岩石学报  2018, Vol. 34 Issue (9): 2671-2686   PDF    
阳春盆地陂头面铜多金属矿床成岩成矿年代学、锆石微量元素及地质意义
郑伟1 , 毛景文1 , 欧阳志侠2 , 赵财胜3 , 于晓飞4,5 , 赵海杰1 , 刘东宏2 , 吴晓东2     
1. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
2. 广东省有色金属地质局, 广州 510080;
3. 自然资源部科技与国际合作司, 北京 100812;
4. 中国地质调查局发展研究中心, 北京 100037;
5. 自然资源部矿产勘查技术指导中心, 北京 100034
摘要:广东陂头面铜多金属矿位于云开地区的阳春盆地内,是一个与中细粒花岗闪长岩有关的矽卡岩型矿床。矿体形态不规则,主要呈层状、似层状和透镜状,受NE和NNE向构造断裂控制。本文在详细了解矿床地质特征的基础上,通过LA-ICP-MS锆石U-Pb测年以及辉钼矿Re-Os同位素定年技术首次对陂头面矿床进行了成岩成矿年代学研究。成矿岩体花岗闪长岩的锆石U-Pb等时线年龄为163.5±0.55Ma,4件辉钼矿样品的模式年龄为162.9~163.9Ma,加权平均值为163.3±1.1Ma,结果表明陂头面铜多金属矿床成岩成矿作用基本同时发生于中侏罗世晚期,这也是阳春盆地首次报道的形成于该时期的多金属矿床。该矿床辉钼矿样品的Re含量变化于30.5×10-6~41.7×10-6,表明其成矿物质具有壳幔混源的特征。本文对成矿岩体开展了锆石微量元素的详细研究,结果获得锆石CeⅣ/Ⅲ比值范围为198~987,表明其具有高的氧逸度和很好的成矿潜力;锆石Ti饱和温度为597~782℃,暗示可能形成于与俯冲作用有关的构造环境。陂头面铜多金属矿床成岩成矿年龄的确定为下一步在阳春盆地及区域上开展150~170Ma左右的斑岩-矽卡岩多金属矿床找矿勘探提供了重要的线索,也为进一步深入研究钦杭成矿带成岩成矿作用动力学背景提供了新的资料。
关键词: 陂头面铜多金属矿     LA-ICP-MS锆石U-Pb定年     辉钼矿Re-Os定年     锆石微量元素     阳春盆地     钦杭成矿带    
Geochronology of Potoumian Cu polymetallic deposit in Yangchun basin, zircon trace element and geological implications
ZHENG Wei1, MAO JingWen1, OUYANG ZhiXia2, ZHAO CaiSheng3, YU XiaoFei4,5, ZHAO HaiJie1, LIU DongHong2, WU XiaoDong2     
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Geology Bureau for Nonferrous Metals of Guangdong Province, Guangzhou 510080, China;
3. Technology and International Cooperation Department, Ministry of Natural Resources, Beijing 100812, China;
4. Development and Research Centre, China Geological Survey, Beijing 100037, China;
5. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100034, China
Abstract: The Potoumian Cu polymetallic deposit, located in Yangchun basin of Yunkai area, is a skarn deposit related to medium-to fine-grained granodiorite. The ore bodies mainly occurred as lamellar, stratiods and lenses in shape, controlled by NE and NNE-striking faults. In this study, we present detailed geologic characteristics of the deposit and carried out chronological studies of LA-ICP-MS zircon U-Pb ages for the ore-bearing granitoids and molybdenite Re-Os ages for the Potoumian deposit. Zircon U-Pb analyses yields an age of 163.5±0.55Ma for the medium-to fine-grained granodiorite. Precise Re-Os dating of molybdenite shows that the Re-Os model ages of four samples range from 162.9Ma to 163.9Ma, with a weighted mean age of 163.3±1.1Ma. These dating results suggest that the timing for the granodiorite and Cu polymetallic mineralization are simultaneously formed in the late stages of the Middle Jurassic, which is firstly reported in the Yangchun basin. The rhenium content of molybdenite samples are in the range of 30.5×10-6~41.7×10-6, implying that Cu and Mo were derived from the crust-mantle mixed source. The CeⅣ/Ⅲ values of zircons in the granodiorite from the Potoumian Cu polymetallic deposit are from 198 to 987, which suggest that its magma has a high oxygen fugacity and good metallogenic potential. The forming temperature of the granodiorite calculated by zircon Ti thermometer are from 597℃ to 782℃, indicating that its magma is probably closely related to a subducted environment. These results, together with geological records in South China, suggest that the formation of the Potoumian deposit is corresponding to the period of the large-scale mineralization in the Middle-Late Jurassic of South China. This highlights potential for discovery of additional deposits and extends the favorable interval for exploration for porphyry-skarn Cu polymetallic deposits around 170~150Ma in the Yangchun basin, and also provides new information for further discussing on the geodynamic settings of the Qin-Hang metallogenic belt.
Key words: Potoumian Cu polymetallic deposit     LA-ICP-MS Zircon U-Pb dating     Molybdenite Re-Os dating     Zircon trace element     Yangchun basin     The Qin-Hang metallogenic belt    

华南地区是我国乃至全球大密度成矿区,成矿时代主要集中在中生代,是中国东部中生代大规模成矿最具代表性的区带(华仁民和毛景文,1999毛景文等,1999)。基于大量成岩成矿同位素年龄数据,华仁民等(2005)将华南成矿划为三期:180~170Ma、150~139Ma和125~98Ma,并认为南岭钨锡成矿时间主要为150~139Ma;毛景文等(2008)提出华南成矿有三叠纪(230~210Ma)、侏罗纪(170~150Ma)和白垩纪(134~80Ma)三个阶段。其中侏罗纪是华南地区最重要的一次成矿事件(毛景文等,2008),矿化主要包括两种不同类型:一种是斑岩-矽卡岩型铜多金属矿和一些铅锌矿等(路远发等,2006李晓峰等,2008Zhong et al., 2010Guo et al., 2012王磊等,2012楚克磊等,2013瞿泓滢等,2014Wu et al., 2015),而另一种是与花岗岩有关的钨锡多金属矿床,主要矿床类型为矽卡岩型和石英脉型及少量的云英岩型(Mao et al., 2004Peng et al., 2006Jiang et al., 2006蒋少涌等, 2006, 2008Yuan et al., 2007, 2008, 2011华仁民等,2007章荣清等,2010)。

云开地区是华南地区极为重要的大型-超大型矿床集中区之一,尤其是区内铜金等紧缺矿产资源找矿前景良好,并引起越来越多地质学家的关注和研究。阳春盆地作为云开地区的重要组成部分,拥有明显的区位优势,不仅是广东省国家级的整装勘查区之一,找矿潜力巨大,而且成岩成矿作用特色显著,矿床类型复杂多样。区内既发现有与中酸性侵入岩有关的铜多金属矿床,也发育有酸性花岗岩有关的钨锡多金属矿床。前人对区内的多金属矿床的基本特征、成岩成矿时代、矿物学特征、成矿作用和成矿方式等方面进行了一些研究(陈志中,1988汪洋和邓晋福,2003司徒宏等,2004赵海杰等,2012郑伟等, 2012, 2013a, b, c, d, 2015梅玉萍等,2013Zheng et al., 2015, 2016邢波等,2016郑伟,2016)。但由于区内成矿地质条件复杂以及地表植被覆盖严重等客观条件限制,基础地质研究程度相对薄弱,这使得区内成岩成矿作用的深入研究和成矿模式的建立等工作亟待进行。迄今为止,区内仅有大量的白垩纪矿床被报道,如赵海杰等(2012)测得石菉铜多金属矿的辉钼矿Re-Os等时线年龄和模式年龄的加权平均值分别为104.1±1.3Ma和104.34±0.66Ma;郑伟等(2013a)获得天堂铜多金属矿的闪锌矿及其共生矿物组合Rb-Sr等时线年龄为98.1±1.6Ma;郑伟等(2013b, 2015)分别测得鹦鹉岭锡钨多金属矿和小南山钨锡矿的辉钼矿Re-Os年龄为83.0±1.7Ma和78.3±2.7Ma;Zheng et al.(2016)获得阳春盆地北西向延长线上的银岩斑岩型锡矿的辉钼矿Re-Os加权平均年龄为78.65±0.98Ma,但区内仍没有侏罗纪的多金属矿床被报道。

本文以阳春盆地内的陂头面铜多金属矿床作为研究对象,在野外地质工作的基础上,通过LA-ICP-MS方法对与陂头面矿床形成有关的成矿岩体进行了锆石U-Pb定年,同时结合辉钼矿Re-Os定年方法,首次对区内侏罗纪的陂头面铜多金属矿床其岩浆活动乃至成矿热液活动时限做出约束,并与阳春盆地乃至华南地区已有成岩成矿时代进行对比,为完善区内成岩成矿年代学格架提供新的信息,同时为下一步在阳春盆地及区域上开展侏罗纪的铜多金属矿床找矿勘探提供了重要的线索。

