岩石学报  2018, Vol. 34 Issue (9): 2754-2772   PDF    
华北地台北缘集宁地区古元古代片麻状石榴花岗岩的深熔成因及地质意义
石强1 , 董晓杰1 , 徐仲元1 , 关庆彬1 , 李鹏川1 , 张超2 , 崔芳华2     
1. 吉林大学地球科学学院, 长春 130061;
2. 山东理工大学资源与环境工程学院, 淄博 255000
摘要:本文对华北克拉通北缘集宁地区空间上密切共生的片麻状石榴花岗岩和孔兹岩系富铝片麻岩的岩相学、地球化学及年代学特征进行了对比研究。SHRIMP锆石U-Pb定年方面,在富铝片麻岩中获得了1910±10Ma和1839±13Ma变质锆石年龄,在片麻状石榴花岗岩中获得了1919±17Ma的变质重结晶锆石年龄。在石榴花岗岩的石榴石包裹体中识别出与富铝片麻岩相对应的进变质阶段(M1)和峰期阶段(M2)的矿物组合,由此确认富铝片麻岩的变质作用和导致石榴花岗岩形成的深熔作用是同一构造热事件的产物。通过对二者变质作用演化及特征变质矿物的对比,认为深熔作用主要发生在峰期后等温降压阶段(M3),石榴花岗岩中的石榴石为深熔作用过程中的残留矿物相或转熔矿物相,而石榴花岗岩则是混合有大量残留矿物相的熔体结晶的产物。对片麻状石榴花岗岩和富铝片麻岩的地球化学组成特征进行了对比分析,片麻状石榴花岗岩既有一定的继承性,又有十分明显的变异性。变异性表现为:1)石榴花岗岩主量和微量元素含量分布极不均匀,微量元素含量普遍低于源岩(Cs、Rb、Th、U、Nb、Ta、Zr、Hf等);2)大离子亲石元素Cs和生热元素U、Th亏损明显,Sr相对富集;3)高场强元素Nb、Ta、P、Ti的明显亏损;4)铕异常变化大,存在铕富集型、铕平坦型和铕亏损型共存的稀土配分曲线的岩石,这是深熔成因石榴花岗岩最突出的表现,也可能是原地-半原地深熔花岗岩的主要地球化学标志。综合区域上的地质资料,认为深熔作用与碰撞后伸展构造背景下基性岩浆底侵事件有关。
关键词: 古元古代     孔兹岩系     SHRIMP锆石U-Pb测年     片麻状石榴花岗岩     深熔作用     集宁    
Anatectic origin and geological significance of the Paleoproterozoic gneissic garnet granite in the Jining area, northern margin of the North China Craton
SHI Qiang1, DONG XiaoJie1, XU ZhongYuan1, GUAN QingBin1, LI PengChuan1, ZHANG Chao2, CUI FangHua2     
1. College of Earth Science, Jilin University, Changchun 130061, China;
2. College of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
Abstract: The authors carried out a comparative study on petrography, geochemistry and geochronology of garnet granite gneiss and khondalite (mainly alumina-rich gneisses) in the Jining area, northern margin of the North China Craton. SHRIMP U-Pb dating revealed two metamorphic zircon ages of 1910±10Ma and 1839±13Ma for alumina-rich gneiss and a metamorphic age of 1919±17Ma for gneissic garnet granite. The mineral assemblages of progressive metamorphism stage (M1) and peak metamorphism stage (M2) in alumina-rich gneiss are also identified in the inclusions in garnets of the garnet granite gneiss. It is concluded that formation of the garnet granite is due to anatexis of the alumina-rich gneiss, as a result of one and the same tectono-thermal event. It is also affirmed that the anatexis mainly occurred at the post peak isothermal depressurization stage (M3) based on comparison of characteristic metamorphic minerals between them. The garnets in the garnet granite are residual mineral facies or peritectic in anatexis, and the garnet granite is a product of leucosome melt with a large amount of residual minerals. The garnet granite shows geochemical characteristics of the alumina-rich gneiss, but with some variations, such as:1) Unevenly distribution of major elements and elements; 2) Strong depletion of large ion lithophile element Cs, heat production element U and Th, and high field strength elements Nb, Ta, P and Ti; 3) Showing variations in Eu anomalies, as indicated by Eu-enriched, Eu-flat and Eu-depleted patterns, which is considered to be a prominent feature of garnet granite of anatectic origin and may be the mainly geochemical characteristic of in-situ and semi-situ anatectic granite. It is proposed that the anatexis was closely related to the underplating of basic magma in a post-collisional extensional tectonic setting.
Key words: Paleoproterozoic     Khondalite series     SHRIMP zircon U-Pb dating     Gneissic garnet granite     Anatexis     Jining    

深熔作用是大陆碰撞造山带中常见的一种重要地质过程(刘贻灿等,2014),强烈地影响造山带深部地壳物质的热状态和流变学行为(Sawyer, 2001; Brown, 2011),降低地壳强度,促使其与消减的岩石圈解耦,从而对造山带的最终垮塌发挥重要影响(Vanderhaeghe and Teyssier, 2001朱越等,2015),还可以促使深部埋藏地壳剥露(Hollister, 1993; Brown and Dallmeyer, 1996)。深熔过程中熔体的产生、分离以及运移对大陆地壳内部分异、变形具十分重要的意义(Brown, 1994, 2004, 2007; Sawyer, 2001, 2011),是导致地壳内部物质分异的最重要途径(Milord et al., 2001),因此受到了研究者的广泛关注(Brown and Pressley, 1999; Sawyer, 2001; Solar and Brown, 2001; White et al., 2001, 2007; White and Powell, 2002, 2010; Vanderhaeghe, 2009; 王伟等,2014朱越等,2015; 魏春景,2016魏春景和朱文萍, 2016)。

近年来,大量岩石学和岩相学观察以及高温高压熔融实验研究使人们对麻粒岩相区的深熔作用及熔体行为有了更深入的了解(Brown, 1994, 2004, 2007; Vielzeuf et al., 1994; Kriegsman, 2001程裕淇,2004),并在其中识别出许多原地-半原地深熔花岗岩(混合花岗岩),尤其是西部陆块孔兹岩带中的石榴花岗岩;而通过相平衡模拟等研究方法对变质沉积岩在深熔作用过程中的熔融反应、熔融与P-T关系、熔体的活动与熔体成分和残留体成分相关性的研究进一步丰富了深熔作用理论(White et al., 2001, 2007; White and Powell, 20022010魏春景,2016魏春景和朱文萍,2016)。

华北克拉通西部陆块自西向东沿千里山-贺兰山、大青山-乌拉山和集宁-卓资-丰镇一带展布的孔兹岩带为一近东西向的古元古代造山带(Zhao et al., 1999, 2001, 2003; Wan et al., 2006, 2009, 2013; 赵国春,2009),带中岩石普遍遭受高角闪岩相-麻粒岩相变质,局部甚至出现超高温变质作用(金巍等,1991Lu and Jin, 1993; 刘福来等,1997李江海,1999Zhao et al., 2005; Dong et al., 2007; Santosh et al., 2009; Li et al., 2011; Guo et al., 2012; Liu et al., 2013; 蔡佳,2014耿元生,2016),同时发生深熔作用,形成不同类型的深熔花岗岩,其中以规模不等但遍布整个孔兹岩带的石榴花岗岩最为典型。贺兰山(贺同兴,1987刘建忠等,1999李正辉等,2013刘金科等,2016)、大青山(宋海峰等,2005马铭株等,2015)、卓资(翟明国等,1996陶继雄和胡凤翔,2002)和凉城(张华锋等,2013张玉清等,2016)等地均有古元古代深熔成因石榴花岗岩的相关报道。近年来的研究发现,集宁地区也出露大面积片麻状石榴花岗岩,与上述石榴花岗岩共同组成了一条沿华北克拉通北缘古元古代造山带东西向展布的过铝质-强过铝质石榴花岗岩带。这些花岗岩普遍具有较高的石榴子石含量(一般>10%),岩石地球化学特征为过铝质-强过铝质的S型花岗岩属性,认为是富铝片麻岩部分熔融作用或深熔作用的产物(翟明国等,1996陶继雄和胡凤翔,2002宋海峰,2005马铭株等,2015张玉清等,2016),该类典型深熔作用产物是正确理解深熔作用特征及机理的钥匙。

翟明国等(1996)陶继雄和胡凤翔(2002)宋海峰等(2005)马铭株等(2015)研究了上述深熔成因石榴花岗岩与空间上的密切共生的富铝片麻岩之间的成因联系。马铭株等(2015)报道的包头市北部哈德门沟石榴花岗岩的成岩年龄和周围石榴黑云片麻岩的变质年龄均为2.45Ga,但贺兰山地区石榴花岗岩的锆石年龄为1958±30Ma(李正辉等,2013)、1922±31Ma(刘金科等,2016),凉城地区弱片麻状含黑云石榴二长花岗岩的锆石年龄为1933±10Ma(张玉清等,2016),意味着华北克拉通北缘古元古代造山带中至少存在着两期深熔成因的石榴花岗岩。石榴花岗岩的深熔作用机理、地球化学特征都需要深入研究。本文通过对集宁地区片麻状石榴花岗岩及其围岩——富铝片麻岩的地质关系、岩相特征、地球化学特征及同位素测年的对比研究,结合前人研究资料,对上述问题进行讨论。

1 区域地质背景

研究区位于华北克拉通西部陆块孔兹岩带(Zhao et al., 2005)东段的集宁地区(图 1a, 1b),区内早前寒武系高级变质杂岩十分发育,主要有麻粒岩组合、孔兹岩系以及变质深成岩。麻粒岩组合由麻粒岩类和退变质作用形成的高级变质片麻岩类组成,被划归到新太古代乌拉山岩群。孔兹岩系可分为下部榴云片麻岩岩组和上部大理岩岩组(图 1c)。榴云片麻岩岩组主要由石榴黑云母片麻岩、夕线石榴黑云母片麻岩和石榴长英质片麻岩组成(以下统称为富铝片麻岩),变质原岩为杂砂岩、粉砂质粘土岩、泥岩夹石英砂岩;大理岩岩组是一套富镁的碳酸盐岩建造,二者被划归到古元古代集宁岩群。变质深成岩有新太古代花岗质片麻岩、古元古代中粒辉长苏长岩和古元古代片麻状石榴花岗岩(图 1b, d)。区内片麻状石榴花岗岩主要分布于河北尚义县周围的巧基庙-薛家洼-后瓦夭沟(图 1d)和集宁市东南侧的侯家沟附近(图 1c),呈NNW或EW向不规则条带出露。另外,在集宁市西北侧的胜利乡-东壕欠一带,也有小规模石榴花岗岩呈不规则层状产于富铝片麻岩中(图 1c)。在河北尚义县西侧的炭窑村附近,片麻状石榴花岗岩呈岩枝状穿入新太古代花岗质片麻岩中;在前沟蝠及苏记村附近,片麻状石榴花岗岩被晚古生代闪长岩、角闪辉长岩和花岗闪长岩侵入(图 1d)。

