岩石学报  2018, Vol. 34 Issue (10): 2845-2856   PDF    
东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约
周建波1 , 蒲先刚1 , 侯贺晟2 , 韩伟1 , 曹嘉麟1 , 李功宇1     
1. 吉林大学地球科学学院, 长春 130061;
2. 中国地质科学院, 北京 100037
摘要:吉林-黑龙江东部地区的中生代增生杂岩,主要由吉林-黑龙江高压变质带和那丹哈达增生杂岩(或那丹哈达地体)组成。它们将为古亚洲洋与环太平洋构造域的转换作用,大洋板块地层(OPS)层序重建,特别是古太平洋板块向欧亚大陆的俯冲历史提供重要的科学依据。吉林-黑龙江高压带分布在佳木斯-兴凯与松辽地块之间的具有高压变质带性质的缝合带,新的地质年代学研究表明其形成时代为210~180Ma,表明晚三叠-早侏罗世为南北向古亚洲洋关闭和西向俯冲增生开始的关键时期。那丹哈达增生杂岩则发育在佳木斯-兴凯地块东侧,并具体分为西部的跃进山杂岩和东部的饶河杂岩。新近发表的数据显示,跃进山杂岩就位时代为210~180Ma,这与佳木斯-兴凯地块西缘的吉黑高压带形成时代相似。而饶河杂岩就位时代为晚侏罗-早白垩世,最晚期就位的时代为早白垩世(137~130Ma)。因此,吉黑东部地区的中生代增生杂岩为古太平洋向欧亚大陆中生代的俯冲过程提供了关键的信息。
关键词: 中生代增生杂岩     古太平洋板块     中亚造山带     俯冲-增生历史     欧亚大陆东缘    
The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia
ZHOU JianBo1, PU XianGang1, HOU HeSheng2, HAN Wei1, CAO JiaLin1, LI GongYu1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. China Academy of Geological Sciences, Beijing 100037, China
Abstract: The Mesozoic accretionary complex in eastern part of the Jilin-Heilongjiang provinces of China, which mainly consists of the Jilin-Heilongjiang HP belt and the Nadanhada accretionary complex (or Nadanhada terrane), are the key evidence to understand the transformation from closure of Central Asian Ocean and beginning of the subduction of the Pacific plate beneath the Eurasia, reconstruction of the oceanic plate stratigraphy (OPS), especially, the history of the Paleo-Pacific subduction. The Jilin-Heilongjiang HP belt is the typical high-pressure metamorphism suture zone between the Jiamusi-Khanka and Songliao blocks and consists of the Heilongjiang blueschists belt and the Zhangguangcai accretionary complex. The Heilongjiang blueschist belt was overthrust onto the Jiamusi Block along the Mudanjiang fault in the western part of the Jiamusi massif and the blueschist facies metamorphism on these rocks has been recognized by the occurrence of diagnostic mineral glaucophane. The glaucophane in the blueschist often occurs in two forms:one is in fibrous structure, and the other occurs at the boundary between albite crystals, defining a strong lineation. The glaucophane was identified as crossite by electron microscopy, indicating epidote-blueschist facies metamorphic conditions. The Zhangguangcai complex consisting of the majority of the Jilin-Heilongjiang HP belt is located to the west of the Heilongjiang complex. It is mainly composed of greenschist, marble, two-mica schist, quartz schist, quartzite and metavolcanic rocks; all these units occur as tectonic blocks in the Mesozoic granite. New geochronological data indicate that the collision between the Jiamusi-Khanka and Songliao blocks along the Jilin-Heilongjiang HP belt occurred between 210Ma and 180Ma, suggesting that the Jilin-Heilongjiang HP belt is an important unit for characterizing the geodynamic switch from the north-south closure of the Central Asian Orogenic Belt to the onset of westward-directed accretion related to subduction of the Pacific plate during the Latest Triassic to Early Jurassic. The Nadanhada accretionary complex lies to the east of the Jiamusi-Khanka Block, and is composed of the Yuejinshan and Raohe complexes. The Yuejinshan complex is located adjacent to the Jiamusi-Khanka block and consists of metamorphosed marine clastic rocks, interpreted as continental slope sediments, in association with ophiolitic components consisting of metabasalt with N-MORB affinity, gabbro, and ultramafic rocks that include dunite, wehrlite and clinopyroxenite. The Raohe complex, the major component of the Nadanhada terrane, is mostly located to the east of the Yuejinshan complex. The Raohe complex is mainly composed of limestone, chert, clastic sedimentary rocks, basaltic pillow lava with OIB affinity and mafic-ultramafic rocks, all these units occur as blocks in a weakly deformed clastic sedimentary matrix and are thus olistoliths in an accretionary complex. New data indicate that the Yuejinshan complex was probably formed between 210 Ma and 180Ma, similar ages to the Jilin-Heilongjiang HP belt along the western margin of the Jiamusi-Khanka Block. The Raohe complex was formed later in the Late Jurassic to Early-Cretaceous (170~137Ma), likely more related to the Paleo-Pacific plate subduction-accretion. The final accretion in the area took place in the Early Cretaceous (137~130Ma). Therefore, the Mesozoic accretionary complex, in eastern part of the Jilin-Heilongjiang provinces of NE China, which provide key information to discovery the process of the Paleo-Pacific plate beneath the Eurasia during the Mesozoic.
Key words: Mesozoic accretionary complex     Paleo-Pacific plate     Central Asian Orogenic Belt     Subduction-accretion history     Eastern margin of the Eurasia    

古太平洋板块对我国东部大陆边缘的控制作用和过程,历来是我国地学研究的焦点和重大地质问题。由于古太平洋板块的俯冲,欧亚大陆边缘发生了由被动大陆边缘向安第斯大陆边缘转换、安第斯大陆边缘向现今的西太平洋沟-弧-盆体系过渡的重大地质事件,同时也产生了诸如华北克拉通破坏、华南大陆再造、中国东部油气盆地与大规模金属成矿等一系列重大科学问题。为此,国际地球科学联合会设立了“Pre-Jurassic Evolution of Eastern Asia, IGCP224 (1985-1990)”、“Gondwana Dispersion and Asian Accretion in the Eastern Tethys and Western Circum-Pacific Region, ICP 321 (1991-1996)”和“Tin and Tungsten Granites in South-East Asia and the Western Pacific, IGCP 220 (1984-1988)”等国际地质对比项目;我国科技部设立了“973”项目“兴蒙造山带构造叠合与大规模成矿作用(2013~2017)”、深地项目“北方东部复合造山深部结构与成矿过程(2017~2021)”,国家自然科学基金委也设立了基金重点项目“东北中生代增生杂岩:对古太平洋板块俯冲-增生历史的制约(2018~2022)”等针对性项目。研究表明,环太平洋的俯冲-增生过程直接控制着欧亚大陆东缘中-新生代的构造演化与成矿作用,并从根本上制约着金属成矿的规模和空间分布。然而,由于我国东部大部分地域缺少与俯冲相关的直接记录,致使对太平洋板块俯冲-增生的历史,特别是诸如古太平洋板块俯冲起始于何时?古太平洋俯冲带在何处保存?古太平洋板块在欧亚大陆下俯冲-增生精细过程等方面缺乏明确认识。幸运的是,吉林-黑龙江东部地区发育我国境内由古太平洋板块俯冲形成的关键直接记录——中生代增生杂岩,并为古太平洋板块上述问题的研究提供了天然实验室。