1 区域地质背景

阳春盆地大地构造位置处于东亚大陆新华夏系第二隆起带的西南端,二级块体云开地块和粤中地块的交汇处(图 1)。阳春盆地是云开隆起区在印支期复向斜基础上发育而成的局部断陷盆地,属于典型的构造盆地,具有过渡区边缘凹陷的一些沉积和构造特征(沈睿文等,2010)。盆地内及其周边基底为从震旦系到寒武系的巨厚复理石、类复理石建造,盖层为上古生界浅海相碎屑岩、砂页岩、碳酸盐岩和海陆交互相沉积。盖层的顶部零星分布侏罗纪陆相碎屑岩(马大铨等,1985)。阳春盆地经历了自加里东期以来的多期构造运动,构造比较复杂。但是,NE-NNE向的构造仍然是主要构造形式。区内各种构造互相叠加、复合、限制,以致构造形态变得十分复杂,从而为岩体的侵位和各类内生多金属矿床的形成提供了良好的空间和赋存场所(郑伟等,2015)。研究区岩浆活动频繁,分布广泛,从加里东期至喜马拉雅期均有岩浆活动,其中以燕山期最为强烈,不仅有重熔型花岗岩,也有同熔型花岗质岩石以及少量中性及基性岩脉,这些岩浆岩约占盆地面积的10%(于津生等,1988)。岩浆岩的侵入为成矿作用带来了丰富的物质,是区内成矿的重要条件。阳春盆地作为广东省重要的多金属矿集区之一,矿种丰富,成因类型复杂,大多数为多金属矿床,伴有多种成矿元素(郑伟等,2015)。

图 1 云开地区地质构造略图(据彭松柏等,2006修改) 1-新生界砂岩、粉砂岩、泥岩、砂砾岩、粘土;2-中生界砾岩、砂岩、粉砂岩、粉砂质泥岩;3-古生界浅变质复理石砂页岩、碳酸盐岩、浅海相碎屑岩;4-新元古界云开群类复理石浅变质岩类夹变质火山岩;5-燕山期花岗岩;6-海西-印支期花岗岩;7-加里东期花岗岩;8-变基性-超基性岩;9-地块边界断裂;10-韧性剪切带;11-主要矿床;12-地点名 Fig. 1 Geological sketch map of the Yunkai area(modified after Peng et al., 2006) 1-sandstone, siltstone, mudstone, glutinite and clay of Cenozoic; 2-conglomerate, sandstone, siltstone and silty mudstone of Mesozoic; 3-flysch hazle of low metamorphic, carbonate rocks and clastic rocks of neritic facies of Paleozoic; 4-like-flyhazle interlayered with meta-volcanic rocks of Neo-Proterozoic Yunkai Group; 5-granite of Yanshanian; 6-granite of Hercynian-Indosinian; 7-granite of Caledonian; 8-meta-basic and ultrabasic rocks; 9-fault of boundary of land block; 10-ductile shear zone; 11-major ore deposit; 12-the place name
2 矿床地质特征

陂头面铜多金属矿床位于吴川-四会断裂带中段东侧,阳春盆地的西南端。矿区出露的地层主要为上泥盆统帽子峰组和天子岭组(图 2),其中,帽子峰组岩性以砂岩和页岩为主,天子岭组以灰岩、白云质灰岩和泥灰岩等岩性为主。天子岭组为本矿区的主要赋矿围岩,与成矿侵入岩体相接触发生强烈的接触交代作用或接触热变质作用,被交代形成一套具有典型钙矽卡岩矿物组成的矽卡岩类,也有部分角岩类。

图 2 广东陂头面铜多金属矿矿床地质图(a)及典型剖面图(b) Fig. 2 Geological sketch map (a) and typical sections (b) of the Potoumian Cu polymetallic deposit in Guangdong Province

陂头面背斜是矿区的主要构造,花岗闪长岩体便沿该背斜的轴部侵入。接触面走向北东40°,倾向北西,倾角80°。断裂构造以成矿后北北东向逆断层为主,并破坏矿体。矿体主要分布于天子岭组灰岩与花岗闪长岩的接触带中,共发现矽卡岩型磁铁矿体8个,大致呈似层状或透镜状产出。其中以1号矿体规模最大,长1050m,平均厚20m,延深最大180m;次为4号矿体长350m,平均厚16m,最大延深120m。矿体走向北东,倾向南东,倾角58°~64°。矽卡岩铜矿体呈薄层状,平行分布于铁矿体的上、下盘。陂头面铜多金属矿床矿石矿物主要包括黄铜矿、磁铁矿、褐铁矿、黄铁矿、方铅矿、闪锌矿和辉钼矿等;脉石矿物包括石榴子石、透辉石、绿帘石、石英和方解石等。矿石结构包括他形粒状结构、交代结构、碎裂结构和固溶体分离结构等;矿石构造主要为块状构造、浸染状构造和细脉浸染状构造等。围岩蚀变包括角岩化、矽卡岩化和大理岩化等。

3 样品采集和测试方法 3.1 样品位置和特征

为了精确厘定陂头面铜多金属矿床的成岩成矿年龄,本文分别采集了1件岩浆岩样品和4件辉钼矿样品,对该矿床进行了LA-ICP-MS锆石U-Pb测年和辉钼矿Re-Os同位素测年。

用于LA-ICP-MS锆石U-Pb测年的花岗闪长岩样品采自陂头面矿区岩体地表露头,地理坐标为:22°3′23″N、111°41′34″E。岩石较新鲜,呈灰白色,中细粒结构,块状构造(图 3ab),主要矿物成分为斜长石(40%~45%)、钾长石(15%~20%)、石英(15%~20%)、黑云母(5%~8%)、角闪石(~5%),并含有少量副矿物,如榍石、磷灰石、锆石、钛铁矿和磁铁矿等。主要矿物特征:斜长石呈半自形-自形板状,粒径1~2mm,可见聚片双晶,局部绢云母化,部分颗粒可见明显的环带结构(图 3cd);钾长石呈半自形-他形,粒径多为1~3mm,条纹结构、格子双晶发育,局部可见泥化和绢云母化,有时包裹有小颗粒的石英及斜长石(图 3c);石英多呈他形粒状分布于其他矿物颗粒之间,颗粒大小多为0.5~1.5mm(图 3d);黑云母呈半自形片状,粒度小者为0.25~1mm,大者为1~2mm,浅黄-浅棕色,多色性较强,部分颗粒沿解理缝发生绿泥石化和绢云母化(图 3d);角闪石呈自形柱状,黄褐色,解理明显,粒度集中分布在0.5~1.0mm之间,并具不同程度的绿泥石化(图 3c)。

图 3 广东陂头面花岗闪长岩手标本(a、b)及显微(c、d)照片 Mo-辉钼矿; Kf-钾长石; Am-角闪石; Pl-斜长石; Qt-石英; Bt-黑云母 Fig. 3 Field photographs (a, b) and microphotographs (c, d) of Potoumian granodiorite in Guangdong Province Mo-molybdenite; Kf-K-feldspar; Am-amphibole; Pl-plagioclase; Qt-quartz; Bt-biotite

用于Re-Os测年的4件辉钼矿样品均采自矿区的采坑(22°3′21″N、111°41′30″E)。辉钼矿主要呈星点状、浸染状和薄膜状分布于蚀变的花岗闪长岩体表面和矽卡岩型矿石中。野外地质观察及矿相学研究表明,辉钼矿与黄铜矿、黄铁矿等矿物密切共生。从4件样品中分选出的辉钼矿单矿物,无氧化,无污染,纯度达到99%以上,用于Re-Os同位素年龄测定。

3.2 锆石U-Pb年龄分析

锆石的制靶工作和阴极发光图像照相是在北京奥金顿科技有限公司完成。锆石的反射光和透射光图像拍摄在中国地质大学(北京)地质过程与矿产资源国家重点实验室完成。LA-ICP-MS锆石U-Pb测年在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室完成,所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行仪器调试,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。锆石U、Pb同位素比值的测试精度(2σ)均为2%,定年精度和准确度为1%(2σ)左右。具体实验流程详见相关文献(侯可军等,2009)。

3.3 Re-Os同位素测年

Re-Os同位素测年在国家地质实验测试中心Re-Os同位素实验室完成,分析方法和流程主要有样品的分解、Os的蒸馏分离、Re的萃取分离、质谱测定4个步骤,详细流程见有关文献(Shirey and Walker, 1995杜安道等,2001Du et al., 2004),现简述如下:

准确称取待测样品,通过长细颈漏斗加入到Carius管底部。缓慢加液氮到有半杯乙醇的保温杯中,调节温度到摄氏-50~-80℃。将装好样的Carius管放到该保温杯中,通过长细颈漏斗把准确称取的185Re和190Os混合稀释剂加入到Carius管底部,再加入2mL 10mol/L的HCl,6 mL 16mol/L的HNO3。待管底溶液冰冻后,用丙烷氧气火焰加热封好Carius管的细颈部分。待回升至室温后,逐渐升温到230℃,保温12h。在底部冷冻的情况下,打开Carius管,并用40mL水将管中溶液转入蒸馏瓶中。

将蒸馏瓶中的溶液在105~110℃蒸馏50min,然后用10mL水吸收蒸出的OsO4,用ICP-MS(等离子体质谱仪)测定Os同位素比值。将蒸馏残液倒入150mL Teflon烧杯中待分离Os。

将上述蒸馏残液置于电热板上,加热近干。再加少量水,加热近干。重复两次以降低酸度,加入10mL 5mol/L的NaOH,稍微加热,转为碱性介质。转入50mL聚丙烯离心管中,离心,取上层清液转入120mL Teflon分液漏斗中。加入10mL丙酮,震荡5min,萃取Re。静止分相,弃去水相。加2mL 5mol/L的NaOH溶液到分液漏斗中,振荡2min,洗去丙酮相中的杂质。弃去水相,将丙酮排到150mL已加有2mL水的Teflon烧杯中。在电热板上50℃加热以蒸发丙酮,加热溶液至干。再加数滴浓硝酸和30%过氧化氢,加热蒸干以除去残存的Os。用数毫升稀HNO3溶解残渣,稀释到硝酸浓度为2%,备ICP-MS测定Re同位素比值。