图 1 孔兹岩带在华北克拉通的分布和构造位置(a, b, 据Zhao et al., 2005略有改动)、察哈尔右翼中旗-集宁地区(c)和东侧的尚义县地区(d)地质简图及采样位置 Fig. 1 Distribution of the Khondalite Belt in the North China Craton (a, b, modified after Zhao et al., 2005), geological maps and sampling locations of the Chahaeryouyizhongqi-Jining area (c) and eastern Shangyi area (d)
2 岩相学特征

这些规模不等的石榴花岗岩体中,普遍散布着粒径0.5~15cm不等的富石榴石残留体(图 2d),除此之外,岩性相对均匀,风化面褐灰色(图 2c),新鲜面灰白色(图 2d),主要由石榴石、斜长石、微斜长石和石英组成,部分岩石中含有少量的夕线石和黑云母,副矿物以磁铁矿和锆石为主,有少量的榍石和磷灰石。石榴石含量10%~15%,多呈不规则他形,部分为半自形粒状。他形石榴石(Gt1)多具筛状变晶结构或包含变晶结构,包含有微粒石英、斜长石、红棕色黑云母和针状、柱状夕线石等包晶(图 2g),为残留矿物相;半自形粒状石榴石(Gt2)仅含少量的石英包晶(图 2f),粒度在0.5~3mm之间,也为残留矿物相,确切地说为转熔矿物相。斜长石呈半自形-自形粒状,多有绢云母化,少量见聚片双晶,为中-更长石,粒度为0.5~1.5mm,含量25%~30%。钾长石主要为钾微斜长石,少量为条纹长石,粒径在0.5~1.5mm之间,含量25%~40%;石英,他形粒状,粒度为0.5~2mm,含量20%~25%。中细粒花岗变晶结构(图 2f),多为片麻状构造,局部为块状构造(图 2d)。岩体的边部,石榴花岗岩多为细粒花岗结构,并在接触界面附近形成规模不等的呈不规则团块产出的灰色富含石榴石、黑云母、夕线石等矿物的残留体,而在接触界面附近的也有大量的细粒含石榴花岗岩呈不规则脉状产出(图 2c),由此显示出二者渐变过渡的特征。

图 2 富铝片麻岩和片麻状石榴花岗岩的岩石学、岩相学特征 (a、b)夕线石榴片麻岩,(b)中长英质条带相对(a)较多;(c)榴云片麻岩与石榴花岗岩接触关系;(d)石榴花岗岩的片麻状构造和块状构造;(e)夕线石榴片麻岩镜下微观特征;(f)石榴花岗岩镜下微观特征;(g)石榴花岗岩中石榴石筛状变晶结构;(h)石榴花岗岩中柱状夕线石周围被石榴石包围.Gt-石榴石;Mems-夕线石和黑云母暗色条带;Fels-石榴长英质矿物条带;Gte-榴云片麻岩;Gta-石榴花岗岩;Re-富石榴子石残留体;Pl-斜长石;Kfs-钾长石;Q-石英;Bt-黑云母;Gt1-富含包体的石榴子石;Gt2-几乎不含包体的石榴子石;Sil-夕线石;Py-条纹长石;Mc-微斜长石;Q1-包体石英,Q2-石英;Mt-析出的铁质物质 Fig. 2 The petrological and petrographical features of the Al-rich gneiss and gneissic garnet granite in studied areas

区内富铝片麻岩以(夕线)石榴黑云片麻岩夹石榴长英片麻岩为特征。(夕线)石榴黑云片麻岩,风化面褐灰色,新鲜面浅灰色-灰色,普遍发育规模不等的含石榴石长英质条带(图 2a, b, Fels),其在岩石中所占的比例为10%~70%不等(图 2a, b),主要由石榴石、条纹长石、斜长石和石英组成,中细粒变晶结构,粒径1~3mm。条带之间为由黑云母、夕线石及长石、石英组成的深灰色条带(图 2a, b, Mems)。石榴石多呈0.5~1cm的变斑晶产出,含量10%~30%不等,筛状变晶结构发育,内含有红棕色黑云母、针状夕线石、石英等包晶;黑云母褐色,细小鳞片状,含量在10%~15%之间;夕线石呈针状或柱状,含量0~10%不等;石英和长石呈细小粒状,在深灰色条带中含量较小,片麻理发育(图 2e)。石榴长英片麻岩主要由石榴石、微斜长石、斜长石和石英及少量的黑云母、夕线石组成。普遍发育含石榴长英质条带,长英质条带为中粗粒变晶结构,条带之间矿物粒度较细,为中细粒变晶结构,其中石英呈条带状定向形成片麻理。

3 样品采集与分析方法 3.1 样品采集

本次工作采集新鲜、未风化且石榴子石含量相对均匀的石榴花岗岩和含石榴长英质条带所占比例较小的富铝片麻岩样品进行分析测试。其中在尚义县巧基庙附近PM045剖面上连续采取7件片麻状石榴花岗岩(b3-1、H9-1、H11-1、H11-2、H11-3、H11-4、H11-5)样品,在乌兰察布市察哈尔右翼中旗南山市采取富铝片麻岩样品(b4-1富铝片麻岩、b7-1石榴黑云母片麻岩、b7-3石榴黑云母片麻岩、b12-1夕线石榴黑云母片麻岩、b12-3夕线石榴黑云母片麻岩)进行全岩分析。对集宁孔兹岩系富铝片麻岩(石榴黑云片麻岩)和片麻状石榴花岗岩进行SHRIMP锆石U-Pb定年,样品编号位置为b7-3(乌兰察布市察哈尔右翼中旗南山:41°11′38″N、112°43′26″E)和H11-1(尚义县:41°03′43.90″N、113°48′13.15″E)。

3.2 分析方法

锆石分选工作在河北省廊坊市区域地质调查所完成,制靶、透射光、阴极发光和反射光图像获取在中国地质科学院地质研究所北京离子探针中心完成,详细制靶流程见文献(宋彪等, 2002)。SHRIMP锆石U-Pb测年在北京离子探针中心SHRIMP Ⅱ二次离子探针质谱仪上完成。根据阴极发光、反射光和透射光图像选择合适的锆石测年区域用高灵敏度二次离子探针对所选的点进行分析。一次流强度为7.5nA,加速电压为10kV,离子束斑直径约为25~30μm。用标准锆石TEMORA(参考年龄为417Ma, Black et al., 2003)进行同位素分馏校正。详细的实验流程和原理参考Williams(1998)宋彪等(2002)。数据处理过程中应用实测204Pb校正锆石中的普通铅。单个数据点的误差均为1σ,因为年龄大于1000Ma,采用年龄为206 Pb/207Pb年龄。

全岩主量和微量元素分析在澳实分析检测(广州)有限公司完成。主量元素分析采用等离子光谱仪定量分析,检测元素范围0.01%~100%;微量元素和稀土元素分析在等离子体质谱仪上完成,首先将待测样品在65℃左右低温干燥24h,之后破碎,经多次手工缩分出300g均匀样品在振动研磨机上研磨至200目以备分析测试。主量元素由荷兰PANalytical生产的Axios仪器利用熔片X-射线荧光光谱法(XRF)测定,并采用等离子光谱和化学法测定进行互相检测,分析精度和准确度优于5%。微量元素和稀土元素采用美国PerkinElmer公司生产的Elan9000型电感耦合等离子质谱仪(ICP-MS)测定,分析精度和准确度优于10%。

4 测试结果 4.1 SHRIMP U-Pb锆石定年

集宁岩群石榴黑云母片麻岩(富铝片麻岩)和古元古代片麻状石榴花岗岩SHRIMP锆石U-Pb测年结果见表 1

表 1 石榴黑云母片麻岩(富铝片麻岩)和片麻状石榴花岗岩锆石SHRIMP U-Pb定年数据 Table 1 SHRIMP U-Pb data of zircons from garnet biotite gneiss(alumina-rich gneiss) and gneissic garnet granite

石榴黑云母片麻岩(富铝片麻岩,b7-3)中的锆石形态以等轴粒状或短柱状为主,锆石颗粒多在100~150μm。阴极发光图像中显示出两种不同类型特征的锆石,一种具有核-边或核-幔-边结构,核部锆石多为浑圆状,少量表现为不规则的锆石碎屑(图 3a, 2.1C),显然为碎屑锆石,其多数具岩浆震荡环带(图 3a, 1.1C, 5.1C),但也有部分为变质锆石;幔部锆石多呈深灰色或灰黑色,环绕核部锆石生长,宽度不一,多为5~30μm;边部锆石呈灰色-浅灰色,略显条纹构造,宽度为2~15μm。另一种为独立的变质增生锆石,无内部结构,呈浑圆状或等轴粒状,整体为深灰-灰黑色。具有岩浆震荡环带的15个核部锆石测试点Th/U值为0.21~1.11,为岩浆成因锆石(Koschek, 1993),其中11个测点年龄在2002~2182Ma之间,其余4个核部锆石U含量较大,为307×10-6~543×10-6,在谐和图上与锆石幔部、边部年龄值重合,可能受到后期变质作用影响。深灰色幔部变质锆石的Th、U含量变化较大,分别为U=410×10-6~1336×10-6、Th=7×10-6~71×10-6、Th/U值为0.01~0.05,表明它们为变质成因,部分锆石具有较高的Th含量及Th/U比值,认为其可能为改造核部锆石导致的。6个位于谐和线上的幔部变质成因锆石的加权平均年龄为1911±10Ma (MSWD=0.74)(图 3b),该年龄不仅反应了一期变质事件,还可以限制富铝片麻岩原岩形成时代的上限。边部变质锆石的Th、U含量分别为22×10-6~60×10-6和658×10-6~1336×10-6,但它们的Th/U值为0.01~0.09,均小于0.1,表明它们均为变质成因锆石,其207Pb/206Pb年龄主要集中在1.85Ga左右,其中4个分布集中且位于谐和线上的加权平均年龄为1839±8Ma (MSWD=0.91)(图 3b)。

图 3 石榴黑云片麻岩典型锆石CL图像特征及207Pb/206Pb表面年龄标注(a)和SHRIMP锆石U-Pb测年谐和图(b) Fig. 3 The CL image of zircon and 207Pb/206Pb apparent age annotations (a) and zircon SHRIMP U-Pb concordia data (b) of typical zircon in the garnet biotite gneiss