增生杂岩作为板块俯冲过程中刮削与增生的特征性产物, 为板块俯冲作用的直接记录(Karig and Sharman, 1975; Howell, 1991)。确定增生杂岩的产出部位、发育特征及赋存状态对揭示板块俯冲-增生过程具有重要的指示意义(Davis et al., 1983; Platt, 1986; Cloos, 1983)。吉黑东部中生代增生杂岩具体包括那丹哈达增生杂岩带和黑龙江蓝片岩带等(任纪舜等, 1980, 1990; 水谷伸治郎等, 1989; 张旗和周国庆, 2001; 张旗等, 2003; 许文良等, 2012; 郭锋, 2016; 李锦轶等, 1999; 唐克东等, 1995; 张兴洲和张元厚, 1991; 张兴洲等, 2015; Kojima and Mizutani, 1987; Kojima, 1989; Mizutani and Kojima, 1992; Wu et al., 2007a, b; Zhou et al., 2009, 2014; Sun et al., 2015a, b; Wilde, 2015; Wilde and Zhou, 2015; Ge et al., 2016),这些增生杂岩带的形成与演化过程对反演古太平洋的俯冲与增生历史具有重要的启示作用。

1 区域地质背景

吉黑东部地区处于中亚造山带的东段与环太平洋构造域的叠加与转换的关键部位(图 1)。佳木斯-兴凯地块位于研究区中部,西以吉林-黑龙江高压带(吉黑高压带)为界与松辽地块相邻,东以跃进山-同江断裂为界与那丹哈达地体毗邻。

图 1 东北中生代增生杂岩地质图及主要组成单元位置 Fig. 1 The geological map of the Mesozoic accretionary complex and the locations of the tectonic units, NE China

佳木斯地块作为研究区重要的微陆块(或地体), 向北延伸到俄罗斯境内的布列亚地块,向南延伸到俄罗斯境内的兴凯地块,并统称为佳木斯-兴凯地块(曹熹等, 1992; 李锦轶等, 1999)。佳木斯-兴凯地块除了发育部分古生代-中生代岩体侵入之外,以发育泛非期麻山群变质基底和不整合于其上的古生代-中生界沉积盖层为代表,具有基底-盖层双层结构的微陆块典型结构特征。佳木斯地块东缘发育从被动大陆边缘到主动大陆边缘演化的火山-沉积建造,是深入确定古太平洋西向俯冲作用的关键地区(Kojima Mizutani, 1987; Kojima, 1989; Mizutani and Kojima, 1992; Zhou et al., 2009, 2014; Sun et al., 2015a, b)。

吉黑高压带位于佳木斯-兴凯地块与松辽地块之间,研究区内具体包括黑龙江高压变质带和张广才岭增生杂岩带。其中黑龙江高压变质带主要包括萝北蓝片岩带、依兰蓝片岩带和牡丹江蓝片岩带,以发育蓝片岩等高压变质岩石为特征, 由不同时代、不同成因和不同构造背景的岩石构造混杂而成。张广才岭增生杂岩带则主要有小兴安岭杂岩、张广才岭杂岩和黄松群变质杂岩组成,呈构造混杂状分布在中生代花岗岩中,这些变质杂岩受到不同程度的挤压剪切作用,形成各种糜棱岩或糜棱岩化的岩石,并遭受低角闪岩相-绿片岩相变质作用的改造。那丹哈达增生杂岩位于研究区最东部,是中国大陆东部唯一发育有早中生代海相地层的构造单元,主要由具有洋壳组合特点的晚三叠世-中侏罗世的超镁铁质岩、镁铁质堆晶岩、枕状玄武岩、硅质岩及泥质硅质岩等组成,这些岩石呈外来岩块状包裹在由砂岩-泥岩组成的基质中。那丹哈达增生杂岩西以跃进山断裂(张庆龙等, 1989)或同江断裂(黑龙江省地矿局, 1993)与佳木斯地块相邻,向东于俄罗斯境内锡霍特-阿林中生代增生杂岩带共同组成欧亚大陆东缘巨型的增生杂岩带(Zhou and Wilde, 2013; Kojima and Mizutani, 1987; 水谷伸治郎等, 1989),为研究滨太平洋构造域最为理想的地区。

2 吉林-黑龙江高压变质带

吉林-黑龙江高压变质带(吉黑高压带)位于佳木斯-兴凯地块与松辽地块之间,为呈南北向分布的增生杂岩带。该区并以发育蓝片岩等高压变质岩为特征,是我国较早开展蓝片岩研究的地区之一(李锦轶等, 1999; 唐克东等, 1995; 张兴洲和张元厚, 1991; 张兴洲等, 2015; Wu et al., 2007a, b; Zhou et al., 2009, 2014)。区域上,吉黑高压带由黑龙江蓝片岩带和张广才岭杂岩带组成。

2.1 黑龙江蓝片岩带

黑龙江高压蓝片岩带(或称黑龙江群)主要沿牡丹江断裂带呈南北向带状分布于佳木斯地体西缘,主要出露于牡丹江、萝北和依兰等地,主要组成包括蓝片岩、绿片岩、大理岩、石英岩和长英质片岩等。其中蓝闪石类矿物广泛发育于蓝片岩、蓝闪绿泥片岩、长英质片岩甚至大理岩中(Zhou et al., 2009, 2010),为典型高压蓝片岩相的变质作用。

黑龙江群的形成时代和形成机制问题争论已久,早期的研究认为黑龙江群为佳木斯地体之上的早-中元古代变质地层,其与佳木斯地体之上的麻粒岩相变质的麻山群共同构成了佳木斯地体的结晶基底(党增欣等, 1988);而刘静兰(1991)和赵春荆等(1986)则认为是受到后期地质作用改造的早前寒武纪绿岩带。20世纪90年代以来,曹熹等(1992)张兴洲和张元厚(1991)李锦轶等(1999)唐克东等(1995)等明确提出了原黑龙江群是由不同时代、不同变质特征、不同构造背景下形成岩石的构造混杂体,并解释为志留纪前后佳木斯地体与松嫩地块(地体)拼帖的产物。目前围绕黑龙江群形成时代和机制主要有以下几种认识:如形成于古生代,为古亚洲构造域增生构造的产物(李锦轶等, 1999, 2014; Meng et al., 2008; 颉颃强等, 2008; 李旭平等, 2009; 赵亮亮和张兴洲, 2011);形成于晚三叠-早侏罗世(Wu et al., 2007a; 周建波等, 2009, 2013; Zhou et al., 2009, 2010),或形成于晚白垩世(Zhu et al., 2015, 2017a, b; Ge et al., 2016; Dong et al., 2018),为古太平洋板块俯冲与增生产物等。