对于Re,选择测定185Re和187Re。用190Os监测187Os来避免残留的187Os对187Re测定的影响。如果在测试过程中观测到微弱的190Os信号,那么要用Os稀释剂的187Os/190Os比值来修正187Re信号中的187Os。对于Os,选择测定187Os、190Os和192Os。类似的,用185Re来监测187Re,用稀释剂的185Re/187Re比值进行修正。

Re、Os含量的不确定度包括样品和稀释剂的称量误差、质谱测量的分馏校正误差、稀释剂的标定误差、待分析样品同位素比值测量误差。模式年龄的不确定度还包括衰变常数的不确定度(1.02%),置信水平95%。辉钼矿的模式年龄计算采用公式如下:

上式中187Re衰变常数λ=1.666×10-11a-1(相对不确定度1.02%)(Shen et al., 1996)。

3.4 锆石微量元素分析

锆石原位微量元素测试在国家地质实验测试中心完成,采用激光剥蚀等离子质谱(LA-LCP-MS)方法。使用仪器为Thermo Element Ⅱ等离子质谱仪,激光剥蚀系统为New Wave UP-213。实验中采用He作为剥蚀物质的载气,激光波长213nm、束斑40μm、脉冲频率10Hz、能量0.176mJ、密度23~25J/cm2,测试过程中首先遮挡激光束进行空白背景采集15s,然后进行样品连续剥蚀采集45s,停止剥蚀后继续吹扫15s清洗进样系统,单点测试分析时间75s。等离子质谱测试参数为冷却气流速(Ar)15.55L/min;辅助气流速(Ar)0.67L/min;载气流速(He)0.58L/min;样品气流速0.819L/min,射频发生器功率1205W。数据测试标样使用NIST-610,相对标准偏差小于10%。具体实验流程详见相关文献(胡明月等,2008;Liu et al., 2016)。

4 测试结果 4.1 陂头面矿区岩浆岩形成时代

花岗闪长岩样品中部分测定锆石的阴极发光(CL)图像如图 4显示。阴极发光图像是揭示锆石内部结构的有效手段,而对锆石内部结构进行详细分析是合理并正确解释所测年龄的重要依据(Vavra, 1996, 1999吴元保等,2003)。陂头面岩体锆石为柱状自形晶,部分锆石边缘呈港湾状,表明其形成后曾受到一定程度的溶蚀。锆石粒度多为0.05~0.15mm,晶体长宽比为1~3。锆石内部结构清楚,表现出典型的岩浆生长振荡环带和韵律性结构,属于岩浆锆石(吴元保等,2003简平等,2001)。

图 4 广东陂头面花岗闪长岩锆石阴极发光图像 Fig. 4 Zircon CL images of the Potoumian granodiorite in Guangdong Province

结合透射光和反射光图像,选择合适的避开包裹体和裂隙的分析点位,最大限度地降低包裹体对定年造成的干扰。对于锆石206Pb/238U年龄分析精度约1.5%~2.0%,207Pb/235U年龄分析精度约2%~4.5%,而207Pb/206Pb年龄对于年轻锆石往往没有意义(胡永斌,2015)。对于年轻锆石(<1000Ma)而言,206Pb/238U年龄的精度要远高于207Pb/206Pb和207Pb/235U年龄,这种精度差异主要由古老锆石(>1000Ma)和年轻锆石中放射性成因207Pb的含量差异造成。对于年轻锆石的定年来说,用206Pb比207Pb更为可靠;相反对于古老锆石来说,207Pb/235U和207Pb/206Pb年龄更为可靠(Compston et al., 1992Griffin et al., 2004)。因此本文采用206Pb/238U年龄作为最终结果。

测试样品的代表性LA-ICP-MS锆石U-Pb测年分析结果见表 1。根据这些数据所做的U-Pb谐和图以及采用206Pb/238U年龄进行加权平均值计算的年龄图见图 5。本次研究共选择了18粒锆石,分析了19个点。其中18个点均位于生长环带上,只有分析点14处于核部部位。图 5显示18粒锆石的18个点的分析结果在谐和图上组成密集的一簇。大量研究表明,不同成因的锆石有不同的U、Th含量与Th/U比值。一般情况下,岩浆锆石的Th、U含量较高,Th/U比值大于0.5,且U和Th之间具有明显的正相关关系;而变质成因锆石的Th、U含量低,且Th/U比值小于<0.1(Hoskin and Black, 2000)。典型的岩浆成因锆石Th/U比值一般为0.1~1.0(Belousova,2002)。如果Th/U比值变化较大,则表明锆石形成于化学成分相对不均匀的岩浆结晶条件下(陈志宏等,2004)。本次分析所有测点的U含量分布在493×10-6~1725×10-6的范围内,Th含量变化在131×10-6~869×10-6之间。Th/U比值介于0.27~0.78之间,均大于0.1。另外Th和U之间具有明显的正相关性,显示了岩浆锆石Th/U比值的典型特征(Hoskin and Black, 2000)。所有测点的206Pb/238U年龄范围分布在159~181Ma之间,18个测点的206Pb/238U表面年龄谐和度非常高。核部的一个分析点14的206Pb/238U年龄与其他处于岩浆环带的年龄不相一致,206Pb/238U年龄为425.7±4.7Ma。因为华夏地块自古元古代形成后,受到了加里东期构造-热事件的强烈再造(曾雯等,2008Li et al., 2005Chen et al., 2006郑伟,2016),本样品中含有早古生代加里东期(470~410Ma)的继承锆石,说明在花岗闪长岩的成岩过程中受到了地壳的混染作用。

表 1 广东陂头面花岗闪长岩体LA-ICP-MS锆石U-Pb年龄测定结果 Table 1 Results of LA-ICP-MS zircon U-Pb dating for the Potoumian granodiorite in Guangdong Province

图 5 广东陂头面花岗闪长岩锆石U-Pb谐和图 Fig. 5 U-Pb concordia diagrams for zircon from Potoumian granodiorite in Guangdong Province

在锆石206Pb/238U-207Pb/235U协和图上,它们聚集在一致线上及其附近一个较小的范围内,这一特征表明被测锆石没有遭受明显的后期热事件的扰动,锆石的U-Pb体系基本保持封闭状态,即没有U或Pb同位素的明显流失或加入,其加权平均年龄值为163.5±0.55Ma(MSWD=8.1)。结合锆石阴极发光图像及元素特征分析,这一年龄代表了陂头面花岗闪长岩的结晶年龄,表明其为中侏罗世岩浆侵入活动的产物。

4.2 陂头面矿床成矿时代

在进行Re-Os同位素定年时,只有当初始187Os/188Os值已知时,单个样品的Re-Os模式年龄才可以通过Re、Os含量和Os同位素组成计算出(刘晓煌等,2007)。辉钼矿中普通Os含量往往是很低的(Stein et al., 2001)。几乎所有的187Os都来自于187Re的β衰变。

选自陂头面铜多金属矿床的4个辉钼矿样品的Re-Os同位素测试结果如表 2所示。由表 2可见,辉钼矿中187Re和187Os含量变化非常小,187Re为30.5×10-6~41.7×10-6187Os为52.13×10-9~71.4×10-9187Re与187Os具有很好的正相关性,这就验证了辉钼矿中的187Os基本上都是由187Re经β衰变而来,说明用辉钼矿Re-Os同位素定年是可行的,且其Os为0.0047×10-9~0.2135×10-9,远远小于所测样品中的Re、Os含量,因此,不会影响实验中Re、Os含量的准确测定。

表 2 广东陂头面铜多金属矿床辉钼矿的Re-Os同位素测试结果 Table 2 Molybdenite Re-Os isotopic data for the Potoumian Cu polymetallic deposit in Guangdong Province

将4个数据进行187Re-187Os等时线拟和,构成一条良好的187Re-187Os等时线(图 6),说明它们是同一期矿化作用的产物,这与实际地质情况相吻合,其等时线年龄为163.2±7.2Ma (MSWD=0.46)。4个辉钼矿样品的Re-Os模式年龄非常接近,为162.9~163.9Ma,利用Isoplot软件(Ludwig,2003)得到其加权平均年龄为163.3±1.1Ma,加权平均方差MSWD=0.15。

图 6 广东陂头面铜多金属矿床辉钼矿Re-Os等时线年龄和加权平均图 Fig. 6 Re-Os isochron age diagram for molybdenite samples from the Potoumian Cu polymetallic deposit in Guangdong Province

陂头面铜多金属矿床成矿元素以铁、铜和钼等为主,均属于同一成矿系统,因此辉钼矿的形成年龄代表了陂头面矿床的成矿年龄。有时辉钼矿Re-Os定年也存在失耦效应,其与辉钼矿的取样量及颗粒大小关系密切,样品量少、颗粒较大时不能产生准确且重现性好的结果,即Re与187Os的失耦现象(杜安道等,2007)。本文测试的4件辉钼矿样品粒度远远小于2mm,而且陂头面矿床的成矿时代比较年轻,失耦效应对测年结果的影响可以忽略(Xie et al., 2007郑伟等,2013c)。该4件辉钼矿样品所获得的加权平均年龄为163.3±1.1Ma,等时线年龄为163.2±7.2Ma,模式年龄和等时线年龄结果基本一致,为陂头面铜多金属矿床提供了一个准确的形成时限,进一步证实了测试数据的可靠性。该成矿年龄与成矿岩体花岗闪长岩的LA-ICP-MS锆石U-Pb年龄(163.5±0.55Ma)基本一致,表明该多金属矿床的成岩成矿作用同时形成于中侏罗世,是中国东部燕山早期大规模成矿作用的产物。