片麻状石榴花岗岩(H11-1)中的锆石多数为等轴状,少量呈长柱状。粒度多为70~80μm,少量可达90~110μm。锆石阴极发光图像中大多数只有核-幔结构,少量锆石具核-幔-边结构。核部锆石特征复杂,有震荡环带清晰或模糊的岩浆锆石(图 4a, 1.1C),也有变质锆石,这些核部锆石呈浑圆状(图 4a, 3.1C)或棱角状(图 4a, 1.1C),为碎屑锆石。幔部锆石为灰色,相对均匀(图 4a, 10.1M, 13.1M),呈环带状或半环带状围绕核部碎屑锆石,宽5~35μm,可能为变质重结晶锆石(简平,2001),边部锆石为狭窄的灰黑色边(图 4a)。阴极发光图像特征显示,10个核部锆石测试点均为岩浆碎屑锆石,其中9个U和Th含量变化较大,分别为72×10-6~713×10-6和48×10-6~428×10-6,Th/U比值为0.31~1.32,均大于0.1,认为是原为岩浆成因的碎屑锆石(Koschek, 1993),其中有7个测点落在谐和线上(图 4b),207Pb/206Pb年龄在1991~2164Ma之间,其余2个点与边部重结晶锆石点重叠,可能遭受到后期构造热事件的影响。此外,还有一个锆石的阴极发光图像特征显示其为岩浆成因锆石,但Th/U比值则为0.09,在谐和图上(图 4b, 2.1C)表现出明显的铅丢失,认为其可能遭受到后期变质深熔作用的影响。9个锆石幔部测试点的U和Th含量分别为131×10-6~655×10-6和34×10-6~549×10-6,Th/U比值较高,为0.25~0.61,个别为0.83~1.32,与核部岩浆锆石差异不大,反映了变质重结晶锆石的特征(简平,2001吴元保等,2002),幔部测试点的207Pb/206Pb年龄为1888~1973Ma,其中7个测试点有严重的铅丢失,另外2个测试点落在谐和曲线上,加权平均年龄为1919±17Ma (MSWD=0.38)(图 4b),可能代表变质重结晶年龄。值得一提的是,一些幔部锆石(13.1M)具有不清楚的环带结构,具有一定的岩浆锆石的外形,Th/U比值比通常的角闪岩相变质锆石(其Th/U比值通常小于0.1)更高一些(Th/U比值为0.25),这是深熔锆石的特征,也与岩石成因相吻合(Wan et al., 2009; Dong et al., 2017)。部分锆石边部灰黑色窄边有可能是深熔作用形成的,由于变质边太窄,故未获得相关年龄数据。

图 4 片麻状石榴花岗岩锆石阴极发光图像及典型锆石207Pb/206Pb表面年龄标注(a)和SHRIMP锆石U-Pb年龄谐和图(b) C-核部碎屑锆石;M-幔部变质重结晶锆石 Fig. 4 The CL image of zircon and 207Pb/206Pb apparent age annotations (a) and SHRIMP U-Pb concordia data (b) of typical zircon in the gneissic garnet granite C-detrital zircon in department of nuclear; M-metamorphic recrystallized zircon
4.2 全岩分析

片麻状石榴花岗岩和区内富铝片麻岩全岩分析结果见表 2表 3。片麻状石榴花岗岩SiO2含量为73.30%~79.27%,与富铝片麻岩酸性端元相当(富铝片麻岩含量为62.23%~66.20%),Al2O3、FeOT和MgO含量分别为10.37%~15.05%(富铝片麻岩酸性端元为15.90%~18.79%,基性端元为20.30%~23.10%)、0.65%~4.47%(富铝片麻岩酸性端元为3.05%~6.61%,基性端元为8.39%~10.28%)和0.10%~1.45%(富铝片麻岩酸性端元为1.16%~2.65%,基性端元为0.71%~3.28%),Hark图解中片麻状石榴花岗岩Al2O3、FeOT和MgO含量相对富铝片麻岩的酸性端元富集(图 5)。片麻状石榴花岗岩MnO、Na2O、CaO和P2O5含量分别为:0.01%~0.07%(富铝片麻岩酸性端元为0.04%~0.14%,基性端元为0.03%~0.13%)、1.84%~3.62%(富铝片麻岩酸性端元为0.09%~2.02%,基性端元为0.58%~1.24%)、0.76%~3.13%(富铝片麻岩酸性端元为0.07%~0.71%,基性端元为0.05%~0.78%)和0.02%~0.10%(富铝片麻岩酸性端元为0.05%~0.14%,基性端元为0.00%~0.07%),Hark图解中片麻状石榴花岗岩MnO、Na2O、CaO和P2O5含量较富铝片麻岩的酸性端元相对亏损,较其基性端元相对富集(图 5)。K2O和TiO2含量变化较大分别为0.76%~6.68%(富铝片麻岩为2.50%~6.94%)和0.01%~0.56%(富铝片麻岩为0.46%~0.93%)。片麻状石榴花岗岩有相对富钙、富钠等特点,除个别样品之外,K2O/Na2O比值都大于1,为钾质花岗岩;K2O+Na2O总量为3.87%~9.26%(富铝片麻岩:3.74%~8.8%),在硅碱图中基本落入亚碱性系列范围内(图 6a),铝饱和指数A/CNK=1.10~1.62,A/NK-A/CNK图解显示其为强过铝质岩石(图 6b),表明其具有“S型花岗岩”的属性。

表 2 片麻状石榴花岗岩主量(wt%)和微量(×10-6)元素 Table 2 The relevant parameters of major elements (wt%) and trace elements (×10-6) in gneissic garnet granite

表 3 集宁群富铝片麻岩主量(wt%)和微量(×10-6)元素 Table 3 The relevant parameters of major elements (wt%) and trace elements (×10-6) in alumina-rich gneiss of Jining Group

① 山西省地质调查研究院.2014.大同幅1:25万区域地质调查报告

图 5 片麻状石榴花岗岩与区内集宁群富铝片麻岩Hark图解 富铝片麻岩酸性端元数据吴家富(2010)侯克斌(2013) Fig. 5 The Hark diagrams of gneissic garnet granite and Jining Group alumina-rich gneiss Data of the basic end member of the alumina-rich gneisses are from Wu (2010) and Hou (2013)

图 6 片麻状石榴花岗岩的(K2O+Na2O)-SiO2图解(a)和A/CNK-A/NK图解(b) Fig. 6 The diagram of K2O+Na2O vs. SiO2 (a) and A/CNK vs. A/NK (b) of the gneissic garnet granite

片麻状石榴花岗岩和区内富铝片麻岩稀土元素分布模式相似,均具有轻稀土富集、重稀土亏损的特征,(La/Yb)N=8.67~38.8(富铝片麻岩(La/Yb)N=7.76~13.8),(Gd/Yb)N=0.55~1.76 (富铝片麻岩:(Gd/Yb)N=1.38~2.18),表现为十分明显的右倾型稀土元素配分曲线(图 7a)。但二者仍存在一定差异性,片麻状石榴花岗岩稀土元素总量变化较大,∑REE=31.35×10-6 ~226.0×10-6(富铝片麻岩∑REE=182.2×10-6~300.0×10-6)。根据铕元素异常特征可将其稀土分配模式分为铕富集型和铕平坦型,铕平坦型样品较少(H11-3、H11-1),δEu=0.73~1.05,其稀土总量较大,∑REE=168.6×10-6~226.0×10-6;铕富集型样品较多(H11-2、b3-1、H9-1、H11-4、H11-5),表现为十分明显的铕正异常,δEu=1.57~7.72,稀土总量∑REE=31.35×10-6~154.1×10-6,相对铕平坦型变小。在原始地幔标准化微量元素蛛网图中,片麻状石榴花岗岩微量元素含量相对减少,与区内富铝片麻岩均富集极其活跃的低场强大离子亲石元素K和Rb,亏损高场强元素Nb、Ta、P、Ti等;同时二者仍存在一定差异性,片麻状石榴花岗岩相对富集低场强大离子亲石元素Ba(富铝片麻岩相对亏损Ba元素),亏损生热元素Cs和高场强元素Th(富铝片麻岩相对富集Cs和Th元素)(图 7b)。

图 7 富铝片麻岩(阴影区域)和片麻状石榴花岗球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDough, 1989) Fig. 7 The chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams (b) in gneissic garnet granite and alumina-rich gneiss (normalization values after Sun and McDonough, 1989)
5 讨论 5.1 深熔作用和变质作用

深熔作用是壳源花岗岩形成的重要方式,一般深熔花岗岩均具有强过铝质S型花岗岩属性(马铭株等,2015)。集宁强过铝质石榴花岗岩的研究为S型壳源花岗岩形成过程提供了典型实例。野外观察发现富铝片麻岩与石榴花岗岩渐变过渡,密切共生,过渡带上的深熔富铝片麻岩(以下简称深熔富铝片麻岩)中长英质浅色条带明显比远离过渡带的富铝片麻岩多(图 2a, b),部分深熔富铝片麻岩与石榴花岗岩界线清楚,界线附近有明显的石榴石残留体(图 2c),石榴花岗岩中存在富铝片麻岩的包体,均说明石榴花岗岩的深熔成因,并且残留体与岩浆未发生完全分离,说明石榴花岗岩具有原地-半原地性质,岩浆未远离物源区。以往的研究认为随着深熔程度的加深,浅色体和石榴石越来越多,岩石塑性越来越强(McKenzie, 1978; Sawyer, 2001),石榴花岗岩深熔程度不同导致岩石塑性不同,形成区内石榴花岗岩的块状构造和片麻状构造(图 2d)。其中块状构造的石榴花岗岩浅色体与石榴石含量相对较高,可能代表其深熔程度较高,塑性相对较强。当浅色体到达一定比例后,整个体系(岩浆+残余物)可整体发生运移,并导致岩浆与残余物之间的分离和不同岩浆的相互混合。这一过程在应力存在的情况下更易发生(刘正宏等,2008; Labrousse et al., 2011)。从富铝片麻岩、深熔富铝片麻岩以及石榴花岗岩均说明石榴花岗岩小规模的深熔岩浆通过不断聚集,形成更大规模的岩浆,残留的富铝片麻岩包体越来越少,石榴石花岗岩组成变的相对均匀,形成具有岩浆岩的外貌特征的深熔花岗岩。

