岩石学报  2018, Vol. 34 Issue (10): 2873-2900   PDF    
大兴安岭北段伸展隆升样式:来自科洛-嘎拉山韧性变形带的证据
梁琛岳1,2 , 刘永江3 , 李伟4 , 刘勃然5 , 李伟民1,2 , 张夺1 , 刘同君1     
1. 吉林大学地球科学学院, 长春 130061;
2. 吉林大学东北亚矿产资源评价国土资源部重点实验室, 长春 130061;
3. 中国海洋大学海洋地球科学学院, 青岛 266100;
4. 中国国土资源航空物探遥感中心, 北京 100083;
5. 中国地质大学地球科学与资源学院, 北京 100083
摘要:大兴安岭地区出露的系列古老变质变形岩石,为研究大兴安岭隆升机制和兴蒙造山带演化提供了一个独特的视角。大兴安岭北段科洛新开岭群和嘎拉山落马湖群内发育典型向SE的伸展滑脱构造,宏微观构造和石英EBSD组构均指示岩石变形发生在地壳浅部的低绿片岩相,是中低温(350~450℃)条件下缓慢变形的的结果。科洛地区变形代表一种拉伸近似等于压扁的应力状态,变形岩石多为L=S构造岩,较少发育b型线理,多片理化和不对称褶皱等;而嘎拉山地区的应变强度更大,拉伸作用更强,变形岩石以LS和L=S构造岩为主,发育大量叶理、a型及b型线理、鞘褶皱。运动学和流变学特征表明,越远离主伸展区应变强度越弱,应变趋于平面应变,差异应力减小,应变类型纯剪组分增多。结合新近锆石年代学数据,认为新开岭岩群和落马湖群的原岩多形成于早石炭世兴安地块和松嫩地块汇聚拼贴时期的花岗质岩石侵位,早白垩世伴随着古太平洋板块的持续NW斜向俯冲,大兴安岭东部长距离俯冲的古太平洋板片发生断离,造成地幔物质上涌,大规模强烈的岩浆侵位,大规模的强烈的韧性变形和伸展构造发育,并导致大兴安岭深部基底快速隆起以及两侧断陷盆地的发展。
关键词: 大兴安岭     伸展构造     应变分析     EBSD     流变学参数     锆石U-Pb年龄     隆升    
The extensional uplift style of north part of the Da Hinggan Mountains: Evidences from ductile deformation zone of Keluo-Galashan
LIANG ChenYue1,2, LIU YongJiang3, LI Wei4, LIU BoRan5, LI WeiMin1,2, ZHANG Duo1, LIU TongJun1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources, Jilin University, Changchun 130061, China;
3. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
4. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China;
5. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract: Series of ancient metamorphosed and deformed rocks exposed in the Da Hinggan Mountains provide a unique perspective for understanding the uplift mechanism of the Da Hinggan Mountains and the evolution of the Xing'an Mongolian orogenic belt. The typical SE-extensional and detachment structures developed within the Xinkailing Group in Keluo and the Luomahu Group in Galashan located in the northern segment of the Da Hinggan Mountains. Their micro-macro-structures and quartz EBSD fabrics all indicate that the deformation occurred in the low-greenschist facies with slow strain rates under low-middle temperatures (ranging from 350℃ to 450℃). The deformation in Keluo area represents a constriction strain, approximately equal to the flattening, with smaller differential stress and more pure shear component. In this region, the deformed rocks are mostly foliated, featured by L-S tectonites with less a-type lineations and more asymmetric folds. The strain intensity is greater in the Galashan area and the tensile effect is stronger in comparison, where deformed rocks are dominated by LS and L=S tectonites, and a large number of foliation, a-type and b-type lineations and sheath folds are developed. The newly published zircon geochronology studies show that the original rocks of most of the Xinkailing Group and Luomahu Group are formed during the convergence of the Xing'an and Songnen blocks in the Early Carboniferous. In the Early Cretaceous, it is accompanied by the continuous NW oblique subduction of the Paleo-Pacific plate, the long-distance subducted Paleo-Pacific slabs in the eastern part of the Da Hinggan Mountains break-off and caused mantle convection, resulting in upwelling of mantle materials and massive magmatic emplacement. This has resulted in the rapid uplift of the Da Hinggan Mountains, large-scale strong ductile deformation and extension structures, and the development of rift basins on both sides.
Key words: Da Hinggan Mountains     Extensional structures     Strain analysis     EBSD     Rheological parameters     Zircon U-Pb ages     Uplift    

大兴安岭位于中亚造山带(CAOB)东段(Şengör et al., 1993; Jahn et al., 2000; Wu et al., 2002, 2003, 2004, 2011; Li, 2006; Xiao et al., 2008, 2009),或兴蒙造山带东段(邵济安等, 1994; 葛文春等, 2005a, b, 2007; 徐备等, 2014; Liu et al., 2017),呈NNE向纵贯整个东北地区西部,与太行山共同构成了中国第二重力梯度带和天然的地理分界线。大兴安岭的演化史和隆升机制,一直是国内外众多学者关注和研究的热点(邵济安等, 1998, 1999a, 2001a, b; Wu et al., 2011; 周新华等, 2001; 葛文春等, 1999; 图 1a)。对于其隆升时代,大多数学者认为自晚中生代大兴安岭就已经开始了隆升的序幕(邵济安等, 1994, 2001a, b, 2007; Wu et al., 2011),大量的火山岩同位素地质年代学研究工作已证实其主要形成期为晚侏罗世-早白垩世,早白垩世(130~100Ma)为岩浆活动的高峰时期(邵济安等, 1998, 1999a, 2001a, b; 吴福元和孙德有, 1999; 吴福元等, 2003; 李锦轶, 1998; 李锦轶等, 2004; 毛景文等, 2005; 祝洪臣等, 2005; 赵海滨等, 2005, 2007; 葛文春等, 1999, 2000a, b, 2005a, b, 2007; Wu et al., 2002, 2011)。究其隆升机制,多数学者将其与古太平洋板块的俯冲直接联系起来(Maruyama et al., 1997; 隋振民等, 2007; Wang et al., 2011, 2015; Wu et al., 2011),部分学者认为是松辽板块与蒙古板块(兴蒙古生代褶皱系)挤压碰撞活动的产物(张振法, 1997),也有学者认为其为古亚洲洋消减带物质的活化(周新华等, 2001),或与地幔柱活动有关(葛文春等, 1999; 曹正琦和侯光久, 2009),或是陆内伸展造山(邵济安等, 1998, 1999b, 2005, 2007),也有学者将其与蒙古-鄂霍茨克构造域的演化相联系(陈志广等, 2006; Xu et al., 2013b; 汪岩等, 2013; 刘勃然等, 2014; Miao et al., 2014)。

图 1 亚洲大地构造简图(a)及中国东北地区大地构造简图(b)(据Liu et al., 2017修改) Fig. 1 Tectonic map showing the subdivisions of Asian (a) and NE China (b) (modified after Liu et al., 2017)

而大兴安岭地区系列古老变质变形岩石(张履桥等, 1998; Zhou and Wilde, 2013; 梁琛岳等, 2011, 2012; 韩国卿等, 2009, 2014; Miao et al., 2014; Cui et al., 2015; 刘勃然等, 2014; 赵衡等, 2017)的隆升出露,为我们研究大兴安岭隆升机制和时代提供了一个独特的视角。本文聚焦于大兴安岭北段嫩江科洛地区和呼玛嘎拉山地区(图 1a),区域出露大面积强烈变质变形的新开岭群(科洛杂岩)以及落马湖岩群,同时伴随强烈的中生代岩浆事件,对其变形特征和成岩时代也有不少学者做过研究(苗来成等, 2003; 赵海滨等, 2007; 梁琛岳等, 2011, 2012; Miao et al., 2014; 刘勃然等, 2014; 赵衡等, 2017),但大部分岩石组合缺乏可靠的同位素年代学资料,针对其相关的变形历史和应变类型的研究也相对较少。通过对强变形岩石的形成时代及其变形特征的分析,结合前人低温热年代学研究成果以及与海拉尔-二连盆地群和松辽盆地的耦合关系,可更进一步探讨大兴安岭北段隆升机制及兴蒙造山带东段的构造演化史。

1 区域地质背景

大兴安岭东北部叠加于额尔古纳地块、兴安地块、松嫩地块之上(图 1b)。传统上认为兴安地块以前寒武系新开岭群(包括科洛杂岩)变质岩系为基底,之上的盖层包括落马湖群绿片岩相变质岩、晚古生代泥盆纪和石炭纪-二叠纪火山-沉积建造,以及晚中生代火山沉积建造(黑龙江省地质矿产局, 1993)。而近年来一些学者的研究表明,额尔古纳地块与兴安地块、松嫩地块的物质组成存在显著差异,但均不存在大规模的前寒武纪结晶基底,并认为兴华渡口群及落马湖群代表新元古界或寒武纪活动大陆边缘增生的产物(苗来成等, 2003; 曾涛等, 2011; 汪岩等, 2013; Miao et al., 2014)。额尔古纳地块和兴安地块是一个490Ma之前形成的碰撞拼合体,以塔河一带发育有年龄为~490Ma的后造山花岗岩为标志,拼合界线位于新林-喜桂图一线(吴福元和孙德有, 1999; 吴福元等, 2000; Wu et al., 2002, 2011; 苗来成等, 2003; 施光海等, 2004; 葛文春等, 2005a, 2007; Feng et al., 2015)。兴安和松嫩地块的碰撞拼合主要发生在晚古生代,总体表现为块体拼贴具有自北向南时代变新的规律(孙德有等, 2000; Chen et al., 2000; Nozaka and Liu, 2002; Wu et al., 2002, 2011; 苗来成等, 2003; 施光海等, 2004; 葛文春等, 2005a)。上述地块碰撞拼合后,作为一个统一的基底构造经历了古生代和早中生代构造-岩浆-沉积作用演化过程,从晚侏罗世开始进入到一个全新的演化阶段,以大规模的火山活动和沉积盆地的形成为标志。中生代以来,大兴安岭地区岩浆活动强烈,形成了中国大陆东部中生代“花岗岩海”(吴福元等, 2000; Wu et al., 2002, 2011; Chen et al., 2000; 林强等, 2004; 葛文春等, 2007)。大兴安岭北段构造方面的研究,主要集中于侏罗纪受到蒙古-鄂霍茨克造山作用影响及白垩纪以来受到太平洋板块俯冲运动影响而产生的侧向逃逸与地壳加厚作用等构造演化(李锦轶, 1998; 李锦轶等, 2004),中国东北中生代伸展构造(Meng, 2003; 邵济安等, 2007; 梁琛岳等, 2011; 赵海滨等, 2007)等等。

大兴安岭北段呈北东-南西向的出露系列变质变形岩石,嫩江科洛新开岭群(包括科洛杂岩)和呼玛嘎拉山落马湖群(黑龙江省地质矿产局, 1993),地处松辽盆地的西北缘,兴安地块的东北缘。该套变质岩系主要包括片麻岩、片岩类、变粒岩和大理岩(黑龙江省地质矿产局, 1993)。苗来成等(2003)将新开岭群(科洛杂岩)原岩置于晚古生代,并于三叠世发生变质变形作用,赵海滨等(2007)认为新开岭群构成一变质核杂岩核部,中侏罗世隆升,晚侏罗世构造变形。梁琛岳等(2011, 2012)认为新开岭群(科洛杂岩)发育有典型伸展滑脱构造,为侏罗纪变质核杂岩,于早白垩世隆升变形(118.39~117.37Ma)。赵衡等(2017)在新开岭群(科洛杂岩)中识别出4期构造运动,从三叠纪中晚期直至新生代。刘勃然等(2014)在嘎拉山落马湖群中识别出倾向SE的大型伸展滑脱构造,其伸展剪切变形时间置于早白垩世早期(144~147Ma)。Miao et al. (2014)统一总结大-小兴安岭结合部位的变质杂岩(落马湖群、新开岭群、风水沟群、科洛杂岩),认为其均形成于中生代和/或晚古生代期,并且在晚中生代期间经历绿片岩-角闪岩相变质作用。可见,不同学者对各变质杂岩的形成时代和变形时代认识各有偏差,尤其是没有深入探讨各变质杂岩内部发育的构造样式、变质变形层次、应变样式等等关键问题,使得探讨其隆升时代和机制时缺乏依据,再加上后期早中侏罗世或早白垩世花岗岩侵入改造(苗来成等, 2003; 曾涛等, 2011),也是造成争论的原因之一。再加上这一区域经历了晚古生代古亚洲洋的闭合以及随后的陆内伸展,中生代西部蒙古-鄂霍茨克洋的关闭和东部古太平洋板块的俯冲叠加影响,乃至白垩纪整个中国东部强烈的伸展作用(Wang et al., 2011),都增加了认识该区域演化的难度。本文从大兴安岭北段两个典型变形区入手(科洛变形带和嘎拉山变形带),分析其构造样式,结合变形岩石年代学证据,探讨新开岭群(科洛杂岩)和落马湖岩群的隆升时代及机制,进而弥补有关这一区域构造演化史,尤其是大兴安岭北段隆升史研究的不足。

2 宏观构造特征 2.1 科洛伸展变形区

科洛变形区位于黑龙江省嫩江县科洛乡山河农场的科洛河沿岸(图 2a)。区内出露北东向展布的新开岭群,为一套NE带状展布的绿片岩相变质杂岩,又称为科洛杂岩,具有深熔混合岩化特征。其原岩下部为中酸性火山岩,上部为中酸性火山岩夹碎屑岩(黑龙江省地质矿产局, 1993),整体被后期早中侏罗世或早白垩世花岗岩侵入(苗来成等, 2003; 曾涛等, 2011)。1:200000地质图(嫩江县幅)则将其定为晋宁期科洛、双合岩体的片麻状交代结构花岗岩和中元古代的科洛片麻岩(图 2a)。区域内发育一系列倾向南东的低角度正断层,倾角小于15°。变质杂岩可见明显的塑性流变构造,整体表现为伸展滑脱,发育有层间滑脱褶皱、眼球状构造以及S-C组构等构造现象,指示其向SE的伸展滑脱特征(图 3a-d;详细特征可参见梁琛岳等, 2011)。带内还发育一系列低角度正断层,倾向为SE(85°~130°),走向NE的低角度正断层(倾角10°~25°),断层面上的擦痕线理、不对称褶皱等指向构造,均指示SE的伸展构造。滑脱面或者片理面上普遍发育a型线理和少量b型线理,和断层面上的擦痕线理、不对称褶皱等指向构造(图 2b),共同反映统一向SE方向的伸展滑脱。本次工作选取其中的强变形花岗质片麻岩和花岗糜棱岩作为研究对象,采样位置见图 2a

图 2 嫩江科洛地区地质图(a, 据黑龙江省地质调查研究院,2000a修编)及构造要素投影(b, 等面积下半球投影图, 据梁琛岳等, 2011) Fig. 2 Geological map of Keluo area (a) and equal area plots of the structural elements (b, lower-hemisphere, data from Liang et al., 2011)

