岩石学报  2018, Vol. 34 Issue (9): 2632-2656   PDF    
皖南竹溪岭钨多金属矿床花岗闪长岩成因、成矿时代及成岩成矿背景研究
孔志岗1,2 , 梁婷1 , 毛景文3 , 徐生发4 , 许红兵4 , 闫盼盼1 , 金修勇4     
1. 长安大学地球科学与资源学院, 西安 710064;
2. 昆明理工大学国土资源工程学院, 昆明 650093;
3. 中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室, 北京 100037;
4. 安徽省地质矿产勘查局332地质队, 黄山 242700
摘要:皖南宁国竹溪岭钨多金属矿床位于江南古陆斑岩-矽卡岩型钨矿带的东部,是近年来新发现的一个大型钨矿床。矿体主要产于燕山期黑云母花岗闪长岩与震旦系兰田组灰岩接触带。与矿化关系密切的黑云母花岗闪长岩具有似斑状结构,斑晶主要由更-中长石、石英和少量黑云母组成,基质由更-中长石、石英、钾长石、黑云母和少量角闪石组成。岩石化学分析结果表明,岩石具有高硅、富钾、低镁的特征,A/CNK>1.0,Mg#=35.2~37.2,P2O5的含量为0.17%~0.21%,为高钾钙碱性弱过铝质花岗质岩石;富集Rb、K,亏损Nb、Ta、Zr和Ti;∑REE为90.4×10-6~168.6×10-6,LREE/HREE为7.15~15.2,(La/Yb)N值为10.9~35.1,呈现轻稀土元素富集的右倾配分模式,具弱的Eu负异常,δEu=0.54~0.81。以上特征说明竹溪岭花岗闪长岩为I型花岗质岩,原始岩浆以壳源为主,可能有幔源物质混入。矿石中辉钼矿Re-Os模式年龄为140.4~142.7Ma,等时线年龄为140.2±1.5Ma(MSWD=0.50),与区域成岩成矿年龄基本一致,与北侧的长江中下游地区燕山期斑岩-矽卡岩型Cu-Au-Mo矿可能为同一构造事件的产物。
关键词: 竹溪岭钨多金属矿床     花岗闪长岩     岩石地球化学     辉钼矿Re-Os同位素年龄     I型花岗质岩    
Study on perogenesis of granodiorite, metallogenic epoch and petrogenetic-metallogenetic setting in the Zhuxiling tungsten polymetallic deposit, southern Anhui Province, China
KONG ZhiGang1,2, LIANG Ting1, MAO JingWen3, XU ShengFa4, XU HongBing4, YAN PanPan1, JIN XiuYong4     
1. School of Earth Science and Resources, Chang'an University, Xi'an 710064, China;
2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093;
3. MLR Key Laboratory of Metallogeny and Mineral Assesment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. No. 332 Geological Team, Anhui Bureau of Geology and Mineral Exploration, Huangshan 242700, China
Abstract: The Zhuxiling tungsten polymetallic deposit in southern Anhui Province is a giant deposit discovered within the Jiangnan Paleocontinent porphyry-skarn tungsten ore belt (JNB) in recent years. The orebody was generated in skarn, which formed the contacted zone between the Yanshanian biotite granodiorites and limestones of the Sinian Lantian Formation. Petrographic studies show that the biotite granodiorite which is closely associated with the mineralization have porphyritic structures, and phenocrysts are mainly composed of oligoclase-andesine, quartz and a small amount of biotite, and the matrix is composed of oligoclase-andesine, quartz, K-feldspar, biltite and minor amphibole. The whole rock chemistry suggests that the felsic stock is characterized by high Si, K, and low Mg, with A/CNK>1.0, Mg#=35.2~37.2, P2O5=0.17%~0.21%. The felsic rocks belong to K-rich weakly peraluminous granodiorite, and are enriched in Rb and K, and depleted in Nb, Ta, Zr and Ti. Their total REE contents are 90.4×10-6~168.6×10-6, LREE/HREE=7.15~15.2, (La/Yb)N=10.9~35.1, and exhibiting insignificant Eu negative anomaly. These features indicate that Zhuxiling granodiorite belongs to I-type granitic rocks and crustal source with an input of mantle material. The Re-Os isotopic dating of molybdenite shows that model ages range from 140.4Ma to 142.7Ma with the isochron age of 140.2±1.5Ma (MSWD=0.50), which is similar to the ages of the regional diagenesis and mineralization. The above information indicates the rock and tungsten polymetallic deposits in Jiangnan Orogenic Belt and porphyry-skarn Cu-Au-Mo deposits along the Middle-Lower Reaches of the Yangtze River may be formed in the same tectonic setting.
Key words: Zhuxiling tungsten polymetallic deposit     Granodiorite     Petrogeochemistry     Molybdenite Re-Os dating     I-type granitic rocks    

中国东南部的扬子地块东缘是中国重要的有色金属矿和铁矿富集区之一,其中长江中下游坳陷-断裂带及钦杭结合带工作程度较高,研究较深入,发现了一系列大型、超大型斑岩-矽卡岩型Cu-Au-Mo及Fe等矿床(华仁民等, 2005a; Mao et al., 2011b; Xie et al., 2011, 2015)。而处于两坳陷带之间的江南古陆东缘地区工作程度相对较低,找矿工作一直没有较大突破。近年来,在中国长江中下游地区南侧的江南古陆东缘及邻区发现和探明了一批超大型-大型斑岩-矽卡岩型钨矿床,构成了一个与长江中下游铜金多金属成矿带近平行的钨钼成矿带(图 1)(Mao et al., 2017),包括钨储量超百万吨的世界级超大型钨矿——大湖塘细脉浸染型-热液隐爆角砾岩型、石英脉型钨矿和朱溪矽卡岩型钨矿(Mao et al., 2013b; 项新葵等,2013; 陈国华等, 2015),以及香炉山、竹溪岭、逍遥、百丈岩、兰花岭、巧川、际下等大型矽卡岩型钨矿床(王克友, 2008; 赵文广等, 2008; 吴胜华等, 2014; 陈芳等, 2015)及阳储岭、东源等大型斑岩型钨矿床(周翔等, 2011; Mao et al., 2017)。这些矿床的发现和探明重塑了中国钨矿空间分布的格局,改变了以前“中国已探明钨矿主要分布于南岭地区”的认识,使江南古陆东缘及邻区钨成矿带成为全球另一个重要的钨矿成矿带。该成矿带成岩成矿时空分布规律和岩石成因及其成岩成矿地球动力学背景的研究成为亟待解决的科学问题之一。

图 1 长江中下游斑岩-矽卡岩型Cu-Au-Mo-Fe矿带(YRB)与江南古陆斑岩-矽卡岩型钨矿带(JNB)地质简图(据Mao et al., 2017修改) Fig. 1 Geological sketch map of the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) and the Jiangnan Paleocontinent porphyry-skarn tungsten ore belt (JNB) (modified after Mao et al., 2017)

已有研究成果(Mao et al., 2013a, 2017; 蒋少涌等, 2013, 2015; 陈骏等, 2014; Yuan et al., 2015)表明与钨矿成矿有关的岩石主要为花岗岩、花岗斑岩等较酸性岩石,与花岗闪长岩有关的钨矿床较少,且规模较小。竹溪岭钨钼银多金属矿床是近年来皖南新发现的大型钨钼银多金属矿床之一,也是江南古陆东缘及邻区典型的矽卡岩型钨钼多金属矿床,主要矿体就位于花岗闪长岩与碳酸盐岩接触带,且为大型规模,目前矿床的研究程度较低。陈雪霏等(2013)虽开展了矿区花岗岩的岩石地球化学、锆石U-Pb年龄、Hf同位素研究,但目前矿区内针对与成矿关系密切的花岗闪长岩岩石特征、岩石成因和成矿时代的研究至今仍未见报道。