石榴花岗岩及富铝片麻岩的锆石特征进一步支持我们对其变质深熔成因的认识。微区锆石U-Pb定年技术目前已经十分成熟,前人对不同岩石类型中不同成因锆石的形态、内部结构、Th/U比值等都进行过研究和总结(Rubatto et al., 1999; Möller et al., 2002; Rubatto, 2002; Hoskin and Schaltegger, 2003; Geisler et al., 2007; Zhao et al., 2015; Dong et al., 2017),这为我们了解锆石成因和锆石U-Pb年代学所代表的实际地质意义提供了便利。本区富铝片麻岩(石榴黑云片麻岩样品b7-3)样品中的锆石普遍具有核-幔-边结构,从锆石的幔部-边部以及其他具有变质成因特征的锆石获得两组变质年龄为1910±10Ma(MSWD=0.74)和1839±13Ma(MSWD=3.7),认为它们代表区内富铝片麻岩不同时期变质作用的时代。片麻状石榴花岗岩(H11-1)样品中的锆石普遍发育核-幔结构,部分锆石发育核-幔-边结构,谐和线上2个幔部重结晶锆石测试点加权平均年龄为1919±17Ma(MSWD=0.38),认为其指示片麻状石榴花岗岩变质重结晶年龄。区域内也发表过大量类似的年代成果,集宁地区超高温麻粒岩的孔兹岩围岩中发现了尖晶石和石英的超高温组合,认为这些围岩经历了超高温变质作用,获得的变质年龄为1.92Ga (Santosh et al., 2006);孔兹岩带东段的土贵乌拉、林格尔以及中段大青山-乌拉山等地区识别出变质温度可达950℃以上具有逆时针P-T-t轨迹的超高温变质岩,其变质时代为1.92~1.93Ga (Santosh et al., 2007a, b)。结合区域内孔兹岩系中普遍存在的1.91~1.93Ga (郭敬辉等,2001Santosh et al., 2006, 2007a, b, 2009Wan et al., 2009; 徐仲元等,2013蔡佳等,2014马铭株等,2015)超高温变质作用年龄,进一步认为在1910~1930Ma期间,研究区内至少经历了一期强烈的构造热事件,本次测得富铝片麻岩(石榴黑云片麻岩样品b7-3)中1910±10Ma变质作用年龄与片麻状石榴花岗岩中1919±17Ma变质重结晶年龄均可以指示该期构造热事件。石榴花岗岩中锆石的阴极发光图像显示部分变质重结晶成因锆石外侧仍存在很窄的灰黑色变质增生边,认为可能是深熔成因锆石,但由于其宽度太窄,故未能取得年龄数据,深熔锆石的形态特征也说明深熔的岩石体系可能相对较干。结合二者岩石学、岩相学以及地球化学特征对比研究认为石榴花岗岩变质深熔年龄应该与变质重结晶年龄相差不大,综合本文在富铝片麻岩中得到1910±10Ma的变质年龄,认为石榴花岗岩深熔作用发生时间可能在1910~1919Ma期间;富铝片麻岩(样品b7-3)中获得的1839±13Ma变质作用年龄可能指示后一期构造事件。孔兹岩带中许多岩石都记录了1.82~1.95Ga变质锆石年龄(Wan et al., 2006, 2009, 2013; Dong et al., 2007, 2013; Liu et al., 2013)。二者核部碎屑锆石特征十分类似,年龄分别集中在2002~2182Ma和1991~2164Ma之间,进一步证实了上述结论。

上述年代学研究结果确认区内片麻状石榴花岗岩的形成与周围富铝片麻岩的早期变质作用均为同一期构造热事件的产物,并且二者具有密切的成因联系。因此区内富铝片麻岩变质作用演化对片麻状石榴花岗岩深熔作用研究具有一定的指导意义。目前,对贺兰山、乌拉山、大青山以及集宁等地区富铝片麻岩变质作用演化的研究将其划分为进变质阶段(M1)、峰期阶段(M2)、峰期后等温降压阶段(M3)和退变质阶段(M4)(图 8)(卢良兆等,1992吴新伟,2007; Yin et al., 2010, 2011; Wang et al., 2011; Cai et al., 2014; 蔡佳等, 2014)。区内片麻状石榴花岗岩的岩相学研究发现,其中的石榴石普遍具有筛状变晶结构和包含变晶结构,部分石榴子石核部所含的包裹体具有进变质阶段(M1)典型的矿物组合:Bt+Gt+Pl+Qtz±Py,表现为微粒鳞片状黑云母、半自形斜长石和他形石英等;从核部到边部包体粒径有明显增大趋势,而且石榴子石边部出现针状夕线石、红棕色黑云母、细粒自形斜长石和石英等包体,与峰期阶段(M2)的典型矿物组合Gt+Sil+Bt+Pl+Qtz±Py相对应,这意味着在深熔作用发生前片麻状石榴花岗岩的源岩也经历了变质作用演化的进变质阶段(M1)和峰期变质作用阶段(M2)。但与石榴石花岗岩密切共生的富铝片麻岩相比,片麻状石榴花岗岩中缺失柱状夕线石和堇青石,暗示着深熔作用可能发生在峰期阶段(M2)-峰期后等温降压阶段(M3)。富铝片麻岩中发育程度不等的含石榴长英质条带及条带之间发育的与之平行的柱状夕线石可能代表了早期深熔作用的产物和同期的夕线石的生长,而与之相邻的小型石榴花岗岩体中则缺乏柱状夕线石,这意味着大规模的深熔作用可能主要发生在峰期后等温降压阶段(M3),这样,深熔作用的发生也标志着华北克拉通古元古代晚期构造体制从挤压向伸展转换(马铭株等,2015)。

图 8 集宁孔兹岩系富铝片麻岩P-T-t演化轨迹 1-集宁富铝片麻岩(Wang et al., 2011); 2-集宁三岔口夕线堇青石榴二长片麻岩(Cai et al., 2014); 3-大青山富铝片麻岩(吴新伟等, 2007); 4-大青山-乌拉山变质杂岩(Yin et al., 2011); 5-贺兰山高压泥质麻粒岩(Yin et al., 2010). M1: Bt+Gt+Pl+Qtz±Ky; M2: Gt+Sil+Py+Qtz+Bt; M3: Gt+Grd+Bt+Qtz+Pl+Kfs±Bt; M4: Gt+Sil+Grd+Kfs+Bt+Ms. Gt-石榴子石; Bt-黑云母; Sil-夕线石; Pl-斜长石;Qtz-石英; Py-条纹长石; Grd-堇青石; Ms-白云母 Fig. 8 Metamorphic P-T-t paths of the alumina-rich gneiss in the Jining Khondalite Belt

通过对岩相学研究发现,从富铝片麻岩、深熔富铝片麻岩到石榴花岗岩伴随着黑云母减少,伴随着矿物颗粒的变大,石榴子石分为残留矿物相和转熔矿物相两种。石榴石花岗岩中的深棕色黑云母无解理,呈不规则残蚀状,石榴子石包裹深棕色黑云母、石英和斜长石,具有明显的深熔残晶相矿物特征。石榴花岗岩中大部分石榴石的包裹体特征与富铝片麻岩基本相同,说明石榴花岗岩中的石榴石在深熔作用发生时应为残留矿物相,同时短柱状夕线石周围存在长英质熔融体以及不含筛状变晶和包含变晶结构的石榴石,认为该类石榴石有可能是由黑云母和夕线石等矿物发生转熔反应:Sil+Bt+Qtz±Pl→Grt+Kfs+Melt (Patiño Douce and Johnston, 1991)形成,石榴花岗岩中钾长石含量增多也刚好验证这一点。因此,片麻状石榴花岗岩的矿物构成则不仅仅是岩浆结晶的矿物相,其中还包含了大量的残留矿物相。岩相学特征研究也显示出深熔作用过程中残留矿物相和残留体为未完全分离的状态,区内的石榴花岗岩体中含有大量规模不等的富石榴石残留体反映发生了初步的残留矿物相与熔体的脱离,均表明深熔作用形成的熔融体运移距离不远。结合与区内富铝片麻岩密切共生这一事实可以认定,区内片麻状石榴花岗岩属于原地-半原地深熔花岗岩。

5.2 地球化学特征及其含义

对比片麻状石榴花岗岩与集宁群富铝片麻岩的地球化学特征可以发现,尽管二者在空间上密切共生,石榴花岗岩也继承了富铝片麻岩的部分地球化学特征,但仍明显具备其自身的特色,主要表现为:(1)片麻状石榴花岗岩的SiO2含量集中在71.53%~79.23%之间,仅相当于富铝片麻岩的酸性端元,但Al2O3、FeOT和MgO含量却相对酸性端元富集,Na2O和P2O5含量相对亏损,MnO含量甚至低于基性端元,K2O含量相对酸性端元可分为富集和亏损两部分,TiO2含量从与酸性端元相同至亏损(图 6),主量元素含量的这种变化不仅反映了深熔过程中化学成分的重新调整,进一步分析的话,发生深熔作用的源岩可能以富铝片麻岩的酸性端元为主,有部分基性端元的参与。(2)在微量元素蛛网图中(图 7b),片麻状石榴花岗岩的配分曲线与富铝片麻岩相近,但不同的是,大多数微量元素含量低于富铝片麻岩,并且,大离子亲石元素Cs和生热元素U、Th明显亏损,Sr相对富集;就片麻状石榴花岗岩的配分曲线本身而言,相对富集大离子亲石元素K、Rb、Ba,暗示在深熔过程中它们优先进入熔体相,可能有少量流体存在,高场强元素Nb、Ta、P、Ti的亏损程度更大,这些差异均暗示微量元素在深熔过程中进行了重新分配,且分配不均匀,生热元素亏损进一步说明岩石的深熔成因。(3)片麻状石榴花岗岩的稀土元素配分模式与富铝片麻岩也比较相似,二者稀土总量平均值分别为119.1×10-6和247.3×10-6,相对富铝片麻岩稀土总量平均值,石榴花岗岩稀土总量平均值相对减少51.85%,这与岩相学研究中表明片麻状石榴花岗岩中石榴子石含量相对减少一致。所采集的石榴花岗岩中除2个样品(H11-1和H11-3)的Eu/Eu*值分别为0.73和1.05而被划分为铕平坦型外,多数样品的Eu/Eu*值达到1.57~7.72(表 4),为铕富集型,其中铕平坦型样品相对更接近富铝片麻岩的稀土元素分布形式(图 7a),稀土总量也与之相近,岩相学研究发现石榴子石含量也与富铝片麻岩更为相近,暗示他们在物质组成上的继承关系。研究表明:铕异常通常与样品中斜长石、石榴子石含量密切相关(Hidaka et al., 2002),相对于铕富集型样品,铕平坦型样品CaO和CaO+Na2O含量相对较低,FeOT、MgO、Nb、Ta、Zr、Hf、U、Th含量相对较高,较低的Sr含量(表 4),这些都暗示铕平坦型样品相对铕富集型样品含有较高的石榴子石和较低的斜长石含量;铕富集型样品稀土总量普遍偏低,有些样品的稀土总量甚至比铕平坦型低4~6倍(表 4),但总体分布趋势大致相同,暗示斜长石含量相对较高和石榴子石含量相对较少,进一步说明在结晶过程中已发生石榴石等残留矿物(陆壳岩石稀土元素含量主要制约因素之一)和新生浅色熔体的初步分离。值得一提的是H11-4样品具有重稀土配分曲线上扬的特征,岩相学研究发现其石榴子石含量不多,岩石主要由石英长石组成,Zr元素含量并不高,但Eu/Eu*值达到7.72,认为可能是与元素局部迁移、分异和聚集有关(马铭株等,2015王晓先等,2016),值得未来进一步的探讨研究。陆壳物质发生部分熔融时,由于锆石、磷灰石等富稀土的副矿物难熔而残余,使得深熔产物的稀土降低(Gordon et al., 2013),本文石榴花岗岩地球化学特征中明显亏损Zr和P,其中Zr含量与副矿物锆石有关,H11-1和H11-3两个Eu平坦型样品Zr含量与富铝片麻岩相近,而其他富集型样品相对亏损(图 7a);P的含量与副矿物磷灰石关系密切,石榴花岗岩样品中P含量相对富铝片麻岩亏损,说明磷灰石含量相对较少(图 7b),暗示石榴花岗岩稀土元素特征可能是受锆石和磷灰石等难熔副矿物残余影响。以往研究表明主量元素的迁出或加入也会引起“浓缩”或“稀释”效应,可能导致不活动微量元素出现表观富集或表观亏损现象被称作石英的稀释效应(Campbell et al., 1984)。本文研究深熔石榴花岗岩相对富铝片麻岩的SiO2增量(小于15%)远小于REE的减量(51.85%),认为可能是石英的稀释效应与原岩中锆石、磷灰石等副矿物的残余共同作用引起石榴花岗岩这种稀土元素总量骤减的特征(Van Dongen et al., 2010)。