① 黑龙江省地质调查研究院.2000a. 1:20万嫩江县幅和霍龙门公社幅地质图

图 3 宏观构造变形特征 (a-d)科洛伸展变形区:(a)强变形花岗质片麻岩呈透镜状(脉状)产出于黑云斜长片麻岩中;(b)黑云斜长片麻岩中发育有长英质脉体层间褶皱;(c)强变形(碎裂化)黑云斜长片麻岩中发育有花岗质片麻岩不对称褶皱;(d)黑云斜长片麻岩中发育有长英质透镜体,呈明显S-C组构;(a-d)均指示向SE伸展(右行)变形特征;(e、f)嘎拉山伸展变形区:(e)黑云母片岩与大理岩层状产出;(f)黑云斜长片麻岩中发育明显杆状b线理,指示明显的SE向滑脱特征 Fig. 3 The representative meso-fabrics
2.2 嘎拉山伸展变形区

嘎拉山变形区位于呼玛县西南部,卧都河镇以北,嘎拉山林场以西(图 1图 4)。区内主要出露上元古宇落马湖岩群,含铁帽山组,嘎拉山组和北宽河组,为一套砂泥质夹火山岩沉积建造以及浅海相泥砂质建造及少量火山沉积建造,局部含丰富的藻类化石(黑龙江省地质矿产局, 1993)。黑云斜长片麻岩、变粒岩、花岗片麻岩及云母片岩,受明显强烈韧性变形改造,其次为条带状大理岩(钙质糜棱岩)。落马湖岩群总体走向NE,片理面发育,呈大型的宽缓褶皱,韧性构造如,鞘褶皱,窗棂构造(杆状b线理),层间褶皱,不对称褶皱等发育,石英拉长定向,拖曳构造,眼球状构造等均指示向SE的伸展滑脱(图 3e, f;详细变形特征参见刘勃然等, 2014)。区内发育一系列低角度伸展滑脱正断层,倾向SE(97°~170°),倾角较缓(15°~40°)。滑脱带和断层面上发育有大量a线理、b线理以及擦痕线理,拉伸线理倾伏向近SE,倾伏角多在30°~50°之间,滑脱带内构造面理和线理产状统计(图 4b)共同指示其向SE的伸展滑脱特征(图 4b),与科洛地区相比,嘎拉山地区发育b线理偏多。伸展滑脱层间发育有系列层间不对称褶皱、鞘褶皱和窗棂构造等,均指示其伸展(右行)特征(图 3e-f)。本次工作选取其中的黑云斜长片麻岩、花岗质片麻岩和钙质糜棱岩作为研究对象,采样位置见图 4a

图 4 嘎拉山地区地质图(a, 据黑龙江省地质调查研究院,2000b修编)及构造要素投影(b, 等面积下半球投影图, 据刘勃然等, 2014) Fig. 4 Geological map of Galashan area (a) and the equal area plots of the structural elements (b, lower-hemisphere, data from Liu et al., 2014)

① 黑龙江省地质调查研究院. 2000b. 1:20万三道卡幅和十五里河幅地质图

3 微观组构特征 3.1 科洛伸展变形区

本次工作选取科洛杂岩中的花岗质片麻岩(糜棱岩)作为研究对象(表 1图 5a-f),中细粒片状粒状变晶结构(初/糜棱结构),片麻状构造,主要矿物成分有石英(50%~60%)、长石(30%~35%)、黑云母(10%~15%)+白云母(0%~5%)+石榴石(0%~3%),受后期构造作用改造,变质-变形程度可达到初糜棱岩-糜棱岩级别。矿物韧性变形,长石脆性或韧-脆性变形,呈棒状、碎斑状,具不连续波状消光;细粒石英塑性拉长成条带状,部分细粒化,动态重结晶,波状消光,部分石英颗粒产生膨凸式动态重结晶。片状黑云母定向排列,部分扭折呈S-C组构特征,与长石残斑产生的压力影共同指示一种右行韧性走滑特征(图 5a-f)。这些显微组构显示岩石变形发生在浅部地壳的低绿片岩相环境下(Stipp et al., 2002, 2010; 向必伟等, 2007; 胡玲, 1998),共同指示了约350~450℃的变形温度。

表 1 大兴安岭北段典型变形区花岗质岩石显微变形特征 Table 1 Microscopic deformation characteristics of deformed granitic rocks from typical deformation zones in northern of Da Hinggan Mountains

图 5 大兴安岭北段伸展变形区典型构造岩韧性变形特征 (a-f)科洛伸展变形区:(a、b)长石韧-脆性变形,细粒石英塑性拉长成条带状,局部石英颗粒产生膨凸式动态重结晶(340NJ-1);(c、d)部分石英颗粒产生膨凸式动态重结晶,部分黑云母扭折呈S-C组构特征,与长石残斑产生的压力影共同指示右行韧性走滑特征(340NJ-b1);(e、f)长石为大粒的原岩斑晶,部分细粒化、绢云母化;细粒石英拉长成条带,石英残斑长眼球状,产生膨凸式动态重结晶。长石旋转残斑显示右行韧性走滑特征(340NJ-b3);(g-l)嘎拉山伸展变形区: (g、h)长石呈残斑状石英颗粒细粒化明显,产生膨凸式动态重结晶,局部产生亚颗粒旋转重结晶,颗粒边界呈现为镶嵌式接触或锯齿状。部分黑云母扭折呈S-C组构特征,与长石残斑旋转共同指示右行韧性走滑特征(742GL-0);(i、j)长石韧-脆性变形;石英颗粒塑性拉长,膨凸式动态重结晶;部分黑云母扭折呈S-C组构特征指示右行韧性走滑特征(742GL-2);(k、l)残斑方解石机械双晶发育,解理弯曲现象明显,部分边部产生亚颗粒式重结晶(742GL-3).Qtz-石英;Pl-斜长石;Cal-方解石;Grt-石榴石; Bt-黑云母; Ms-白云母; Mica-云母 Fig. 5 Representative microscopic structures of deformed rocks from typical deformation zones in northern of Da Hinggan Mountains
3.2 嘎拉山伸展变形区

嘎拉山伸展变形带内,落马湖岩群中的花岗片麻岩以及黑云斜长片麻岩(表 1图 5g-j),主要矿物组成为石英(30%~40%)+长石(45%~55%)+黑云母(10%~25%)+白云母(0~5%),变质-变形程度达到初糜棱岩-糜棱岩级别。矿物中低温韧性变形,长石韧-脆性变形,呈残斑状;石英颗粒塑性拉长,波状消光,膨凸式动态重结晶,局部产生亚颗粒旋转重结晶,颗粒边界呈现为镶嵌式接触或锯齿状。部分黑云母扭折呈S-C组构特征,与长石残斑旋转共同指示右行韧性走滑特征。显微组构说明岩石变形发生在地壳浅部的绿片岩相(胡玲, 1998),共同指示350~450℃的变形温度。此外,条带状大理岩(钙质糜棱岩)中方解石(图 5k, l)发育有机械双晶,双晶纹也发生了弯曲,一组机械双晶和两组双晶纹较为常见,晶纹较厚(1~4μm)。部分方解石解理缝明显弯曲塑性变形,双晶纹呈现为弯曲、伸展不规则状,指示变形温度可能在250℃以上(Ferrill, 1991; Ferrill et al., 2004; 向必伟等, 2007; 图 5k, l)。

这些中低温组构特征与该地区伸展构造所表现的构造滑脱、大型低角度正断层,形成于同一期伸展作用,与大兴安岭隆升具有直接关系。

4 有限应变类型判别 4.1 有限应变类型判别

岩石有限应变测量的方法较多,Fry法由于其间接性和优越性,应用于广泛的岩石类型,因此本文选用Fry法进行有限应变测量(Fry, 1979; 郑亚东和常志忠, 1985)。本文选取大兴安岭北段伸展变形区内强变形岩石进行统计分析,每一定向样品两个应变面的显微薄片(XY和YZ面)上分别测量石英颗粒约50个,样品内石英含量高,粒度分布基本均匀,可近似看成椭圆形,同时,我们尽量选择变形岩体的内部,变形均一石英颗粒作为研究对象,以期保证测量结果能够反映“全岩应变”(图 5a-j; Fry, 1979; 郑亚东和常志忠, 1985)。具体操作方法不一一赘述,参见文献(郑亚东和常志忠, 1985; 梁琛岳等, 2011; Liang et al., 2015)。

Flinn判别图解是常用的有限应变类型判别图解(郑亚东和常志忠, 1985)。将有限应变测量结果投在对数Flinn图解上(图 6),可见6个样品均投在拉长应变区域,K值在1.06~1.67之间,显示应变类型主要为拉长型应变,属于一般拉伸至轴对称拉伸的范围,岩石类型表现为LS和L=S型构造岩。但相较科洛地区,嘎拉山地区的的应变K值相对偏大,科洛地区的K值更接近1,代表两个区域变形阶段应变类型的差异性,科洛地区可能代表一种拉伸近似等于压扁的应力状态,而嘎拉山地区的应变强度更大,拉伸作用更强。

图 6 Flinn有限应变判别图 Fig. 6 Flinn finite strain discrimination diagram
4.2 运动学涡度判别

运动学涡度(Wk)是地质学中常用的代表剪切变形中纯剪切和简单剪切相对大小的值(Tikoff and Fossen, 1995; Xypolias and Doutsos, 2000; Xypolias and Koukouvelas, 2001; Passchier and Trouw, 2005)。测量运动学涡度值是有多种计算方法(Passchier and Urai, 1988; Simpson and De Paor, 1993; Wallis, 1992, 1995; Passcher, 1998; Zhang and Zheng, 1997; Beam and Fisher, 1999; Zhang et al., 2009)。测量运动学涡度值是有多种计算方法,本次采用石英条带斜交面理法来计算运动学涡度(Passchier and Urai, 1988; Wallis, 1992, 1995; Zhang et al., 2009),更详细介绍和操作,见文献(Liang et al., 2015; 梁琛岳等, 2016)。显微镜下测量石英条带中重结晶斜列颗粒长轴方位的测量,其与剪切方向(C面理)的最大交角者即为θ。利用Wk=sin2θ,计算出糜棱岩带的涡度值(Passchier, 1987; 表 2)。科洛伸展变形带中变形岩石涡度值为0.58~0.61,而嘎拉山伸展变形带稍高,为0.69和0.70。

表 2 大兴安岭北段伸展变形区有限应变测量与运动学涡度数据 Table 2 Data of finite-strain and kinematic vorticity measurement from typical deformation zones in northern of Da Hinggan Mountains
5 岩石组构特征(EBSD测试)

EBSD(电子背散射衍射)技术是通过分析晶体背散射衍射图像来确定晶轴方向,进而确定晶体颗粒排列的取向性,确定晶体内发育的活动滑移系,进而可以估算矿物的变形温度(Prior et al., 1999, 2000; Bascou et al., 2016; 刘俊来等, 2008; 许志琴等, 2009)。本次EBSD石英C轴组构分析在中国地质大学(北京)地质过程与矿产资源国家重点实验室完成,先根据手标本线理、面理定向选取XZ面进行光学切片。薄片厚度约为30μm。对切好的光学薄片进行机械剖光,导电胶条导电,测试过程中以人机交互模式手动控制分析的精度以及测量颗粒数量,具体流程及判别方法参见文献(刘俊来等, 2008; 许志琴等, 2009; 夏浩然和刘俊来, 2011; 梁琛岳等, 2017)。测试石英颗粒塑性拉长,膨凸式动态重结晶,粒径多集中在80~150μm,残斑基质界限清楚,变形的石英颗粒较多,测试多选择糜棱质发育部位进行。做图采用下半球投影,极点等密度线以所占百分数表示。测试结果见图 7

图 7 大兴安岭北段伸展变形区花岗质岩石石英 < C > 组构图 采用等面积网下半球投影,N为测量的颗粒数,X、Y、Z分别代表应变椭球的最长轴、中间轴和最短轴,X/Y面为糜棱面理面;石英C轴组构指示右行走滑 Fig. 7 C-axis fabric stereograms of quartz in typical deformed granitic rocks from typical deformation zones in northern of Da Hinggan Mountains

科洛地区,340NJ-b1的石英 < C > 轴组构图具有明显叠加痕迹,靠近X轴和Z轴有多个极密,最强集密部为2.42%,显示石英主要发生底面 < a > 滑移与菱面 < a > 滑移,以低温底面组构为主,中低温菱面组构次之。样品340NJ-b3显示弱交叉环带式,单斜对称,极密靠近X轴,以低温底面组构为主。嘎拉山地区两个样品均表现单极密特征,多靠近X轴和Z轴,显示石英主要发生底面 < a > 滑移与菱面 < a > 滑移,指示一种中低温变形组构。石英 < C > 轴组构指示的变形温度与显微矿物变形温度估计的情况基本一致,可能代表伸展变形后期糜棱岩化过程的温度。四个样品晶格优选区域的分布连线与中心轴呈向右倾斜的趋势,指示向SE的伸展变形(右行)为主,这也与显微构造特征一致。

6 流变学特征分析 6.1 古差异应力估算

选择变形区石英动态重结晶石英明显的样品进行流变学参数估算,挑选细小且边界不规则的石英颗粒,多拉长,定向排列。重结晶石英的细粒化颗粒粒度与差异应力存在对应关系(Twiss, 1977, 1980; Mercier et al., 1977; Koch, 1983; Stipp and Tullis, 2003; Stipp et al., 2010),表示为:

式中,σ为差异应力(单位:MPa);b为实验参数(单位:μmMPa-R);d为动态重结晶石英晶粒径(单位:μm);r为实验参数。不同学者给出不同的古应力计参数,具体操作流程详见Liang et al., 2015, 估算结果见表 3

表 3 石英动态重结晶颗粒的古差异应力 Table 3 Paleopiezometry data for dynamically recrystallized quartz grain boundaries in deformed granitic rocks

选用不同参数所估算的差异应力值存在较大的差异(表 4),科洛地区古差异应力平均值在12.17~27.03MPa之间,而嘎拉山地区两个样品的古差异应力平均值在14.95~31.19MPa之间,值得注意的是嘎拉山地区古差异应力高于科洛地区。由于在动态重结晶粒径测试中会造成石英动态重结晶粒径估算偏大,使得所估算的差异应力值较实际偏小,但这一差异应力值范围至少应能代表变形作用过程中的差异应力下限(Hacker et al., 1990; 梁琛岳等, 2016)。

表 4 不同方法估算的应变速率 Table 4 Estimation of strain rate by different methods
6.2 应变速率的估算

在韧性剪切带研究中,多利用石英岩的实验高温流变律来推导应变速率,一旦差异应力和温度确定,就可以推算糜棱岩化过程的应变速率(表 4)(Poirier, 1985; Hacker et al., 1990; Boutonnet et al., 2013)。常用的石英岩的高温流变律为:

ε为应变速率(单位:s-1),自然界的应变速率一般为10-14~10-15s-1σ为差异应力;R为气体摩尔常数;T为变形时的绝对温度;AnQ均为实验参数。不同学者给出的实验参数不同(Parrish et al., 1976; Koch, 1983; Kronenberg and Tullis, 1984; Koch et al., 1989; Paterson and Luan, 1990; Hirth et al., 2001; Rutter and Rullis, 2004a, b),Stipp and Tullis (2003)系统整理了石英高精度的实验数据,对石英的应力计进行了修正,在位错蠕变时的石英的粒度-应力关系相对更为可靠,我们采用Stipp and Tullis (2003)计算所得的古差异应力来获取应变速率,结果如表 4

实验流变律公式计算的应变速率具有不同数级(表 4),科洛地区分别为6.96×10-16~6.13×10-14s-1(Koch, 1983),2.96×10-16~3.39×10-14s-1(Koch et al., 1989),7.73×10-14~6.59×10-12s-1(Kronenberg and Tullis, 1984),9.48×10-16~9.83×10-14s-1(Paterson and Luan, 1990),1.66×10-18~1.86×10-15s-1(Parrish et al., 1976),9.32×10-19~1.31×10-16s-1(Hirth et al., 2001)。而嘎拉山地区变形岩石获得的应变速率分别为1.65×10-15~6.61×10-14s-1(Koch, 1983),6.80×10-16~3.64×10-14s-1(Koch et al., 1989),1.77×10-13~7.08×10-12s-1(Kronenberg and Tullis, 1984),2.55×10-15~1.07×10-13s-1(Paterson and Luan, 1990),3.80×10-18~2.00×10-15s-1(Parrish et al., 1976),3.34×10-18~1.46×10-16s-1(Hirth et al., 2001),普遍要比科洛地区的小。由于不同实验参数对应不同的变形条件,因此实验流变律公式计算的应变速率差别较大,且普遍偏小,但至少能反应缓慢变形这一趋势。

7 锆石U-Pb年代学 7.1 测试样品及方法

为进一步限定变形时代,特选取科洛和嘎拉山地区各具有代表性的变形岩石进行LA-ICP-MS锆石U-Pb年代学测试。锆石分选在河北廊坊地质调查院完成,选取5~10Kg不等的样品经过破碎、浮选和电磁选方法进行分选,之后在显微镜下观察锆石的标型特征,挑选出各个样品中具有不同特征的锆石单矿物。样品靶在北京锆年领航科技有限公司制备,所选锆石约150粒,置于环氧树脂中,待固结后将锆石抛磨掉大约1/2,使锆石内部结构充分暴露,然后进行锆石的光学、阴极发光图像分析,来选取用于测试微区及测年锆石的部位。LA-ICP-MS锆石U-Pb年代学测试在吉林大学东北亚矿产资源评价国土资源部重点实验室完成。激光剥蚀使用德国相干公司(Coherent)COMPExPro型ArF准分子激光器,质谱仪为美国安捷伦公司7500A型四极杆等离子质谱。激光条件为:激光束斑直径32μm,激光能量密度10J/cm2,剥蚀频率8Hz。剥蚀样品前首先采集30s的空白,随后进行30s的样品剥蚀,剥蚀完成后进行2分钟的样品池冲洗。载气使用高纯度He气,气流量为600mL/min;辅助气为Ar气,气流量为1.15L/min。对于不用同位素的采集时间,204Pb、206Pb、207Pb和208Pb为20ms,232Th、238U为15ms,49Ti为20ms,其余元素为6ms。使用标准锆石91500(1062Ma)作为外标进行同位素比值校正,标准锆石PLE/GJ-1/Qing Hu为监控盲样。元素含量以国际标样NIST610为外标,Si为内标元素进行计算,NIST612和NIST614为监控盲样。使用Glitter软件进行同位素比值及元素含量的计算。谐和年龄计算及图像绘制采用国际标准程序Isoplot(ver 3.23; Ludwig, 2003)。普通铅校正使用Andersen et al. (2002)给出的程序计算。分析数据及锆石U-Pb谐和图给出误差为1σ,表示95%的置信度(表 5)。

表 5 大兴安岭北段典型变形区花岗质岩石锆石U-Pb同位素数据 Table 5 Zircon U/Pb isotopic data of granitic rocks from typical deformation zones in northern of Da Hinggan Mountains
7.2 测试结果

花岗质片麻岩(340NJ-b1)选取的锆石结晶较好,自形程度较高,晶型较完整,多为短柱状-浑圆状,双锥不发育,锆石大多无色透明,个别为浅黄色,颗粒粒径大多分布于100~200μm之间,颗粒长宽比约为1.5:1~3:1。部分颗粒中有包裹体和裂隙,CL图像呈灰色,部分灰白色,可能与锆石的REE或Th、U质量分数有关;多数锆石内部具有清晰的振荡环带结构,均应为岩浆成因锆石(图 8)。锆石Th/U比值为0.14~1.25,显示为岩浆成因锆石(图 8表 5)。剔除2个不谐和点,28个锆石U-Pb年龄显示(图 9a),206Pb/238U加权平均年龄为281.9±5.5Ma(MSWD=1.6,n=28),结合锆石的同位素特征及内部结构,确定花岗质片麻岩的岩浆结晶年龄约为281.9±5.5Ma。

图 8 典型锆石CL图像 Fig. 8 Cathodoluminescence images of representative zircons from all selected samples LA-ICP-MS spots and corresponding apparent 206Pb/238U ages (Ma) (< 1.0Ga) are reported with 1σ uncertainties

图 9 锆石U-Pb谐和图 Fig. 9 206Pb/238U vs. 207Pb/235U concordia plots of all investigated samples

嘎拉山花岗片麻岩(742GL-0)中选取的锆石晶型较完整,一般为细长柱状,颗粒粒径多分布在100~250μm之间,部分颗粒具有清晰且窄的岩浆振荡环带,大部分颗粒颜色深,可能与其U、Pb含量有关(图 8)。锆石Th/U为0.02~0.81,均大于0.01(表 5),表明它们是岩浆成因锆石。共分析30个锆石,剔除5个不谐和数据,由锆石谐和年龄图可以看出(图 9b),206Pb/238U加权年龄为152.1±4.3Ma(MSWD=3.6,n=25),代表了花岗片麻岩原岩的侵位时间为晚侏罗世晚期。

黑云斜长片麻岩(742GL-2)中选取的锆石自形到半自形,晶棱较圆滑,有振荡环带和包体,但大多数锆石颜色偏深,呈深灰色,振荡环带变较弱,局部由核到边发生模糊、退化的现象,且核部宽颜色发暗、边部窄而亮,表现出继承性锆石的特点。多数颗粒呈现浑圆粒状、椭圆粒状及粒状,说明该样品中锆石的主体是岩浆锆石,在后期受到了不同程度变质作用影响遭受过变质作用改造,但不具有明显核边结构(图 8)。锆石Th/U比值变化较大,集中在0.01~1.69之间(29、24、18三点Th/U比值为0.01;表 5),显示岩浆锆石特征。黑云斜长片麻岩可能为副变质岩,其原岩为碎屑岩类,共测试30颗锆石,除2颗年龄极不谐和的锆石外,锆石年龄可识别出4期峰值(图 9c):~360Ma、~259Ma、~185Ma和~159Ma,~159Ma为其沉积的下限年龄。其中~360Ma(347±4Ma~417±4Ma)年龄较多(15个,平均年龄为372.0±9.3Ma),反映了晚古生代物源,可能代表兴安地块与松嫩地块碰撞事件年龄。~259Ma(231±3Ma~274±3Ma,谐和度低)、~185Ma(184±2Ma和186±2Ma两个锆石)和~159Ma(148±2Ma~159±2Ma),三组年龄的锆石可能为捕获锆石,基本反映区域后期构造热事件的时代。

8 讨论 8.1 伸展变形样式与流变学参数 8.1.1 变形特征及变形温度

科洛伸展变形区出露的新开岭群(科洛杂岩)内发育有层间滑脱褶皱、眼球状构造、S-C组构以及不对称褶皱等构造现象,指示其整体向SE的伸展滑脱特征。花岗质片麻岩内细粒石英塑性拉长成条带状,部分石英颗粒产生膨凸式动态重结晶。部分黑云母扭折呈S-C组构特征,与长石残斑产生的压力影共同指示右行韧性走滑特征。嘎拉山伸展变形带内出露的落马湖岩群次级构造丰富,鞘褶皱,窗棂构造,不对称褶皱等,也指示向SE的伸展滑脱特征。花岗片麻岩(糜棱岩)中矿物中低温韧性变形,石英颗粒也塑性拉长,膨凸式动态重结晶,颗粒边界呈现为镶嵌式接触或锯齿状。部分黑云母扭折呈S-C组构特征,与长石残斑旋转共同指示右行韧性变形特征。显微组构说明岩石变形发生在地壳浅部的低绿片岩相(Poirier, 1985; Stipp et al., 2002; 向必伟等, 2007; 胡玲, 1998),指示约350~450℃的变形温度。石英 < C > 轴组构指示的变形温度与显微矿物变形温度估计的情况基本一致,也指示向SE的伸展变形(右行)特征。

8.1.2 运动学特征

两个变形区应变类型皆为拉长型应变,属于一般拉伸至轴对称拉伸的范围。但相较科洛地区,嘎拉山地区的的应变K值相对偏大,科洛地区的K值更接近1,代表两个区域变形阶段应变类型的差异性。科洛地区可能代表一种拉伸近似等于压扁的应力状态,变形岩石多为L=S构造岩,野外较少发育b型线理,多片理化和不对称褶皱等,而嘎拉山地区的应变强度更大,拉伸作用更强,变形岩石以LS和L=S构造岩为主,与野外观察到的大量叶理、a型及b型线理、鞘褶皱相对应。相较运动学涡度,科洛伸展变形带变形岩石涡度值为0.58~0.61,而嘎拉山伸展变形带稍高,为0.69和0.70,简单剪切变形组分更多,但两地差异不大,表明变形岩石主体发生简单剪切为主的的伸展拆离作用。总体表明越远离主伸展区应变强度越弱(靠近伸展区边缘),Flinn参数减小并且逐渐接近于1,应变趋于平面应变。对两个研究区内分别进行了构造要素吴氏网投影(图 2b图 4b),指示两地均受到一期主要为南东向的应力作用,反映当时统一的向SE伸展背景。

8.1.3 流变学特征

综合考虑韧性变形过程的缓慢性和大量流体参与,本文采用Koch et al. (1989)的实验参数计算所得的应变速率来综合讨论。取科洛地区变形岩石的应变速率为2.96×10-16~3.39×10-14s-1,嘎拉山地区变形岩石的应变速率为6.80×10-16~3.64×10-14s-1,考虑到实验参数设置的局限性,实验流变律公式计算的应变速率都普遍偏小,但总体能够反映应变速率的变化趋势。可见,嘎拉山变形岩石的应变速率与科洛地区的相差不大,都反映一种低温的极慢速率的缓慢变形。结合嘎拉山地区变形岩石样品的古差异应力平均值(14.95~31.19MPa)偏高于科洛地区(12.17~27.03MPa),说明不同隆升区的差异应力及应变速率有差异,但总体上都是以大兴安岭中脊为主隆升区,远离主隆升区靠近沉陷盆地(如松辽盆地、海拉尔-二连盆地),差异应力减小,应变类型纯剪组分增多。

8.2 锆石年代学对晚古生代以来演化事件的示踪

大兴安岭北段在大地构造位置上主体位于的兴蒙造山带东段,其构造演化可分为前中生代西伯利亚板块、华北板块及其之间额尔古纳、兴安、松嫩等微板块的碰撞拼合过程和中新生代蒙古-鄂霍茨克、古太平洋构造域的叠加改造,经历了多阶段的构造演化,具有十分复杂的地质演化历史。

新开岭群(科洛杂岩)和落马湖群的组成较为复杂,既有正变质岩,也有副变质岩,而且原岩时代跨度较大,目前资料显示形成于晚古生代-早中生代(早石炭世早期-早侏罗世;详见下文),不同学者在区域上获得的多个成岩和变质杂岩时代接近,可能这几套变质杂岩的原岩均为一套地层,而岩性上的略有差异是受不同程度和期次的变质变形作用所致。本文通过锆石LA-ICP-MS U-Pb年代学获得嫩江科洛地区新开岭群(科洛杂岩)花岗质片麻岩原岩年龄为281.9±5.5Ma,呼玛嘎拉山落马湖群强变形花岗质岩石成岩年龄分别为152.1±4.3Ma,落马湖群黑云斜长片麻岩中获得4组年龄峰值,其中~360Ma,反映了早期变质年龄,反映了晚古生代物源,可能代表兴安地块与松嫩地块碰撞事件年龄。~259Ma、~185Ma和~159Ma,三组年龄的锆石可能为捕获锆石,基本反映区域后期构造热事件的时代。这几期构造事件可以与区域相对比。

整个大兴安岭地区,由南至北,出露系列古老岩石/组(图 10a),从南段锡林郭勒杂岩到北部兴华渡口群,遍布整个大兴安岭地区。将前人所做年代学工作进行总结发现,大兴安岭地区花岗质岩石的原岩/变质年龄具有6个峰值,分别为~790Ma、~500Ma、~300Ma(285~320Ma)、~246Ma、~190Ma以及~130Ma(图 10b)。本文将着重讨论与落马湖群黑云斜长片麻岩中所得四组年龄峰值相关的年龄的地质意义。

前寒武纪结晶基底的年龄~790Ma和~500Ma的变质年龄,来源于基底岩石锆石的捕获,记录了东北地区各微板块的拼合过程,乃至从Rodinia到Gondwana大陆的聚合与离散(Zhou and Wilde, 2013; 周建波等, 2011, 2016; Zhou et al., 2011)。

东北地区古亚洲样闭合以及早期额尔古纳板块、兴安地块、松嫩地块等地块汇聚拼贴时限为晚古生代(Robinson et al., 1999; Chen et al., 2000; 孙德有等, 2000; Wu et al., 2002, 2011; 施光海等, 2004; 武广等, 2005; 葛文春等, 2005a; 隋振民等, 2009; 刘永江等, 2010; 曲晖等, 2011; Xu et al., 2013a; Gou et al., 2013; 张丽等, 2013; 徐备等, 2014)。东北地区晚古生代构造-岩浆事件,主要集中在石炭纪(350~300Ma),峰期年龄时代为早石炭世末-晚石炭世初(320Ma),岩浆事件峰期年龄与松嫩地块和额尔古纳-兴安地块拼合的事件时间基本一致(张兴洲等, 2011)。大兴安岭北段古老变质岩系内(图 10a)部分变形花岗质岩石其原岩和部分变质年龄形成于355~310Ma,且具有壳源深熔岩浆特点(苗来成等, 2003; 汪岩等, 2013, 2015; 李成禄等, 2013; 冯志强等, 2014; 曲晖等, 2015; 罗佳欣, 2016; Feng et al., 2017; 杨晓平等, 2017),为兴安地块与松嫩-张广才岭地块于早石炭世沿嫩江-黑河一线碰撞拼贴的产物。这与赵芝等(2010)所认为大兴安岭北部-小兴安岭西北部地壳在326~311Ma之间地壳发生隆升剥蚀基本一致,即额尔古纳-兴安地块与松嫩地块于早石炭世晚期-晚石炭世早期发生碰撞。晚石炭世结束块体碰撞造山,转入造山后伸展环境,晚石炭世火成岩(304~311Ma)形成环境为碰撞后伸展(赵芝等, 2010; 赵院冬等, 2013)。