4.3 锆石微量元素特征

陂头面花岗闪长岩体的锆石微量元素测试结果见表 3。样品的锆石稀土总量ΣREE集中分布在827.2×10-6~1413×10-6,平均为996.7×10-6δEu值为0.29~0.42,平均0.35,呈强烈的负异常(图 7),具有岩浆成因锆石的特征(Hoskin and Schanltegger, 2003Miller et al., 1998Vavra et al., 1996)。综合来看,锆石Ce正异常和Eu负异常明显,呈重稀土富集、轻稀土亏损的左倾谱型。

表 3 广东陂头面花岗闪长岩的锆石微量元素数据(×10-6) Table 3 Zircon trace element data for the Potoumian granodiorite in Guangdong Province (×10-6)

图 7 广东陂头面花岗闪长岩锆石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE patterns of zircons from the Potoumian granodiorite in Guangdong Province (normalization values after Sun and McDonough, 1989)
5 讨论 5.1 成岩成矿时代

阳春盆地是云开地区多金属矿床(点)的集中发育地区之一,既发育了钨锡多金属矿床,又存在铜铁、铅锌等元素矿化,矿化多与区内大规模的岩浆作用密切相关(郑伟等,2015)。本文获得陂头面花岗闪长岩的LA-ICP-MS锆石U-Pb年龄为163.5±1.1Ma,辉钼矿的Re-Os加权平均年龄为163.3±1.1Ma;首次精确厘定陂头面多金属矿的成岩成矿时代为163Ma左右,即处于华南地区中生代三次成矿高峰(毛景文等, 2004, 2007, 2008华仁民等,2005)之一的中晚侏罗世。

Mao et al.(2013, 2014)和毛景文等(2014)研究提出中国东部地区存在3个相互平行的北东向斑岩-矽卡岩铜矿带,分别为长江中下游成矿带、大兴安岭-太行山东北段与东部平原结合带以及钦杭成矿带。其中,钦杭成矿带过去通常被作为华南成矿区的组成部分,随着研究程度不断加深和找矿勘查的需要,尤其是鉴于扬子与华夏古陆拼合部位为钦杭带的证据日益增多和此带紧缺矿种铜金铅锌矿产找矿前景良好,近年来才被单独增列为一个重点成矿区带并掀起了新一轮有关华南大地构造、区域成矿特征研究的热潮(毛景文等,2011徐德明等,2012周永章等,2015)。钦杭成矿带斑岩-矽卡岩矿床经常以铜、钼、金等多金属矿种共生的方式产出,且多金属矿床均断续分布,具有很好的找矿远景(毛景文等,2011)。斑岩-矽卡岩-热液脉型铜多金属矿床作为钦杭带中的主要矿床类型,也是中国地质调查局部署找矿勘查的主要目标。随着基础地质工作的加强和矿产勘查工作的深入,近几年开始有学者利用高精度测年技术开展成岩成矿年代学研究,获得了一批数据:如德兴斑岩铜矿(铜厂,171.1±1.3Ma;富家坞,171.1±5.9Ma;朱砂红,170.0±1.3Ma,Guo et al., 2012)、永平斑岩铜矿(156.7±2.8Ma,李晓峰等,2008)、浙江开化桐村铜钼矿床(161.8±2.2Ma,张世铭等,2013),宝山铜多金属矿(160.0±2.0Ma,路远发等,2006)、铜山岭铜多金属矿(161.2±1.3Ma,卢友月等,2014)、封开圆珠顶铜钼多金属矿(155.6±3.4Ma,Zhong et al., 2010)和大宝山铜多金属矿(163.9±1.3Ma,王磊等,2012)。成矿时代从东北向西南有一个相对逐渐变新的趋势,大致从175Ma到155Ma(毛景文等,2011)。由上表明,陂头面铜多金属矿床成岩成矿年龄的确定为下一步在阳春盆地及区域上开展150~170Ma左右的斑岩-矽卡岩多金属矿床找矿勘探提供了重要的线索,也为进一步深入研究钦杭成矿带成岩成矿作用动力学背景提供了新的资料。更有意义的是,广东省有色地质勘查院最近在阳春盆地又新发现了旗鼓岭铜钼钨多金属矿,其展现出矿化规模大,品位富的特点,具有很好的找矿前景。郑伟等(2018)对该多金属矿进行了辉钼矿Re-Os测年,获得较为精确的加权平均年龄为164.5±1Ma。以上均标志着著名的钦杭成矿带进一步向南延伸,并指示区内有巨大的寻找斑岩-矽卡岩型铜多金属矿床的潜力。

众所周知,铜、金是我国紧缺矿产,而斑岩-浅成低温热液矿床是铜金多金属矿的主攻矿床类型。太平洋成矿域东岸探明了多个超大型斑岩铜矿,处于同一成矿域西侧的中国东部地区是否具有隐伏斑岩铜矿的潜力,一直是矿床学界关注的焦点。近年来在东南沿海大陆边缘(粤西、粤东、闽西、浙西和赣东北)发现和识别了多个中晚侏罗世斑岩Cu-Au-Mo矿,其时代集中在165~155Ma之间。粤东地区新识别出161Ma的新寮岽斑岩铜钼矿(王小雨等,2016)、157Ma的钟丘洋斑岩型铜矿、156Ma的鸿沟山和鸡笼山斑岩型铜金矿(Mao et al., 2017)以及鹅地铜多金属矿、玉水铜矿等;粤西新识别出的旗鼓岭斑岩-矽卡岩型铜钼矿形成于165Ma(郑伟等,2018),陂头面多金属矿床形成于163Ma左右,以及茶地、芒饿岭、文光岭、地豆岗等铜多金属矿(郑伟等,2015)和新发现的新屋、那软、合水等低温热液金矿床;闽西古田斑岩铜钼矿形成于158~161Ma之间(Li et al., 2016),峰岩和丁家山等斑岩钼铅锌多金属矿成矿系统(肖晓牛等,内部交流,156~160Ma之间)等;浙江地区的岭后矽卡岩型铜钼矿辉钼矿Re-Os年龄为162.2±1.4Ma(Tang et al., 2017a),桐村斑岩钼铜矿绢云母40Ar-39Ar年龄为155.5±0.9Ma(Tang et al., 2017b);在江西地区产出有156Ma的永平矽卡岩型铜钼钨矿(Li et al., 2013)和154Ma的龙头岗矽卡岩型铜钼钨矿(Wu et al., 2015),以上表明越来越多的侏罗纪斑岩铜多金属矿床正逐渐被识别和发现。斑岩型矿床是一种极为重要的指示与俯冲作用相关的矿床类型,随着越来越多的侏罗纪斑岩铜多金属矿床逐渐被发现,表明沿着中国东部东南沿海可能存在一个中晚侏罗世的大陆岩浆弧和相关的斑岩铜矿带。不过这个斑岩铜矿带的大部分被白垩纪的安山质岩石所覆盖,使得对东部陆缘不同区段的岩浆与成矿特征、时空变化、成因以及相互间对比仍缺乏很好的限定,因此在白垩纪火山岩覆盖区的深部很可能存在侏罗纪斑岩成矿系统。这也与180Ma左右Izanagi板块或古太平洋板块开始向欧亚大陆发生斜向俯冲,中国东部大陆边缘成为活动大陆边缘的认识相吻合(Maruyama et al., 1997Mao et al., 2014, 2017郑伟等,2015)。综上所述,阳春地区位于钦杭成矿带与东南沿海成矿带的交汇部位,更进一步表明和指示区内具有较好的寻找侏罗纪斑岩-浅成低温热液矿床的前景,因此应加强对区内同类型矿床的勘查力度和综合找矿评价工作。

5.2 岩浆结晶温度

由于花岗岩浆大多是绝热式上升就位的,那么岩浆在早期结晶时的温度就可以近似代表岩浆形成时的温度(吴福元等,2007)。目前主要有两种花岗质岩石的地质温度计:锆石钛温度计和锆石饱和温度计(Watson and Harrison, 1983Watson et al., 2006Ferry and Watson, 2007)。本文采用Ferry and Watson(2007)的锆石Ti温度计对陂头面花岗闪长岩体进行温度的计算,以对岩浆结晶温度进行很好的约束。结果显示其锆石Ti饱和温度为597~782℃,平均686℃,与钦杭成矿带的宝山花岗闪长斑岩(712~772℃)(谢银财,2013)以及水口山花岗闪长岩的锆石饱和温度(730~816℃)(黄金川等,2015)相近。该锆饱和温度不仅明显低于A型花岗岩的形成温度(900℃,Skjerlie and Johnston, 1992Patiño-Douce,1997),而且也低于I型花岗岩的平均温度781℃(King et al., 1997)。Miller et al.(2003)根据锆石饱和温度,提出冷(cold)和热(hot)花岗岩的概念:其中前者的温度不超过800℃(平均为766℃),含源区残留物较多,其形成主要与流体加入有关;而后者的温度大约在840℃左右,含源区残留物较少,其形成可能与外来热的加入有关。Chappell et al.(1998, 2001, 2004)认为低温花岗岩含有较多的残留锆石,岩浆刚开始结晶时Zr就达到饱和,因而只表现为结晶过程中Zr含量降低的特点;而高温花岗岩在早期由于Zr含量较低(未饱和),表现出随温度增加Zr含量增加的规律,随着岩浆结晶作用的持续进行,Zr含量由于达到过饱和而发生降低。