表 4 片麻状石榴花岗岩Eu平坦型和Eu富集型地球化学特征对比表 Table 4 Comparison of geochemical characteristics of Eu flat type and Eu enrichment type of gneissic garnet granite

总体上,区内片麻状花岗岩的地球化学特征表现是,主量和微量元素含量分布极不均匀;大离子亲石元素Cs和生热元素U、Th亏损明显,Sr相对富集;高场强元素Nb、Ta、P、Ti的明显亏损;稀土元素总量明显低于源岩,但出现明显的铕富集,并形成铕富集型、铕平坦型和铕亏损型共存的稀土配分曲线,这种以铕富集型为主、既铕平坦型和铕亏损型共存的稀土配分曲线不仅是区内石榴花岗岩的主要特征,包头北部的哈德门沟石榴花岗岩也是如此的表现(宋海峰等,2005马铭株等,2015),似乎是原地-半原地深熔花岗岩的主要地球化学标志。这种深熔花岗岩的地球化学特征既有一定的继承性,又有其变异性,前者与源岩相关,后者则与深熔作用及之后的熔体汇聚和流动有关,这正是这种熔体和残留体未完全脱离的原地-半原地深熔花岗岩的地球化学特征。

5.3 大地构造背景及其地质意义

强过铝质S型花岗岩的形成与大陆碰撞造山作用密切相关,近年来引起众多学者的重视(Collins and Richards, 2008黄静宁等,2011谈生祥等,2011Clemens and Stevens, 2012朱越等,2015)。本区片麻状石榴花岗岩与集宁群孔兹岩系(富铝片麻岩)在时间、分布空间和成因上都存在密切关系,因此,区域上孔兹岩系变质年代学的研究对片麻状石榴花岗岩形成时代具有限定意义。作为华北克拉通北缘一条重要的构造带,孔兹岩系被认为是阴山陆块和鄂尔多斯陆块在古元古代碰撞拼合的产物(Kusky et al., 2001, 2007; Kusky and Li, 2003; Zhao et al., 2003, 2005, 2011; Santosh et al., 2007a, 2012, 2013; Kusky, 2011)。近年来,大量的同位素年代学和变质作用的研究表明其碰撞时间为1.95Ga(Zhao et al., 2003, 2012a王惠初等,2005Wan et al., 2006赵国春等,2009),从西到东给出的变质年龄也大多都为1.95Ga(郭敬辉, 2001王惠初等,2005Wan et al., 2006赵国春,2009周喜文和耿元生,2009周喜文等,2010徐仲元,2011Dong et al., 2013),但是唯独到了集宁孔兹岩就广泛存在1.91~1.93Ga变质年龄(Santosh et al., 2006, 2007a, b周喜文和耿元生,2009蔡佳等,2014马铭株,2015)。前人研究认为其原因为后期强烈的构造热事件改造的结果(周喜文和耿元生,2009)。区域上基性岩墙分布广泛(张臣等,1992胡俊良,2007),以往研究认为基性岩墙是地壳伸展背景下来自地幔的基性岩浆的侵入体,是岩石圈(或地壳)伸展的重要标志(马芳等,2000胡俊良,2007Liu et al., 2014朱越等,2015)。集宁三岔口苏长辉长岩岩墙形成于1.92~1.96Ga之间(Peng et al., 2010),西沟苏长辉长岩侵位年龄大于1.90Ga(徐仲元,未发表数据),均发育在区内片麻状石榴花岗岩体的附近。因此,笔者认为在1.95~1.91Ga期间,研究区处于碰撞后伸展的构造环境,伸展背景下基性岩浆底侵导致区内发生强烈高温变质作用,局部达到超高温变质作用,导致富铝片麻岩变质并部分发生深熔,形成区内石榴花岗岩。

深熔作用可以导致俯冲板片与流变下地壳的解耦和深部地壳的抬升,影响造山带的演化。宋述光(2015)按力学演化机制将造山带演化划分为大陆碰撞/俯冲、折返、去根/垮塌等3个阶段。近年来,对贺兰山(李正辉等,2013刘金科等,2016)、大青山(宋海峰等,2005马铭株等,2015)、卓资(翟明国,1996陶继雄,2002)和凉城(张华锋等,2013张玉清等,2016)等地1900~1920Ma的强过铝质壳源深熔花岗岩的研究认为其反映了该时代构造体制由碰撞挤压向伸展转变,本文对集宁深熔花岗岩以及周围广泛出露的基性岩墙的研究进一步支持上述观点。研究表明,深熔作用在造山带的各个阶段均可发生:(1)大陆碰撞/俯冲的超高压地体折返阶段的深熔作用一般伴随着同碰撞火山岩岩浆系列、同碰撞型埃达克岩以及TTG等(Mo et al., 2008; Whitney et al., 2009; Dai et al., 2011, 2012; Zhao et al., 2011, 2012b; Yang et al., 2012a, b; Zhang et al., 2012; Niu et al., 2013; Song et al., 2014; );(2)板片断离阶段,加厚地壳减压深熔形成混合岩中的过铝质淡色花岗岩脉体,具有多期次、小规模等特点(Davies and von Blanckenburg, 1995; Harrison et al., 1997; Ding et al., 2001; Searle et al., 2003; Rubatto et al., 2013; Zhang et al., 2014);(3)造山带的去根(unrooting)阶段发生深熔作用主要表现为岩石圈加厚,矿物相变及流变学特征发生变化,去根导致局部构造环境由挤压向伸展的转变, 并伴随着幔源岩浆的底侵,宏观表现为同时期出现大规模幔源基性岩墙(McKenzie, 1978; Bird, 1979; Houseman et al., 1981; Marotta et al., 1998; Wang et al., 2014, 2015)。综上所述,认为集宁深熔石榴花岗岩形成于造山带碰撞后的去根阶段,结合贺兰山、大青山、卓资、凉城等地同时期的深熔花岗岩从挤压到伸展的构造环境,以及以往的研究成果我们认为:1.96~1.92Ga阴山陆块与鄂尔多斯陆块发生碰撞和地壳折返,形成区内孔兹岩系,并遭受高压麻粒岩相变质作用(卢良兆等,1992Zhao et al., 2003, 2005, 2010; Zhao, 2009; Yin, 2010; Yin et al., 2011; Wang et al., 2011; Wan et al., 2013; Cai et al., 2014; 蔡佳等, 2014; 沈其韩等, 2016);1.92~1.90Ga期间经历了造山演化过程中碰撞后的去根阶段,大规模的幔源岩浆上涌,同时形成与孔兹岩系密切共生的壳源深熔花岗岩,可能标志着陆块间的俯冲碰撞的结束,说明在~1.90Ga西部陆块可能已经形成统一整体(Zhao et al., 2003, 2005, 2010; Zhao, 2009; 沈其韩等, 2016)。本次测得石榴黑云片麻岩(富铝片麻岩)1839±13Ma变质年龄,结合区域内以往1.83~1.85Ga变质年龄研究成果(吴昌华等,1997郭敬辉等,2001Wan et al., 2009; Dong et al., 2013; 范志伟,2013徐仲元等,2013)和目前普遍认为的华北地台1.85Ga东部地块与西部地块碰撞造山年龄(Zhai et al., 2000; Zhao et al., 2003, 2005, 2010; Xia et al., 2006; Faure et al., 2007; Zhao, 2009),认为该变质年龄可能与东部陆块和西陆块碰撞造山有关。

6 结论

(1) 在集宁岩群富铝片麻岩中获得1910±10 Ma和1839±13 Ma两组变质年龄;在片麻状石榴花岗岩中获得1919±17 Ma变质锆石年龄,并且从石榴石包裹体中识别出与富铝片麻岩相对应的进变质阶段(M1)和峰期阶段(M2)的矿物组合。由此确认集宁岩群的变质作用和形成石榴花岗岩的深熔作用是同一期构造热事件的产物,并通过对二者中变质作用演化及特征变质矿物的对比认定深熔作用主要发生在峰期后等温降压阶段(M3),而石榴花岗岩中的石榴石则为深熔作用过程中的残留矿物相或转熔矿物相。

(2) 根据片麻状石榴花岗岩含有大量石榴石残留矿物相和富石榴石残留体,结合其与富铝片麻岩密切的空间关系,认为区内的片麻状石榴花岗岩属于原地-半原地深熔花岗岩。具有其自身特色性的岩石学和地球化学特征,表现为:①岩石中残留矿物相和结晶矿物相共存,矿物组成和含量变化大;②主量和微量元素含量分布极不均匀,微量元素含量普遍低于源岩;③大离子亲石元素Cs和生热元素U、Th亏损明显,Sr相对富集;④出现明显的铕富集,并产生铕富集型、铕平坦型和铕亏损型共存的稀土配分曲线,这可能是原地-半原地深熔花岗岩的主要地球化学特征。

(3) 依据区内片麻状石榴花岗岩围绕同时期侵位的三岔口苏长辉长岩岩墙和西沟苏长辉长岩岩株分布这一事实和深熔作用发生在等温降压阶段的认识,结合区域资料分析,认为深熔作用与碰撞后伸展构造背景下基性岩浆底侵事件有关,可能发生在造山带演化的去根阶段。

致谢      感谢北京离子探针中心万渝生研究员和董春艳副研究员在SHRIMP锆石U-Pb测年过程中提供的帮助。感谢万渝生研究员、刘俊来教授以及匿名审稿人对本文提出的宝贵意见。