近年来黑龙江蓝片岩的研究取得了多方面的进展,(1)基本确定了黑龙江蓝片岩带的地质组成,主要包括外来岩块(蓝片岩、绿片岩、大理岩、硅质岩)和变质基质(长英质片岩)共同构成的增生杂岩,为大洋板块地层(OPS)经过构造增生与混杂过程而成(图 2);(2)蓝片岩的原岩为E-MORB和OIB型玄武岩(Zhou et al., 2009; Zhu et al., 2015; Ge et al., 2016),这些玄武岩类发育大量的捕获锆石,形成于类似红海裂谷或者弧后盆地的构造背景(Zhou et al., 2009);(3)以蓝片岩为代表的黑龙江杂岩为典型的高压变质带,形成温压条件估算为320~450℃,9~11kbar(Zhou et al., 2009),为典型的高压变质带;(4)已经发表的年代学研究显示其原岩年龄分布范围为210~450Ma, 变质年龄为170~200Ma(图 3),其中根据峰期年龄进行限定的时代范围为180~210Ma;(5)萝北地区的黑龙江蓝片岩带多被中生代火山-碎屑岩不整合覆盖(黑龙江省地质矿产局, 1993),特别是团结沟金矿地区的蓝片岩组合与中侏罗统沉积岩不整合接触面清晰。如果上述地质情况能够被进一步研究证实,将为黑龙江蓝片岩的形成时代提供重要依据。

图 2 依兰地区黑龙江高压带内大洋板块地层 (a)具变余结构蓝片岩;(b)变余硅质岩;(c)大理岩;(d)长英质片岩 Fig. 2 The typical oceanic plate stratigraphy of the Jilin-Heilongjiang high-pressure metamorphic belt at Yilan

图 3 吉林-黑龙江高压变质带构造分区图与典型构造单元锆石U-Pb和单矿物Ar-Ar年龄(据Zhou and Wilde, 2013; Zhou and Li, 2017) Fig. 3 Tectonic sub-divisions of the Jilin-Heilongjiang high-pressure metamorphic belt in Northeast China and compiled zircon U-Pb and mineral Ar-Ar ages of typical tectonic units (modified after Zhou and Wilde, 2013; Zhou and Li, 2017)
2.2 小兴安岭-张广才岭增生杂岩带

指呈构造混杂状分布的古生代-中古生代变质杂岩,并以小兴安岭地区的张广才岭群和兴凯地块西缘的黄松群为代表(周建波等, 2013)。张广才岭群曾被作为新元古代变质地层(黑龙江省地矿局, 1993),但唐克东等(2011)曾报道了张广才岭群作为构造混杂岩的证据“黑色粉砂泥质岩中包含辉长岩、大理岩等岩块”,并命名为张广才岭造山带(唐克东等, 2011; 邵济安等, 2013),为佳木斯-兴凯地块与松辽地块之间俯冲拼贴过程中形成的增生杂岩(唐克东等, 2011; 邵济安等, 2013)。

新近获得的张广才岭群的原岩年龄分布范围为211±4Ma~450±5Ma(Wang et al., 2012; 周建波等, 2013; 图 3),其中二云母片岩时代为226±3Ma~311±4Ma,玄武安山岩时代为211±4Ma, 杂砂岩时代为~450±5Ma,石英片岩时代为426±5Ma,闪长岩时代为259±1Ma,英安岩时代为219±1Ma,流纹岩时代为317±2Ma(Wang et al., 2012),进一步证明了其原岩为不同时代、不同性质的岩石混杂而成, 其中云母片岩的变质时代为~193±2Ma(周建波等, 2013),这与黑龙江蓝片岩的特征基本相同。黄松群也曾被定义为新元古代变质地层(黑龙江省地矿局, 1993),但是我们对宁安地区黄松群黑云母片岩测定的锆石SHRIMP U-Pb年龄为218±2Ma,同一样品的黑云母Ar-Ar年龄为199±7Ma(周建波等, 2013),并分别代表了原岩与变质时代;这与新近发表的黄松群黑云母Ar-Ar年龄为194±2Ma一致(于介江等, 2015)。因此推测黄松群变质杂岩的形成特征应与张广才岭杂岩相同,均为佳木斯-兴凯地块与松辽地块之间俯冲拼贴过程中形成的增生杂岩(唐克东等, 2011; 邵济安等, 2013; 周建波等, 2013)。

尽管目前小兴安岭-张广才岭增生杂岩与黑龙江蓝片岩带的关系,吉黑高压带与古太平洋板块俯冲关系等的研究均处于初步探索阶段。但已发表的数据显示小兴安岭-张广才岭增生杂岩与黑龙江蓝片岩具有相同的年代学信息(图 3),如SHRIMP和LA-ICPMS锆石U-Pb同位素年龄显示两者的原岩年龄均延伸到了晚三叠世(220~210Ma);而单矿物Ar-Ar记录的变质年龄峰期均为~180Ma,部分达到晚三叠世(~200Ma)。因此210~180Ma可能记录了张广才岭杂岩吉黑高压变质带的主要就位时限(Wu et al., 2007a, b; Zhou et al., 2009, 2010; 周建波等, 2009, 2013)。上述新近的研究结果表明,张广才岭增生杂岩的形成时代与机制与黑龙江蓝片岩带一致,两者可以作为古亚洲洋构造域向太平洋构造域转折的标志(唐克东等, 2011; 邵济安等, 2013), 并可能共同记录了古太平洋板块俯冲启动与增生的过程。

3 那丹哈达增生杂岩带

那丹哈达增生杂岩带位于中国东北地区东部,为典型的由太平洋板块俯冲拼贴而形成的增生杂岩带。与前人所称的那丹哈达地体或完达山造山带相当。该区并以发育中生代蛇绿质混杂岩为特征,是我国较早开展蛇绿岩研究的地区之一(任纪舜等, 1980, 1990; 水谷伸治郎等, 1989; 邵济安等, 1990; 邵济安和唐克东, 1995; 张庆龙等, 1989; 张世红等, 1991; Kojima and Mizutani, 1987; Kojima, 1989; Mizutani and Kojima, 1992)。区域上,那丹哈达增生杂岩主要由饶河杂岩和跃进山杂岩组成。