二叠世-早三叠世的构造-岩浆事件在大兴安岭北段也广泛发育,最典型的是大石寨组火山岩(黑龙江省地质矿产局, 1993; 内蒙古自治区地质矿产局, 1996),大兴安岭不同部位、不同岩性获得的形成年龄不同,但总体形成时代为242~292Ma(汪润洁, 1987; 高德臻和蒋干洁, 1998; Zhu et al., 2001; 陶继雄等, 2003; Zhang et al., 2008b; 郭锋等, 2009; 那福超等, 2014),只是不同部位形成的构造背景不同,西伯利亚板块和华北板块碰撞后的伸展环境(Zhu et al., 2001)、裂谷或裂陷槽环境(Zhang et al., 2008b)和俯冲带构造环境(郭锋等, 2009)。本文最新获得的科洛地区新开岭群花岗质片麻岩原岩年龄为281.9±5.5Ma,与苗来成等(2003)获得的糜棱岩化中酸性火山岩292Ma的原岩结晶年龄相一致,也应为同一期构造事件的产物。

佘宏全等(2012)统计了大量的大兴安岭中北段原岩锆石年龄,在330~280Ma和240~190Ma之间存在明显的峰值,与前文所述的两期构造-岩浆事件相吻合,证实兴安地块与松嫩地块在晚古生代末拼合的事实,也揭示新开岭群(科洛杂岩)和落马湖群并不是兴安地块的基底,应该是晚古生代末两地块碰撞拼合向后造山阶段的产物,并于三叠纪发生明显的造山作用而引发区内明显的变质作用(苗来成等, 2003; 曲晖等, 2015)。同时,东北地区三叠纪A型花岗岩类(葛文春等, 2005a; Wu et al., 2002, 2011; 周振华等, 2010)侵位时间为230~200Ma,成因可能与中亚造山带的造山后伸展,岩石圈拆沉有关(Wu et al., 2002; 李锦轶等, 2004, 2007; 张健等, 2011; 杨晓平等, 2017),也证实了大兴安岭北段三叠纪的变质事件与造山后伸展有关。

大兴安岭北段发育大规模早中侏罗世岩浆事件,年龄集中在164~188Ma (Wu et al., 2002, 2011; 苗来成等, 2003; 葛文春等, 2005b; 赵海滨等, 2007; 邵济安等, 2008; 曾涛等, 2011; Xu et al., 2012; Miao et al., 2014; 李仰春等, 2013; 韩国卿等, 2012, 2014; 那福超等, 2017)和大规模火山事件,如中侏罗世末-晚侏罗世的塔木兰沟组的火山岩,年龄主要集中在166~147Ma(张昱等, 2005; 尹志刚等, 2005; 陈志广等, 2006; 李萍萍等, 2010; 赵忠华等, 2011; 孟恩等, 2011)。同时,众多学者也在新开岭群(科洛杂岩)发现一期明显变质深熔作用(172~186Ma),也与区域上这一期大规模的早中侏罗世火山-岩浆事件相印证(苗来成等, 2003; Miao et al., 2014; 那福超等, 2017)。整体与大兴安岭北段在挤压造山作用后向伸展环境转变阶段有关,期间产生大量的岩浆作用,后碰撞花岗岩以高钾钙碱系列为主,这一由相对挤压增厚到伸展减薄的转时间大致在160Ma(Wu et al., 2002; Fan et al., 2003; 曾涛等, 2011; 李仰春等, 2013; 王粉丽等, 2016)。但这一构造体制的转换是蒙古-鄂霍茨克洋盆关闭还是东南侧伊泽纳崎板块向NW挤压产生,目前尚无定论。韩国卿等(2012, 2014)认为嫩江-八里罕断裂左行走滑断层与西太平洋板块向欧亚大陆俯冲过程中角度的变化有关,而汪岩等(2013)认为其受控于蒙古-鄂霍茨克洋盆关闭和东南侧伊泽纳崎板块向西北挤压。Miao et al. (2014)也认为大兴安岭北段170~160Ma的变质变形事件与北侧的蒙古-鄂霍茨克碰撞带的形成有关。同时,总多学者对紧邻蒙古-鄂霍茨克缝合带附近的一系列变质核杂岩(如Ereendava变质核杂岩;Donskaya et al., 2008, 2013;Egiyn Davaa变质核杂岩,Wang et al., 2015; Guo et al., 2017)、伸展盆地以及大规模的A型花岗岩进行了研究(Wu et al., 2002),认为与进行了详细研究,其与蒙古-鄂霍茨克洋闭合的远程效应有关(150~133Ma)。

在白垩纪时期,大兴安岭地区火山活动于早白垩世最为强烈,止于晚白垩世(Wang et al., 2006; Zhang et al., 2008a; 徐美君等, 2011; Wu et al., 2011; Xu et al., 2013b)。大兴安岭地区早白垩世火山岩的主要形成时期为136~118Ma(上库力组和伊列克得组;张兴洲等, 2015),北段早白垩世岩浆事件多集中在128~106Ma(曾涛等, 2011),多显示为碱性或高分异I型花岗岩(Wu et al., 2002),区域构造环境处于挤压向伸展转换阶段(Meng, 2003; 李锦轶等, 2004; 武广等, 2008; Li et al., 1999),并与伸展构造(如变质核杂岩等)和伸展盆地相伴而生,显示了伸展的构造背景(郑亚东等, 2000; Wu et al., 2002; 王涛等, 2002, 2007; 王新社和郑亚东, 2005; 王新社等, 2006; 赵海滨等, 2007; 梁琛岳等, 2011, 2012; Wang et al., 2004, 2011, 2012, 2015; 林伟等, 2013)。但有关该期的构造背景争议依然存在,与蒙古-鄂霍茨克洋盆俯冲有关(武广等, 2008),还是来自太平洋方向的俯冲(Maruyama et al., 1997; 隋振民等, 2007; Wang et al., 2011, 2015; 郑常青等, 2015),或是大兴安岭的伸展造山有关(邵济安等, 2007)。下节将就该期伸展构造以及大兴安岭隆升进行详细论述。

总结而言,早石炭世,兴安地块和松嫩地块开始沿嫩江-黑河一线汇聚拼贴,嫩江-黑河一带遭受了强烈的挤压造山作用。同碰撞时期,早石炭世花岗质岩石侵位,形成新开岭岩群和落马湖群早期原岩。333~307Ma的U-Pb年龄记录了这一时期构造岩浆事件。早二叠世嫩江-黑河构造带开始出现造山后的伸展,伴随中酸性钙碱质火山岩喷出(大石寨组)和碱长花岗岩的侵位(281.9±5.5Ma),同时造成新开岭岩群和落马湖群发生变质作用(242~292Ma)。早晚中侏罗世受蒙古-鄂霍茨克洋闭合或古亚洲洋板块向东亚大陆斜向俯冲的影响,形成系列中晚侏罗世岩浆事件,产生落马湖群晚期强变形花岗质岩石原岩的形成(152.1±4.3Ma)。伴随着古太平洋板块的持续NW斜向俯冲,伸展应力下导致早白垩世区内发生强烈的韧性变形和伸展构造(详见下文)。

8.3 大兴安岭北段中生代隆升时代与机制

大兴安岭北段不仅受到古亚洲构造域的影响,还可能受到蒙古-鄂霍茨克构造域的叠加以及太平洋构造域的改造,前文已证实新开岭群和落马湖群并不是兴安地块的基底,而是形成于古亚洲洋关闭后的造山带伸展。区域向SE的伸展构造,可能与早白垩世区域伸展有关。梁琛岳等(2012)在花岗片麻岩中获得的黑云母同位素坪年龄117.37±0.43Ma和118.39±0.48Ma,基本代表了伸展滑脱带形成时代的上限。刘勃然等(2014)在落马湖岩群中花岗质片麻岩中白云母40Ar-39Ar获得较好的坪年龄,147.00±0.57Ma,144.06±0.55Ma,可能代表着该地区伸展构造的形成时代。这一隆升时间相对大兴安岭中、南部地区稍早,反映了大兴安岭隆升可能具有从北向南有早到晚的差异性。大兴安岭北部漠河盆地西部地区花岗岩类裂变径迹年龄为72±7Ma~99±5Ma,揭示大兴安岭北段在晚白垩世发生快速隆升(吴环环等, 2016)。结合科洛地区新开岭群花岗质片麻岩最新的原岩年龄164Ma(苗来成等, 2003),嘎拉山落马湖群强变形花岗质岩石成岩年龄152.1±4.3Ma(本文),拟合大兴安岭北段变形岩石隆升-剥露史(图 11)。可见,嘎拉山伸展变形区早白垩世经历两个快速隆升阶段,152~144Ma的快速隆升,之后隆升速度放缓,科洛伸展变形区表现出相似的隆升史。但相比较而言,靠近主隆起区的嘎拉山地区较科洛地区隆升速率更快。可见,早白垩世大兴安岭北段科洛和嘎拉山地区受到伸展构造的影响,形成系列伸展滑脱构造样式(梁琛岳等, 2012; 刘勃然等, 2014)。值得关注的是刘勃然等(2016)在大兴安岭北段西坡额尔古纳七卡地区发现的发育的向NW的大型区域伸展滑脱构造,区域上与北段东坡科洛和嘎啦山向SE伸展构造相对应,时间置于早白垩世。

图 11 大兴安岭北段变形岩石隆升-剥露史 Fig. 11 The uplift and exhumation history of deformed rocks in north part of Da Hinggan Mountains

大兴安岭北段发育有系列北北东向左行韧性剪切带,构造变形发生于早白垩世(120~130Ma),其形成可能与当时西太平洋伊泽纳崎板块向欧亚大陆俯冲发生转向有关(韩国卿等, 2012; 郑常青等, 2015)。但刘勃然等(2014)认为嘎拉山伸展构造的形成机制很可能与鄂霍茨克造山运动使地壳加厚崩塌,导致大兴安岭地区发生区域性伸展有关(刘勃然等, 2014)。吴环环等(2016)揭示大兴安岭北段在晚白垩世发生快速隆升与太平洋板块与亚洲大陆的相互作用有关。近年来有学者认为大兴安岭地区的侏罗纪火山岩可能与蒙古-鄂霍茨克缝合带的演化有关(陈志广等, 2006; Xu et al., 2013b)。从大地构造演化看,古亚洲洋在二叠纪已经闭合(Dobretsov et al., 1995; 邵济安等, 1997; 李锦轶, 1998; Xiao et al., 2003, 2009; Li, 2006; 李锦轶等, 2007),早白垩世伸展构造与其无关。但蒙古-鄂霍茨克缝合带是含有蓝片岩和蛇绿岩的古生代增生杂岩,被晚三叠世及其之后的沉积不整合覆盖(Dobretsov et al., 1995),这说明蒙古-鄂霍茨克缝合带在侏罗纪期间已不具备向大兴安岭地区俯冲的构造背景,并且和东北地区早-中侏罗世和早白垩世两次重要的成盆事件有所出入,可见蒙古-鄂霍茨克缝合带西段的演化对大兴安岭北段的影响应主要发生在三叠纪,东段演化对额尔古纳地块的影响应主要发生在早-中侏罗世,早白垩世,统一的东北亚大陆已基本形成(Zorin, 1999; Parfenov et al., 2001; Kravchinsky et al., 2002; 张兴洲等, 2015),且越来越多的学者也认为早白垩世早期太平洋板块就已经对东北亚大陆产生俯冲作用(Maruyama et al., 1997; 张兴洲等, 2015)。总体而言,早白垩纪古太平洋板块向亚洲大陆之下俯冲,造成大陆岩石圈减薄、地壳伸展及陆缘岩浆活动(李锦轶等, 2004; 董树文等, 2007, 2008; 吴环环等, 2016)可能性更高,因此可以确定大兴安岭北段的早白垩世的构造体制可能与古太平洋板块NW向亚洲大陆之下俯冲关系更大。

松辽盆地与大兴安岭的盆山耦合关系可以侧面反映大兴安岭的隆升历史。早白垩世(142~100Ma)是松辽盆地快速沉降与大兴安岭快速隆升的重要时期,盆内沉积以正常粗碎屑沉积充填为主(刘德来等, 1996; 刘和甫等, 2000; 方石等, 2005),伴随区域性偏碱性岩的粗面岩-流纹岩组合火山岩(Zhang et al., 2008a; 张吉衡, 2009; Wu et al., 2011)。进入晚白垩世晚期,松辽盆地整体进入萎缩阶段,大兴安岭处于小幅度持续隆升状态(方石等, 2005; 张兴洲等, 2011)。这一快速隆升期也是早白垩世火山岩发育的主要时期,大兴安岭地区火山活动早白垩世最为强烈(140~100Ma),峰期为~130Ma(Zhang et al., 2008a; 徐美君等, 2011; Wu et al., 2011; 曾涛等, 2011; Ouyang et al., 2013; Xu et al., 2013b; 张兴洲等, 2015)。该期火山岩与其上下层位中的正常沉积地层连续演化,反映出大兴安岭地区在早白垩世早期经历了连续的沉积-火山-沉积作用演化过程(王璞珺等, 1995; Kirillova, 2005; 方石等, 2005; 张兴洲等, 2011)。其中,~130Ma的火山喷发峰期年龄与大兴安岭由快速隆转为缓慢隆升的转换时间完全一致(图 11; 方石等, 2005),而且与古太平洋板块对东北亚大陆东缘由正向俯冲转为快速斜俯冲(30cm/a)的时间(Maruyama and Send, 1986; Maruyama et al., 1997)完全一致。综合以上年龄,古太平洋板块在~130Ma(140~100Ma期间)的快速斜俯冲作用对大兴安岭地区的地壳产生强烈的伸展隆升效应和耦合盆地的快速沉降,还导致之前正向俯冲产生的地壳深部岩浆发生广泛的喷发和侵位。

综上所述,我们尝试建立的一个新的模型来解释大兴安岭的隆升机制(图 12)。早白垩世,大兴安岭东部长距离俯冲的古太平洋板片发生断离,造成地幔物质上涌,大规模强烈的岩浆侵位,造成了大兴安岭的快速隆起、大规模的伸展变形(变形核杂岩)以及两侧断陷盆地的发展,形成对称的盆岭格局(图 12)。这一期间科洛和嘎拉山地区在地壳伸展背景下遭受伸展滑脱变形。两个研究区内的伸展构造,其伸展变形靠近大兴安岭主隆起区逐渐变强,差异应力增大,应变类型单剪组分增多,相反远离主隆起区变形逐渐变弱,均反映出一种脆韧性流变带的特点,但变形速率较慢,和自然界韧性剪切变形带的应变速率相当。

图 12 大兴安岭早白垩世隆升模式图 Fig. 12 Simplified cartoon showing Mesozoic tectonic evolution in Da Hinggan Mountains, NE China
9 结论

(1) 大兴安岭北段科洛和嘎拉山伸展变形区发育典型向SE的伸展滑脱构造,宏微观构造和石英EBSD组构均指示岩石变形发生在地壳浅部的低绿片岩相,中低温条件下缓慢变形的的结果。科洛地区变形代表一种拉伸近似等于压扁的应力状态,变形岩石多为L=S构造岩,较少发育b型线理,多片理化和不对称褶皱等,而嘎拉山地区的应变强度更大,拉伸作用更强,变形岩石以LS和L=S构造岩为主,发育大量叶理、a型及b型线理、鞘褶皱。运动学和流变学特征表明越远离主伸展区应变强度越弱,应变趋于平面应变,差异应力减小,应变类型纯剪组分增多。

(2) 锆石年代学研究表明,新开岭岩群和落马湖群的古老原岩形成于早石炭世兴安地块和松嫩地块汇聚拼贴时期的花岗质岩石侵位。早二叠世嫩江-黑河构造带开始出现造山后的伸展,造成新开岭岩群和落马湖群发生变质作用。

(3) 早白垩世伴随着古太平洋板块的持续NW斜向俯冲,大兴安岭东部长距离俯冲的古太平洋板片发生断离,造成地幔物质上涌,大规模强烈的岩浆侵位,造成了大兴安岭的快速隆起、大规模的强烈的韧性变形和伸展构造以及两侧断陷盆地的发展。

致谢      感谢中国地质大学(北京)刘俊来教授在EBSD岩组分析测试方面给予的帮助,对吉林大学东北亚矿产资源评价国土资源部重点实验室在锆石U-Pb测试方面给予的支持表示感谢!同时,特别感谢两位匿名审稿人对本文提出了宝贵的具有建设性的修改意见!