参考文献
Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research:Solid Earth, 84(B13): 7561-7571. DOI:10.1029/JB084iB13p07561
Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ and Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology a critical appraisal of four zircon standards. Chemical Geology, 200(1-2): 171-188. DOI:10.1016/S0009-2541(03)00166-9
Brown M. 1994. Crustal anatexis and ascent of felsic magmas. Lithos, 32(1-2): 109-110. DOI:10.1016/0024-4937(94)90024-8
Brown M and Dallmeyer RD. 1996. Rapid Variscan exhumation and the role of magma in core complex formation:Southern Brittany metamorphic belt, France. Journal of Metamorphic Geology, 14(3): 361-379. DOI:10.1111/jmg.1996.14.issue-3
Brown M and Pressley RA. 1999. Crustal melting in nature:Prosecuting source processes. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 24(3): 305-316. DOI:10.1016/S1464-1895(99)00034-4
Brown M. 2004. The mechanism of melt extraction from lower continental crust of orogens. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 35-48. DOI:10.1017/S0263593300000900
Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens:Mechanisms and consequences. Journal of the Geological Society, 164(4): 709-730. DOI:10.1144/0016-76492006-171
Brown M, Schulmann K and White RW. 2011. Granulites, partial melting and the rheology of the lower crust. Journal of Metamorphic Geology, 29(1): 1-6. DOI:10.1111/jmg.2010.29.issue-1
Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161-184. DOI:10.1016/j.precamres.2013.11.012
Cai J, Liu FL, Liu PH and Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou, Jining area, Inner Mongolia. Acta Petrologica Sinica, 30(2): 472-490.
Campbell IH, Lesher CM, Coad P, Franklin JM, Gorton MP and Thurston PC. 1984. Rare-earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits. Chemical Geology, 45(3-4): 181-202. DOI:10.1016/0009-2541(84)90036-6
Cheng YQ, Yang CH, Wan YS, Liu ZX, Zhang XP, Du LL, Zhang SG, Wu JS and Gao JF. 2004. Early Precambrian Geological Characters and Anatectic Reconstruction of Crust in North Part of Middle Taihang Mountain. Beijing: Geological Publishing House: 191-192.
Clemens JD and Stevens G. 2012. What controls chemical variation in granitic magmas?. Lithos, 134-135: 317-329. DOI:10.1016/j.lithos.2012.01.001
Collins WJ and Richards SW. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559-562. DOI:10.1130/G24658A.1
Dai LQ, Zhao ZF, Zheng YF, Li QL, Yang YH and Dai MN. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth and Planetary Science Letters, 308(1-2): 229-244. DOI:10.1016/j.epsl.2011.06.001
Dai LQ, Zhao ZF, Zheng YF and Zhang J. 2012. The nature of orogenic lithospheric mantle:Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chemical Geology, 334: 99-121. DOI:10.1016/j.chemgeo.2012.10.009
Davies JH and von Blanckenburg F. 1995. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. DOI:10.1016/0012-821X(94)00237-S
Ding L, Zhong DL, Yin A, Kapp P and Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438. DOI:10.1016/S0012-821X(01)00463-0
Dong CY, Liu DY, Li JJ, Wan YS, Zhou HY, Li CD, Yang YH and Xie LW. 2007. Palaeoproterozoic Khondalite belt in the western North China Craton:New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984-2994. DOI:10.1007/s11434-007-0404-9
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125. DOI:10.1007/s11430-012-4459-3
Dong CY, Xie HQ, Kröner A, Wang SJ, Liu SJ, Xie SW, Song ZY, Ma MZ, Liu DY and Wan YS. 2017. The complexities of zircon crystllazition and overprinting during metamorphism and anatexis:An example from the Late Archean TTG terrane of western Shandong Province, China. Precambrian Research, 300: 181-200. DOI:10.1016/j.precamres.2017.07.034
Fan ZW. 2013. Composition, geochemical and chronological characteristics of the pre-khondalite series in Jining, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University, 10-11 (in Chinese)
Faure M, Trap P, Lin W, Monié P and Bruguier O. 2007. Polyorogenic evolution of the paleoproterozoic trans-North China belt:New insights the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 30(2): 95-106.
Geisler T, Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43-50. DOI:10.2113/gselements.3.1.43
Geng YS, Shen QH, Du LL and Song HX. 2016. Regional metamorphism and continental growth and assembly in China. Acta Petrologica Sinica, 32(9): 2579-2608.
Gordon SM, Whitney DL, Teyssier C and Fossen H. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway:Significance for history of partial melting in continental subduction. Lithos, 170-171: 35-53. DOI:10.1016/j.lithos.2013.02.003
Guo JH, Wang SS, Sang HQ and Zhai MG. 2001. 40Ar-39Ar age spectra of garnet Porphyroblast:Implications for metamorphic age of high-pressure granulite in the North China craton. Acta Petrologica Sinica, 17(3): 436-442.
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. Sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142. DOI:10.1016/j.precamres.2011.07.020
Harrison TM, Lovera OM and Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25(10): 899-902. DOI:10.1130/0091-7613(1997)025<0899:NIITOO>2.3.CO;2
He TX. 1987. Geological classification of migmatization. Acta Geoscientica Sinica, 9(2): 95-98.
Hidaka H, Shimizu H and Adachi M. 2002. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan:Evidence for an Archean provenance. Chemical Geology, 187(3-4): 279-29. DOI:10.1016/S0009-2541(02)00058-X
Hollister LS. 1993. The role of melt in the uplift and exhumation of orogenic belts. Chemical Geology, 108(1-4): 31-48. DOI:10.1016/0009-2541(93)90316-B
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. DOI:10.2113/0530027
Hou KB, Wu JF, Ma C and Huang J. 2013. Petrological features of metamorphic rocks in the khondalite series of the Jining rock group and the sedimentary environment analysis. Geology of Anhui, 23(1): 7-12.
Houseman GA, McKenzie DP and Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research:Solid Earth, 86(B7): 6115-6132. DOI:10.1029/JB086iB07p06115
Hu JL, Zhao TP, Chen W and Peng P. 2007. Characteristics and research progress of the 1.75Ga mafic dyke swarms in the North China Craton:A review. Geotectonica et Metallogenia, 31(4): 457-470.
Huang JN, Chen YQ, Zhai XM, Lu YX, Xie YF and Cheng ZZ. 2011. Zircon SHRIMP U-Pb geochronology, geochemistry and petrogenesis of the Upper Eocene Shuangmaidi peraluminous granite in Baoshan Block, western Yunnan Terrain, southwestern China. Science China (Earth Sciences), 54(7): 982-997. DOI:10.1007/s11430-011-4200-7
Jian P, Cheng YQ and Liu DY. 2001. Petrographical study of metamorphic zircon:Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, 8(3): 183-191.
Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamophic dynamics. Acta Petrologica Sinica, 7(4): 27-35.
Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 171(3): 223-232. DOI:10.1111/jmi.1993.171.issue-3
Kriegsman LM. 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 56(1): 75-96. DOI:10.1016/S0024-4937(00)00060-8
Kusky TM, Li JH and Tucker RT. 2001. The Archean Dongwanzi ophiolite complex, North China Craton:2.505-billion-year-old oceanic crust and mantle. Science, 292(5519): 1142-1145. DOI:10.1126/science.1059426
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. DOI:10.1016/S1367-9120(03)00071-3
Kusky TM, Li JH and Santosh M. 2007. The Paleoproterozoic North Hebei Orogen:North China Craton's collisional suture with the Columbia supercontinent. Gondwana Research, 12(1-2): 4-28. DOI:10.1016/j.gr.2006.11.012
Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35. DOI:10.1016/j.gr.2011.01.004
Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 171(3): 223-232. DOI:10.1111/jmi.1993.171.issue-3
Labrousse L, Prouteau G and Ganzhorn AC. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39(12): 1171-1174. DOI:10.1130/G32316.1
Li JH, Qian XL and Liu SW. 2000. Geochemistry of Khondalites from the central portion of North China Craton (NCC):implications for the continental cratonization in the Neoarchean. Science in China (Series D), 43(3): 253-265.
Li XP, Yang ZY, Zhao GC, Grapes R and Guo JH. 2011. Geochronology of Khondalite-series rocks of the Jining complex:Confirmation of depositional age and tectonometamorphic evolution of the North China Craton. International Geology Review, 53(10): 1194-1211. DOI:10.1080/00206810903548984
Li ZH, Liu XM, Dong YP and Xiao ZB. 2013. Geochemistry and zircon U-Pb age of the Paleoproterozoic syn-collisional granites in Helanshan region and its geological significance. Acta Petrologica Sinica, 29(7): 2405-2415.
Liu FL, Shen QH, Geng YS, Xu XC and Ma R. 1998. Genetic relationship of metamorphic reaction and dehydration-melting:Example from Al-rich gneiss of khondalite series on the border of Jin (Shanxi Province)-Inner Mongolia. Science in China (Series D), 41(1): 49-56. DOI:10.1007/BF02932420
Liu JK, Zhang DH, Wei JH, Fu LB, Tan J, Wang DZ, Shi HP and Wang YL. 2016. Zircon U-Pb age and geochemical characteristics of the Paleoproterozoic S-type granite in the northern part of Helanshan and its geological significance. Journal of Central South University (Science and Technology), 47(1): 187-197.
Liu JZ, Lu LZ, Xie HS, Ouyang ZY and Liu XS. 1999. Dehydration-melting experiment on the Khondalite series in northern segment of Helan Mountain:Structure constraints on metamorphic reactions in rocks. Acta Mineralogica Sinica, 19(4): 453-458.
Liu S, Feng CX, Jiang BM, Hu RZ, Zhai MG and Lai SC. 2014. Zircon U-Pb age, geochemical, and Sr-Nd isotopic constraints on the origin of Late Carboniferous mafic dykes of the North China Craton, Shanxi Province, China. Acta Petrologica Sinica, 30(6): 1707-1717.