陂头面岩体发现有加里东期继承锆石的存在,说明源区以及岩浆上升侵位过程中,岩浆熔体中Zr是饱和的。因此,计算出的锆石饱和温度反映了岩浆形成的上限温度(Miller et al., 2003),故该岩体属于低温花岗岩。大量研究显示绝大部分高温条件下(大禹750℃)形成的岩浆岩,其锆石Ti温度均落在湿花岗岩固相线以上,而低的锆石结晶温度表明其岩浆经历了在水近饱和条件下发生的熔融过程(Harrison et al., 2007)。岩石学研究也表明地壳在≤800℃时发生部分熔融,需要源区有一定量水的加入(Best and Christiansen, 2001Clemens and Watkins, 2001)。源区中水可来自白云母、钙质角闪石和黑云母等含水矿物的脱水反应(Vielzeuf and Montel, 1994Best and Christiansen, 2001),但只有白云母可在低于800℃的条件下发生脱水反应,并且白云母需达到一定的数量才能产生大规模的岩浆(Clemens and Vielzeuf, 1987Patiño-Douce and Harris, 1998)。但陂头面花岗闪长岩属于I型花岗岩,Al2O3含量小于16%,表明源岩不可能是富含白云母的泥质岩。结合该岩体的地球化学特征和同位素数据(郑伟,2016),认为岩浆可能主要来自富集交代地幔部分熔融形成的幔源基性岩浆,而花岗闪长岩可能是由幔源岩浆与其诱发的地壳物质部分熔融形成的长英质岩浆在地壳深部直接混合形成的。

5.3 岩浆氧逸度

氧逸度可以通过一些矿物中的变价元素价态来确定,如钛铁矿、硫酸盐、磁铁矿和赤铁矿等。近年来,随着副矿物锆石在实验测试中的逐步运用,利用锆石微量元素和稀土元素来计算氧逸度的方法逐渐被大家所接受(Ballard et al., 2002Liang et al., 2006Li et al., 2012Zhang et al., 2013Shen et al., 2015)。在岩浆中,绝大多数稀土元素都是正三价,而Ce和Eu则有2个价态(Ce4+和Ce3+、Eu3+和Eu2+)(Railsback,2003)。对于Ce元素来说,Ce4+与Zr4+具有相同的离子半径和价态,而Ce4+在锆石中的相容性大于Ce3+,因此岩浆锆石通常具有正的Ce异常,但Ce异常的程度很容易受氧逸度的影响。研究表明,从高氧逸度岩浆结晶出的锆石往往具有高的Ce异常,故CeⅣ/Ⅲ值可以作为衡量岩浆氧化还原条件的有效指标。本文使用Ballard et al.(2002)计算锆石CeⅣ/Ⅲ的方法对陂头面花岗闪长岩进行氧逸度的计算和研究。计算公式如下:

结果显示其CeⅣ/Ⅲ值为198~987,平均值为462。

氧逸度与花岗岩类的成矿专属性关系非常密切,低氧逸度有利于Sn的成矿作用,而高氧逸度有利于Cu的成矿作用(Ballard et al., 2002Liang et al., 2006Sun et al., 2011, 2013, 2015李鹏举,2014)。Ballard et al.(2002)测得智利超大型Chuquicamata-El Abra斑岩型铜矿带的含矿侵入岩Ce4+/Ce3+比值大于300;Li et al.(2012)获得大宝山斑岩铜钼矿含矿斑岩体的Ce4+/Ce3+比值在356~1300之间;Zhang et al.(2013)获得德兴铜矿含矿岩体的Ce4+/Ce3+比值在495~1922之间;Shen et al.(2015)认为中亚造山带大-中型斑岩铜矿(>1.5Mt)的含矿侵入岩Ce4+/Ce3+比值大于120;以上均反映了与铜多金属矿有关的成矿岩体具有高氧逸度特征。同时不同的氧逸度在一定程度上也可以反映地质体所产出的构造环境,并已被人们广泛接受,如俯冲带环境中的地质体往往具有非常高的氧逸度(Christie et al., 1986Carmichael,1991Lee et al., 2005Liu et al., 2010Wang et al., 2013李鹏举,2014)。陂头面花岗闪长岩体锆石微量元素特征显示其具有高的氧逸度,表明可能形成于与俯冲作用有关的构造背景,且指示有较好的成矿潜力。

5.4 成矿物质来源

尽管华南地区在不同时代形成了许多不同矿种的多金属矿床,但陂头面矿床却是阳春盆地发现的首例中侏罗世矽卡岩型Cu-Fe-Mo多金属矿床。其成岩成矿时代均指示该矿床形成于中晚侏罗世时期,并且4个辉钼矿的Re含量分布在30.5×10-6与41.7×10-6之间,含量与斑岩-矽卡岩Cu、Mo系统Re丰度相当(Stein et al., 1997),综合分析研究认为该矿床的成矿物质可能来自于壳幔混合来源(Mao et al., 1999Stein et al., 2001; Xie et al., 2011),其与陂头面花岗闪长岩体的物质来源一致(郑伟,2016)。陂头面矿区位于吴川-四会深大断裂中段和钦杭成矿带的南段,也就是薄弱地带,壳幔相互作用强烈,成岩成矿作用强度大(毛景文等,2011)。

6 结论

(1) 陂头面铜多金属矿及其花岗闪长岩体的LA-ICP-MS锆石U-Pb加权平均年龄值为163.5±0.55Ma,辉钼矿Re-Os加权平均年龄为163.3±1.1Ma;

(2) 陂头面花岗闪长岩锆石微量元素特征指示CeⅣ/Ⅲ分布范围为198~987,表明具有高的氧逸度和很好的找矿潜力;锆石Ti饱和温度为597~782℃,表明可能形成于与俯冲作用有关的构造环境;

(3) 辉钼矿样品的Re含量变化于30.5×10-6~41.7×10-6,指示陂头面矿床成矿物质具有壳幔混源的特征;

(4) 陂头面铜多金属矿床成岩成矿年龄的确定为下一步在阳春盆地及区域上开展150~170Ma左右的斑岩-矽卡岩多金属矿床找矿勘探提供了重要的线索,也为区域成岩成矿作用的动力学背景进一步深入研究提出了新的课题。

致谢      野外地质工作期间,得到了广东省有色金属地质局和广东省地质调查院的大力支持和帮助;审稿专家给论文提出了许多建设性的意见;在此一并致谢!