近十几年来,涉及江南古陆东缘及邻区侏罗-白垩纪花岗岩的研究已经广泛开展,也相应的取得了部分认识,然而,学者们在这些花岗质岩形成的构造背景和岩石成因方面存在较大分歧。部分学者认为该区与钨钼成矿有关的花岗质岩为I型花岗质岩(薛怀民等, 2009; Su et al., 2013),部分学者认为是S型花岗质岩(黄兰椿和蒋少涌, 2012; Huang and Jiang, 2014; Mao et al., 2015),还有部分学者认为是A型花岗质岩(谢建成等, 2016)。

本文在全面总结竹溪岭钨钼多金属矿床地质特征、与成矿有关的花岗闪长岩岩石特征的基础上,开展了花岗闪长岩的岩石地球化学特征、辉钼矿的Re-Os同位素精确定年等研究,从花岗闪长岩微量和稀土元素特征方面讨论岩石成因,并与类似矿床及相邻成矿带成矿动力学背景对比,初步探讨花岗闪长岩形成的构造背景。

1 地质背景

研究区位于扬子地块东段北中部的江南古陆往北东扬子前陆凹陷带的过渡带,北部以NE向天目山-白际山断裂带(江南断裂带)为界与江南过渡带(下扬子前陆凹陷带(Ⅰ))相邻,南部为钱塘凹陷(Ⅲ),以江山-绍兴缝合带与华夏板块相连(余心起等, 2007)(图 2)。

图 2 江南古陆东缘构造分区及花岗质岩类分布简图(据侯明金, 2005; Li et al., 2013修改) Fig. 2 Sketch map of geotectonic divisions and distribution of granditoid rocks in the eastern part of Jiangnan Paleocontinent (modified after Hou, 2005; Li et al., 2013)

区域上出露有中元古代到早古生代地层,可分为变质基底和沉积盖层两部分。中、晚元古界浅变质基底岩系构成变质基底;震旦系至下三叠统海相沉积盖层、上三叠世-白垩系陆相地层以及第四纪松散堆积物等构成沉积盖层。

区域地质构造演化先后经历了晋宁、加里东、海西、印支、燕山及喜马拉雅期构造运动,以新元古代和早中生代构造活动较强, 规模较大。到晚中生代,受太平洋板块俯冲作用的影响, 区内发生了挤压、推覆构造以及多阶段地壳伸展、玄武岩浆底侵、断陷盆地和热液-成矿活动(谢桂青等, 2008; Mao et al., 2011a, b)。区域主要断裂有近东西向的周王断裂带、祁门-潜口断裂带等,北东向的江南深断裂带、赣东北-白际山断裂带、三阳断裂带、绩溪断裂带等(图 2)。

区域岩浆岩分布主要集中于安徽南部和皖浙赣交界处,多沿构造断裂带呈带状分布,侵入岩以花岗岩和花岗闪长岩为主,主要分为两期:晋宁期(新元古代)和中生代燕山期。晋宁期花岗闪长岩、花岗岩主要分布于于休宁-许村一带及皖浙赣接壤处,同位素年龄为830~760Ma(Li, 2000Li et al., 2003);燕山期以花岗(斑)岩和花岗闪长岩在区内广泛分布,同位素年龄为160~120Ma(Wu et al., 2012; Li et al., 2013; 李鹏举等, 2016),这些花岗质岩体往往与区内钨、钼、银、铅锌等矿床有密切关系。

区域矿产以铜、钨、钼、铅、锌、金、锑、钒等为主,铜、钼、铅、锌矿主要分布在长江中下游地区等,以斑岩-矽卡岩-层控型为主(周涛发等, 2004; 谢桂青等, 2008; Mao et al., 2011b);金、锑矿主要分布于铜陵、池州、黄山等地;钨、钼矿以矽卡岩型和斑岩型矿床为主,矽卡岩型钨(钼)矿集中分布在赣北的朱溪、香炉山、皖南的石台、青阳-泾县、旌德、太平、绩溪、浙西北的淳安、开化等地;斑岩型钨(钼)矿集中分布于江西的大湖塘、阳储岭、安徽的祁门-绩溪、旌德等地。

2 矿床地质特征 2.1 地层、构造

研究区地层自新至老发育有:下奥陶统印渚埠组钙质泥岩;上寒武统西阳山组、华严寺组泥质条带灰岩;中寒武统杨柳岗组泥质灰岩,下部为硅质炭质板岩;下寒武统大陈岭组、荷塘组白云质灰岩、含炭硅质板岩;上震旦统皮园村组硅质岩、硅质板岩、炭质硅质板岩;下震旦统兰田组白云岩、灰岩及细碎屑岩;以及新元古界南华系上统南沱组冰碛含砾凝灰岩、泥岩、冰碛砾岩(图 3)。兰田组是矿区主要赋矿地层,分为4个岩性段,其中,第④岩性段为白云岩、钙质泥岩、板岩;第③岩性段为条带状泥质白云质灰岩与层条纹状泥晶灰岩互层;第②岩性段为含钙含粉砂炭质板岩、含硅炭质板岩;第①岩性段为含锰白云质灰岩夹硅质白云岩。

图 3 竹溪岭钨多金属矿矿区地质简图 1-奥陶系下统印诸埠组; 2、3-寒武系上统西阳山组; 4-寒武系上统华严寺组; 5-寒武系中统杨柳岗组; 6-寒武系下统大陈岭组; 7、8-寒武系下统荷塘组; 9、10-震旦系上统皮园村组; 11-14-震旦系下统兰田组; 15-南华系上统南沱组; 16-花岗闪长岩; 17-花岗闪长斑岩; 18-花岗斑岩; 19-银铅锌矿脉; 20-石英脉; 21-隐伏矿体; 22-实测/推测地质界线; 23-逆断层; 24-正断层; 25-性质不明断层; 26-产状; 27-采样位置 Fig. 3 Geological sketch map of the Zhuxiling tungsten polymetallic deposit 1-Lower Ordovician Yinzhubu Fm.; 2, 3-Upper Cambrian Xiyanggshan Fm.; 4-Upper Cambrian Huayansi Fm.; 5-Middle Cmbrian Yangliugang Fm.; 6-Lower Cambrain Dachenling Fm.; 7、8-Lower Cambrain Hetang Fm.; 9、10-Upper Sinian Piyuancun Fm.; 11-14-Lower Sinian Lantian Fm.; 15-Upper Nanhua Nantuo Fm.; 16-granodiorite; 17-granodiorite porphyry; 18-granite porphyry; 19-Ag-Pb-Zn ore veins; 20-quartz veins; 21-concealed orebody; 22-observed/ speculative geological boundaries; 23-reverse faults; 24-normal faults; 25-unknown faults; 26-attitude of stratum; 27-sampling location

研究区处于绩溪复背斜和仙霞褶断带的接合部位,NE向的宁国-绩溪大断裂以东,轴向北东向的宁国墩复背斜东段次级背斜――竹溪岭背斜轴部倾伏转折端。竹溪岭背斜形态为穹窿状的短轴背斜,核部被竹溪岭花岗闪长岩岩体侵位,地质图上呈短轴的背斜褶皱构造(图 3)。区内断裂构造及层间滑脱构造发育,规模不等,方向各异,性质不一,属多期次构造变形的产物,主要发育NE、NW和近E-W向三组(图 3)。