参考文献
Andersen T, Griffin WL and Pearson NJ. 2002. Crustal evolution in the SW part of the Baltic Shield:The Hf isotope evidence. Journal of Petrology, 43(9): 1725-1747. DOI:10.1093/petrology/43.9.1725
Bascou J, Barruol G, Vauchez A, Mainprice D and Egydio-Silva M. 2016. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 342(1-2): 61-80.
Beam EC and Fisher DM. 1999. An estimate of kinematic vorticity from rotated elongate porphyroblasts. Journal of Structural Geology, 21(11): 1553-1559. DOI:10.1016/S0191-8141(99)00110-8
Boutonnet E, Leloup PH, Sassier C, Gardien V and Ricard Y. 2013. Ductile strain rate measurements document long-term strain localization in the continental crust. Geology, 41(8): 819-822. DOI:10.1130/G33723.1
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House: 1-155.
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. 1996. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publishing House: 1-344.
Cao ZQ and Hou GJ. 2009. The late mesozoic alkaline intrusive rocks at the north of the Da Hinggan Mountains:Lithogeochemical characteristics and their implications. Bulletin of Mineralogy, Petrology and Geochemistry, 28(3): 209-216.
Chen B, Jahn BM, Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182. DOI:10.1016/S0040-1951(00)00182-7
Chen ZG, Zhang LC, Zhou XH, Wan B, Ying JF and Wang F. 2006. Geochronology and geochemical characteristics of volcanic rocks section in Manzhouli Xinyouqi, Inner-Mongolia. Acta Petrologica Sinica, 22(12): 2971-2986.
Cui FH, Zheng CQ, Xu XC, Yao WG, Ding X, Shi L and Li J. 2015. Detrital zircon ages of the Jiageda and Woduhe formations:Constrains on the tectonic attribute of the Xing'an terrane in the central Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 113: 427-442. DOI:10.1016/j.jseaes.2015.01.017
Dobretsov NL, Berzin NA and Buslov MM. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geology Review, 37(4): 335-360. DOI:10.1080/00206819509465407
Dong SW, Zhang YQ, Long CX, Yang ZY, Ji Q, Wang T, Hu JM and Chen XH. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement. Acta Geologica Sinica, 81(11): 1449-1461.
Dong SW, Zhang YQ, Chen XH, Long CX, Wang T, Yang ZY and Hu JM. 2008. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317.
Donskaya TV, Windley BF, Makzubakzov AM, Kröner A, Sklyarov EV, Gladkochub DP, Ponomarchuk VA, Badarch G, Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society, 165(1): 405-421. DOI:10.1144/0016-76492006-162
Donskaya TV, Gladkochub DP, Mazukabzov AM and Ivanov AV. 2013. Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 62: 79-97. DOI:10.1016/j.jseaes.2012.07.023
Fan WM, Guo F, Wang YJ and Lin G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. DOI:10.1016/S0377-0273(02)00415-8
Fang S, Liu ZJ and Guo W. 2005. Thermal structure research on Cenozoic in Songliao Basin and Dahinganling Mountain. Nuclear Techniques, 28(9): 717-721.
Feng ZQ, Liu YJ, Wen QB, Han GQ, Li WM and Zhang L. 2014. Petrogenesis of~330Ma meta-gabbro-granite from the Tayuan area in the northern segment of the Da Xing'an Mts and its tectonic implication. Acta Petrologica Sinica, 30(7): 1982-1994.
Feng ZQ, Liu YJ, Liu BQ, Wen QB, Li WM and Liu Q. 2015. Timing and nature of the Xinlin-Xiguitu Ocean:Constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(2): 491-505.
Feng ZQ, Liu YJ, Li YR, Li WM, Wen QB, Liu BQ, Zhou JP and Zhao YL. 2017. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 144: 5-21. DOI:10.1016/j.jseaes.2016.12.006
Ferrill DA. 1991. Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone. Journal of Structural Geology, 13(6): 667-675. DOI:10.1016/0191-8141(91)90029-I
Ferrill DA, Morris AP, Evans MA, Burkhard M, Groshong Jr RH and Onasch CM. 2004. Calcite twin morphology:A low-temperature deformation geothermometer. Journal of Structural Geology, 26(8): 1521-1529. DOI:10.1016/j.jsg.2003.11.028
Fry N. 1979. Random point distributions and strain measurement in rocks. Tectonophysics, 60(1-2): 89-105. DOI:10.1016/0040-1951(79)90135-5
Gao DZ and Jiang GQ. 1998. Revision of stratigraphic division of the Permian and tectonic evolution in the Sonid Left Banner, Inner Mongolia. Regional Geology of China, 17(4): 403-412.
Ge WC, Lin Q, Sun DY, Wu FY, Yuan ZK, Li WY, Chen MZ and Yin CX. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling:Evidence of the mantle-crust interaction. Acta Petrologica Sinica, 15(3): 396-407.
Ge WC, Lin Q, Li XH, Wu FY, Sun DY and Yin CX. 2000a. Geochemical characteristics of basalts of the Early Cretaceous Yiliekede Formation, North Daxing'anling. Journal of Mineralogy and Petrology, 20(3): 14-18.
Ge WC, Lin Q, Sun DY, Wu FY and Li XH. 2000b. Geochemical research into origins of two types of Mesozoic rhyolites in Daxing'anling. Earth Science (Journal of China University of Geosciences), 25(2): 172-178.
Ge WC, Wu FY, Zhou CY and Abdel Rahman AA. 2005a. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105. DOI:10.1360/982005-207
Ge WC, Wu FY, Zhou CY and Zhang JH. 2005b. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain. Acta Petrologica Sinica, 21(3): 749-762.
Ge WC, Sui ZM, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China. Acta Petrologica Sinica, 23(2): 423-440.
Gou J, Sun DY, Ren YS, Liu YJ, Zhang SY, Fu CL, Wang TH, Wu PF and Liu XM. 2013. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China:Geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, 67-68: 114-137. DOI:10.1016/j.jseaes.2013.02.016
Guo F, Fan WM, Li CW, Miao LC and Zhao L. 2009. Early Paleozoic subduction of the Paleo-Asian Ocean:Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D), 52(7): 940-951. DOI:10.1007/s11430-009-0083-2
Guo L, Wang T, Tong Y, Orsoo EO, Tserendash N and Zhang L. 2017. Early Cretaceous extension in upper-middle crust of NE Asia:Evidences from widespread syn-thinning granitic domes. Geodynamics & Tectonophysics, 8(3): 471-472.
Hacker BR, Yin A, Christie JM and Snoke AW. 1990. Differential stress, strain rate, and temperatures of mylonitization in the Ruby Mountains, Nevada:Implications for the rate and duration of uplift. Journal of Geophysical Research, 95(B6): 8569-8580. DOI:10.1029/JB095iB06p08569
Han GQ, Liu YJ, Wen QB, Zou YX, Liang DJ, Zhao YL, Li W and Zhao LM. 2009. The characteristics of structural deformation for the Lingxia ductile shear zone of Nenjiang-Balihan fault belt in northeastern China. Journal of Jilin University (Earth Science Edition), 39(3): 397-405.
Han GQ, Liu YJ, Neubauer F, Genser J, Zou YX, Li W and Liang CY. 2012. Characteristics, timing, and offsets of the middle-southern segment of the western boundary strike-slip fault of the Songliao Basin in Northeast China. Science in China (Earth Sciences), 55(3): 464-475. DOI:10.1007/s11430-012-4362-y
Han GQ, Liu YJ, Neubauer F, Genser J, Liang CY, Wen QB and Zhao YL. 2014. Chronology of L-type tectonite from Nierji area in the northern-middle segment of the western boundary fault of the Songliao Basin and its tectonic implications. Acta Petrologica Sinica, 30(7): 1922-1934.
Hirth G, Teyssier C and Dunlap WJ. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90(1): 77-87. DOI:10.1007/s005310000152
Hu L. 1998. An outline of Deformation Microstructure. Beijing: Geological Publishing House: 1-89.
Jahn BM, Griffin WL and Windley B. 2000. Continental growth in the Phanerozoic:Evidence from Central Asia. Tectonophysics, 328(1-2): Ⅶ-Ⅹ.
Kirillova GL. 2005. The Late Mesozoic-Cenozoic sedimentary basins at the continental margin of southeastern Russia:Geodynamic evolution and coal and petroleum potential. Geotectonics, 39(5): 389-407.
Koch PS. 1983. Rheology and microstructures of experimentally deformed quartz aggregates. Ph. D. Dissertation. Los Angeles, CA: University of California
Koch PS, Christie JM, Ord A and George RP. 1989. Effect of water on the rheology of experimentally deformed quartzite. Journal of Geophysical Research:Solid Earth, 94(B10): 13975-13996. DOI:10.1029/JB094iB10p13975
Kravchinsky VA, Cogné JP, Harbert WP and Kuzmin M. 2002. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International, 148(1): 34-57. DOI:10.1046/j.1365-246x.2002.01557.x
Kronenberg AK and Tullis J. 1984. Flow strengths of quartz aggregates:Grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research, 89(B6): 4281-4297. DOI:10.1029/JB089iB06p04281
Li CL, Qu H, Zhao ZH, Xu GZ, Wang Z and Zhang JF. 2013. Zircon U-Pb ages, geochemical characteristics and tectonic implications of Early Carboniferous granites in Huolongmen area, Heilongjiang Province. Geology in China, 40(3): 859-868.
Li JY. 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review, 44(4): 339-347.
Li JY, He ZJ, Mo SG and Zheng QD. 1999. The Late Mesozoic orogenic processes of Mongolia-Okhotsk orogen:Evidence from field investigations into deformation of the Mohe area, NE China. Journal of Geoscientific Research in Northeast Asia, 2(2): 172-178.
Li JY, Mo SG, He ZJ, Sun GH and Chen W. 2004. The timing of crustal sinistral strike-slip movement in the northern Great Khing'an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic. Earth Science Frontiers, 11(3): 157-168.
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. DOI:10.1016/j.jseaes.2005.09.001
Li JY, Gao LM, Sun GH, Li YP and Wang YB. 2007. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565-582.
Li PP, Ge WC and Zhang YL. 2010. Division of volcanic strata in the northwestern part of Hailar basin:Evidence from zircon U-Pb dating. Acta Petrologica Sinica, 26(8): 2482-2494.
Li YC, Zhang KX, Wu GG, Xiao QH, Yang XP, Zhang D, Zhao HL, Han ZZ and Liu XG. 2013. Zircon U-Pb ages and causes of the Early-Middle Jurassic granites in the Da-Xiao Xinganling Copula. Geological Bulletin of China, 32(5): 717-729.
Liang CY, Liu YJ, Li W, Han GQ, Wen QB and Zhao YL. 2011. Characteristics of extensional structure of Keluo complex in Nenjiang area, Heilongjiang, China. Geological Bulletin of China, 30(2-3): 291-299.
Liang CY, Liu YJ, Li W, Han GQ, Wen QB and Neubauer F. 2012. Uplift age of Keluo complex at Nenjiang area, Heilongjiang Province. Chinese Journal of Geology, 47(2): 360-375.
Liang CY, Liu YJ, Neubauer F, Bernroider M, Jin W, Zeng ZX, Li WM, Wen QB and Zhao YL. 2015. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton. Journal of Structural Geology, 78: 27-51. DOI:10.1016/j.jsg.2015.06.007
Liang CY, Liu YJ, Li WM, Yang SY, Wen QB, Li J, Mi XN and Zhang L. 2016. Ductile deformation and rock rheological characteristics from southern Yiwulüshan metamorphic core complex. Acta Petrologica Sinica, 32(9): 2656-2676.
Liang CY, Liu YJ, Zhu JJ, Li WM, Chang RH and Zhang L. 2017. Deformation fabrics and rheological features of Early Permian Fanjiatun Formation from Quannongshan area, southeastern Changchun. Earth Science, 42(12): 2174-2192.
Lin Q, Ge WC, Wu FY, Sun DY and Cao L. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges. Acta Petrologica Sinica, 20(3): 403-412.
Lin W, Wang J, Liu F, Ji WB and Wang QC. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics. Acta Petrologica Sinica, 29(5): 1791-1810.
Liu BR, Li W, Jia J, Li WM, Liang CY and Wen QB. 2014. Extensional detachment structure in Galashan, northern Great Xing'an Ranges, NE China. Journal of Jilin University (Earth Science Edition), 44(4): 1142-1152.