3.1 跃进山杂岩

跃进山杂岩发育于那丹哈达增生杂岩的前锋位置,被认为是古太平洋板块俯冲早期阶段增生的记录,对限定太平洋板块的启动时代具有重要的意义(Zhou et al., 2014; Bi et al., 2015, 2017; Sun et al., 2015a)。跃进山杂岩为一套强烈变形的浅变质岩和基性-超基性岩组成,并曾被定义为早古生代“跃进山群”(黑龙江省地矿局, 1993)。而张魁武等(1997)明确指出,所谓的“跃进山群”是一套以变质沉积岩为基质,镁铁-超镁铁质岩为外来岩块的构造混杂岩,并具有蛇绿岩组合特征(张旗和周国庆, 2001; 张旗等, 2003)。

Zhou et al. (2014)首先对跃进山杂岩的变质基性杂岩、大洋板块地层(OPS,图 4)的组成以及增生就位时代进行了研究,指出其为一套具有蛇绿岩性质并仰冲于佳木斯地块东缘的增生杂岩,就位时代为180~210Ma,为古太平洋俯冲启动阶段的产物。之后,围绕跃进山杂岩的年代学研究取得了较多的进展,Bi et al. (2015)报道了东方红地区辉长岩的锆石U-Pb年龄为274±2Ma~290±3Ma;Sun et al. (2015b)也报道了跃进山地区辉长岩的年龄为274±4Ma~276±3Ma;郭冶(2016)曾振等(2017)进一步验证了这些辉长岩的时代为266±1Ma~280±3Ma,并指出跃进山地区存在~1.1Ga的花岗质片麻岩、时代为232±5Ma的变质玄武岩和时代为223±5Ma的长英质糜棱岩。这些数据不仅证明了跃进山杂岩为不同时代、不同性质的岩石混杂而成的增生杂岩,同时也给出了增生就位时代的下限为~220Ma。这些数据结合已有的跃进山杂岩的绿片岩Rb-Sr等时线年龄188±4Ma(杨金中等, 1998),进一步表明了跃进山杂岩的就位时代为188~220Ma之间,这与吉黑高压带的时代基本相同。

图 4 那丹哈达地体典型大洋板块地层层序(勤得利地区) Fig. 4 The typical oceanic plate stratigraphy of the Nadanhada terrane (Qindeli area)

需要指出的是,由于东方红和勤得利地区辉长岩形成于二叠纪前后(图 5),据此推测它们为古太平洋晚二叠世向欧亚大陆之下俯冲增生的构造残片(Sun et al., 2015b),或大陆岩浆弧(Bi et al., 2015, 2017)。但也有学者认为上述辉长岩连同佳木斯地块东缘二叠纪火山岩,均为古亚洲构造域的组成部分,并诱因于兴凯地块向佳木斯地块的俯冲作用(孟恩等, 2008; 许文良等, 2012),或者鄂霍茨克洋的俯冲作用(Zhou and Li, 2017)或者泛大洋的俯冲作用(Li et al., 2018)。因此是否代表古太平洋板块向欧亚大陆之下的俯冲作用存在很多不确定性(Bi et al., 2015, 2017; Sun et al., 2015b; 孟恩等, 2008; 许文良等, 2012; 郭锋, 2016)。

图 5 那丹哈达地体地质图(据Zhou et al., 2014)及其代表性岩石样品位置和锆石年龄 Fig. 5 Detailed geological map of the Nadanhada terrane (after Zhou et al., 2014) and sample locations with zircon ages of typical samples
3.2 饶河杂岩

饶河杂岩为那丹哈达增生杂岩的主体,也是我国东部中生代深海沉积地层发育最完整的地区。饶河杂岩主要由石炭-二叠纪灰岩,晚三叠世-中侏罗世含放射虫的深海硅质岩组成,并夹有镁铁-超镁铁质杂岩层,为一套典型的构造混杂岩系(水谷伸治郎等, 1989; 邵济安等, 1990; 邵济安和唐克东, 1995; 张庆龙等, 1989, 1997; 张世红等, 1991)。李春昱(1980)最早提出饶河蛇绿岩的概念,并得到不少学者的认同(康宝祥等, 1990; 赵海玲等, 1996; 张庆龙等,1989张世红等,1991Kojima and Mizutani, 1987; Kojima, 1989; Mizutani and Kojima, 1992)。但由于蛇绿岩中不发育典型的地幔橄榄岩,且镁铁-超镁铁质杂岩的地球化学特征与典型的蛇绿岩存在很大差别,因而部分学者提出它不是蛇绿岩而是洋岛杂岩的认识(张旗和周国庆, 2001; 张旗等, 2003)。

近年来在地质-地球化学和同位素年代学领域均取得了重要的进展(图 5, 程瑞玉等2006; 任收麦等, 2015; Zhou et al., 2014; Zhou and Li, 2017; Sun et al., 2015a; Wang et al., 2015; Wilde, 2015)。放射虫和区域地质证据限定了饶河杂岩的就位时代为晚侏罗-早白垩世(Kojima, 1989)。新近报道的锆石U-Pb年龄给予了饶河增生杂岩相关增生过程的更多细节(Zhou et al., 2014),如关门地区的辉长岩年龄为216±4Ma,大岱地区的枕状玄武岩时代为167±1Ma,表明饶河地区基性-超基性杂岩形成时代为晚三叠-早侏罗世。另外,分布于饶河增生杂岩前部红旗岭地区的层状黄绿色砂岩碎屑锆石年龄从2415±28Ma到161±4Ma,最小峰期年龄为~167Ma;而分布在饶河地区的泥质砂岩时代从2529±28Ma到136±2Ma,最小峰期年龄为~137Ma。显示着由西向东增生物质逐渐变新的趋势,这与古太平洋板块的西向俯冲对应(Zhou et al., 2014; Zhou and Li, 2017)。这些研究结果得到了近期发表的相关数据的进一步证实(Sun et al., 2015b)。这些数据,结合已有的化石证据表明,饶河杂岩主要组成单元包括,石炭-二叠纪灰岩, 晚三叠世-中侏罗世辉长岩和枕状玄武岩, 晚三叠-中侏罗世硅质岩和硅质泥岩,这些岩石均成外来岩块状混杂在作为基质的时代为晚侏罗-早白垩世的碎屑岩中。结合已有的订合花岗岩的时代为~128Ma(Zhou et al., 2014),进一步限定了饶河增生杂岩的就位时代为136~128Ma之间。