2.2 竹溪岭岩体岩相学特征

研究区晚侏罗世-早白垩世花岗质岩类发育,多呈脉状、岩株状出露地表,往深部岩体规模变大。出露地表的岩体以花岗闪长岩岩体为主,其次为花岗闪长斑岩脉和花岗斑岩脉,主要呈脉状穿插于地层中。

竹溪岭花岗闪长岩岩体形态呈不规则状,侵位于竹溪岭背斜的核部,岩体顶面具有一定的起伏特征,地表出露在竹溪岭村。根据钻探资料,岩体深部相连,长轴方向呈近东西向,长度大于1.5km,南北向最大宽度1.6km。总体形态为一近东西向的展布的椭球形,面积约1.5km2,出露面积小于1km2

岩石呈灰白至浅灰色(图 4a, d, g, j, m),具似斑状结构(图 4a, d, g, j, m),块状构造。斑晶主要由石英、斜长石和少量黑云母矿物组成,含量占21%~28%。其中,斜长石,呈自形-半自形宽板状(图 4d, g, i, m),含量约10%~12%,粒度大约1.5×4mm~4×8mm,为正低突起,干涉色Ⅰ级灰,聚片双晶、卡-纳复合双晶和环带构造发育(图 4b, c, e, h, i, l, n, o),依据卡-纳复合双晶切片上测量消光角法确定斜长石号码,An=26~45,大部分An=35~42,主要为中长石,少部分为更长石;石英,呈无色、乳白色,含量8%~10%,正低突起,粒度大小约5~12mm,呈半自形粒状(图 4e);黑云母,呈棕色-浅黄色,多色性明显,含量约3%~6%,粒径长约0.5~1mm,宽0.1~0.3mm(图 4a, d, g, j, k, m),分布不均匀,部分发生绿泥石化,可见磷灰石、榍石包裹体。岩石基质由斜长石、石英、钾长石、黑云母和角闪石组成(图 4a, d, g, j, m),含量占72%~79%,其中,斜长石成分基本同斑晶,为更-中长石,含量约42%~45%,具有弱的绢云母化,粒度一般<1mm(图 4b, c, e, f, l, n);石英呈他形粒状,含量12%~15%,粒度一般小于<0.3mm(图 4b, e, f, i, n, o);钾长石负低突起,含量8%~12%,粒度一般<1.5mm,可见卡斯巴双晶,大多发生泥化(图 4b, f, n, o);黑云母呈鳞片状,极完全解理,粒度一般<0.5mm,含量5%~8%,多数发生绿泥石化(图 4b, c, I, l, m, o);角闪石呈长柱状,含量约1%,粒度一般<1mm,薄片中呈绿色,多色性明显,正中-高突起,斜消光,两组解理夹角约56°(图 4k),干涉色为Ⅱ级,可被绿泥石、黑云母交代,呈交代残留、交代假象结构(图 4l)。副矿物有磁铁矿、磷灰石、锆石、榍石、白钨矿等。

图 4 竹溪岭花岗闪长岩手标本(a、d、g、j、m)及显微照片(b、c、e、f、h、i、k、l、n、o) (k)为单偏光照片,其他为正交偏光照片.Ads-中长石; Bt-黑云母; Hbl-角闪石; Kfs-钾长石; Qz-石英 Fig. 4 Hand specimen (a, d, g, j, m) and photomicrographs (b, c, e, f, h, i, k, l, n, o) of Zhuxiling granodiorite (k) is under plane polarized light, others are under crossed polars. Ads-andesine; Bt-biotite; Hbl-hornblende; Kfs-K-feldspar; Qz-quartz

岩石结构特征表明岩浆侵位较浅。矿区矿体主要赋存于竹溪岭花岗闪长岩与震旦系下统兰田组的接触带,岩体与成矿关系密切。

2.3 矿体特征

矿区矿体以W为主,Mo、Ag次之,并伴生Pb、Zn、Cu、Ge、Ga、Bi、Au等,为多金属矿床。矿区主要发育矽卡岩型W、Mo矿体、石英硫化物脉型W、Mo矿体和蚀变花岗闪长岩型W、Mo矿体。前期地质工作共发现W-Mo矿体100余个,WO3资源量8.7万吨,平均品位0.42% WO3,Mo资源量0.9万吨,平均品位0.05% Mo,目前勘查工作仍在继续,资源储量仍在进一步扩大。

矽卡岩型W、Mo矿体是矿床的主要矿体,而透辉石-石榴子石矽卡岩中的浸染状矿体又是最主要的矿体,分布于竹溪岭岩体的北部及北西部接触带外侧的花岗闪长岩体与震旦系下统兰田组第三岩性段接触带的矽卡岩中,少量矿体产于兰田组第四、二、一岩性段白云岩、板岩和南华系南沱组含砾凝灰质粉砂岩中。透辉石-石榴子石矽卡岩中的矿体规模较大,矿体形态简单,以似层状,透镜状为主,矿体产状大致与地层一致,变化较小,分布于其它层位中的矿体规模小,以透镜状、脉状为主。最大的矿体(1号矿体)位于矿区的北西部竹溪岭短轴背斜核部,矿体形态和产状受褶皱形态影响,呈似层状产出(图 5),矿体总体走向近东西向,倾向最大宽度700m,走向最大长度510m,总体向北及西侧倾斜。矿体最大厚度61.72m,最小厚度1.01m,平均厚度31.92m。下部为钨矿,上部见浸染状辉钼矿与钨矿共生。矿石矿物以白钨矿为主,次有黄铁矿,辉钼矿,少量黑钨矿、磁铁矿、磁黄铁矿,方铅矿,黄铜矿,闪锌矿等,脉石矿物为石榴子石、透辉石、石英、方解石、透闪石等。他形粒状结构,自形-半自形粒状结构,交代残余结构,共边结构、包含结构等,稀疏浸染状构造、条带浸染状构造、脉状构造等。

图 5 竹溪岭钨多金属矿矿床A-A′地质剖面图 Fig. 5 Geological cross-section through the Zhuxiling tungsten polymetallic deposit along line A-A′

石英硫化物脉型W、Mo矿体产于接触带外侧各时代地层及花岗闪长岩岩体中。矿体形态呈脉状、透镜状,在走向上延伸较小,矿体产状复杂,变化无规律,往往呈陡倾产出(图 5)。代表性的矿体有64号矿体,产于花岗闪长岩岩体中,受断裂构造影响明显,矿体形态呈脉状,具有膨胀收缩特征,走向近东西向,倾向北,倾角45°~70°不等,矿体长度约300m,平均斜深290m,矿体厚度0.90~6.32m,平均厚度2.79m。矿石矿物主要为白钨矿、黄铁矿、辉钼矿,少量黑钨矿、黄铜矿、方铅矿及闪锌矿、辉铋矿等,白钨矿矿物颗粒往往较大,大部分脉体白钨矿与辉钼矿、黄铁矿共生,部分脉体为辉钼矿与黄铁矿共生。脉石矿物为石英、方解石等。矿石为自形-半自形粒状结构,脉状构造。

蚀变花岗闪长岩型W、Mo矿体产于内接触带及蚀变花岗闪长岩中,往往在接触带附近或蚀变较强烈的地段发育,伴随有强烈的绿帘石、绿泥石、绢-白云母、硅化,矿体与围岩为渐变关系,矿体规模大小不等,形态比较复杂,脉状、透镜状、囊状等均有。代表性的矿体为6号矿体,其赋矿岩石为花岗闪长岩,大致平行岩体接触带,矿体走向东西,倾向北,倾角约12°;矿体东西长400m,南北长约550m;矿体厚度1.31~6.03m,平均厚度3.11m。矿石矿物主要为白钨矿,少量辉钼矿、黑钨矿、辉铋矿、磁铁矿而少见磁黄铁矿。岩体中浸染状白钨矿和浸染状辉钼矿大多独立分布,局部蚀变强烈地段白钨矿与辉钼矿、黄铁矿共生。