Liu BR, Li W, Zhang SZ, Peng TM and Feng ZQ. 2016. Extensional detachment, northern Great Xing'an ranges, NE China. Journal of Jilin University (Earth Science Edition), 46(5): 1440-1448.
Liu DL, Chen FJ, Guan DF, Tang JR and Liu CR. 1996. A study on Lithospheric dynamics of the origin and evolution in the Songliao Basin. Scientia Geologica Sinica, 31(4): 397-408.
Liu HF, Liang HS, Li XQ, Yin JY, Zhu DF and Liu LQ. 2000. The coupling mechanisms of Mesozoic-Cenozoic rift basins and extensional mountain system in eastern China. Earth Science Frontiers, 7(4): 477-486.
Liu JL, Cao SY, Zou YX and Song ZJ. 2008. EBSD analysis of rock fabrics and its application. Geological Bulletin of China, 27(10): 1638-1645.
Liu YJ, Zhang XZ, Jin W, Chi XG, Wang CW, Ma ZH, Han GQ, Wen QB, Zhao YL, Wang WD and Zhao XF. 2010. Late Paleozoic tectonic evolution in Northeast China. Geology in China, 37(4): 943-951.
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. DOI:10.1016/j.gr.2016.03.013
Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-71
Luo JX. 2016. Study on chronology and geological significance of Xinkailing Group and Yimianpo Group in eastern Nenjiang area. Master Degree Thesis. Changchun: Jilin University, 8-50 (in Chinese with English summary)
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188.
Maruyama S and Send T. 1986. Orogeny and relative plate motions:Example of the Japanese Islands. Tectonophysics, 127(3-4): 305-329. DOI:10.1016/0040-1951(86)90067-3
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. The Island Arc, 6(1): 121-142. DOI:10.1111/iar.1997.6.issue-1
Meng E, Xu WL, Yang DB, Qiu KF, Li CH and Zhu HT. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrologica Sinica, 27(4): 1209-1226.
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174. DOI:10.1016/S0040-1951(03)00195-1
Mercier JCC, Anderson DA and Carter NL. 1977. Stress in the lithosphere:Inferences from steady state flow of rocks. Pure and Applied Geophysics, 115(1-2): 199-226. DOI:10.1007/BF01637104
Miao LC, Fan WM, Zhang FQ, Liu DY, Jian P, Shi GH, Tao H and Shi YR. 2004. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications. Chinese Science Bulletin, 49(2): 201-209. DOI:10.1360/03wd0316
Miao LC, Liu DY, Zhang FQ, Fan WM, Shi YR and Xie HQ. 2007. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin, 52(8): 1112-1134. DOI:10.1007/s11434-007-0131-2
Miao LC, Zhang FQ, Zhu MS and Liu DY. 2014. Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an ranges, NE China:Timing of formation and metamorphism and tectonic implications. Journal of Asian Earth Sciences, 114: 634-648.
Na FC, Yang XP, Wang Y, Fu JY, Wu Y and Yang F. 2014. Determination of the Late Paleozoic volcanic strata around the Nenbei farm in Daxinganling Region. Geology and Resources, 23(4): 311-315.
Na FC, Song WM, Liu YC, Zhao Y, Zhang P, Fu JY, Wang Y, Sun W and Yang F. 2017. Chronology and tectonic significance of the Keluo complex in the middle of the Nenjiang-Heihe tectonic belt. Geological Review, 63(Suppl.): 303-304.
Nozaka T and Liu Y. 2002. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China. Earth and Planetary Sciences Letters, 202(1): 89-104. DOI:10.1016/S0012-821X(02)00774-4
Ouyang HG, Mao JW, Santosh M, Zhou J, Zhou ZH, Wu Y and Hou L. 2013. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions:Perspectives from spatio-temporal distribution patterns of ore deposits. Journal of Asian Earth Sciences, 78: 222-236. DOI:10.1016/j.jseaes.2013.07.011
Parfenov LM, Popeko LI and Tomurtogoo O. 2001. Problems of tectonics of the Mongol-Okhotsk orogenic belt. Geology of the Pacific Ocean, 16(5): 797-830.
Parrish DK, Krivz AL and Carter NL. 1976. Finite-element folds of similar geometry. Tectonophysics, 32(3-4): 183-207. DOI:10.1016/0040-1951(76)90062-7
Passcher CW. 1998. Monoclinic model shear zones. Journal of Structural Geology, 20(8): 1121-1137. DOI:10.1016/S0191-8141(98)00046-7
Passchier CW. 1987. Stable position of rigid objects in non-coaxial flow-a study in vorticity analysis. Journal of Structural Geology, 9(5): 670-69.
Passchier CW and Urai JL. 1988. Vorticity and strain analysis using Mohr diagrams. Journal of Structural Geology, 10(7): 755-763. DOI:10.1016/0191-8141(88)90082-X
Passchier WC and Trouw RAJ. 2005. Microtectonics. Berlin: Springer: 366-367.
Paterson MS and Luan FC. 1990. Quartzite rheology under geological conditions. In:Paterson L (ed.). Deformation Mechanisms, Rheology and Tectonics. Geological Society, London, Special Publications, 54(1): 299-307. DOI:10.1144/GSL.SP.1990.054.01.26
Poirier JP. 1985. Creep of Crystals:High-Temperature Deformation Processes in Metals, Ceramics and Minerals. New York: Cambridge University Press: 1-260.
Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzi L, Potts G, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J and Zetterstrom L. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84(11-12): 1741-1759. DOI:10.2138/am-1999-11-1204
Prior DJ, Wheeler J, Brenker FE, Harte B and Matthews M. 2000. Crystal plasticity of natural garnet:New microstructural evidence. Geology, 28(11): 1003-1006. DOI:10.1130/0091-7613(2000)28<1003:CPONGN>2.0.CO;2
Qu H, Li CL, Zhao ZH, Wang Z and Zhang JF. 2011. Zircon U-Pb ages and geochemical characteristics of the granites in Duobaoshan area, Northeast Da Hinggan Mountain. Geology in China, 38(2): 292-300.
Qu H, Li CL and Yang FS. 2015. Zircon U-Pb ages, geochemical characteristics and their geological implication of granitic complex in Huolongmen area, northwestern Xiao Hinggan Mountains. Global Geology, 34(1): 34-43.
Robinson RT, Zhou MF, Hu XF, Reynolds P, Bai WJ and Yang JS. 1999. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4): 423-442. DOI:10.1016/S1367-9120(99)00016-4
Rutter EH and Brodie KH. 2004a. Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates. Journal of Structural Geology, 26(11): 2011-2023. DOI:10.1016/j.jsg.2004.04.006
Rutter EH and Brodie KH. 2004b. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. Journal of Structural Geology, 26(2): 259-270. DOI:10.1016/S0191-8141(03)00096-8
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shao JA, Zang SX, Mu BL, Li XB and Wang B. 1995. Extension of orogenic belts and upwelling of asthenosphere:The example of Hinggan-Mongolian orogenic belt. Chinese Science Bulletin, 40(1): 50-56.
Shao JA, Mou BL, He GQ and Zhang LQ. 1997. The geological process of the northern region of North China in the tectonic overprinting process of Palaeo-Asia and Pacific regimes. Science in China (Series D), 27(5): 390-394.
Shao JA, Zhang LQ and Mu BL. 1998. Tectono-thermal evolution of middle-south section of the Da Hinggan Mountains. Science China (Series D), 41(6): 570-579. DOI:10.1007/BF02878738
Shao JA, Han QJ, Zhang LQ, Mu BL and Qiao GS. 1999a. Two kinds of vertical accretion of the continental crust:An example of the Da Hinggan Mts. Acta Petrologica Sinica, 15(4): 600-606.
Shao JA, Zhang LQ and Mu BL. 1999b. Magmatism in the Mesozoic extending orogenic process of Da Hinggan Mts. Earth Science Frontiers, 6(4): 339-346.
Shao JA, Zhang LQ, Jia W and Wang PY. 2001a. Harkin metamorphic core complex in Inner Mongolia and its upwelling mechanism. Acta Petrologica Sinica, 17(2): 283-290.
Shao JA, Liu FT, Chen H and Han QJ. 2001b. Relationship between Mesozoic magmatism and subduction in Da Hinggan-Yanshan area. Acta Geologica Sinica, 75(1): 56-63.
Shao JA, Zhang LQ, Xiao QH and Li XB. 2005. Rising of Da Hinggan Mts in Mesozoic:A possible mechanism of intracontinental orogeny. Acta Petrologica Sinica, 21(3): 789-794.
Shao JA, Zhang LQ, Mou BL and Han QJ. 2007. Upwelling of Da Hinggan Mountains and Its Geodynamic Background. Beijing: Geological Publishing House: 1-248.
Shao JA, Ji JQ, Lu FX and Zhang LQ. 2008. Response of the continental lithosphere to the spreading mechanism:Space-time distribution of the Meso-Cenozoic volcanic activities in the Liao-Meng geological corridor, China. Geological Bulletin of China, 27(9): 1431-1440.
She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594.
Shi GH, Miao LC, Zhang FQ, Jian P, Fan WM and Liu DY. 2004. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Chinese Science Bulletin, 49(7): 723-729. DOI:10.1007/BF03184272
Simpson C and De Paor DG. 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology, 15(1): 1-20. DOI:10.1016/0191-8141(93)90075-L
Stipp M, Stünitz H, Heilbronner R and Schmid SM. 2002. The eastern Tonale fault zone:A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884. DOI:10.1016/S0191-8141(02)00035-4
Stipp M and Tullis J. 2003. The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21): 2088. DOI:10.1029/2003GL018444
Stipp M, Tullis J, Scherwath M and Behrmann JH. 2010. A new perspective on paleopiezometry:Dynamically recrystallized grain size distributions indicate mechanism changes. Geology, 38(8): 759-762. DOI:10.1130/G31162.1
Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480.
Sui ZM, Ge WC, Xu XC and Zhang JH. 2009. Characteristics and geological implications of the Late Paleozoic post orogenic Shierzhan granite in the Great Xing'an Range. Acta Petrologica Sinica, 25(10): 2679-2686.
Sun DY, Wu FY, Li HM and Lin Q. 2001. Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone. Chinese Science Bulletin, 46(5): 427-432. DOI:10.1007/BF03183282
Tao JX, Bai LB, Bao YWLJ, Zheng WJ and Su MR. 2003. Rock record of Permian subducting orogenic process in Mandula, Innermongolia. Geological Survey and Research, 26(4): 241-249.
Tikoff B and Fossen H. 1995. The limitations of three-dimensional kinematic vorticity analysis. Journal of Structural Geology, 17(12): 1771-1784. DOI:10.1016/0191-8141(95)00069-P
Twiss RJ. 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics, 115(1-2): 227-244. DOI:10.1007/BF01637105
Twiss RJ. 1980. Static theory of size variation with stress for subgrains and dynamically recrystallized grains. In:Magnitude of Deviatoric Stressesin the Earth's Crust and Upper Mantle:Proceedings of Conference Ⅸ:Convened under Auspices of National Earthquake Hazards Reduction Program. Menlo Park, CA:US Geological Survey, 80(625): 665-683.
Wallis SR. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271-280. DOI:10.1016/0191-8141(92)90085-B
Wallis SR. 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 17(8): 1077-1093. DOI:10.1016/0191-8141(95)00005-X
Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY and Zhu RX. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. DOI:10.1016/j.epsl.2006.09.007
Wang FL, Wang HP, Lu HF, Yu HF, Chen Y, Yang H, Yang B and Zhong MS. 2016. Geochronology, petrogeochemical characteristics and tectonic setting of Mesozoic granite in Shangqi area of the Da Hinggan Mountains. Geological Science and Technology Information, 35(4): 18-28.
Wang PJ, Du XD, Wang J and Wang DP. 1995. The chronostratigraphy and stratigraphic classification of the Cretaceous of the Songliao Basin. Acta Geologica Sinica, 69(4): 372-381.
Wang RJ. 1987. A discussion of K-Ar ages of the Lower Permian Dashizhai Formation in the south segment of the Daxinganling. Acta Petrologica Sinica, 3(2): 80-91.
Wang T, Zheng YD, Li TB, Gao YJ and Ma MB. 2002. Composition and texture of the Yagan metamorphic core complex bordering China and Mongolia. Chinese Journal of Geology, 37(1): 79-85.
Wang T, Zheng YD, Li TB and Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715-729. DOI:10.1016/S1367-9120(03)00133-0