4 古太平洋板块俯冲历史

西太平洋地区发现的最古老残留洋壳Ar-Ar年龄为167Ma(Koppers et al., 2001, 2003)。Seton et al. (2012)根据海底磁条带的年龄分布以及对太平洋扩张速率的估算,提出推测古太平洋板块(主要指伊泽奈崎板块)形成时间190Ma左右。然而东亚地区古地理恢复和重建结果则认为自250Ma伊泽奈崎板块开始出现,并向东亚大陆边缘俯冲(Maruyama et al., 1997; Taira, 2001)。我国也有学者对东北地区和华南二叠纪岩浆作用的研究就提出古太平洋板块俯冲与弧岩浆带的形成有直接的动力学联系(Li et al., 2012a, b; Sun et al., 2015b),并为古太平洋演化的研究提出了新的思路。郭锋(2016)则总结指出,在东北地区二叠纪期间的俯冲作用可能为古亚洲构造域的产物(Guo et al., 2016), 而在华南地区二叠纪时期的俯冲作用也可能来自古特提斯洋(Wang et al., 2013)。因此,如何排除其他大洋的俯冲作用影响将是确定古太平洋板块俯冲过程必须考虑的因素。

东北地区大量的区域构造演化与岩浆演化证据为古太平洋板块俯冲历史提供了重要的制约,彭玉鲸等(2012)根据构造运动、岩浆活动、变质作用、矿床形成等地质事件的耦合关系,指出吉黑东部古亚洲洋构造体制结束时间为250~230Ma,太平洋构造体制启动的综合标志时间为227~222Ma;Wilde (2015)在总结兴蒙造山带的演化中认为,古亚洲洋演化大体持续到260Ma左右,局部可能影响到230Ma,而古太平洋的演化自晚三叠纪开始。Wu et al. (2011)在总结显生宙花岗岩的年代学资料时将研究区的花岗岩成因划分为3个构造演化阶段:250Ma之前的古亚洲洋演化阶段;250~210Ma的碰撞后阶段;210Ma以来的古太平洋板块俯冲阶段。Guo et al. (2016)对延边地区的镁铁质侵入杂岩的研究显示,古亚洲洋的俯冲岩浆记录持续到了253Ma;Guo et al. (2015)同时注意到,图门地区形成时代为187Ma的超基性-基性侵入杂岩,与张广才岭-延吉的早侏罗世镁铁质侵入岩以及I型花岗岩以及南北向分布的同时代变质的黑龙江蓝片岩带等共同构成了完整的俯冲-增生杂岩带,并记录了古太平洋板块的早期俯冲作用(郭锋, 2016)。这些认识与我们近期取得的工作成果基本一致(Zhou et al., 2009, 2014; Zhou and Wilde, 2013; Zhou and Li, 2017; Liu et al., 2017)。需要指出的是,吉林-黑龙江东部地区记录了丰富的晚古生代-早中生代构造与岩浆演化信息,而古亚洲洋构造域向太平洋构造域转折的时期恰恰发生在这一重要地质时期。

吉黑东部中生代增生杂岩,不仅作为古太平洋俯冲的最好见证,也是确定古太平洋板块俯冲启动与增生过程的重要标志。东北地区的中生代增生杂岩为古太平洋板块向欧亚大陆东缘俯冲的启动与增生过程提供了直接的制约,我们得到的吉黑高压带的时代为210~180Ma,这与跃进山杂岩的增生就位时代相似,表明了古太平洋板块的俯冲启动时代(Zhou et al., 2009, 2014),而饶河杂岩的增生时代为170~137Ma,就位时代为137~130Ma (Zhou et al., 2014; Zhou and Li, 2017),进一步明确了古太平洋板块向欧亚大陆俯冲与增生过程。已有的研究成果显示表明了古太平洋构造体制是欧亚大陆东缘中生代构造-岩浆演化的主要动因,它不仅控制了陆缘中生代盆地的形成与演化,同时是大量内生金属矿产资源和油气资源和大量内生金属矿产资源形成的主要地球动力学背景。中生代期间古太平洋构造体制影响下岩石圈的深部结构及深部过程、古太平洋板块在欧亚大陆下的俯冲历史及其时空影响范围等问题的解决将为揭示环太平洋构造体制下成矿作用背景提供重要的制约,并为我国东北地区古太平洋构造体制成矿系统物质组成与过程成矿理论研究提供重要的理论支撑。

