 261-262.
隋振民, 葛文春, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480.
隋振民, 葛文春, 徐学纯, 张吉衡. 2009. 大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义. 岩石学报, 25(10): 2679-2686.
唐功建, 王强, 赵振华, Wyman DA, 陈海红, 贾小辉, 姜子琦. 2009. 西天山东塔尔别克金矿区安山岩LA-ICP-MS锆石U-Pb年代学、元素地球化学与岩石成因. 岩石学报, 25(6): 1341-1352.
唐杰. 2016. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约. 博士学位论文. 长春: 吉林大学 http://cdmd.cnki.com.cn/Article/CDMD-10183-1016084522.htm
王智慧. 2017. 那丹哈达地体中生代-早新生代构造-岩浆演化. 博士学位论文. 长春: 吉林大学 http://cdmd.cnki.com.cn/Article/CDMD-10183-1018005431.htm
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴华英, 张连昌, 周新华, 陈志广. 2008. 大兴安岭中段晚中生代安山岩年代学和地球化学特征及成因分析. 岩石学报, 24(6): 1339-1352.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
赵芝, 迟效国, 刘建峰, 王铁夫, 胡兆初. 2010. 内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据. 岩石学报, 26(11): 3245-3258.