根据矿石矿物共生组合、结构构造特征以及各种矿物之间相互穿插、交代关系,成矿阶段可划分为矽卡岩期和热液期二期,其中矽卡岩期可划分为早矽卡岩阶段、退化蚀变岩阶段及氧化物阶段;热液期可划分为石英硫化物阶段和碳酸盐阶段。早矽卡岩阶段,形成以透辉石、钙铝-钙铁石榴子石、符山石、硅灰石等为主的硅酸盐矿物组合(图 6a-e, h)。退化蚀变岩阶段,早期的矽卡岩矿物多被阳起石、透闪石、绿泥石和绿帘石交代,形成退化蚀变矿物组合,随着早期硅酸盐矿物被交代,一些金属矿物开始析出,早期白钨矿在此阶段开始形成(图 6c-e, i)。氧化物阶段,在该矿区是一个短暂的演化阶段,气水热液聚集在岩体的顶部并沿裂隙向外运移,与周围的岩石发生交代作用,使花岗闪长岩发生钾长石化,到晚期,随着温度和压力的降低及从围岩中吸取的碱质成分增多,使岩石发生绢云母化,形成大量浸染状白钨矿化,并出现少量磁铁矿、黑钨矿、金红石等,为钨的主矿化阶段,晚期开始有黄铜矿、辉钼矿形成(图 6b, c)。石英硫化物阶段,叠加于矽卡岩期的矿物之上,伴有白钨矿、辉钼矿、黄铁矿、磁黄铁矿、黄铜矿等矿石矿物的大量沉淀,此时的白钨矿等主要矿物常伴随石英出现或呈矿脉出现,白钨矿颗粒往往比较大,与辉钼矿、黄铁矿共生,为主要成矿阶段(图 6d, e, j-l, m),晚期形成石英-方解石-黄铁矿-闪锌矿、方铅矿脉(图 6f, n, o)。碳酸盐阶段,主要形成粗粒方解石及细小方解石脉,穿插早期矽卡岩及矿体(图 6g)。矿物的生成顺序见表 1

图 6 竹溪岭钨多金属矿床矿化阶段典型手标本及显微照片 (a、d-g)为手标本照片;(b、c)为单偏光照片;(h、i)为正交偏光照片; (j-o)为反射光照片.Grt-石榴子石; Di-透辉石; Tr-透闪石; Cal-方解石; Sch-白钨矿; Py-黄铁矿; Mo-辉钼矿; Clp-黄铜矿; Po-磁黄铁矿; Sp-闪锌矿; Gn-方铅矿 Fig. 6 Hand specimen and photomicrographs for typical mineral in different mineralization stage from the Zhuxiling tungsten polymetallic deposit (a, d-g) are hand specimen photgraphs; (b, c) are photomicrographs under plane polarized light; (h, i) are photomicrographs under crossed polars; (j-o) are photomicrographs under reflected light. Grt-garnet; Di-diopside; Tr-tremolite; Cal-calcite; Sch-scheelite; Py-pyrite; Mo-molybdenite; Clp-chalcopyrite; Po-pyrrhotite; Sp-sphalerite; Gn-ganela

表 1 竹溪岭钨多金属矿床矿物生成顺序 Table 1 Metallogenic stages and minerals-forming sequence of the Zhuxiling tungsten polymetallic deposit
3 样品特征及分析方法 3.1 样品采集

本次工作,在研究区钻孔ZK704(30°31′06″N、119°14′11″E)、ZK804(30°31′06″N、119°14′05″E)中选取了6件竹溪岭岩体深部新鲜样品。首先将采集的岩石样品磨制成薄片,在显微镜下进行了系统鉴定;其余样品粉碎到200目后,用来测试全岩的主量元素、微量元素和稀土元素的含量。另外,在钻孔中采集了5个辉钼矿新鲜样品(钻孔位置见图 3),用以测试辉钼矿的Re-Os同位素组成和年龄。样品组合包括2件石英硫化物矿石(辉钼矿与白钨矿共生,图 6d, j)及3件蚀变花岗闪长岩型矿石。石英硫化物脉脉宽2~8cm,陡倾斜,辉钼矿主要产于石英脉壁或中部,呈斑点状、浸染状产出,一般结晶较好,呈鳞片状产出,粒径大小1~2mm×1~3mm左右;蚀变花岗闪长岩中辉钼矿呈浸染状,呈鳞片状(图 6l, m),粒径大小1~3mm×3~5mm,岩体蚀变较强,发生强烈的绢云母化、高岭土化、绿泥石化和碳酸盐化。样品在双目镜下手工挑选出辉钼矿单矿物,每件辉钼矿样品无氧化,无污染,纯度达99%以上。

3.2 分析测试方法

(1) 岩体主量、微量和稀土元素测试

样品的主量与微量、稀土元素测定在国家地质实验测试中心完成。其中岩石主量元素测定采用XRF(X荧光光谱仪Shimadzu XRF-1500)法,测试电流50mA、电压为50kV,精度控制在5%。三价铁和二价铁离子通过湿化学法测定(滴定法),分析测试精度为0.5%~1.0%,主量元素测定选择中国国家标准岩石GSR-1、GSR-3来校准测试样品的元素浓度,在量化过程中使用的校准线来自于36种标准物质数据的二元回归,分析精度在±0.01%到0.20%之间。

电感耦合等离子质谱仪(ICP-MS)被用于岩石微量元素及稀土元素(REE)测定,仪器型号为Agilent 7500a。称量50mg粉末样品于封闭溶样器的内罐中,加入1mL HF和0.5mL的HNO3后密封加热24h,冷却后取出内罐,置于电热板上加热至近干,再加入0.5mL HNO3蒸发至干,重复操作一次,再加入5mL HNO3,密封加热3h,冷却后将溶液定量转移至塑料瓶中,用水稀释,定容至25mL,摇匀,溶液直接用于ICP-MS测定。同时测定四种国际标样(BCR-1、BHVO-1、AGV-2和JB-1)来检测实验的准确性。其中含量大于10×10-6的元素的测试精度控制为5%,小于10×10-6的元素精度控制为10%,个别在样品中含量低的元素,测试误差大于10%。

(2) 辉钼矿Re-Os同位素测试

辉钼矿Re-Os同位素测试利用国家地质实验测试中心的美国TJA公司生产的电感耦合等离子体质谱仪TJA X-series ICP-MS完成。样品分解采用Carius tube熔样法(Shirey and Walker, 1995),并采用来自美国橡树岭国家实验室的190Os和185Re稀释剂。Re、Os化学分离步骤和质谱测定主要包括分解样品,蒸馏分离锇,萃取分离Re,质谱测定4个流程,实验的具体过程,测试方法和详细流程参照Shirey and Walker(1995)屈文俊和杜安道(2004)Du et al.(2004)李超等(2009)文献。试验中样品和稀释剂的称量误差、稀释剂的标定误差、待分析样品同位素比值测量误差和质谱测量的分馏校正误差等共同造成了Re、Os含量的不确定度,置信水平在95%。模式年龄通过公式t=[In(1+187Os/187Re)]/λ获取,λ是187Re的衰变常数,其值为1.666×10-11/y(±1.02%)(Smoliar et al., 1996)。

4 分析结果 4.1 竹溪岭花岗闪长岩主量、微量和稀土元素含量

岩石全岩主量元素分析结果见表 2,分析的的6件样品SiO2含量为66.11%~68.28%,平均67.38%;K2O+Na2O含量为5.95%~6.76%,平均6.41%;所有样品的Na2O<K2O,K2O/Na2O均>1.1,平均值为1.13;Al2O3的含量介于14.71%~15.49%之间,平均15.29%;铝饱和指数A/CNK=1.01~1.04,A/NK=1.71~1.83,Mg#=35.2~37.2,平均36.2;P2O5的含量较低,为0.17%~0.21%。