参考文献
Bi JH, Ge WC, Yang H, Zhao GC, Xu WL and Wang ZH. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China:Petrogensis and tectonic implications. Lithos, 234-235: 27-46. DOI:10.1016/j.lithos.2015.07.015
Bi JH, Ge WC, Yang H, Wang ZH, Dong Y, Liu XW and Ji Z. 2017. Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China. Journal of Asian Earth Sciences, 134: 160-175. DOI:10.1016/j.jseaes.2016.09.022
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House.
Cao X, Dang ZX, Zhang XZ, Jiang JS and Wang HD. 1992. The Composite Jiamusi Terrane. Changchun: Jilin Publishing House of Science and Technology: 1-126.
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22(2): 353-376.
Cloos M. 1983. Comparative study of mélange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. The Journal of Geology, 91(3): 291-306. DOI:10.1086/628772
Dang ZX, Wang DH and Cui G. 1988. The metamorphic zone, metamorphic facies and metamorphic series of the Heilongjiang and Mashan groups. In: Dong SB and Shen QH (eds.). Chinese Metamorphic Map and Research Special Issue. Beijing: Geological Publishing House, 23-31 (in Chinese with English abstract)
Davis D, Suppe J and Dahlen FA. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2): 1153-1172. DOI:10.1029/JB088iB02p01153
Dong Y, Ge WC, Yang H, Ji Z, He Y, Zhao D and Xu WL. 2018. Convergence history of the Jiamusi and Songnen-Zhangguangcai Range massifs:Insights from detrital zircon U-Pb geochronology of the Yilan Heilongjiang Complex, NE China. Gondwana Research, 56: 51-68. DOI:10.1016/j.gr.2017.12.008
Ge MH, Zhang JJ, Liu K, Lin YY, Wang M and Wang JM. 2016. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the Late Paleozoic tectonics of eastern NE China. Lithos, 261: 232-249. DOI:10.1016/j.lithos.2015.11.019
Guo F, Li HX, Fan WM, Li JY, Zhao L, Huang MW and Xu WL. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 224-225: 46-60. DOI:10.1016/j.lithos.2015.02.014
Guo F. 2016. Geological records of the pacific plate subduction in the Northeast Asian continental margin:An overview. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1082-1089.
Guo F, Li HX, Fan WM, Li JY, Zhao L and Huang MW. 2016. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China. Lithos, 261: 195-215. DOI:10.1016/j.lithos.2015.11.030
Guo Y. 2016. The nature of the Yuejinshan complex in the eastern part of Heilongjiang Province and its evolution. Ph. D. Dissertation. Changchun: Jilin University, 1-91 (in Chinese)
Howell DG. 1991. Terrane Tectonics:Mountain Building Continental Growth. Chengdu: Science and Technology of Sichuan Press.
Kang BX, Zhang HR, Liu CS, Cui XS and Zhang SF. 1990. Raohe ophiolite and its geological significance in Nadanhadaling. Heilongjiang Geology, 1(1): 3-18.
Karig DE and Sharman GF Ⅲ. 1975. Subduction and accretion in trenches. GSA Bulletin, 86(3): 377-389. DOI:10.1130/0016-7606(1975)86<377:SAAIT>2.0.CO;2
Kojima S and Mizutani S. 1987. Triassic and Jurassic radiolaria from the Nadanhada range, Northeast China. Transactions and Proceedings of the Paleontological Society of Japan, New Series, 1987(148): 256-275.
Kojima S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 213-232. DOI:10.1016/0031-0182(89)90165-X
Koppers AAP, Morgan JP, Morgan JW and Staudigel H. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185(3-4): 237-252. DOI:10.1016/S0012-821X(00)00387-3
Koppers AAP, Staudigel H and Duncan RA. 2003. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics, Geosystems, 4(11): 8914. DOI:10.1029/2003GC000574
Li CY. 1980. A preliminary study of plate tectonics of China. Bulletin of Chinese Acad. Geol. Sci., Series I, 2(1): 11-19.
Li GY, Zhou JB, Wilde SA and Li L. 2018. The transition from a passive to an active continental margin in the Jiamusi Block:Constraints from Late Paleozoic sedimentary rocks. Journal of Geodynamics. DOI:10.1016/j.jog.2018.01.010
Li JY, Niu BG, Song B, Xu WX, Zhang YH and Zhao ZR. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Beijing: Geological Publishing House: 32-50.
Li JY, Zhang J, Liu JF, Qu JF, Li YP, Sun GH, Zhu ZX, Feng QW, Wang LJ and Zhang XW. 2014. Major deformation systems in the Mainland of China. Earth Science Frontiers, 21(3): 226-245.
Li XH, Li ZX, He B, Li WX, Li QL, Gao YY and Wang XC. 2012a. The Early Permian active continental margin and crustal growth of the Cathaysia Block:In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195-207. DOI:10.1016/j.chemgeo.2011.10.027
Li XP, Jiao LX, Zheng QD, Dong X, Kong FM and Song ZJ. 2009. U-Pb zircon dating of the Heilongjiang complex at Huanan, Heilongjiang Province. Acta Petrologica Sinica, 25(8): 1909-1916.
Li ZX, Li XH, Chung SL, Lo CH, Xu XS and Li WX. 2012b. Magmatic switch-on and switch-off along the South China continental margin since the Permian:Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 532-535: 271-290. DOI:10.1016/j.tecto.2012.02.011
Liu JL. 1991. Analysis of characteristics of greenstone belt of Jiamusi median massif and its geotectonic setting. Heilongjiang Geology, 2(1): 33-48.
Liu K, Zhang JJ, Wilde SA, Zhou JB, Wang M, Ge MH, Wang JM and Lin YY. 2017. Initial subduction of the Paleo-Pacific Oceanic plate in NE China:Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Khanka Lake granitoids. Lithos, 274-275: 254-270. DOI:10.1016/j.lithos.2016.12.022
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. Island Arc, 6(1): 121-142. DOI:10.1111/iar.1997.6.issue-1
Meng E, Xu WL, Yang DB, Pei FP, Yu Y and Zhang XZ. 2008. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China:Zircon U-Pb chronology, geochemistry and its tectonic implications. Chinese Science Bulletin, 53: 1231-1245.
Mizutani S, Shao JA and Zhang QL. 1989. The Nadanhada terrane in relation to Mesozoic tectonics on continental margins of East Asia. Acta Geologica Sinica, (3): 204-215.
Mizutani S and Kojima S. 1992. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental-margin of Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1-2): 3-22. DOI:10.1016/0031-0182(92)90056-B