Wang T, Zheng YD, Zhang JJ, Wang XS, Zeng LS and Tong Y. 2007. Some problems in the study of Mesozoic extensional structure in the North China craton and its significance for the study of lithospheric thinning. Geological Bulletin of China, 26(9): 1154-1166.
Wang T, Zheng YD, Zhang JJ, Zeng LS, Donskaya T, Guo L and Li JB. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes. Tectonics, 30(6): TC6007.
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345. DOI:10.1016/j.lithos.2012.07.020
Wang T, Guo L, Zhang L, Yang QD, Zhang JJ, Tong Y and Ye K. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences, 97: 365-392. DOI:10.1016/j.jseaes.2014.10.005
Wang XS and Zheng YD. 2005. 40Ar/39Ar age constraints on the ductile deformation of the detachment system of the Louzidian core complex, southern Chifeng, China. Geological Review, 51(5): 574-582.
Wang XS, Zheng YD, Liu YL, Bradley R and Scott F. 2006. The formation age of the chloritized zone in the Louzidian extensional detachment fault south of Chifeng, Inner Mongolia, China. Progress in Natural Science, 16(7): 902-906.
Wang Y, Yang XP, Na FC, Zhang GY, Kang Z, Liu YC, Zhang WL and Mao ZX. 2013. Determination and Geological implication of the granitic mylonite in Nenjiang-Heihe tectonic belt. Geology and Resources, 22(6): 452-459.
Wang Y, Fu JY, Yang F, Na FC, Chen HJ, Zhang Y, Yang XP and Zhang TA. 2015. Contraction and extension in Nenjiang-Heihe tectonic belt:Evidence from the Late Paleozoic granitoid geochemistry. Journal of Jilin University (Earth Science Edition), 45(2): 374-388.
Wang Y, Yang XP, Na FC, Fu JY, Sun W, Yang F, Liu YC, Zhang GY, Song WM, Yang YJ, Qian C and Pang XJ. 2017. Discovery of the Late Cambrian intermediate-basic volcanic rocks in Tahe, northern Da Hinggan Mountain and its geological significance. Journal of Jilin University (Earth Science Edition), 47(1): 126-138.
Wu FY and Sun DY. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China. Journal of Changchun University of Science Technology, 29(4): 313-318.
Wu FY, Sun DY, Li HM and Wang XL. 2000. Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China. Chinese Science Bulletin, 45(16): 1514-1518. DOI:10.1007/BF02898900
Wu FY, Sun DY, Li HM, Jahn BM and Wilde WA. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173. DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Walker RJ, Ren XW, Sun DY and Zhou XH. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 196(1-4): 107-129. DOI:10.1016/S0009-2541(02)00409-6
Wu FY, Ge WC, Sun DY and Guo CL. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers, 10(3): 51-60.
Wu FY, Sun DY, Jahn BM and Wilde SA. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744. DOI:10.1016/S1367-9120(03)00149-4
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chinese Science Bulletin, 50(23): 2733-2743. DOI:10.1007/BF02899644
Wu G, Chen YJ, Sun FY, Li JC, Li ZT and Wang XJ. 2008. Geochemistry of the Late Jurassic granitoids in the northern end area of Da Hinggan Mountains and their geological and prospecting implications. Acta Petrologica Sinica, 24(4): 899-910.
Wu HH, Hu DG, Wu XW, You BJ, Chang PY and Zhang M. 2016. Mesozoic-Cenozoic uplift and denudation of northern Da Hing-gan Mountains:Evidence from apatite fission track data. Geological Bulletin of China, 35(12): 2058-2062.
Xia HR and Liu JL. 2011. The crystallographic preferred orientation of quartz and its applications. Geological Bulletin of China, 30(1): 58-70.
Xiang BW, Zhu G, Wang YS, Xie CL and Hu ZQ. 2007. Mineral deformation thermometer for mylonitization. Advances in Earth Science, 22(2): 126-135.
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069. DOI:10.1029/2002TC001484
Xiao WJ, Kröner A and Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188. DOI:10.1007/s00531-009-0418-4
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013a. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. DOI:10.1016/j.gr.2012.05.015
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857.
Xu MJ, Xu WL, Meng E and Wang F. 2011. LA-ICP-MS zircon U-Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin-Xiangyang basin in Ergun area, northeastern Inner Mongolia. Geological Bulletin of China, 30(9): 1321-1338.
Xu MJ, Xu WL, Wang F and Gao FH. 2012. Age, association and provenance of the "Neoproterozoic" Fengshuigouhe Group in the Northwestern Lesser Xing'an Range, NE China:Constraints from Zircon U-Pb geochronology. Journal of Earth Science, 23(6): 786-801. DOI:10.1007/s12583-012-0291-0
Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013b. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193. DOI:10.1016/j.jseaes.2013.04.003
Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ and Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339-353.
Xu ZQ, Wang Q, Liang FH, Chen FY and Xu CP. 2009. Electron backscatter diffraction (EBSD) technique and its application to study of continental dynamics. Acta Petrologica Sinica, 25(7): 1721-1736.
Xypolias P and Doutsos T. 2000. Kinematics of rock flow in a crustal-scale shear zone:Implication for the orogenic evolution of the southwestern Hellenides. Geological Magazine, 137(1): 81-69. DOI:10.1017/S0016756800003496
Xypolias P and Koukouvelas IK. 2001. Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmos shear zone (External Hellenides, Greece). Tectonophysics, 338(1): 59-77. DOI:10.1016/S0040-1951(01)00125-1
Yang XP, Wang Y, Na FC, Fu JY, Yang YJ and Tan HY. 2017. Petrologic-tectonic formation response of Late Paleozoic collision process in Nenjiang-Heihe area. Global Geology, 36(4): 1064-1071.
Yin ZG, Zhao HB, Zhao HD and Zhang YL. 2005. Geochemical characteristics and tectonic setting of basaltic rocks of the Tamulangou Formation at the northern end of the Da Hinggan Mountains, China. Geological Bulletin of China, 24(9): 848-853.
Zeng T, Wang T, Guo L, Tong J, Zhang JJ, Shi XJ, Zhang L and Li YF. 2011. Ages, Origin and geological implications of Late Mesozoic granitoids in Xinkailing Region, NE China. Journal of Jilin University (Earth Science Edition), 41(6): 1881-1900.
Zhang B, Zhang JJ, Zhong DL and Guo L. 2009. Strain and kinematic vorticity analysis:An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Science in China (Series D), 52(5): 602-618. DOI:10.1007/s11430-009-0065-4
Zhang J, Chen JS, Li BY, Gao Y and Zhang YL. 2011. Zircon U-Pb ages and Hf isotopes of Late Paleozoic granites in Taerqi area, Inner Mongolia. Global Geology, 30(4): 521-531.
Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH and Liu XM. 2008a. Large-scale Early Cretaceous volcanic events in the northern great Xing'an Range, northeastern China. Lithos, 102(1-2): 138-157. DOI:10.1016/j.lithos.2007.08.011
Zhang JH. 2009. Geochronology and geochemistry of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-106 (in Chinese)
Zhang JJ and Zheng YD. 1997. Polar Mohr constructions for strain analysis in general shear zones. Journal of Structural Geology, 19(5): 745-748. DOI:10.1016/S0191-8141(96)00119-8
Zhang L, Liu Y, Li WM, Han GQ, Zhang JD, Guo QY and Li CH. 2013. Discussion on the basement properties and east boundary of the Ergun massif. Chinese Journal of Geology, 48(1): 227-244.
Zhang LQ, Shao JA and Zheng GR. 1998. Metamorphic core complex Ganzhuermiao, Inner Mongolia. Scientia Geologica Sinica, 33(2): 140-146.
Zhang XH, Zhang HF, Tang YJ, Wilde SA and Hu ZC. 2008b. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281. DOI:10.1016/j.chemgeo.2008.01.005
Zhang XZ, Qiao DW, Chi XG, Zhou JB, Sun YW, Zhang FX, Zhang SQ and Zhao QY. 2011. Late-Paleozoic tectonic evolution and oil-gas potential in northeastern China. Geological Bulletin of China, 30(2-3): 205-213.
Zhang XZ, Guo Y, Zeng Z, Fu QL and Pu JB. 2015. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China. Earth Science Frontiers, 22(3): 88-98.
Zhang Y, Zhao HL and Han YD. 2005. Geochemical characteristics and tectonic background of basalt from Tamulangou Formation in northern Daxing'anling. Geology and Resources, 14(2): 87-91, 96.
Zhang ZF. 1997. A Preliminary discussion on the mechanism of Songliao large-size allochthon and Daxing'anling uplift. Geophysical and Geochemical Exploration, 21(2): 91-98.
Zhao H, Zhang J, Wang YN and Zhang BH. 2017. The deformation features, phases and significance of Keluo complex in Nenjiang area, Heilongjiang Province. Geotectonica et Metallogenia, 41(4): 617-637.
Zhao HB, Mo XX, Ren YS, Han ZZ, Yin ZG and Li SL. 2005. Magma mixing of the Mesozoic hybrid in the Awuni area at the northern end of the Da Hinggan Mountains, China. Geological Bulletin of China, 24(9): 854-861.
Zhao HB, Mo XB, Xu SM, Li SL and Ma BY. 2007. Composition and evolution of the Xinkailing metamorphic core complexes in Heilongjiang Province. Chinese Journal of Geology, 42(1): 176-188.
Zhao YD, Zhao J, Wang KL, Che JY, Wu DT, Xu FM and Li SC. 2013. Characteristics of the Late Carboniferious post-orogenic Dayinhe intrusion in the northwest of the Xiao Hinggan Mountains and their geological implications. Acta Petrologica et Mineralogica, 32(1): 63-72.
Zhao Z, Chi XG, Pan SY, Liu JF, Sun W and Hu ZC. 2010. Zircon U-Pb LA-ICP-MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing'an Range. Acta Petrologica Sinica, 26(8): 2452-2464.
Zhao ZH, Sun DY, Gou J, Ren YS, Fu CL, Zhang XY, Wang X and Liu XM. 2011. Chronology and geochemistry of volcanic rocks in Tamulangou Formation from southern Manchuria, Inner-Mongolia. Journal of Jilin University (Earth Science edition), 41(6): 1865-1880.
Zheng CQ, Li J, Jin W, Zhou JB, Shi L, Cui FH and Han XM. 2015. SHRIMP U-Pb zircon dating and mica laser 40Ar-39Ar ages of the granitic mylonites in ductile fracture belt in the western Songliao basin and its tectonic implication. Journal of Jilin University (Earth Science edition), 45(2): 349-363.
Zheng YD and Chang ZZ. 1995. Finite Strain Measurement and Ductile Shear Zones. Beijing: Geological Publishing House: 103-174.
Zheng YD, Davis GA, Wang Z, Darby BJ and Zhang CH. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289-302.
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Liu FL, Qiao DW, Ren SM and Liu JH. 2011. A >1300km Late Pan-African metamorphic belt in NE China:New evidence from the Xing'an block and its tectonic implications. Tectonophysics, 509(3-4): 280-292. DOI:10.1016/j.tecto.2011.06.018
Zhou JB, Zhang XZ, Wilde SA and Zheng CQ. 2011. Confirming of the Heilongjiang~500Ma Pan-African khondalite belt and its tectonic implications. Acta Petrologica Sinica, 27(4): 1235-1245.
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. DOI:10.1016/j.gr.2012.05.012
Zhou JB, Shi AG and Jing Y. 2016. Combined NE China blocks:Tectonic evolution and supercontinent reconstructions. Journal of Jilin University (Earth Science edition), 46(4): 1042-1055.
Zhou XH, Zhang GH, Yang JH, Chen WJ and Sun M. 2001. Sr-Nd-Pb isotope mapping of Late Mesozoic volcanic rocks across northern margin of North China Craton and implications to geodynamic processes. Geochimica, 30(1): 10-23.
Zhou ZH, Lü LS, Yang YJ and Li T. 2010. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia:Constraints from zircon U-Pb dating and geochemistry. Acta Petrologica Sinica, 26(12): 3521-3537.
Zhu HC, Zhang JF and Quan H. 2005. Two stages of Mesozoic lithogenesis and mineralization in Daxing'anling Mountains. Journal of Jilin University (Earth Science Edition), 35(4): 436-442.