参考文献
Ballard JR, Palin MJ and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. DOI:10.1007/s00410-002-0402-5
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622. DOI:10.1007/s00410-002-0364-7
Best MG and Christiansen EH. 2001. Igneous Petrology. Oxford: Blackwell Science: 1-480.
Carmichael ISE. 1991. The redox states of basic and silicic magmas:A reflection of their source regions?. Contributions to Mineralogy and Petrology, 106(2): 129-141. DOI:10.1007/BF00306429
Chen CH, Hu HY, Lin W and Lee CY. 2006. Thermal event records in SE China coastal areas:Constraints from monazite ages of beach sands from two sides of the Taiwan Strait. Chemical Geology, 231(1-2): 118-134. DOI:10.1016/j.chemgeo.2006.01.023
Chen ZH, Lu SN, Li HK, Song B, Li HM and Xiang ZQ. 2004. The age of the Dehe biotite monzogranite gneiss in the North Qinling:TIMS and SHRIMP U-Pb zircon dating. Geological Bulletin of China, 23(2): 136-142.
Chen ZZ. 1988. Geology-geochemistry characteristics of Xishan granite body in Yangchun, Guangdong. Guangdong. Acta Scientiarum Naturalium Universitatis Sunyatseni, (1): 1-12.
Christie DM, Carmichael ISE and Langmuir CH. 1986. Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. DOI:10.1016/0012-821X(86)90195-0
Chu KL, Mao JW, Chen MH, Zhao J, Yu CF, Lin LZ and Lin XG. 2013. Source of metallogenic materials and ore-forming fluids, and metallogenic mechanism of the Yuanzhuding porphyry Cu-Mo deposit, western Guangdong Province, South China. Earth Science Frontiers, 20(5): 115-125.
Clemens JD and Vielzeuf D. 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86(2-4): 287-306. DOI:10.1016/0012-821X(87)90227-5
Clemens JD and Watkins JM. 2001. The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contributions to Mineralogy and Petrology, 140(5): 600-606. DOI:10.1007/s004100000205
Compston W, Williams IS, Kirschvink JL, Zhang ZC and Guogan MA. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2): 171-184. DOI:10.1144/gsjgs.149.2.0171
Du AD, Zhao DM, Wang SX, Sun DZ and Liu DY. 2001. Precise Re-Os dating for molybdenite by ID-NTIMS with Carius tube sample preparation. Rock and Mineral Analysis, 20(4): 247-252.
Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J and Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials:Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52. DOI:10.1111/ggr.2004.28.issue-1
Du AD, Qu WJ, Wang DH, Li HM, Feng CY, Liu H, Ren J and Zeng FG. 2007. Subgrain-size decoupling of Re and 187Os within molybdenite. Mineral Deposits, 26(5): 572-580.
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. DOI:10.1007/s00410-007-0201-0
Griffin WL, Belousova EA, Shee SR, Pearson NJ and O'Reilly SY. 2004. Archean crustal evolution in the northern Yilgam Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282. DOI:10.1016/j.precamres.2003.12.011
Guo S, Zhao YY, Qu HC, Wu DX, Xu H, Li C, Liu Y, Zhu XY and Wang ZK. 2012. Geological characteristics and ore-forming time of the Dexing porphyry copper ore mine in Jiangxi Province. Acta Geologica Sinica, 86(3): 691-699. DOI:10.1111/acgs.2012.86.issue-3
Harrison TM, Waston EB and Aikman AB. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 635-638. DOI:10.1130/G23505A.1
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439.
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM and Hoskin PWO (eds.). Zircon. Reviews in Mineralogy and Geochemistry, 53: 27-62
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492.
Hu MY, He HL, Zhan XC, Fan XT, Wang G and Jia ZR. 2008. Matrix normalization for in-situ multi-element quantitative analysis of zircon in laser ablation-inductively coupled plasma mass spectrometry. Chinese journal of analytical chemistry, 36(7): 947-953.
Hu YB. 2015. Petrogenesis and metallogenetic implications of aadakites in the Gangdese porphyry copper belt. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-244 (in Chinese with English summary)
Hua RM and Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in East China. Mineral Deposits, 18(4): 300-308.
Hua RM, Chen PR, Zhang WL and Lu JJ. 2005. Three major metallogenic events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107.
Hua RM, Zhang WL, Gu SY and Chen PR. 2007. Comparison between REE granite and W-Sn granite in the Nanling region, South China, and their mineralization. Acta Petrologica Sinica, 23(10): 2321-2328.
Huang JC, Peng JT, Yang JH, Xu CX and Hu SB. 2015. Geochemistry and genesis of the Shuikoushan granodiorite in Hunan, South China. Geochimica, 44(2): 131-144.
Jian P, Cheng YQ and Liu DY. 2001. Petrographical study of metamorphic zircon:Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, 8(3): 183-191.
Jiang SY, Zhao KD, Jiang YH, Lin HF and Ni P. 2006. New type of tin mineralization related to granite in South China:Evidence from mineral chemistry, element and isotope geochemistry. Acta Petrologica Sinica, 22(10): 2509-2516.
Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 283-294.
Jiang YH, Jiang SY, Zhao KD and Ling HF. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting. Geological Magazine, 143(4): 457-474. DOI:10.1017/S0016756805001652
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38: 371-391. DOI:10.1093/petroj/38.3.371
Lee CTA, Leeman WP, Canil D and Li ZXA. 2005. Similar V/Sc systematics in MORB and arc basalts:Implications for the oxygen fugacities of their mantle source regions. Journal of Petrology, 46(11): 2313-2336. DOI:10.1093/petrology/egi056
Li B, Jiang SY, Lu AH, Lai JQ, Zhao KD and Yang T. 2016. Petrogenesis of Late Jurassic granodiorites from Gutian, Fujian Province, South China:Implications for multiple magma sources and origin of porphyry Cu-Mo mineralization. Lithos, 264: 540-554. DOI:10.1016/j.lithos.2016.09.020
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110. DOI:10.1016/j.lithos.2012.04.001
Li PJ. 2014. The characteristics and oxygen fugacity of Yanshanian igneous rocks and regional tectonic evolution in neighboring sections of Zhejiang, Jiangxi, and Anhui provinces. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-144 (in Chinese with English summary)
Li WX, Li XH and Li ZX. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1): 51-66. DOI:10.1016/j.precamres.2004.09.008
Li XF, Yasushi W, Hua RM and Mao JW. 2008. Mesozoic Cu-Mo-W-Sn mineralization and ridge/triple subduction in South China. Acta Geologica Sinica, 82(5): 625-640.
Li XF, Watanabe Y and Yi XK. 2013. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province, Southeast China. Resource Geology, 63(3): 288-312. DOI:10.1111/rge.12009
Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159. DOI:10.1007/s00126-005-0047-1
Lin J, Liu YS, Yang YH and Hu ZC. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1(1): 5-27. DOI:10.1016/j.sesci.2016.04.002
Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178. DOI:10.1016/j.gca.2010.09.003
Liu XH, Sun BN, Qu WJ, Kang HJ and Wu DY. 2007. Re-Os dating of molybdenite in Xiliugou W-Mo deposit in western part of North Qilian Mountains and its geological significance. Acta Petrologica Sinica, 23(10): 2434-2442.
Lu YF, Ma LY, Qu YJ, Mei YP and Chen XQ. 2006. U-Pb and Re-Os isotope geochronology of Baoshan Cu-Mo polymetallic ore deposit in Hunan Province. Acta Petrologica Sinica, 22(10): 2483-2492.
Lu YY, Fu JM, Cheng SB and Ma LY. 2014. Rock-forming and ore-forming ages of the Tongshan copper polymetallic deposit of Hunan Province. Beijing: China Union of Earth Sciences: 1930-1933.
Ludwig KR. 2003. User's manual for Isoplot/Ex. Version 3. 00:A geochronological toolkit for Microsoft Exce. Berkeley Geochronology Center Special Publication, 4: 1-70.
Ma DQ, Zhao ZJ, Lin HK and Zhang XH. 1985. Petrographical study of the enclaves from the Gangwei-Shilu-type granitoids in Yangchun basin of Guangdong and a discussion in their genesis.Bull. Yichang Inst. Geol. Mineral Resources. Chinese Academy of Geological Sciences, 10: 59-72.
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. DOI:10.1016/S0016-7037(99)00165-9
Mao JW, Hua RM and Li XB. 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits. Mineral Deposits, 18(4): 291-299.
Mao JW, Li XF, Chen W, Lan XM and Wei SL. 2004. Geological characteristics of the Furong tin orefield, Hunan, 40Ar-39Ar dating of tin ores and related granite and its geodynamic significance for rock and ore formation. Acta Geologica Sinica, 78(2): 481-491.
Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55.
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China:Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338.
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526.
Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658.
Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294. DOI:10.1007/s00126-012-0446-z
Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-584. DOI:10.1016/j.jseaes.2013.09.002
Mao JW, Luo MC, Xie GQ, Liu J and Wu SH. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits. Acta Geologica Sinica, 88(12): 2153-2175.