Peng YJ, Qi CD, Zhou XD, Lu XB, Dong HC and Li Z. 2012. Transition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean domain for the Ji-Hei composite orogenic belt:Time mark and relationship to global tectonics. Geology and Resources, 21(3): 261-265.
Platt JP. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. GSA Bulletin, 97(9): 1037-1053. DOI:10.1130/0016-7606(1986)97<1037:DOOWAT>2.0.CO;2
Ren JS, Jiang CF, Zhang ZK and Qin DY. 1980. The Geotectonic Evolution of China. Beijing: Science Press.
Ren JS, Chen TY, Niu BG, Liu ZG and Liu F. 1990. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas. Beijing: Science Press.
Ren SM, Zhu RX, Qiu HJ, Zhou JB and Deng CL. 2015. Paleomagnetic study on Middle Jurassic lavas of Heilongjiang Province, NE China and its tectonic implications. Chinese Journal of Geophysics, 58(4): 1269-1283.
Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S and Chandler M. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3-4): 212-270. DOI:10.1016/j.earscirev.2012.03.002
Shao JA, Wang CY, Tang KD and Zhang QY. 1990. The relationship between Nadanhada Range stratums and terrane. Journal of Stratigraphy, 14(4): 286-291.
Shao JA and Tang KD. 1995. Terrane in Northeast China and Evolution of Northeast Asian Continental Margin. Beijing: Seismological Press.
Shao JA, Li YF and Tang KD. 2013. Restoration of the orogenic processes of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959-2970.
Sun MD, Xu YG, Wilde SA, Chen HL and Yang SF. 2015a. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific subduction. Tectonophysics, 659: 122-136. DOI:10.1016/j.tecto.2015.07.034
Sun MD, Xu YG, Wilde SA and Chen HL. 2015b. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China:Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 34(6): 1269-1289. DOI:10.1002/2015TC003870
Taira A. 2001. Tectonic evolution of the Japanese Island Arc system. Annual Review of Earth and Planetary Sciences, 29(1): 109-134. DOI:10.1146/annurev.earth.29.1.109
Tang KD, Wang Y, He GQ and Shao JA. 1995. Continental-margin structure of Northeast China and its adjacent areas. Acta Geologica Sinica, 69(1): 16-30.
Tang KD, Shao JA and Li YF. 2011. Songnen Massif and its research significance. Earth Science Frontiers, 18(3): 57-65.
Wang F, Xu WL, Meng E, Cao HH and Gao FH. 2012. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt:Geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences, 49: 234-248. DOI:10.1016/j.jseaes.2011.09.022
Wang YJ, Fan WM, Zhang GW and Zhang YH. 2013. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research, 23(4): 1273-1305. DOI:10.1016/j.gr.2012.02.019
Wang ZH, Ge WC, Yang H, Zhang YL, Bi JH, Tian DX and Xu WL. 2015. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 111: 120-137. DOI:10.1016/j.jseaes.2015.08.005
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction:A review of the evidence. Tectonophysics, 662: 345-362. DOI:10.1016/j.tecto.2015.05.006
Wilde SA and Zhou JB. 2015. The Late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113: 909-921. DOI:10.1016/j.jseaes.2015.05.005
Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM. 2007a. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 16(1): 156-172. DOI:10.1111/iar.2007.16.issue-1
Wu FY, Zhao GC, Sun DY, Wilde SA and Yang JH. 2007b. The Hulan Group:Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. DOI:10.1016/j.jseaes.2007.01.003
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Xie HQ, Zhang FQ, Miao LC, Chen FK and Liu DY. 2008. Zircon SHRIMP U-Pb dating of the amphibolite from "Heilongjiang Group" and the granite in Mudanjiang area, NE China, and its geological significance. Acta Petrologica Sinica, 24(6): 1237-1250.
Xu WL, Wang F, Meng E, Gao FH, Pei FP, Yu JJ and Tang J. 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China:Evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389.
Yang JZ, Qiu HJ, Sun JP and Zhang XZ. 1998. Yuejinshan complex and its tectonic significance. Journal of Changchun University of Science and Technology, 28(4): 380-385.
Yu JJ, Xu WL, Gao FH, Wang F, Liu JC and Hao WL. 2015. Medium-pressure metamorphism of the Huangsong Group in the southeastern margin of the Xing'an-Mongolian Orogenic Belt, NE China and its tectonic implication:Evidence from petrology, mineralogy and 40Ar/39Ar geochronology. Acta Petrologica Sinica, 31(9): 2477-2494.
Zeng Z, Zhang XZ, Zhou JB, Zhang HT, Liu Y and Cui WL. 2017. Geochemistry and zircon U-Pb age of Permian metabasalts in the Yuejinshan complexes and its tectonic implications. Geotectonica et Metallogenia, 42(2): 365-378.
Zhang KW, Shao JA, Tang KD, Zhang Q and Li XY. 1997. The geochemical characteristics and the geological significance of green schists in Yuejinshan Group, East Heilongjiang Province, China. Acta Petrologica Sinica, 13(2): 168-172.
Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press.
Zhang Q, Zhou GQ and Wang Y. 2003. The distribution of time and space of Chinese ophiolites, and their tectonic settings. Acta Petrologica Sinica, 19(1): 1-8.
Zhang QL, Mizutani S, Kojima S and Shao JA. 1989. The Nadanhada terrane in Heilongjiang Province. Geological Review, 35(1): 67-71.
Zhang QL, Mizutani S and Kojima S. 1997. Radiolaria and correlation study of terranes. Acta Palaeontologica Sinica, 36(2): 245-252.
Zhang SH, Shi YS, Sun Y and Yu ZY. 1991. On the relation between Wandashan Orogenic Belt and Nadanhada Terrane in Heilongjiang Province. Journal of Nanjing University (Earth Sciences), (3): 287-293.
Zhang XZ and Zhang YH. 1991. Coexistence of blueschist and greenschist:New evidence for tectonic evolution of the Longjiang suites. Journal of Changchun University of Earth Science, 21(3): 277-282, 348.
Zhang XZ, Zeng Z, Gao R, Hou HS, Guo Y, Pu JB and Fu QL. 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen massifs in the northeastern China. Chinese Journal of Geophysics, 58(12): 4415-4424.