表 2 竹溪岭花岗闪长岩全岩主量元素(wt%)和微量元素(×10-6)分析结果 Table 2 Whole rock analysis of major elements (wt%) and trace elements (×10-6) of Zhuxiling granodiorite

岩石全岩的稀土和微量元素分析结果见表 2,分析的6件样品∑REE=90.4×10-6~166.9×10-6,LREE=79.31×10-6~156.6×10-6,HREE=10.12×10-6~11.09×10-6,LREE/HREE=7.15~15.2,(La/Yb)N=11.60~37.32,δEu=0.73~0.81,δCe=0.95~0.99。

4.2 辉钼矿Re-Os同位素

5个辉钼矿Re-Os同位素测试样品获得的Re和Os含量及计算出的模式年龄见表 3。5样品Re的测定值为22637×10-9~68022×10-9,Os的测定值为0.2227×10-9~4.700×10-9187Re同位素测定值为14288×10-9~42753×10-9187Os的测定值为33.87×10-9~100.6×10-9;模式年龄为140.4±2.0Ma~142.7±2.1Ma。等时线年龄为140.2±1.5Ma(MSWD=0.5),平均年龄为141.45±0.94Ma(MSWD=0.69)(图 7)。

表 3 竹溪岭钨多金属矿床辉钼矿Re-Os同位素测试数据 Table 3 Molybdenite Re/Os values of the Zhuxiling tungsten polymetallic deposit

图 7 竹溪岭钨多金属矿床辉钼矿Re-Os等时线年龄及模式年龄加权平均图 Fig. 7 Re-Os isochron and weighted average of model age of molybdnites from the Zhuxiling tungsten polymetallic deposit
5 讨论 5.1 岩石成因分析

从主量元素分布特征来看,竹溪岭花岗闪长岩具有高硅(66.11%~68.28%)、富钾(K2O/Na2O均大于1.1,平均值为1.13)、弱过铝质(A/CNK=1.01~1.04)和低MgO(1.06%~1.19%)的特征,CaO/Na2O=1.08~1.22,Rb/Sr=0.26~0.32,Rb/Ba=0.17~0.20。将全岩数据在TAS分类图(图 8Middlemost, 1994)上进行投图,分析的6个花岗闪长岩样品均落入花岗闪长岩范围内;SiO2-K2O图(图 9a)中,所有分析的花岗闪长岩样品均落入到高钾钙碱性系列范围,A/CNK=1.01~1.04,为弱过铝质岩体(图 9b),说明竹溪岭花岗闪长岩体为弱过铝质高钾钙碱性花岗质岩体。原始地幔标准化微量元素蛛网图(图 10a)可以看出,竹溪岭岩体富集大离子亲石元素Rb、K,亏损高场强元素Nb、Ta、Zr和Ti;球粒陨石标准化稀土元素配分模型为轻稀土富集的、右倾模型(图 10b),LREE/HREE比值和(La/Yb)N均较大, 显示弱的Eu异常,无明显Ce异常。陈雪霏(2013)中12个花岗岩样品SiO2的含量都较高,69.18%~75.5%,平均70.71%;Al2O3的含量介于12.11%~15.27%之间,平均14.67%;A/CNK=1.06~1.11,P2O5的含量为0.09%~0.14%,在TAS分类图上,所有点落入花岗岩与花岗闪长岩分界线附近花岗岩一侧(图 8);微量元素方面,原始地幔标准化微量元素蛛网图相似(图 10a),但花岗岩样品较本文花岗闪长岩样品具有更强的Sr、Zr、Hf和Ti亏损(图 10a),球粒陨石标准化稀土元素配分曲线图与本文数据相似(图 10b)。从竹溪岭地区花岗闪长岩和花岗岩的岩石地球化学特征可以看出,两者微量元素和稀土元素的含量具有相似性,但主量元素含量差别有较大,可能暗示两者为一个复式岩体的不同演化阶段的产物。

图 8 竹溪岭花岗闪长岩SiO2-(Na2O+K2O)分类命名图解(据Middlemost, 1994) 5-花岗闪长岩;6-花岗岩 Fig. 8 (Na2O+K2O) vs. SiO2 diagram of granodiorites from the Zhuxiling pluton (after Middlemost, 1994)

图 9 竹溪岭花岗闪长岩SiO2-K2O图(a,据Peccerillo and Taylor, 1976)和A/NK-A/CNK图解(b,据Maniar and Piccoli, 1989) Fig. 9 K2O vs. SiO2 diagram (a, after Peccerillo and Taylor, 1976) and A/NK vs. A/CNK plot (b, after Maniar and Piccoli, 1989) of granodiorites from Zhuxiling pluton

图 10 竹溪岭花岗闪长岩全岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分曲线图(b)(标准化值据Sun and McDonough, 1989) 阴影部分是综合赣南主要钨矿区与钨矿密切相关的花岗岩数据, 数据来源:华仁民等, 2003; 肖剑等, 2009; 吕科等, 2011; 丰成友等, 2011; 郭春丽等, 2011; Guo et al., 2012 Fig. 10 Primitive mantale-normalized trace element diagrams (a) and chondrite- normalized REE patterns (b) of the granodiorites from the Zhuxiling pluton (normalized values after Sun and McDonough, 1989) The shaded areas were compiled from data of W deposits-related granitoids in southern Jiangxi Province in South China. Data sources: Hua et al., 2003; Xiao et al., 2009; Lv et al., 2011; Feng et al., 2011; Guo et al., 2011, 2012

前人研究表明,皖南地区花岗闪长岩表现为I型花岗质岩(薛怀民等, 2009; Su et al., 2013)。本次样品具有较高的Na2O(≈3.0%)、相对低的K2O(<4.00%)、低Zr(≤186×10-6)和Y(≤14.2×10-6)含量;10000×Ga/Al为2.31~2.57,10000Ga/Al-Y相关图中(图 11a),所有样品点落入I型和S型花岗岩与A型花岗岩分界处靠近I型和S型花岗岩一侧。P2O5的含量0.17%~0.21%,P2O5与SiO2呈弱负相关关系(图 11b),A/CNK与SiO2呈弱正相关关系(图 11c),Rb和Th之间显示正相关关系(图 11d),显示I型花岗质岩石的特征(Chappell and White, 1992; Chappell, 1999; 李献华等, 2007)。

图 11 竹溪岭花岗闪长岩10000×Ga/Al-Y相关图(a,据Whalen et al., 1987)、SiO2-P2O5相关图(b)、SiO2-A/CNK相关图(c)及Rb-Th相关图(d) 其中Lachland褶皱带的I型和S型花岗岩趋势引自Chappell (1999) Fig. 11 Relationships between whole-rock Y vs. 10000×Ga/Al diagram (a, after Whalen et al., 1987), P2O5 vs. SiO2 diagram (b), A/CNK vs. SiO2 diagram (c) and Th vs. Rb diagram (d) for granodiorites from the Zhuxiling pluton Trends of I-type and S-type granites from Lachlan Fold Belt in Southeast Australia are after Chappell (1999)