Mao JW, Xiong BK, Liu J, Pirajno F, Cheng YB, Ye HS, Song SW and Dai P. 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China:Implications for petrogenesis, mineralization and geodynamic setting. Lithos, 286-287: 35-52. DOI:10.1016/j.lithos.2017.05.023
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. Island Arc, 6(1): 121-142. DOI:10.1111/iar.1997.6.issue-1
Mei YP, Yang HM, Duan RC, Zhang LG, Cai YX, Tong XR, Tan JJ, Liu CP and Lu SS. 2013. Diagenetic and metallogenic geochronlogy study of the Xishan W-Sn ore deposit in Yangchuang of Guangdong Province. Acta Geologica Sinica, 87(9): 1370-1376.
Miller CF, Hatcher RD Jr, Harrison TM, Coath CD and Gorisch EB. 1998. Cryptic crustal events elucidated through zone imaging and ion microprobe studies of zircon, southern Appalachian Blue Ridge, North Carolina-Georgia. Geology, 26(5): 419-422. DOI:10.1130/0091-7613(1998)026<0419:CCEETZ>2.3.CO;2
Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Patiño-Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Patiño-Douce AE and Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689-710. DOI:10.1093/petroj/39.4.689
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41(7): 661-669. DOI:10.1007/s00126-006-0084-4
Peng SB, Jin ZM, Fu JM, Liu YH, He LQ and Cai MH. 2006. Geochemical characteristics of basic intrusive rocks in the Yunkai uplift, Guangdong-Guangxi, China, and their tectonic significance. Geological Bulletin of China, 25(4): 434-441.
Qu HY, Chen MH, Yang FC, Gao ZH, Wang YW, Zhao HJ and Yu CF. 2014. Metallogenic chronology of the stratiform Cu orebody in the Dabaoshan Cu polymetallic deposit, northern Guangdong Province and its geological significance. Acta Petrologica Sinica, 30(1): 152-162.
Railsback LB. 2003. An earth scientist's periodic table of the elements and their ions. Geology, 31(9): 737-740. DOI:10.1130/G19542.1
Shen JJ, Papanastassiou DA and Wasserburg GJ. 1996. Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60(15): 2887-2900. DOI:10.1016/0016-7037(96)00120-2
Shen P, Hattori K, Pan HD, Jackson S and Seitmuratova E. 2015. Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. DOI:10.2113/econgeo.110.7.1861
Shen RW, Hai T and Liu CM. 2010. Analysis of potential polymetallic deposits in the Yangchun basin in Guangdong Province. Geology and Exploration, 46(Suppl.): 1249-1255.
Shirey SB and Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141. DOI:10.1021/ac00109a036
Si TH, Zheng CN and Huang DX. 2004. The geological characteristics and prospecting prospect of Tiantang chalcopyrite polymetallic deposit. West-China Exploration Engineering, 16(5): 76-78.
Skjerlie KP and Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite-and amphibole-bearing tonalitic gneiss:Implications for the generation of A-type granites. Geology, 20: 263-266. DOI:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
Stein HJ, Markey RJ, Morgan JW, Du AD and Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Economic Geology, 92(7-8): 827-835. DOI:10.2113/gsecongeo.92.7-8.827
Stein HJ, Markey RJ, Morgan JW, Hannah JL and Scherstén A. 2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova, 13(6): 479-486. DOI:10.1046/j.1365-3121.2001.00395.x
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders AD and Norry MJ (eds.). Magmatism in the Ocean Basin. Geological Society, London, Special Publication, 42(1): 313-345
Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY and Fan WM. 2011. The genetic association of adakites and Cu-Au ore deposits. International Geology Review, 53(5-6): 691-703. DOI:10.1080/00206814.2010.507362
Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275. DOI:10.1016/j.gca.2012.10.054
Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131. DOI:10.1016/j.oregeorev.2014.09.004
Tang YW, Xie YL, Liu L, Lan TG, Yang JL, Sebastien M, Yin RC, Liang SS and Zhou LM. 2017a. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, southeastern China:Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt. Journal of Asian Earth Sciences, 137: 163-179. DOI:10.1016/j.jseaes.2017.02.016
Tang YW, Li XF, Xie YL, Liu L, Lan TG, Meffre S and Huang C. 2017b. Geochronology and geochemistry of Late Jurassic adakitic intrusions and associated porphyry Mo-Cu deposit in the Tongcun area, East China:Implications for metallogenesis and tectonic setting. Ore Geology Reviews, 80: 289-308. DOI:10.1016/j.oregeorev.2016.06.032
Vavra G, Gebauer D, Schmid R and Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):Anion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122(4): 337-358. DOI:10.1007/s004100050132
Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. DOI:10.1007/s004100050492
Vielzeuf D and Montel JM. 1994. Partial melting of metagreywackes:Part 1.Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. DOI:10.1007/BF00307272
Wan TF and Zhu H. 2002. Tectonics and environment change of Meso-Cenozoic in China continent and its adjacent areas. Geoscience, 16(2): 107-120.
Wang FY, Liu SA, Li SG and He YS. 2013. Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China:Implications for genetic relation to Cu-Au mineralization. Lithos, 156-159: 97-111. DOI:10.1016/j.lithos.2012.10.017
Wang L, Hu MA, Qu WJ, Chen KX, Long WG and Yang Z. 2012. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating of the Dabaoshan polymetallic deposit in northern Guangdong Province and its geological implications. Geology in China, 39(1): 29-42.
Wang XY, Mao JW, Cheng YB, Liu P and Zhang XK. 2016. Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartz diorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province. Geological Bulletin of China, 35(8): 1357-1375.
Wang Y and Deng JF. 2003. Geodynamic implication of petrochemical features of Yanshanian strongly peralumdious granitoids in Wuchuan-Sihui fracture belt of Guangdong. Geotectonica et Metallogenia, 27(1): 56-63.
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. DOI:10.1007/s00410-006-0068-5
Wu FY, Li XH, Yang JH and Zheng YH. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238.
Wu SH, Mao JW, Xie GQ, Geng JZ and Xiong BK. 2015. Geology, geochronology, and Hf isotope geochemistry of the Longtougang skarn and hydrothermal vein Cu-Zn deposit, North Wuyi area, southeastern China. Ore Geology Reviews, 70: 136-150. DOI:10.1016/j.oregeorev.2015.04.012
Wu YB, Chen DG, Xia QK, Tu XL, Cheng H and Yang XZ. 2003. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS. Science in China (Series D), 46(11): 1161-1170. DOI:10.1360/02yd0035
Xie GQ, Mao JW, Li RL, Qü WJ, Pirajno F and Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo(W) deposits in southeastern Hubei, China. Mineralogy and Petrology, 90(3-4): 249-270. DOI:10.1007/s00710-006-0176-y
Xie GQ, Mao JW, Zhao HJ, Wei KT, Jin SG, Pan HJ and Ke YF. 2011. Timing of skarn deposit formation of the Tonglushan ore district, southeastern Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt and its implications. Ore Geology Reviews, 43(1): 62-77. DOI:10.1016/j.oregeorev.2011.05.005
Xie GQ, Mao JW, Zhu QQ, Yao L, Li YH, Li W and Zhao HJ. 2015. Geochemical constraints on Cu-Fe and Fe skarn deposits in the Edong district, Middle-Lower Yangtze River metallogenic belt, China. Ore Geology Reviews, 64: 425-444. DOI:10.1016/j.oregeorev.2014.08.005
Xie YC. 2013. Genesis of the granodiorite porphyry and sources of metallogenic materials in the Baoshan Pb-Zn polymetallic deposit, southern Hunan Province. Master Degree Thesis. Nanjing: Nanjing University, 1-104 (in Chinese with English summary)
Xing B, Zheng W, Ouyang ZX, Wu XD, Lin WP and Tian Y. 2016. Sulfide microanalysis and S isotope of the Miaoshan Cu polymetallic deposit in western Guangdong Province, and its constraints on the ore genesis. Acta Geologica Sinica, 90(5): 971-986.
Xu DM, Lin ZY, Long WG, Zhang K, Wang L, Zhou D and Huang H. 2012. Research history and current situation of Qinzhou-Hangzhou metallogenic belt, South China. Geology and Mineral Resources of South China, 28(4): 277-289.
Yu JS, Gui XT, Li PZ and Yuan C. 1988. Isotope and trace element geochemistry of granitoid plutons in Yangchun Basin, Guangdong. Guangdong Geology, 13: 1-10.
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286. DOI:10.1111/acgs.2007.81.issue-2
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382. DOI:10.1007/s00126-007-0166-y
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China:New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242. DOI:10.1016/j.oregeorev.2011.08.002
Zeng W, Zhang L, Zhou HW, Zhong ZQ, Xiang H, Liu R, Jin S, Lü XQ and Li CZ. 2008. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block:Constraints from zircon U-Pb dating, Hf isotopes and trace elements. Chinese Science Bulletin, 53(6): 895-904.
Zhang H, Ling MX, Liu YL, Tu XL, Wang FY, Li CY, Liang HY, Yang XY, Arndt NT and Sun WD. 2013. High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits, southeastern China. The Journal of Geology, 121(3): 289-305. DOI:10.1086/669975
Zhang RQ, Lu JJ, Zhu JC, Yao L, Gao JF, Chen WF and Zhao ZJ. 2010. Zircon U-Pb geochronology and Hf isotopic compositions of Hehuaping granite porphyry, southern Hunan Province, and its geological significance. Geological Journal of China Universities, 16(4): 436-447.