Zhao CJ, Peng YJ, Dang ZX and Zhang YP. 1996. The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces. Shenyang: Liaoning University Press: 1-226.
Zhao HL, Deng JF, Chen FJ, Hu Q and Zhao SK. 1996. Petrology and tectonic setting of Middle Jurassic volcanic rocks in Wanda Mountain, Heilongjiang Province. Earth Science (Journal of China University of Geosciences), 21(4): 428-432.
Zhao LL and Zhang XZ. 2011. Petrological and geochronological evidences of tectonic exhumation of Heilongjiang complex in the eastern part of Heilongjiang Province, China. Acta Petrologica Sinica, 27(4): 1227-1234.
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246. DOI:10.1016/j.tecto.2009.08.009
Zhou JB, Zhang XZ, Wilde SA, Zheng CQ, Jin W, Chen H and Han J. 2009. Detrital zircon U-Pb dating of Heilongjiang Complex and its tectonic implications. Acta Petrologica Sinica, 25(8): 1924-1936.
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Zheng CQ and Wang H. 2010. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt:Constraints on the Mesozoic evolution of NE China. American Journal of Science, 310(9): 1024-1053. DOI:10.2475/09.2010.10
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. DOI:10.1016/j.gr.2012.05.012
Zhou JB, Han J, Wilde SA, Guo XD, Zeng WS and Cao JL. 2013. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt:Evidence and tectonic implications. Acta Petrologica Sinica, 29(2): 386-398.
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466. DOI:10.1002/2014TC003637
Zhou JB and Li L. 2017. The Mesozoic accretionary complex in Northeast China:Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145: 91-100. DOI:10.1016/j.jseaes.2017.04.013
Zhu CY, Zhao GC, Sun M, Liu Q, Han YG, Hou WZ, Zhang XR and Eizenhofer PR. 2015. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos, 216-217: 241-253. DOI:10.1016/j.lithos.2014.12.021
Zhu CY, Zhao GC, Sun M, Eizenhöfer PR, Liu Q, Zhang XR, Han YG and Hou WZ. 2017a. Geochronology and geochemistry of the Yilan greenschists and amphibolites in the Heilongjiang complex, northeastern China and tectonic implications. Gondwana Research, 43: 213-228. DOI:10.1016/j.gr.2016.02.001
Zhu CY, Zhao GC, Ji JQ, Han YG, Liu Q, Eizenhöfer P, Zhang XR and Hou WZ. 2017b. Subduction between the Jiamusi and Songliao blocks:Geological, geochronological and geochemical constraints from the Heilongjiang Complex. Lithos, 282-283: 128-144. DOI:10.1016/j.lithos.2017.03.008
曹熹, 党增欣, 张兴洲, 姜继圣, 王洪德. 1992. 佳木斯复合地体. 长春: 吉林科技出版社: 1-126.
程瑞玉, 吴福元, 葛文春, 孙德有, 柳小明, 杨进辉. 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376.
党增欣, 王德浩, 崔革. 1988.黑龙江群和麻山群的变质带、变质相和变质相系.见: 董申保, 沈其韩主编.中国变质地质图编制与研究论文集.北京: 地质出版社, 23-31
郭锋. 2016. 太平洋板块俯冲作用在东北亚大陆边缘的地质记录评述. 矿物岩石地球化学通报, 35(6): 1082-1089. DOI:10.3969/j.issn.1007-2802.2016.06.002
郭冶. 2016.黑龙江省东部跃进山杂岩的性质及构造演化.博士学位论文.长春: 吉林大学, 1-91 http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089744.htm
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社.
Howell DG. 1991. 地体构造学:山脉形成和大陆生长. 成都: 四川科技出版社.
康宝祥, 张海驲, 刘春山, 崔秀石, 张书范. 1990. 那丹哈达岭饶河蛇绿岩及其地质意义. 黑龙江地质, 1(1): 3-18.
李春昱. 1980. 中国板块构造的轮廓. 中国地质科学院院报, 2(1): 11-19.
李锦轶, 牛宝贵, 宋彪, 徐文喜, 张雨红, 赵子然. 1999. 长白山北段地壳的形成与演化. 北京: 地质出版社.
李锦轶, 张进, 刘建峰, 曲军峰, 李亚萍, 孙桂华, 朱志新, 冯乾文, 王励嘉, 张晓卫. 2014. 中国大陆主要变形系统. 地学前缘, 21(3): 226-245.
李旭平, 焦丽香, 郑庆道, 董晓, 孔凡梅, 宋召军. 2009. 黑龙江桦南地区黑龙江杂岩锆石U-Pb定年. 岩石学报, 25(8): 1909-1916.
刘静兰. 1991. 佳木斯中间地块绿岩带特征及其大地构造环境浅析. 黑龙江地质, 2(1): 33-48.
孟恩, 许文良, 杨德彬, 裴福萍, 纪伟强, 于洋, 张兴洲. 2008. 佳木斯地块东缘及东南缘二叠纪火山作用:锆石U-Pb年代学、地球化学及其构造意义. 科学通报, 53(8): 956-965. DOI:10.3321/j.issn:0023-074X.2008.08.016
水谷伸治郎, 邵济安, 张庆龙. 1989. 那丹哈达地体与东亚大陆边缘中生代构造的关系. 地质学报, (3): 204-215. DOI:10.3321/j.issn:0001-5717.1989.03.005
彭玉鲸, 齐成栋, 周晓东, 卢兴波, 董红辰, 李壮. 2012. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系. 地质与资源, 21(3): 261-265. DOI:10.3969/j.issn.1671-1947.2012.03.001
任纪舜, 姜春发, 张正坤, 秦德余. 1980. 中国大地构造及其演化——1:400万中国大地构造图简要说明. 北京: 科学出版社.
任纪舜, 陈廷愚, 牛宝贵, 刘志刚, 刘凤. 1990. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社.
任收麦, 朱日祥, 邱海峻, 周建波, 邓成龙. 2015. 黑龙江省饶河枕状玄武岩古地磁学研究及其构造意义. 地球物理学报, 58(4): 1269-1283.
邵济安, 王成源, 唐克东, 张勤运. 1990. 那丹哈达岭地层与地体的关系. 地层学杂志, 14(4): 286-291.
邵济安, 唐克东. 1995. 中国东北地体与东北亚大陆边缘演化. 北京: 地震出版社.
邵济安, 李永飞, 唐克东. 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970.
唐克东, 王莹, 何国琦, 邵济安. 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69(1): 16-30.
唐克东, 邵济安, 李永飞. 2011. 松嫩地块及其研究意义. 地学前缘, 18(3): 57-65.
颉颃强, 张福勤, 苗来成, 陈福坤, 刘敦一. 2008. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250.
许文良, 王枫, 孟恩, 高福红, 裴福萍, 于介江, 唐杰. 2012. 黑龙江省东部古生代-早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389.
杨金中, 邱海峻, 孙加鹏, 张兴洲. 1998. 跃进山岩系及其构造意义. 长春科技大学学报, 28(4): 380-385.
于介江, 许文良, 高福红, 王枫, 柳佳成, 郝文丽. 2015. 兴蒙造山带东南缘黄松群中压型变质作用及其构造意义:岩石学、矿物学和年代学证据. 岩石学报, 31(9): 2477-2494.
曾振, 张兴洲, 周建波, 张宏涛, 刘洋, 崔维龙. 2017. 跃进山杂岩中二叠纪变玄武岩的锆石U-Pb年代学、地球化学及其地质意义. 大地构造与成矿学, 42(2): 365-378.
张魁武, 邵济安, 唐克东, 张旗, 李秀云. 1997. 黑龙江省东部跃进山群中绿片岩的地球化学特征及地质意义. 岩石学报, 13(2): 168-172. DOI:10.3321/j.issn:1000-0569.1997.02.005
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社.
张旗, 周国庆, 王焰. 2003. 中国蛇绿岩的分布、时代及其形成环境. 岩石学报, 19(1): 1-8.
张庆龙, 水谷伸治郎, 小嶋智, 邵济安. 1989. 黑龙江省那丹哈达地体构造初探. 地质论评, 35(1): 67-71. DOI:10.3321/j.issn:0371-5736.1989.01.008
张庆龙, 水谷伸治郎, 小嶋智. 1997. 放射虫化石及地体对比研究. 古生物学报, 36(2): 245-252.
张世红, 施央申, 孙岩, 虞子冶. 1991. 黑龙江完达山造山带及其与那丹哈达地体的关系. 南京大学学报(地球科学), (3): 287-293.
张兴洲, 张元厚. 1991. 蓝片岩与绿片岩共存:龙江岩系构造演化的新证据. 长春地质学院学报, 21(3): 277-282, 348.
张兴洲, 曾振, 高锐, 侯贺晟, 郭冶, 蒲建彬, 付秋林. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据. 地球物理学报, 58(12): 4415-4424. DOI:10.6038/cjg20151207
赵春荆, 彭玉鲸, 党增欣, 张允平. 1996. 吉黑东部构造格架及地壳演化. 沈阳: 辽宁大学出版社: 1-226.
赵海玲, 邓晋福, 陈发景, 胡泉, 赵世柯. 1996. 黑龙江完达山地区中侏罗世火山岩特征及其形成构造背景. 地球科学-中国地质大学学报, 21(4): 428-432.
赵亮亮, 张兴洲. 2011. 黑龙江杂岩构造折返的岩石学与年代学证据. 岩石学报, 27(4): 1227-1234.
周建波, 张兴洲, Wilde SA, 郑常青, 金魏, 陈红, 韩杰. 2009. 黑龙江杂岩的碎屑锆石年代学及其大地构造意义. 岩石学报, 25(8): 1924-1936.
周建波, 韩杰, Wilde SA, 郭晓丹, 曾维顺, 曹嘉麟. 2013. 吉林-黑龙江高压变质带的初步厘定:证据和意义. 岩石学报, 29(2): 386-398.