此外,中国华南南岭地区含钨花岗岩一般特征为:不含I、S和A型花岗岩对应的特征矿物角闪石、堇青石和碱性暗色矿物;准铝质-弱过铝质,低Ba+Sr和TiO2(陈骏等, 2008, 2014),K2O含量较高,K2O/Na2O比值大于1.0,P2O5含量低;球粒陨石标准化稀土元素配分曲线图,显示“海鸥式”和“倾斜式”两种类型(郭春丽等, 2014)。赣南与钨矿密切相关的花岗岩主要表现为“海鸥式”花岗岩(如漂塘、西华山、九龙脑、淘锡坑等),其具有很高的Li、Be、Rb、Ta、Th、U及HREE含量(图 10a),在球粒陨石标准化稀土元素分布型式图上都具有明显的“四分组”效应特点(图 10b),依据P2O5与SiO2含量的关系,Rb和Th的关系及原生白云母、黄玉等特征矿物确定,大吉山、西华山、漂塘、浒坑为S型花岗岩(华仁民等, 2003, 2005b; 李献华等, 2007; 肖剑等, 2009; 丰成友等, 2011; 郭春丽等, 2011, 2014; 吕科等, 2011; Guo et al., 2012; Zhao et al., 2016; 苏慧敏和蒋少涌, 2017)。竹溪岭花岗闪长岩的主量、微量和稀土特征及P2O5-SiO2相关关系、A/CNK-SiO2相关关系、Rb-Th相关关系都与南岭地区“海鸥式”过铝质S型花岗岩明显不同(图 10),同时岩体中见有大小不一的细粒闪长质暗色包体,岩体中见有少量角闪石,说明竹溪岭花岗闪长岩属I型花岗质岩石。

综上所述,这些明显的地球化学特征和矿物学特征表明,竹溪岭花岗闪长岩属I型花岗质岩。

5.2 成矿时代

本次获得的竹溪岭钨钼银多金属矿床中5个辉钼矿的普Os含量很低,Re的含量为22637×10-9~68022×10-9,Re-Os同位素模式年龄为140.4±2.0~142.7±2.1Ma,等时线年龄为140.2±1.5Ma,平均年龄为141.45±0.94Ma,二者在误差范围内是一致的。从MSWD和拟合概率来看,加权平均年龄和等时线年龄可信度较高,可以代表辉钼矿的形成年龄。样品中ZXL801-17和ZXL804-62为辉钼矿与白钨矿共生样品,依据表 1,氧化物阶段和石英硫化物阶段是本矿床白钨矿的主要成矿阶段,辉钼矿在氧化物阶段晚期开始结晶,主要形成于石英硫化物阶段,辉钼矿结晶稍晚于白钨矿(图 6b, j),因此,本文获得的辉钼矿的Re-Os等时线年龄(140.2±1.4Ma)可以代表钨、钼多金属矿的成矿年龄。同时,这与江南古陆东缘及邻区类似钨矿床的成矿年龄一致,反映了该区晚侏罗世-早白垩世大规模构造-岩浆-成矿事件。

5.3 区域成岩成矿作用对比及构造环境初探

江南古陆东缘及邻区岩浆岩分布主要集中于安徽南部和皖浙赣交界处,多沿构造断裂带呈带状分布,侵入岩以花岗岩和花岗闪长岩为主,主要分为两期:晋宁期(新元古代)和中生代燕山期。晋宁运动(皖南运动)分Ⅰ幕和Ⅱ幕(安徽省地质矿产局, 1987),与晋宁期两次岩浆侵入活动对应:晋宁早期的黑云母花岗闪长岩,主要分布于休宁-许村、歙县-水竹坑一带(图 2),呈东西向带状分布,同位素年龄为830~820Ma;晋宁晚期的花岗岩位于皖浙赣三省交界处,西部莲花山岩体为细粒花岗岩,东部白际(或石耳山)岩体由花岗斑岩组成(图 2),同位素年龄为780~760Ma(Li, 2000; Li et al., 2003),该时期岩体与华夏地块往扬子地块俯冲消减有关。燕山期花岗岩类侵入体主要包括两种类型:一类为花岗闪长岩类,它们的形成相对较早,岩体的规模也较大,代表性的岩体包括皖南的旌德岩体、太平岩体、青阳岩体、赣东北的鹅湖岩体、大茅山岩体等;另一类为正长花岗岩类,它们的形成相对较晚,出露规模相对较小,代表性的岩体包括皖南的黄山岩体、伏岭岩体、牯牛降岩体、九华山岩体、赣东北的三清山岩体等。空间上,这两类岩体往往共生在一起组成复合岩体,如太平-黄山复合岩体、青阳-九华山复合岩体等(图 2)(Wu et al., 2012; Li et al., 2013; 李鹏举等, 2016)。

Mao et al.(2011a, b)将中国东部中生代成矿作用划分为三大成矿事件。作为东部地区的组成部分,华南长江中下游地区及江南古陆东缘中生代爆发式的成岩成矿作用也具有多阶段性。侯明金(2005)认为皖南地区燕山期岩体的形成时间集中在130~120Ma和140~130Ma之间,燕山早期的岩浆活动微弱。Wu et al.(2012)对皖南及长江中下游地区的中生代花岗岩进行锆石测年和Hf同位素研究后发现,区域的岩浆活动可以细分为两个阶段150~136Ma和136~120Ma。第一阶段的岩体多为含角闪石的I型花岗闪长岩和二长花岗岩,而第二阶段形成的岩体多为A型或I型的花岗岩和正长岩。张元朔(2015)通过总结皖南中生代岩浆岩的年龄数据,认为皖南中生代岩浆活动可以划分为早、中、晚三期,分别为152~136Ma、136~129Ma和129~122Ma。早期岩性以花岗闪长岩为主,中期岩性以二长花岗岩为主,晚期以钾长花岗岩为主。李鹏举等(2016)对皖南侏罗-白垩纪两类花岗岩的岩石成因和氧逸度特征进行总结,认为皖南晚中生代时期存在明显的两期岩浆活动,早期(160Ma~140±5Ma)花岗质岩类的岩性以花岗闪长岩居多;晚期(140±5Ma~120Ma)岩性以花岗岩和正长花岗岩为主,此外还发育大量流纹岩等喷出岩。

近年来,有关江南古陆东缘及邻区成岩成矿时代方面发表了大量高精度年龄数据。已发表的岩体锆石U-Pb年龄数据及钨钼矿床辉钼矿的Re-Os年龄数据见表 4图 12。从图 12可以看出,江南古陆东缘及邻区燕山期花岗质岩体的形成年龄主要为121~161Ma,可见2期岩浆作用高峰期(图 12表 4),第一期:161~135Ma,岩体多为I型花岗闪长岩,晚期出现I型二长花岗岩;第二期:135~121Ma,岩体多为A型或I型花岗岩和正长花岗岩、碱长花岗岩。钨钼矿床的辉钼矿Re-Os等时线年龄数据(图 12表 4)显示,江南古陆东缘及邻区主要钨钼矿床辉钼矿的结晶年龄为134~163Ma,主要集中于139~152Ma,说明该区钨钼矿床主要成矿年龄为139~152Ma,这与江南古陆东缘及邻区燕山期第一阶段岩浆事件对应,说明该区钨、钼大规模成矿与晚侏罗世-早白垩世期间该区大型构造-岩浆事件有关,花岗闪长岩与钨钼成矿有密切关系,该类岩体多呈中粒花岗结构、似斑状结构,矿物以斜长石、石英、钾长石、黑云母为主;岩石地球化学特征体现为:准铝质-弱过铝质,高场强元素的丰度总体较低,球粒陨石标准化曲线为右倾型,弱Eu异常,富集强不相容元素。本文划分的2期岩浆作用阶段与Mao et al. (2011b)分析确定的长江中下游成矿带燕山期2期岩浆-成矿事件的时间相当。Mao et al. (2011b)对长江中下游成矿带燕山期岩浆岩的年龄数据分析认为,长江中下游成矿带燕山期岩浆事件第一期为156~137Ma,岩性以高钾钙碱性花岗岩为主,与斑岩-矽卡岩-层控型Cu-Au-Mo-Fe成矿有关;第二期为135~124Ma,岩性以盆地中火山-次火山岩及A型花岗岩为主,与Fe矿床有关。此外,近年来,在长江中下游的庐枞矿集区北部发现了东顾山钨多金属矿床,其成矿与隐伏黑云母花岗岩体关系密切(聂利青等,2016),铜陵矿集区姚家岭大型锌金矿床中新发现白钨矿(钟国雄等,2014)。以上这些说明江南古陆东缘和长江中下游地区燕山期应为同一构造背景而不同的构造部位。