Zhu YF, Sun SH, Gu LB, Ogasawara Y, Jiang N and Honma H. 2001. Permian volcanism in the Mongolian orogenic zone, Northeast China:Geochemistry, magma sources and petrogenesis. Geological Magazine, 138(2): 101-115.
Zorin YA. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. DOI:10.1016/S0040-1951(99)00042-6
曹正琦, 侯光久. 2009. 大兴安岭北段晚中生代碱性侵入岩岩石地球化学特征及其意义. 矿物岩石地球化学通报, 28(3): 209-216. DOI:10.3969/j.issn.1007-2802.2009.03.001
陈志广, 张连昌, 周新华, 万博, 英基丰, 王非. 2006. 满洲里新右旗火山岩剖面年代学和地球化学特征. 岩石学报, 22(12): 2971-2986.
董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. DOI:10.3321/j.issn:0001-5717.2007.11.001
董树文, 张岳桥, 陈宣华, 龙长兴, 王涛, 杨振宇, 胡建民. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317. DOI:10.3321/j.issn:1006-3021.2008.03.005
方石, 刘招君, 郭巍. 2005. 松辽盆地与大兴安岭新生代热构造耦合研究. 核技术, 28(9): 717-721. DOI:10.3321/j.issn:0253-3219.2005.09.018
冯志强, 刘永江, 温泉波, 韩国卿, 李伟民, 张丽. 2014. 大兴安岭北段塔源地区~330Ma变辉长岩-花岗岩的岩石成因及构造意义. 岩石学报, 30(7): 1982-1994.
高德臻, 蒋干洁. 1998. 内蒙古苏尼特左旗二叠系的重新厘定及大地构造演化分析. 中国区域地质, 17(4): 403-411.
葛文春, 林强, 孙德有, 吴福元, 元钟宽, 李文远, 陈明植, 尹成孝. 1999. 大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据. 岩石学报, 15(3): 396-407.
葛文春, 林强, 李献华, 吴福元, 孙德有, 尹成孝. 2000a. 大兴安岭北部伊列克得组玄武岩的地球化学特征. 矿物岩石, 20(3): 14-18.
葛文春, 林强, 孙德有, 吴福元, 李献华. 2000b. 大兴安岭中生代两类流纹岩成因的地球化学研究. 地球科学-中国地质大学学报, 25(2): 172-178.
葛文春, 吴福元, 周长勇, Abdel Rahman AA. 2005a. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247.
葛文春, 吴福元, 周长勇, 张吉衡. 2005b. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义. 岩石学报, 21(3): 749-762.
葛文春, 隋振民, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440.
郭锋, 范蔚茗, 李超文, 苗来成, 赵亮. 2009. 早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑), 39(5): 569-579.
韩国卿, 刘永江, 温泉波, 邹运鑫, 梁道俊, 赵英利, 李伟, 赵立敏. 2009. 嫩江-八里罕断裂带岭下韧性剪切带变形特征. 吉林大学学报(地球科学版), 39(3): 397-405.
韩国卿, 刘永江, Neubauer F, Genser J, 邹运鑫, 李伟, 梁琛岳. 2012. 松辽盆地西缘边界断裂带中南段走滑性质、时间及其位移量. 中国科学(地球科学), 42(4): 471-484.
韩国卿, 刘永江, Neubauer F, Genser J, 梁琛岳, 温泉波, 赵英利. 2014. 松辽盆地西缘边界断裂带中北段尼尔基L型构造岩构造年代学及其构造意义. 岩石学报, 30(7): 1922-1934.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社: 1-155.
胡玲. 1998. 显微构造地质学概论. 北京: 地质出版社: 1-89.
李成禄, 曲晖, 赵忠海, 徐国战, 王卓, 张俭峰. 2013. 黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义. 中国地质, 40(3): 859-868. DOI:10.3969/j.issn.1000-3657.2013.03.017
李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 44(4): 339-347. DOI:10.3321/j.issn:0371-5736.1998.04.002
李锦轶, 莫申国, 何政军, 孙桂华, 陈文. 2004. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约. 地学前缘, 11(3): 157-168. DOI:10.3321/j.issn:1005-2321.2004.03.017
李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582.
李萍萍, 葛文春, 张彦龙. 2010. 海拉尔盆地西北部火山岩地层划分的锆石U-Pb年代学证据. 岩石学报, 26(8): 2482-2494.
李仰春, 张克信, 吴淦国, 肖庆辉, 杨晓平, 张达, 赵焕利, 韩振哲, 刘旭光. 2013. 大-小兴安岭接合部早-中侏罗世侵入岩SHRIMP锆石U-Pb定年及成因. 地质通报, 32(5): 717-729. DOI:10.3969/j.issn.1671-2552.2013.05.004
梁琛岳, 刘永江, 李伟, 韩国卿, 温泉波, 赵英利. 2011. 黑龙江嫩江地区科洛杂岩伸展构造特征. 地质通报, 30(2-3): 291-299.
梁琛岳, 刘永江, 李伟, 韩国卿, 温泉波, Neubauer F. 2012. 黑龙江省嫩江地区科洛杂岩隆升时代. 地质科学, 47(2): 360-375. DOI:10.3969/j.issn.0563-5020.2012.02.008
梁琛岳, 刘永江, 李伟民, 杨书艳, 温泉波, 李婧, 米晓楠, 张丽. 2016. 医巫闾山变质核杂岩南段韧性变形与流变特征. 岩石学报, 32(9): 2656-2676.
梁琛岳, 刘永江, 朱建江, 李伟民, 常瑞虹, 张丽. 2017. 长春东南劝农山地区早二叠世范家屯组岩石变形组构及流变学特征. 地球科学, 42(12): 2174-2192.
林强, 葛文春, 吴福元, 孙德有, 曹林. 2004. 大兴安岭中生代花岗岩类的地球化学. 岩石学报, 20(3): 403-412.
林伟, 王军, 刘飞, 冀文斌, 王清晨. 2013. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论. 岩石学报, 29(5): 1791-1810.
刘勃然, 李伟, 贾杰, 李伟民, 梁琛岳, 温泉波. 2014. 大兴安岭北段嘎拉山伸展滑脱构造. 吉林大学学报(地球科学版), 44(4): 1142-1152.
刘勃然, 李伟, 张守志, 彭甜明, 冯志强. 2016. 大兴安岭北段伸展构造. 吉林大学学报(地球科学版), 46(5): 1440-1448.
刘德来, 陈发景, 关德范, 唐建人, 刘翠荣. 1996. 松辽盆地形成、发展与岩石圈动力学. 地质科学, 31(4): 397-408.
刘和甫, 梁慧社, 李晓清, 殷进垠, 朱德丰, 刘立群. 2000. 中国东部中新生代裂陷盆地与伸展山岭耦合机制. 地学前缘, 7(4): 477-486.
刘俊来, 曹淑云, 邹运鑫, 宋志杰. 2008. 岩石电子背散射衍射(EBSD)组构分析及应用. 地质通报, 27(10): 1638-1645. DOI:10.3969/j.issn.1671-2552.2008.10.005
刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化. 中国地质, 37(4): 943-951. DOI:10.3969/j.issn.1000-3657.2010.04.010
罗佳欣. 2016.嫩江东部地区"新开岭群"和"一面坡群"年代学研究及其地质意义.硕士学位论文.长春: 吉林大学, 8-50 http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089622.htm
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188.
孟恩, 许文良, 杨德彬, 邱昆峰, 李长华, 祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1226.
苗来成, 范蔚茗, 张福勤, 刘敦一, 简平, 施光海, 陶华, 石玉若. 2003. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义. 科学通报, 48(22): 2315-2323. DOI:10.3321/j.issn:0023-074X.2003.22.004
那福超, 杨晓平, 汪岩, 付俊彧, 伍月, 杨帆. 2014. 大兴安岭地区嫩北农场一带晚古生代火山岩地层的厘定. 地质与资源, 23(4): 311-315. DOI:10.3969/j.issn.1671-1947.2014.04.001
那福超, 宋维民, 刘英才, 赵岩, 张朋, 付俊彧, 汪岩, 孙巍, 杨帆. 2017. 嫩江-黑河构造带中部科洛杂岩的年代学研究及其构造意义. 地质论评, 63(增): 303-304.
内蒙古自治区地质矿产局. 1996. 内蒙古自治区岩石地层. 北京: 地质出版社: 1-344.
曲晖, 李成禄, 赵忠海, 王卓, 张俭锋. 2011. 大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征. 中国地质, 38(2): 292-300. DOI:10.3969/j.issn.1000-3657.2011.02.006
曲晖, 李成禄, 杨福深. 2015. 小兴安岭西北部霍龙门地区花岗质杂岩锆石U-Pb年龄、岩石地球化学特征及地质意义. 世界地质, 34(1): 34-43. DOI:10.3969/j.issn.1004-5589.2015.01.005
邵济安, 臧绍先, 牟保磊, 李晓波, 王冰. 1994. 造山带的伸展构造与软流圈隆起——以兴蒙造山带为例. 科学通报, 39(6): 533-537.
邵济安, 牟保磊, 何国琦, 张履桥. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用. 中国科学(D辑), 27(5): 390-394.
邵济安, 张履桥, 牟保磊. 1998. 大兴安岭中南段中生代的构造热演化. 中国科学(D辑), 28(3): 193-200. DOI:10.3321/j.issn:1006-9267.1998.03.003
邵济安, 韩庆军, 张履桥, 牟保磊, 乔广生. 1999a. 陆壳垂向增生的两种方式:以大兴安岭为例. 岩石学报, 15(4): 600-606.
邵济安, 张履桥, 牟保磊. 1999b. 大兴安岭中生代伸展造山过程中的岩浆作用. 地学前缘, 6(4): 339-346.
邵济安, 张履桥, 贾文, 王佩瑛. 2001a. 内蒙古喀喇沁变质核杂岩及其隆升机制探讨. 岩石学报, 17(2): 283-290.
邵济安, 刘福田, 陈辉, 韩庆军. 2001b. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系. 地质学报, 75(1): 56-63.
邵济安, 张履桥, 肖庆辉, 李晓波. 2005. 中生代大兴安岭的隆起——一种可能的陆内造山机制. 岩石学报, 21(3): 789-794.
邵济安, 张履桥, 牟保磊, 韩庆军. 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社: 1-248.
邵济安, 季建清, 路凤香, 张履桥. 2008. 大陆岩石圈对扩张机制的响应——辽蒙地质走廊中-新生代火山活动的时空分布. 地质通报, 27(9): 1431-1440. DOI:10.3969/j.issn.1671-2552.2008.09.005
佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594.
施光海, 苗来成, 张福勤, 简平, 范蔚茗, 刘敦一. 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389. DOI:10.3321/j.issn:0023-074X.2004.04.015
隋振民, 葛文春, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480.
隋振民, 葛文春, 徐学纯, 张吉衡. 2009. 大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义. 岩石学报, 25(10): 2679-2686.
孙德有, 吴福元, 李惠民, 林强. 2000. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系. 科学通报, 45(20): 2217-2222. DOI:10.3321/j.issn:0023-074X.2000.20.019
陶继雄, 白立兵, 宝音乌力吉, 郑武军, 苏茂荣. 2003. 内蒙古满都拉地区二叠纪俯冲造山过程的岩石记录. 地质调查与研究, 26(4): 241-249. DOI:10.3969/j.issn.1672-4135.2003.04.008
王粉丽, 王海鹏, 鲁红峰, 于海峰, 陈垚, 杨欢, 杨宾, 仲米山. 2016. 大兴安岭北部上其地区中生代花岗岩年代学、岩石地球化学特征及构造背景. 地质科技情报, 35(4): 18-28.
王璞珺, 杜小弟, 王俊, 王东坡. 1995. 松辽盆地白垩纪年代地层研究及地层时代划分. 地质学报, 69(4): 372-381.
汪润洁. 1987. 大兴安岭南段下二叠统大石寨组K-Ar法同位素年龄的讨论. 岩石学报, 3(2): 80-91. DOI:10.3321/j.issn:1000-0569.1987.02.008
王涛, 郑亚东, 李天斌, 高永军, 马铭波. 2002. 中蒙边界区亚干核杂岩的组成与结构. 地质科学, 37(1): 79-85. DOI:10.3321/j.issn:0563-5020.2002.01.009
王涛, 郑亚东, 张进江, 王新社, 曾令森, 童英. 2007. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义. 地质通报, 26(9): 1154-1166. DOI:10.3969/j.issn.1671-2552.2007.09.017
王新社, 郑亚东. 2005. 楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束. 地质论评, 51(5): 574-582. DOI:10.3321/j.issn:0371-5736.2005.05.012
王新社, 郑亚东, 刘玉琳, Bradley R, Scott F. 2006. 内蒙赤峰南部楼子店拆离断层系绿泥石化带的形成时代. 自然科学进展, 16(7): 902-906. DOI:10.3321/j.issn:1002-008X.2006.07.019
汪岩, 杨晓平, 那福超, 张广宇, 康庄, 刘英才, 张文龙, 毛朝霞. 2013. 嫩江-黑河构造带中花岗质糜棱岩的确定及地质意义. 地质与资源, 22(6): 452-459. DOI:10.3969/j.issn.1671-1947.2013.06.003
汪岩, 付俊彧, 杨帆, 那福超, 陈会军, 张昱, 杨晓平, 张铁安. 2015. 嫩江-黑河构造带收缩与伸展——源自晚古生代花岗岩类的地球化学证据. 吉林大学学报(地球科学版), 45(2): 374-388.
汪岩, 杨晓平, 那福超, 付俊彧, 孙巍, 杨帆, 刘英才, 张广宇, 宋维民, 杨雅军, 钱程, 庞雪娇. 2017. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义. 吉林大学学报(地球科学版), 47(1): 126-138.
吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29(4): 313-318.
吴福元, 孙德有, 李惠民, 汪筱林. 2000. 松辽盆地基底岩石的锆石U-Pb年龄. 科学通报, 45(6): 656-660. DOI:10.3321/j.issn:0023-074X.2000.06.021
吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60. DOI:10.3321/j.issn:1005-2321.2003.03.004
武广, 孙丰月, 赵财胜, 李之彤, 赵爱琳, 庞庆帮, 李广远. 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义. 科学通报, 50(20): 2278-2288. DOI:10.3321/j.issn:0023-074X.2005.20.017
武广, 陈衍景, 孙丰月, 李景春, 李之彤, 王希今. 2008. 大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义. 岩石学报, 24(4): 899-910.
吴环环, 胡道功, 吴学文, 游报捷, 常鹏渊, 张蒙. 2016. 大兴安岭北段中新生代隆升与剥露历史的磷灰石裂变径迹证据. 地质通报, 35(12): 2058-2062. DOI:10.3969/j.issn.1671-2552.2016.12.013
夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70. DOI:10.3969/j.issn.1671-2552.2011.01.006
向必伟, 朱光, 王勇生, 谢成龙, 胡召齐. 2007. 糜棱岩化过程中矿物变形温度计. 地球科学进展, 22(2): 126-135. DOI:10.3321/j.issn:1001-8166.2007.02.002
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
徐美君, 徐文良, 孟恩, 王枫. 2011. 内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 30(9): 1321-1338. DOI:10.3969/j.issn.1671-2552.2011.09.001
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
许志琴, 王勤, 梁凤华, 陈方远, 许翠萍. 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736.
杨晓平, 汪岩, 那福超, 付俊彧, 杨雅军, 谭红艳. 2017. 嫩江-黑河晚古生代碰撞过程的岩石构造建造学响应. 世界地质, 36(4): 1064-1071. DOI:10.3969/j.issn.1004-5589.2017.04.004
尹志刚, 赵海滨, 赵寒冬, 张跃龙. 2005. 大兴安岭北端塔木兰沟组玄武质岩石的地球化学特征及构造背景. 地质通报, 24(9): 848-853. DOI:10.3969/j.issn.1671-2552.2005.09.011
曾涛, 王涛, 郭磊, 童英, 张建军, 史兴俊, 张磊, 李永飞. 2011. 东北新开岭地区晚中生代花岗岩类时代、成因及地质意义. 吉林大学学报(地球科学版), 41(6): 1881-1900.
张健, 陈井胜, 李泊洋, 高妍, 张彦龙. 2011. 内蒙古塔尔气地区晚古生代花岗岩的锆石U-Pb年龄及Hf同位素特征. 世界地质, 30(4): 521-531. DOI:10.3969/j.issn.1004-5589.2011.04.003
张吉衡. 2009.大兴安岭中生代火山岩年代学及地球化学研究.博士学位论文.武汉: 中国地质大学, 1-106 http://cdmd.cnki.com.cn/Article/CDMD-10491-2009153771.htm
张丽, 刘永江, 李伟民, 韩国卿, 张金带, 郭庆银, 李长华. 2013. 关于额尔古纳地块基底性质和东界的讨论. 地质科学, 48(1): 227-244. DOI:10.3969/j.issn.0563-5020.2013.01.015
张履桥, 邵济安, 郑广瑞. 1998. 内蒙古甘珠尔庙变质核杂岩. 地质科学, 33(2): 140-146.
张兴洲, 乔德武, 迟效国, 周建波, 孙跃武, 张凤旭, 张淑琴, 赵庆英. 2011. 东北地区晚古生代构造演化及其石油地质意义. 地质通报, 30(2-3): 205-213.
张兴洲, 郭冶, 曾振, 付秋林, 蒲建彬. 2015. 东北地区中-新生代盆地群形成演化的动力学背景. 地学前缘, 22(3): 88-98.
张昱, 赵焕力, 韩彦东. 2005. 大兴安岭北段塔木兰沟组玄武岩地球化学及构造背景. 地质与资源, 14(2): 87-91, 96. DOI:10.3969/j.issn.1671-1947.2005.02.002
张振法. 1997. 松辽大型移置体和大兴安岭隆起机制探讨. 物探与化探, 21(2): 91-98.
赵衡, 张进, 王艳楠, 张北航. 2017. 黑龙江科洛杂岩变形特征、阶段和意义. 大地构造与成矿学, 41(4): 617-637.
赵海滨, 莫宣学, 任院生, 韩振哲, 尹志刚, 李尚林. 2005. 大兴安岭北端阿乌尼地区中生代杂岩体的岩浆混合作用. 地质通报, 24(9): 854-861. DOI:10.3969/j.issn.1671-2552.2005.09.012
赵海滨, 莫宣学, 徐受民, 李尚林, 马伯永. 2007. 黑龙江新开岭变质核杂岩的组成及其演化. 地质科学, 42(1): 176-188. DOI:10.3321/j.issn:0563-5020.2007.01.015
赵院冬, 赵君, 王奎良, 车继英, 吴大天, 许逢明, 李世超. 2013. 小兴安岭西北部晚石炭世造山后达音河岩体的特征及其地质意义. 岩石矿物学杂志, 32(1): 63-72. DOI:10.3969/j.issn.1000-6524.2013.01.005
赵芝, 迟效国, 潘世语, 刘建峰, 孙巍, 胡兆初. 2010. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义. 岩石学报, 26(8): 2452-2464.
赵忠华, 孙德有, 苟军, 任云生, 付长亮, 张学元, 王晰, 柳小明. 2011. 满洲里南部塔木兰沟组火山岩年代学与地球化学. 吉林大学学报(地球科学版), 41(6): 1865-1880.
郑常青, 李娟, 金巍, 周建波, 施璐, 崔芳华, 韩晓萌. 2015. 松辽盆地西缘断裂带中花岗质糜棱岩的锆石SHRIMP和云母氩氩年龄及其构造意义. 吉林大学学报(地球科学版), 45(2): 349-363.
郑亚东, 常志忠. 1985. 岩石有限应变测量及韧性剪切带. 北京: 地质出版社: 103-174.
郑亚东, Davis GA, 王琮, Darby BJ, 张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 74(4): 289-302. DOI:10.3321/j.issn:0001-5717.2000.04.001
周建波, 张兴洲, Wilde SA, 郑常青. 2011. 中国东北~500Ma泛非期孔兹岩带的确定及其意义. 岩石学报, 27(4): 1235-1245.
周建波, 石爱国, 景妍. 2016. 东北地块群:构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042-1055.
周新华, 张国辉, 杨进辉, 陈文寄, 孙敏. 2001. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 30(1): 10-23. DOI:10.3321/j.issn:0379-1726.2001.01.003
周振华, 吕林素, 杨永军, 李涛. 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约. 岩石学报, 26(12): 3521-3537.
祝洪臣, 张炯飞, 权恒. 2005. 大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境. 吉林大学学报(地球科学版), 35(4): 436-442.