Liu SJ, Dong CY, Xu ZY, Santosh M, Ma MZ, Xie HQ, Liu DY and Wan YS. 2013. Palaeoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton:Evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area. Geological Journal, 48(5): 429-455. DOI:10.1002/gj.v48.5
Liu YC, Deng LP, Gu XF, Gropp C and Rolfo F. 2014. Multistage high-temperature metamorphism and partial melting of the North Dabie complex zone, central China, and their geodynamic processes and tectonic implications. Chinese Journal of Geology, 49(2): 355-367.
Liu ZH, Xu ZY and Yang ZS. 2008. Partial melting and the rheologic mechanism of high-grade metamorphic rock:A case study on Daqingshan high-grade metamorphic rock in Inner Mongolia. Earth Science Frontiers, 15(3): 168-177.
Lu LZ, Jin SQ, Xu XC and Liu FL. 1992. The Petrogenesis and Ore-bearing Potential of Precambrian Khondalite Series in Southeast Inner Mongolia. Changchun: Jilin Science and Technology Press: 4-121.
Lu LZ and Jin SQ. 1993. P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane, Jining district, south-east Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 483-498. DOI:10.1111/jmg.1993.11.issue-4
Ma F, Mu ZG and Li JH. 2000. Geochemistry and petrogenesis of Precambrian mafic dyke swarms. Geology Geochemistry, 28(4): 58-64.
Ma MZ, Dong CY, Xu ZY, Xie SW, Liu DY and Wan YS. 2015. Anatexis of Early Paleoproterozoic garnet-biotite gneisses (Daqingshan supracrustal rocks) in Daqingshan, Inner Mongolia:Geology, zircon geochronology and geochemistry. Acta Petrologica Sinica, 31(6): 1535-1548.
Marotta AM, Fernàndez M and Sabadini R. 1998. Mantle unrooting in collisional settings. Tectonophysics, 296(1-2): 31-46. DOI:10.1016/S0040-1951(98)00134-6
McKenzie D. 1978. Active tectonics of the Alpine-Himalayan belt:The Aegean Sea and surrounding regions. Geophysical Journal International, 55(1): 217-254. DOI:10.1111/j.1365-246X.1978.tb04759.x
Milord I, Sawyer EW and Brown M. 2001. Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks:An example from St. Malo, Franc. Journal of Petrology, 42(3): 487-505. DOI:10.1093/petrology/42.3.487
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67. DOI:10.1016/j.chemgeo.2008.02.003
Möller A, O'Brien PJ, Kennedy A and Kröner A. 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway):Constraints for Pb diffusion in zircon. Journal of Metamorphic Geology, 20(8): 727-740. DOI:10.1046/j.1525-1314.2002.00400.x
Niu YL, Zhao ZD, Zhu DC and Mo XX. 2013. Continental collision zones are primary sites for net continental crust growth:A testable hypothesis. Earth-Science Reviews, 127: 96-110. DOI:10.1016/j.earscirev.2013.09.004
Patiño Douce AE and Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. DOI:10.1007/BF00310707
Peng P, Zhai MG, Zhang HF and Guo JH. 2010. Geochronological constraints on the paleoproterozoic evolution of the North China Craton:SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508.
Rubatto D, Gebauer D and Compagnoni R. 1999. Dating of eclogite-facies zircons:The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3-4): 141-158. DOI:10.1016/S0012-821X(99)00031-X
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2
Rubatto D, Chakraborty S and Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349-372. DOI:10.1007/s00410-012-0812-y
Santosh M, Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly:Evidence from North China Craton. Gondwana Research, 10(3-4): 256-266. DOI:10.1016/j.gr.2006.06.005
Santosh M, Tsunogae T, Li JH and Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263-285. DOI:10.1016/j.gr.2006.10.009
Santosh M, Wilde SA and Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196. DOI:10.1016/j.precamres.2007.06.006
Santosh M, Wan YS, Liu DY, Dong CY and Li JH. 2009. Anatomy of zircons from an ultrahot orogen:The amalgamation of the North China Craton within the supercontinent Columbia. Journal of Geology, 117(4): 429-443. DOI:10.1086/598949
Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton:Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106. DOI:10.1016/j.precamres.2011.05.003
Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:A SHRIMP zircon study. Precambrian Research, 227: 29-54. DOI:10.1016/j.precamres.2011.11.004
Sawyer EW. 2001. Melt segregation in the continental crust:Distribution and movement of melt in Anatectic rocks. Journal of Metamorphic Geology, 19(3): 291-309. DOI:10.1046/j.0263-4929.2000.00312.x
Sawyer EW, Cesare B and Brown M. 2011. When the continental crust melts. Elements, 7(4): 229-234. DOI:10.2113/gselements.7.4.229
Searle MP, Simpson RL, Law RD, Parrish RR and Waters DJ. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345-366. DOI:10.1144/0016-764902-126
Shen QH, Geng YS and Song HX. 2016. Constituents and evolution of the metamorphic basement of the North China Craton. Acta Geoscientica Sinica, 37(4): 387-406.
Solar GS and Brown M. 2001. Petrogenesis of Migmatites in Maine, USA:Possible Source of Peraluminous Leucogranite in Plutons?. Journal of Petrology, 42(4): 789-823. DOI:10.1093/petrology/42.4.789
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30.
Song HF, Xu ZY and Liu ZH. 2005. Geochemical characteristics and origin of garnet migmatitic granites in Daqingshan area, Inner Mongolia. Acta Petrologica et Mineralogica, 24(5): 489-495.
Song SG, Niu YL, Su L, Zhang C and Zhang LF. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129: 59-84. DOI:10.1016/j.earscirev.2013.11.010
Song SG, Wang MJ, Wang C and Niu YL. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth:A perspective. Science China (Earth Sciences), 58: 1284-1304. DOI:10.1007/s11430-015-5102-x
Sun SS and McDough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42(1): 313-345
Tan SX, Guo TZ, Dong JS, Chang YY and Ma W. 2011. Geological characteristics and significance of the peraluminous granite in late Silurian epoch in Wulanrvuzhuer region of Qinghai. Journal of Qinghai University (Nature Science), 29(1): 36-43.
Tao JX and Hu FX. 2002. The formation of the garnet-bearing migmatitic granite in Zhuozishan Area, Inner Mongolia, China. Progress in Precambrian Research, 25(1): 59-64.
Vanderhaeghe O and Teyssier C. 2001. Crustal-scale rheological transitions during late-orogenic collapse. Tectonophysics, 335(1-2): 211-228. DOI:10.1016/S0040-1951(01)00053-1
Vanderhaeghe O. 2009. Migmatites, granites and orogeny:Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3-4): 119-134. DOI:10.1016/j.tecto.2009.06.021
Van Dongen M, Weinberg RF and Tomkins AG. 2010. REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation. Economic Geology, 105(4): 763-776. DOI:10.2113/gsecongeo.105.4.763
Vielzeuf D and Montel JM. 1994. Partial melting of metagreywackes. Part Ⅰ. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. DOI:10.1007/BF00307272
Wan YS, Wilde SA, Liu DY, Yang CX, Song B and Yin XY. 2006. Further evidence for~1.85Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research, 9(1-2): 189-197. DOI:10.1016/j.gr.2005.06.010
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian khondalite belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. In: Reddy SM, Mazumder R, Evans DAD and Collins AS (eds.). Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications, 323(1): 73-97
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013. Is the Ordos block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313(7): 683-711. DOI:10.2475/07.2013.03
Wan YY, Liu DY, Xie HQ, Kröner A, Ren P, Liu SJ, Xie SW, Dong CY and Ma MZ. 2016. Formation ages and environments of Early Precambrian banded iron formation in the North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 78: 65-83
Wang C, Song SG, Niu YL and Su L. 2015. Late Triassic adakitic plutons within the Archean terrane of the North China Craton:Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212-215: 353-367. DOI:10.1016/j.lithos.2014.11.027
Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of Khondalites from the Jining complex, North China Craton. International Geology Review, 53(2): 212-229. DOI:10.1080/00206810903028144
Wang HC, Lu SN, Zhao FQ and Zhong CT. 2005. The Paleoproterozoic geological records in North China Craton and their tectonic significance. Geological Survey and Research, 28(3): 129-143.
Wang MJ, Song SG, Niu YL and Su L. 2014. Post-collisional magmatism:Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 210-211: 181-198. DOI:10.1016/j.lithos.2014.10.006
Wang W, Wei CJ, Liu XC, Zhao Y, Gao L, Lou YX, Chu H and Zhang YH. 2014. Modelling of melt composition and zircon behaviour during anatexis. Acta Petrologica Sinica, 30(10): 3075-3084.
Wang XX, Zhang JJ, Yan SY and Liu J. 2016. Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications. Geological Bulletin of China, 35(1): 91-103.
Wei CJ. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅱ):Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrologica Sinica, 32(6): 1625-1643.
Wei CJ and Zhu WP. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅰ):Metamorphic phase equilibria for HT-UHT metapelites/greywackes. Acta Petrologica Sinica, 32(6): 1611-1624.
White RW, Powell R and Holland TJB. 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153.
White RW and Powell R. 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20(7): 621-632.
White RW, Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5): 511-527. DOI:10.1111/jmg.2007.25.issue-5
White RW and Powell R. 2010. Retrograde melt-residue interaction and the formation of near-anhydrous leucosomes in migmatites. Journal of Metamorphic Geology, 28(6): 579-597. DOI:10.1111/(ISSN)1525-1314
Whitney DL, Teyssier C and Rey PF. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1(6): 323-327. DOI:10.1130/L62.1
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Review Economic Geology, 7: 1-35
Wu CH, Zhong CT and Chen QA. 1997. Discussion on the age of Khondalite in Jin-Meng (Shanxi-Nei Mongol) high-grade terrain. Acta Petrologica Sinica, 13(3): 289-302.