表 4 江南古陆东缘及邻区钨钼多金属矿集区主要岩体和典型矿床的成岩成矿年龄 Table 4 Petrogenetic and metallogenic ages of the tungsten-molybdenite polymetallic deposits in eastern of Jiangnan Paleocontinent, southeastern China

图 12 江南古陆东缘及邻区晚中生代花岗质岩类年龄频数及辉钼矿年龄频数分布图 Fig. 12 Cumulative diagram of all ages of Late Mesozoic granitoids and molybdenites in estern Jiangnan Paleocontinent

谢桂青等(2006)对长江中下游大型矿集区Cu-Au-W-Mo矿床同位素年龄的精测数据进行了统计分析,认为铜陵、安庆、九江-瑞昌和鄂东南矿集区的成矿时代基本是一致的,主要集中在140±5Ma,而本次统计的江南古陆东缘钨钼矿床的成矿时代与其相近,说明江南古陆东缘W-Mo矿和长江中下游地区Cu-Au-Fe为同期成矿。谢桂青等(2008)Xie et al.(2011, 2015)、Mao et al.(2011b, 2013a, 2017)对长江中下游地区岩体地球化学数据详细研究后认为,该区成岩成矿物质主要来源于富集地幔的部分熔融,同时有明显的下地壳物质加入,其大规模成岩成矿事件可能因俯冲板片撕裂触发板片熔融形成,同时,位于华夏地块中部的南岭地区大规模岩浆事件和W-Sn成矿,可能与俯冲板片断离或撕裂形成的板片窗有关。Wu et al. (2012)分析长江中下游及邻区燕山期早阶段的花岗质岩石年龄数据后认为,从西往东,成岩年龄有逐步变年轻的趋势,其可能形成于古太平洋俯冲板片因俯冲角度变化产生的板片撕裂构造背景,晚阶段的花岗岩、正长花岗岩等形成于伸展构造背景。

竹溪岭钨多金属矿床的成矿年龄(140.2±1.5Ma)与区域钨钼矿床的成矿年龄一致,为同一期构造-岩浆-成矿事件的产物。竹溪岭花岗闪长岩为弱过铝质的高钾钙碱性花岗质岩石,微量元素和稀土元素特征显示壳源花岗质岩石的特点。Mg#值[=Mg/(Mg+FeT)]是判断地幔相互作用是否存在的一个有用指标,竹溪岭花岗闪长岩具有低Mg#(35.68~37.16,平均36.15),接近或高于纯地壳熔体(图 13),指示其岩浆来源以壳源为主,同时说明源区玄武质下地壳部分熔融后,岩浆经历过铁镁质矿物(如黑云母)的分异作用。另外,竹溪岭花岗闪长岩样品Nb/Ta比值(10.2~13.2)与陆壳的值相重合(8.3~16.7),低于球粒陨石值(Nb/Ta=17.5; Rudnick and Gao, 2003);而且,竹溪岭花岗闪长岩样品高硅(>64%)、低MgO (1.06%~1.19%)和Cr (5.30×10-6~6.28×10-6)含量,也暗示原始岩浆来源以壳源为主,并可能有幔源物质混入;Mao et al. (1999)Stein et al. (2001)的研究认为,从幔源到壳幔混源再到壳源,辉钼矿的Re含量呈数量级下降,即从100n×10-6、10n×10-6变化到n×10-6,而竹溪岭钨钼银多金属矿床的辉钼矿Re含量22.64×10-6~68.02×10-6(表 3),指示其成矿物质为壳幔混合来源。因此,推断竹溪岭岩体源于地壳物质部分熔融, 同时受到地幔物质的混染。为了说明竹溪岭花岗闪长岩的地质背景,本文对岩石地球化学数据进行相关构造背景投图,在Rb-(Y+Nb)构造背景判别图上(图 14a),竹溪岭花岗闪长岩6个数据均落在后碰撞花岗岩区和火山弧花岗岩的叠加区域,在Nb-Y构造背景判别图上(图 14b),竹溪岭花岗闪长岩6个数据均落在火山弧花岗岩+同碰撞花岗岩范围,因为中国东部地区在160~135Ma时间范围没有任何碰撞和后碰撞事件(Mao et al., 2011b, 2017),唯一可能的解释是,该岩体是火山弧有关的花岗闪长岩;同时岩体富集Rb、K,亏损Nb、Ta、Zr和Ti,与弧岩浆的特征一致,表明竹溪岭花岗闪长岩的形成与晚侏罗世古太平洋板块(伊泽奈其板块)的俯冲作用密切相关。Mao et al. (2011b)认为,古太平洋板块往欧亚板块斜向俯冲,使郯庐大断裂在约160Ma活化,引发大规模的左行走滑,在长江中下游地区触发俯冲板片和上覆地壳的撕裂。据竹溪岭矿区花岗闪长岩的岩石学、岩石化学特征,结合区域同时期岩浆事件的研究资料,本文认为江南古陆东缘及邻区可能由于古太平洋俯冲板片撕裂而形成近东西向的板片窗,软流圈上涌和底侵,导致上地壳物质部分熔融,形成富钨的偏铝质或弱过铝质花岗质岩浆,此种岩浆侵位于地壳上部震旦系下统兰田组等碳酸盐岩地层中有利围岩时,富含成矿元素的岩浆期后热液沿接触带上升发生矽卡岩化,并形成钨多金属矿体。

图 13 竹溪岭花岗岩闪长岩SiO2-Mg#图解 数据来源:8~16kbar和1000~1050℃纯地壳部分熔体(Rapp and Watson, 1995);7kbar和825~950℃纯地壳部分熔体(Sisson et al., 2005); 7~13kbar和825~950℃纯地壳部分熔体(Patiňo Douce and Johnston, 1991) Fig. 13 SiO2 vs. Mg# diagram of Zhuxiling granodiorite Data sources: Pure crustal partial melt at 8~16kbar and 1000~1050℃ (Rapp and Watson, 1995); pure crustal partial melt at 7kbar and 825~950℃ (Sisson et al., 2005); pure crustal partial melt at 7~13kbar and 825~950℃ (Patiňo Douce and Johnston, 1991)

图 14 竹溪岭花岗闪长岩Rb-(Y+Nb)图解(a,据Pearce, 1996)和Nb-Y图解(b,据Pearce et al., 1984) Fig. 14 Rb vs. (Y+Nb) diagram (a, after Pearce, 1996) and Nb vs. Y diagram (b, after Pearce et al., 1984) of granodiorites from the Zhuxiling pluton
6 结论

(1) 竹溪岭黑云母花岗闪长岩具似斑状结构,斑晶主要由更-中长石、石英和少量黑云母矿物组成,为高硅、富钾、弱过铝质岩体,富集Rb、K,亏损Nb、Ta、Zr和Ti,稀土元素配分模型为轻稀土富集的右倾模型,弱的Eu异常。