Zhang SM, Xiao YF, Wang Q, Zhang XH, Yang L, Wang YL and Zhang CM. 2013. Re-Os dating of molybdenite from the Tongcun porphyry molybdenum deposit in western Zhejiang Province and its geological implications. Geology and Exploration, 49(1): 50-57.
Zhao HJ, Zheng W, Yu CF, Hu YG and Tian Y. 2012. Re-Os dating of molybdenite from the Shilu Cu(Mo) deposit in western Guangdong Province and its geological implications. Geology in China, 39(6): 1604-1613.
Zheng W, Chen MH, Zhao HJ, Hao HD, Luo DL, Hu YG and Zhao XM. 2012. Characteristics of sulfides and S-Pb isotope composition in the Tiantang Cu-Pb-Zn polymetallic deposit of Guangdong province and their geological implications. Geology in China, 39(6): 1830-1846.
Zheng W, Chen MH, Xu LG, Zhao HJ, Ling SB, Wu Y, Hu YG, Tian Y and Wu XD. 2013a. Rb-Sr isochron age of Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong province and its geological significance. Mineral Deposits, 32(2): 259-272.
Zheng W, Chen MH, Zhao HJ, Xu LG, Zhang DY, Ling SB, Yao L, Yu M and Chang LZ. 2013b. Skarn mineral characteristics of the Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong Province and their geological significance. Acta Petrologica et Mineralogica, 32(1): 23-40.
Zheng W, Zhao HJ, Chen MH, Xu LG, Liu JX, Luo DL and Hu YG. 2013c. Re-Os isotopic dating of molybdenites from the Yingwuling polymetallic deposit in Guangdong Province and its geological significance. Journal of Mineralogy and Petrology, 33(3): 38-46.
Zheng W, Chen MH, Zhao HJ, Zhao CS, Hou KJ, Li XM and Chang LZ. 2013d. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Yingwuling tungsten polymetallic deposit in Guangdong Province and its geological significance. Acta Petrologica Sinica, 29(12): 4121-4135.
Zheng W, Mao JW, Pirajno F, Zhao HJ, Zhao CS, Mao ZH and Wang YJ. 2015. Geochronology and geochemistry of the Shilu Cu-Mo deposit in the Yunkai area, Guangdong Province, South China and its implication. Ore Geology Reviews, 67: 382-398. DOI:10.1016/j.oregeorev.2014.12.009
Zheng W, Mao JW, Zhao HJ, Zhao CS, Lin WP, Ouyang ZX, Wu XD and Tian Y. 2015. A preliminary study of minerogenetic series and geodynamic background of polymetallic deposits in Yangchun basin of western Guangdong Province. Mineral Deposits, 34(3): 465-487.
Zheng W. 2016. The Yanshanian minerogenetic series and mineralization of polymetallic deposit in the Yangchun basin of Yunkai area, South China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-298 (in Chinese with English summary)
Zheng W, Mao JW, Zhao CS, Ouyang HG and Wang XY. 2016. Re-Os geochronology of molybdenite from Yinyan porphyry Sn deposit in South China. Resource Geology, 66(1): 63-70. DOI:10.1111/rge.2016.66.issue-1
Zheng W, Ouyang ZX, Chen YL, Zhao HJ, Liu DH, Wu XD, Yang SH, Wang RP and Chu KL. 2018. Re-Os age of molybdenite and ore-forming material source of the Qiguling Cu-W-Mo polymetallic deposit in the southern section of the Qinhang metallogenic belt. Acta Geologica Sinica, 92(1): 94-106.
Zhong LF, Liu LW, Xia B, Li J, Lin XG, Xu LF and Lin LZ. 2010. Re-Os geochronology of molybdenite from Yuanzhuding porphyry Cu-Mo deposit in South China. Resource Geology, 60(4): 389-396. DOI:10.1111/rge.2010.60.issue-4
Zhou YZ, Zheng Y, Zeng CY and Liang J. 2015. On the understanding of Qinzhou Bay-Hangzhou Bay metallogenic belt, South China. Earth Science Frontiers, 22(2): 1-6.
陈志宏, 陆松年, 李怀坤, 宋彪, 李惠民, 相振群. 2004. 北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学. 地质通报, 23(2): 136-142. DOI:10.3969/j.issn.1671-2552.2004.02.006
陈志中. 1988. 广东阳春锡山岩体的地质地球化学特征. 中山大学学报(自然科学版), (1): 1-12.
楚克磊, 毛景文, 陈懋弘, 赵军, 余长发, 林良庄, 林秀广. 2013. 广东圆珠顶斑岩型铜钼矿床成矿物质、成矿流体来源和成矿机理研究. 地学前缘, 20(5): 115-125.
杜安道, 赵敦敏, 王淑贤, 孙德忠, 刘敦一. 2001. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252. DOI:10.3969/j.issn.0254-5357.2001.04.002
杜安道, 屈文俊, 王登红, 李厚民, 丰成友, 刘华, 任静, 曾法刚. 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象. 矿床地质, 26(5): 572-580. DOI:10.3969/j.issn.0258-7106.2007.05.010
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
胡明月, 何红蓼, 詹秀春, 樊兴涛, 王广, 贾泽荣. 2008. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用. 分析化学, 36(7): 947-953. DOI:10.3321/j.issn:0253-3820.2008.07.016
胡永斌. 2015.冈底斯斑岩铜矿带埃达克岩成因及成矿启示.博士学位论文.广州: 中国科学院广州地球化学研究所, 1-244
华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308. DOI:10.3969/j.issn.0258-7106.1999.04.002
华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107. DOI:10.3969/j.issn.0258-7106.2005.02.002
华仁民, 张文兰, 顾晟彦, 陈培荣. 2007. 南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比. 岩石学报, 23(10): 2321-2328. DOI:10.3969/j.issn.1000-0569.2007.10.001
黄金川, 彭建堂, 阳杰华, 徐春霞, 胡思柏. 2015. 湖南水口山花岗闪长岩的地球化学特征及成因. 地球化学, 44(2): 131-144.
简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地学前缘, 8(3): 183-191. DOI:10.3321/j.issn:1005-2321.2001.03.022
蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培. 2006. 华南与花岗岩有关的一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509-2516.
蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 283-294.
李鹏举. 2014.浙赣皖相邻区燕山期火成岩及氧逸度特征与区域构造演化.博士学位论文.北京: 中国地质大学, 1-144
李晓峰, Yasushi W, 华仁民, 毛景文. 2008. 华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲. 矿床地质, 82(5): 625-640.
刘晓煌, 孙柏年, 屈文俊, 康鸿杰, 吴靖宇. 2007. 北祁连山西段西柳沟钨钼矿的Re-Os定年及地质意义. 岩石学报, 23(10): 2434-2442. DOI:10.3969/j.issn.1000-0569.2007.10.012
路远发, 马丽艳, 屈又俊, 梅玉萍, 陈希清. 2006. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究. 岩石学报, 22(10): 2483-2492.
卢友月, 付建明, 程顺波, 马丽艳. 2014. 湘南铜山岭铜多金属矿区成岩成矿作用年代学研究. 北京: 中国地球科学联合学术年会: 1930-1933.
马大铨, 赵子杰, 林惠坤, 张小豪. 1985. 广东阳春盆地岗尾-石菉型花岗岩类中包体的岩石特征及其成因. 中国地质科学院宜昌地质矿产研究所文集, 10: 59-72.
毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区. 矿床地质, 18(4): 291-299. DOI:10.3969/j.issn.0258-7106.1999.04.001
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. DOI:10.3321/j.issn:1005-2321.2004.01.003
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. DOI:10.3969/j.issn.1000-0569.2007.10.002
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. DOI:10.3969/j.issn.1006-7493.2008.04.005
毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658.
毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014. 斑岩铜矿床的基本特征和研究勘查新进展. 地质学报, 88(12): 2153-2175.
梅玉萍, 杨红梅, 段瑞春, 张利国, 蔡应雄, 童喜润, 谭娟娟, 刘重芃, 卢山松. 2013. 广东阳春锡山钨锡矿床成岩成矿年代学研究. 地质学报, 87(9): 1370-1376.
彭松柏, 金振民, 付建明, 刘云华, 何龙清, 蔡明海. 2006. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义. 地质通报, 25(4): 434-441. DOI:10.3969/j.issn.1671-2552.2006.04.002
瞿泓滢, 陈懋弘, 杨富初, 高志辉, 王要武, 赵海杰, 余长发. 2014. 粤北大宝山铜多金属矿床中层状铜矿体的成矿时代及其成因意义. 岩石学报, 30(1): 152-162.
沈睿文, 海涛, 刘昌明. 2010. 广东阳春盆地多金属找矿潜力浅析. 地质与勘探, 46(增刊): 1249-1255.
司徒宏, 郑昌能, 黄德鑫. 2004. 天堂铜多金属矿地质特征与找矿前景. 西部探矿工程, 16(5): 76-78. DOI:10.3969/j.issn.1004-5716.2004.05.035
王磊, 胡明安, 屈文俊, 陈开旭, 龙文国, 杨振. 2012. 粤北大宝山多金属矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 中国地质, 39(1): 29-42.
王小雨, 毛景文, 程彦博, 刘鹏, 张兴康. 2016. 粤东新寮岽铜多金属矿区石英闪长岩锆石U-Pb年龄、地球化学及Hf同位素组成. 地质通报, 35(8): 1357-1375. DOI:10.3969/j.issn.1671-2552.2016.08.016
汪洋, 邓晋福. 2003. 广东吴川-四会断裂带燕山期强过铝质花岗岩岩石化学特征的地球动力学意义. 大地构造与成矿学, 27(1): 56-63. DOI:10.3969/j.issn.1001-1552.2003.01.008
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴元保, 陈道公, 夏群科, 涂湘林, 程昊, 杨晓志. 2003. 大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年. 中国科学(D辑), 33(1): 20-28.
谢银财. 2013.湘南宝山铅锌多金属矿区花岗闪长斑岩成因及成矿物质来源研究.硕士学位论文.南京: 南京大学, 1-104
邢波, 郑伟, 欧阳志侠, 吴晓东, 林玮鹏, 田云. 2016. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约. 地质学报, 90(5): 971-986. DOI:10.3969/j.issn.0001-5717.2016.05.010
徐德明, 蔺志永, 龙文国, 张鲲, 王磊, 周岱, 黄皓. 2012. 钦杭成矿带的研究历史和现状. 华南地质与矿产, 28(4): 277-289. DOI:10.3969/j.issn.1007-3701.2012.04.001
于津生, 桂训唐, 李培忠, 袁超. 1988. 广东阳春盆地花岗岩类同位素、微量元素地球化学研究. 广东地质, 13: 1-10.
曾雯, 张利, 周汉文, 钟增球, 向华, 刘锐, 靳松, 吕新前, 李春忠. 2008. 华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约. 科学通报, 53(3): 335-344. DOI:10.3321/j.issn:0023-074X.2008.03.010
章荣清, 陆建军, 朱金初, 姚远, 高剑峰, 陈卫锋, 招湛杰. 2010. 湘南荷花坪花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、Hf同位素制约及地质意义. 高校地质学报, 16(4): 436-447. DOI:10.3969/j.issn.1006-7493.2010.04.003
张世铭, 肖渊甫, 王强, 张雪辉, 杨玲, 王瑜亮, 张春茂. 2013. 浙江省桐村钼矿床Re-Os同位素年龄及地质意义. 地质与勘探, 49(1): 50-57.
赵海杰, 郑伟, 余长发, 胡耀国, 田云. 2012. 粤西石菉铜钼矿床Re-Os同位素年龄及其地质意义. 中国地质, 39(6): 1604-1613. DOI:10.3969/j.issn.1000-3657.2012.06.010
郑伟, 陈懋弘, 赵海杰, 郝宏达, 罗大略, 胡耀国, 赵新敏. 2012. 广东天堂铜铅锌多金属矿床矿物学、硫化物S-Pb同位素特征及地质意义. 中国地质, 39(6): 1830-1846. DOI:10.3969/j.issn.1000-3657.2012.06.027
郑伟, 陈懋弘, 徐林刚, 赵海杰, 凌世彬, 吴越, 胡耀国, 田云, 吴晓东. 2013a. 广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义. 矿床地质, 32(2): 259-272.
郑伟, 陈懋弘, 赵海杰, 徐林刚, 张东阳, 凌世彬, 姚磊, 于淼, 常利忠. 2013b. 广东省天堂铜铅锌多金属矿床矽卡岩矿物学特征及其地质意义. 岩石矿物学杂志, 32(1): 23-40.
郑伟, 赵海杰, 陈懋弘, 徐林刚, 刘建新, 罗大略, 胡耀国. 2013c. 广东鹦鹉岭多金属矿床辉钼矿的Re-Os同位素定年及其意义. 矿物岩石, 33(3): 38-46.
郑伟, 陈懋弘, 赵海杰, 赵财胜, 侯可军, 刘建新, 李学孟, 常利忠. 2013d. 广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义. 岩石学报, 29(12): 4121-4135.
郑伟, 毛景文, 赵海杰, 赵财胜, 林玮鹏, 欧阳志侠, 吴晓东, 田云. 2015. 粤西阳春盆地多金属矿床成矿系列及动力学背景. 矿床地质, 34(3): 465-487.
郑伟. 2016.云开地区阳春盆地燕山期多金属矿床成矿系列.博士学位论文.北京: 中国地质大学, 1-298
郑伟, 欧阳志侠, 陈友良, 赵海杰, 刘东宏, 吴晓东, 杨胜虎, 汪汝澎, 楚克磊. 2018. 钦杭成矿带南段旗鼓岭铜钨钼多金属矿床的辉钼矿Re-Os同位素年龄及成矿物质来源. 地质学报, 92(1): 94-106. DOI:10.3969/j.issn.0001-5717.2018.01.007
周永章, 郑义, 曾长育, 梁锦. 2015. 关于钦-杭成矿带的若干认识. 地学前缘, 22(2): 1-6.