Wu JF, Zhang Q and Xing CX. 2010. The metamorphic rock series in Jining area, Inner Mongolia:Protolith restoration and ore-prospecting guide. Geology and Resources, 19(3): 237-243.
Wu XW. 2007. The formation and geodynamics signification of garnet granites in Daqingshan area, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University (in Chinese)
Wu YB, Chen DG, Xia QK, Tu XL and Cheng H. 2002. In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite:Trace element characteristics of eclogite-facies metamorphic zircon. Chinese Science Bulletin, 47(16): 1398-1401. DOI:10.1360/02tb9308
Xia XP, Sun M, Zhao GC and Luo Y. 2006. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212. DOI:10.1016/j.precamres.2005.11.004
Xu ZY, Liu ZH, Dong XJ, Dong CY and Wan YS. 2011. Discovery of kyanite garnet quartz feldspathic gneiss in the north side of Daqing Mts., Inner Mongolia, and its petrography, geochemistry and zircon SHRIMP dating. Geological Review, 57(2): 243-252.
Xu ZY, Fan ZW, Liu ZH, Li SC, Wang WQ, Zhang C, Ma Y and Wang YN. 2013. Formation age of the marble in the khondalite series in Jining, Inner Mongolia:Evidence of the LA-ICP-MS zircon U-Pb dating of felsic gneiss. Journal of Jilin University (Earth Science Edition), 43(3): 809-819.
Yang QL, Zhao ZF and Zheng YF. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone:Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164-182. DOI:10.1016/j.lithos.2012.05.005
Yang QL, Zhao ZF and Zheng YF. 2012b. Slab-mantle interaction in continental subduction channel:Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442-460. DOI:10.1016/j.lithos.2012.10.003
Yin CQ. 2010. Metamorphism of the Helanshan-Qianlishan Complex and its implications for tectonic evolution of the khondalite belt in the Western Block, North China Craton. Ph. D. Dissertation. Hong Kong: The University of Hong Kong
Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38. DOI:10.1016/j.lithos.2010.11.010
Zhai MG, Li YG, Guo JH, Zhang WH and Yan YH. 1996. Two linear granite zones in Shanxi-Hebei-Nei Mongol juncture region and their implication for Early Precambrian continental evolution. Acta Petrologica Sinica, 12(2): 299-314.
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.1): 219-232.
Zhang C, Chen YP and Qian XL. 1992. Features of the Archean meta-basic dyke swarms in Datong-Jining region. Journal of Hebei College of University, 15(5): 479-489.
Zhang GB, Zhang LF, Christy AG, Song SG and Li QL. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China:Constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 205: 15-27. DOI:10.1016/j.lithos.2014.06.018
Zhang HF, Luo ZB and Wang HZ. 2013. Paleoproterozic 2.0Ga meta-granite in the Liangcheng area, Inner Mongolia:Constraint on regional ultra-high temperature metamorphism. Acta Petrologica Sinica, 29(7): 2391-2404.
Zhang J, Zhao ZF, Zheng YF, Liu XM and Xie LW. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225-245. DOI:10.1016/j.lithos.2011.06.006
Zhang YQ, Zhang T, Chen HD and Zhang YQ. 2016. LA-MC-ICP-MS zircon U-Pb dating of garnet monzonitic granite in the Manhan Mountain of Liangcheng, Inner Mongolia, and its petrogenesis. Geology in China, 43(3): 768-779.
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53. DOI:10.1016/S0040-1951(99)00152-3
Zhao GC, Cawood PA, Wilde SA and Lu LZ. 2001. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton:Petrology and tectonic implications. Journal of Petrology, 42(6): 1141-1170. DOI:10.1093/petrology/42.6.1141
Zhao GC, Sun M and Wilde SA. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38. DOI:10.1360/03yd9003
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792.
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276. DOI:10.1016/j.precamres.2009.12.007
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012a. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016
Zhao L, Li TS, Peng P, Guo HJ, Wang W, Wang HZ, Santosh M and Zhai MG. 2015. Anatomy of zircon growth in high pressure granulites:SIMS U-Pb geochronology and Lu-Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Research, 28(4): 1373-1390. DOI:10.1016/j.gr.2014.10.009
Zhao ZF, Zheng YF, Wei CS and Wu FY. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen:Implications for crust-mantle interaction and crustal architecture. Lithos, 126(1-2): 99-114. DOI:10.1016/j.lithos.2011.06.010
Zhao ZF, Zheng YF, Zhang J, Dai LQ, Li QL and Liu XM. 2012b. Syn-exhumation magmatism during continental collision:Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chemical Geology, 328: 70-88. DOI:10.1016/j.chemgeo.2011.11.002
Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the Western Block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843-1852.
Zhou XW, Zhao GC and Geng YS. 2010. Helanshan high pressure pelitic granulite:Petrologic evidence for collision event in the Western Block of the North China Craton. Acta Petrologica Sinica, 26(7): 2113-2121.
Zhu Y, Zhou HW, Lin SX, Xie Y, Ding ZJ, Li JW and Yao SZ. 2015. Late Paleoproterozoic crustal anatexis and its tectonic significance:Evidence from petrology and zircon U-Pb ages of migmatite from Xiaoqinling area, West Henan. Earth Science (Journal of China University of Geosciences), 40(5): 824-839.
蔡佳, 刘福来, 刘平华, 施建荣. 2014. 内蒙古集宁三岔口夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报, 30(2): 472-490.
程裕淇, 杨崇辉, 万渝生, 刘增校, 张西平, 杜利林, 张寿广, 伍家善, 高吉凤. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造. 北京: 地质出版社: 191-192.
范志伟. 2013.内蒙集宁地区前孔兹岩系变质基底的组成、地球化学及年代学特征.硕士学位论文.长春: 吉林大学, 10-11 http://cdmd.cnki.com.cn/Article/CDMD-10183-1013195070.htm
耿元生, 沈其韩, 杜利林, 宋会侠. 2016. 区域变质作用与中国大陆地壳的形成与演化. 岩石学报, 32(9): 2579-2608.
郭敬辉, 王松山, 桑海清, 翟明国. 2001. 变斑晶石榴石40Ar-39Ar年龄谱的含义与华北高压麻粒岩变质时代. 岩石学报, 17(3): 436-442.
贺同兴. 1987. 混合岩化作用的地质成因分类. 地球学报, 9(2): 95-98.
侯克斌, 吴家富, 马闯, 黄俊. 2013. 集宁岩群孔兹岩系的变质岩石学特征和沉积环境浅析. 安徽地质, 23(1): 7-12. DOI:10.3969/j.issn.1005-6157.2013.01.002
胡俊良, 赵太平, 陈伟, 彭澎. 2007. 华北克拉通1.75Ga基性岩墙群特征及其研究进展. 大地构造与成矿学, 31(4): 457-470. DOI:10.3969/j.issn.1001-1552.2007.04.011
黄静宁, 陈永清, Zhai XM, 卢映祥, 谢永富, 程志中. 2011. 滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pb定年、地球化学和成因. 中国科学(地球科学), 41(4): 452-467.
简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地球前缘, 8(3): 183-191.
金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35.
李江海, 钱祥麟, 刘树文. 1999. 华北克拉通中部孔兹岩系的地球化学特征及其大陆克拉通化意义. 中国科学(D辑), 29(3): 193-203.
李正辉, 柳小明, 董云鹏, 肖志斌. 2013. 贺兰山古元古代同碰撞花岗岩地球化学、锆石U-Pb年代及其地质意义. 岩石学报, 29(7): 2405-2415.
刘福来, 沈其韩, 耿元生, 徐学纯, 马瑞. 1997. 变质反应与脱水熔融成因关系的实验研究——以晋蒙边界孔兹岩系中富铝片麻岩为例. 中国科学(D辑), 27(6): 481-487.
刘金科, 张道涵, 魏俊浩, 付乐兵, 谭俊, 王大钊, 施海鹏, 王艺龙. 2016. 贺兰山北段古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义. 中南大学学报(自然科学版), 47(1): 187-197.
刘建忠, 卢良兆, 谢鸿森, 欧阳自远, 刘喜山. 1999. 贺兰山北段孔兹岩系脱水熔融实验Ⅱ——岩石结构对变质反应的制约. 矿物学报, 19(4): 453-458. DOI:10.3321/j.issn:1000-4734.1999.04.010
刘贻灿, 邓亮鹏, 古晓锋, Groppo C, Rolfo F. 2014. 北大别的多阶段高温变质作用与部分熔融及其地球动力学过程和大地构造意义. 地质科学, 49(2): 355-367. DOI:10.3969/j.issn.0563-5020.2014.02.002
刘正宏, 徐仲元, 杨振升. 2008. 部分熔融与高级变质岩流变机制——以内蒙古大青山高级变质岩为例. 地学前缘, 15(3): 168-177. DOI:10.3321/j.issn:1005-2321.2008.03.013
卢良兆, 靳是琴, 徐学纯, 刘福来. 1992. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性. 长春: 吉林科学技术出版社: 4-121.
马芳, 穆治国, 李江海. 2000. 前寒武纪基性岩墙群的地球化学特征与岩石成因讨论. 地质地球化学, 28(4): 58-64. DOI:10.3969/j.issn.1672-9250.2000.04.011
马铭株, 董春艳, 徐仲元, 谢士稳, 刘敦一, 万渝生. 2015. 内蒙古大青山地区古元古代早期榴云片麻岩(大青山表壳岩)深熔作用:地质、锆石年代学和地球化学研究. 岩石学报, 31(6): 1535-1548.
沈其韩, 耿元生, 宋会侠. 2016. 华北克拉通的组成及其变质演化. 地球学报, 37(4): 387-406.
宋海峰, 徐仲元, 刘正宏. 2005. 内蒙古大青山地区石榴混合花岗质岩石地球化学特征及成因. 岩石矿物学杂志, 24(5): 489-495. DOI:10.3969/j.issn.1000-6524.2005.05.022
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30.
宋述光, 王梦珏, 王潮, 牛耀龄. 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学(地球科学), 45(7): 916-940.
谈生祥, 郭通珍, 董进生, 常有英, 马文. 2011. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义. 青海大学学报(自然科学版), 29(1): 36-43. DOI:10.3969/j.issn.1006-8996.2011.01.010
陶继雄, 胡凤翔. 2002. 内蒙卓资山地区深熔作用形成的石榴混合花岗岩. 前寒武纪研究进展, 25(1): 59-64. DOI:10.3969/j.issn.1672-4135.2002.01.009
王惠初, 陆松年, 赵风清, 钟长汀. 2005. 华北克拉通古元古代地质记录及其构造意义. 地质调查与研究, 28(3): 129-143. DOI:10.3969/j.issn.1672-4135.2005.03.001
王伟, 魏春景, 刘晓春, 赵越, 高亮, 娄玉行, 初航, 张颖慧. 2014. 深熔过程中熔体成分与锆石行为模拟计算. 岩石学报, 30(10): 3075-3084.
王晓先, 张进江, 闫淑玉, 刘江. 2016. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义. 地质通报, 35(1): 91-103. DOI:10.3969/j.issn.1671-2552.2016.01.008
魏春景. 2016. 麻粒岩相变质作用与花岗岩成因Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643.
魏春景, 朱文萍. 2016. 麻粒岩相变质作用与花岗岩成因Ⅰ:变质泥质岩/杂砂岩高温-超高温变质相平衡. 岩石学报, 32(6): 1611-1624.
吴昌华, 钟长汀, 陈强安. 1997. 晋蒙高级地体孔兹岩系的时代. 岩石学报, 13(3): 289-302.
吴家富, 张强, 邢彩霞. 2010. 内蒙古集宁地区变质岩系的特征、原岩恢复及找矿方向. 地质与资源, 19(3): 237-243. DOI:10.3969/j.issn.1671-1947.2010.03.009
吴新伟. 2007.内蒙古大青山地区石榴花岗岩的成因及地球动力学意义.硕士学位论文.长春: 吉林大学 http://cdmd.cnki.com.cn/Article/CDMD-10183-2007091474.htm
吴元保, 陈道公, 夏群科, 涂湘林, 程昊. 2002. 大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征. 科学通报, 47(11): 859-863. DOI:10.3321/j.issn:0023-074X.2002.11.013
徐仲元, 刘正宏, 董晓杰, 董春艳, 万渝生. 2011. 内蒙古大青山北麓蓝晶石榴长英质片麻岩的发现:岩相学、地球化学和锆石SHRIMP定年. 地质论评, 57(2): 243-252.
徐仲元, 范志伟, 刘正宏, 李世超, 王挽琼, 张超, 马越, 王英男. 2013. 内蒙集宁地区孔兹岩系中大理岩的形成时代——长英质片麻岩中LA-ICP-MS锆石U-Pb测年的证据. 吉林大学学报(地球科学版), 43(3): 809-819.
翟明国, 李永刚, 郭敬辉, 张雯华, 阎月华. 1996. 晋冀内蒙交界地区麻粒岩地体中两条花岗岩带及其对早前寒武纪地壳生长的意义. 岩石学报, 12(2): 299-314. DOI:10.3321/j.issn:1000-0569.1996.02.011
张臣, 陈亚平, 钱祥麟. 1992. 大同-集宁地区太古代变质基性岩墙群的基本特征. 河北地质学院学报, 15(5): 479-489.
张华锋, 罗志波, 王浩铮. 2013. 内蒙凉城2.0Ga变质花岗岩对超高温变质作用的制约. 岩石学报, 29(7): 2391-2404.
张玉清, 张婷, 陈海东, 张永清. 2016. 内蒙古凉城蛮汗山石榴石二长花岗岩LA-MC-ICP-MS锆石U-Pb年龄及成因讨论. 中国地质, 43(3): 768-779.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843-1852.
周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113-2121.
朱越, 周汉文, 李少林, 谢瑜, 丁振举, 李建威, 姚书振. 2015. 豫西小秦岭地区晚古元古代地壳深熔作用及构造意义:岩石学和锆石U-Pb年代学证据. 地球科学-中国地质大学学报, 40(5): 824-839.