(2) 竹溪岭花岗闪长岩为I型花岗质岩,原始岩浆以壳源为主,并有幔源物质混入。

(3) 本次获得的5个辉钼矿Re-Os同位素模式年龄为140.4±2.0~142.7±2.1Ma,等时线年龄为140.2±1.5Ma。

(4) 江南古陆东缘及邻区燕山期花岗质岩体的形成年龄主要为121~161Ma,可细分为2期,第一期(161~135Ma)多为I型花岗闪长岩,第二期(135~121Ma)多为A型或I型花岗岩和正长花岗岩、碱长花岗岩;钨钼矿床主要成矿年龄为139~152Ma;其成岩成矿可能与燕山期古太平洋俯冲板块撕裂形成的板片窗有关。

致谢      野外工作期间得到了安徽省地质矿产勘查局332地质队队长黄作辉、副队长王德恩、高级工程师汪应庚的支持和帮助;国家地质实验测试中心李超老师及主微量测试实验室各位老师,中国地质科学院矿产资源研究所吴胜华博士、宋世伟博士,中国地质大学(北京)路东宇博士、苏蔷薇博士,Laurentian University孟旭阳博士,长安大学鲁麟博士提供了大力帮助;评审专家提出了宝贵的修改建议;在此一并致谢。

参考文献
Bureau of Geology and Mineral Resources of Anhui Province. 1987. Regional Geology of Anhui Province. Beijing: Geological Publishing House: 1-720.
Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1-26. DOI:10.1017/S0263593300007720
Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551. DOI:10.1016/S0024-4937(98)00086-3
Chen F, Wang DH, Du JG, Xu W, Hu HF, Yu YL and Tang JL. 2013. New dating of the Fuling granite body with LA-ICP-MS zircon U-Pb in Jixi, Anhui Province and their geological significance. Rock and Mineral Analysis, 32(6): 970-977.
Chen F, Wang DH, Du JG, Xu W, Wang KY, Yu YL and Tang JL. 2015. Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the Lanhualing granite in Ningguo, Anhui Province. Geotectonica et Metallogenia, 39(2): 369-377.
Chen GH, Shu LS, Shu LM, Zhang C and Ouyang YP. 2015. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China (Earth Sciences), 59(4): 803-823.
Chen J, Lu JJ, Chen WF, Wang RC, Ma DS, Zhu JC, Zhang WL and Ji JF. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geological Journal of China Universities, 14(4): 459-473.
Chen J, Wang RC, Zhu JC, Lu JJ and Ma DS. 2013. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China. Science China (Earth Sciences), 56(12): 2045-2055. DOI:10.1007/s11430-013-4736-9
Chen S. 2014. The diagenesis research of Guniujiang composite pluton in Guichi region, Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-54 (in Chinese with English summary)
Chen XF, Wang YG, Sun WD and Yang XY. 2013. Zircon U-Pb chronology, geochemistry and genesis of the Zhuxiling granite in Ningguo, southern Anhui. Acta Geologica Sinica, 87(11): 1662-1678.
Chen ZW, Yu XQ, Zhou X, Hao GS, Qiu JT and Li PJ. 2013. Rock-forming and ore-forming characteristics of the Lidongkeng porphyritic granodiorite in Xiuning County, South Anhui Province. Geology in China, 40(6): 1762-1776.
Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J and Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials:Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52. DOI:10.1111/ggr.2004.28.issue-1
Fan JX. 2015. Yanshanian magmatism and mineralization of the Tianjingshan area from South Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-54 (in Chinese with English summary)
Fan Y. 2015. Study on tungsten-molybdenum mineralization in Qingyang area, Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-143(in Chinese with English abstract)
Feng CY, Huang F, Zeng ZL, Qu WJ and Ding M. 2011. Isotopic chronology of Jiulongnao granite and Hongshuizhai greisens-type tungsten deposit in South Jiangxi Province. Journal of Jilin University (Earth Science Edition), 41(1): 111-121.
Feng CY, Zhang DQ, Xiang XK, Li DX, Qu HY, Liu JN and Xiao Y. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858-3868.
Guo CL, Chen YC, Li CB, Chen ZH and Lou FS. 2011. Zircon SHRIMP U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the Late Jurassic granitoids in the Jiulongnao W-Sn-Pb-Zn ore-concentrated areas in Jiangxi Province and their geological significance. Acta Geologica Sinica, 85(7): 1188-1205.
Guo CL, Chen YC, Zeng ZL and Lou FS. 2012. Petrogenesis of the Xihuashan granites in southeastern China:Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes. Lithos, 148: 209-227. DOI:10.1016/j.lithos.2012.06.014
Guo CL, Chen ZY, Lou FS and Xu YM. 2014. Geochemical characteristics and genetic types of the W-Sn bearing Late Jurassic granites in the Nanling region. Geotectonica et Metallogenia, 38(2): 301-311.
Hou MJ. 2005. The magmatic activities and its depth process of the Later Yanshannian granitoids in the Jiangnan uplift in the area of Anhui Province. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-115 (in Chinese with English summary)
Hu ZH, Liu D, Liu BS, Lang XH, Zhang JJ, Chen YC, Shi GH, Wang YY, Lei TH, Nie LM, Sha M, Gong LX and Liu ZQ. 2015. Rock-forming and ore-forming ages and significance of Taqian Mo (W) deposit, Leping, Jiangxi, China. Journal of Chendu University of Technology (Science & Technology Edition), 42(3): 312-322.
Hua RM, Zhang WL, Chen PR and Wang RC. 2003. Comparison in the characteristics, origin, and related metallogeny between granites in Dajishan and Piaotang, southern Jiangxi, China. Geological Journal of China Universities, 9(4): 609-619.
Hua RM, Chen PR, Zhang WL and Chen JJ. 2005a. Three major metallogenic events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107.
Hua RM, Chen PR, Zhang WL, Yao JM, Lin JF, Zhang ZS and Gu SY. 2005b. Metallogeneses and their geodynamic settings related to Mesozoic granitoids in the Nanling range. Geological Journal of China Universities, 11(3): 291-304.
Huang AJ, Wen ZG, Liu SB, Liu XQ, Liu XM, Zhang JJ, Shi GH and Liu ZQ. 2013. Re-Os isotopic dating of molybdenite from the Taqian W-Mo deposit in Leping County, Jiangxi Province and its geological implications. Acta Petrologica et Mineralogica, 32(4): 496-504.
Huang LC and Jiang SY. 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900.
Huang LC and Jiang SY. 2013. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4323-4335.
Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203(4): 207-226.
Jiang SY, Xu RM, Zhu ZY, Zhou W, Kong FB and Sun Y. 2013. Study on Mesozoic tectonics and granitic magmatism and their relationship with Cu-Au mineralization in the Jiurui ore district, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4051-4068.
Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL and Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639-655.
Jiang YH, Zhao P, Zhou Q, Liao SY and Jin GD. 2011. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos, 121(1-4): 55-73. DOI:10.1016/j.lithos.2010.10.001
Li B, Zhang ZZ, Wu MA, Zhou TF, Zhao WG, Cai XB and Di QS. 2015. LA-ICP-MS zircon U-Pb age and molybdenite Re-Os dating of the Dawujian W-Mo polymetallic deposit, Ningguo, Anhui Province. Geological Bulletin of China, 34(2-3): 569-578.
Li C, Qu WJ, Du AD and Sun WJ. 2009. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating. Rock and Mineral Analysis, 28(3): 233-238.
Li PJ, Yu XQ, Li HY, Qiu JT and Zhou X. 2013. Jurassic-Cretaceous tectonic evolution of Southeast China:Geochronological and geochemical constraints of Yanshanian granitoids. International Geology Review, 55(10): 1202-1219. DOI:10.1080/00206814.2013.771952
Li PJ, Yu XQ, Qiu JT, Li HY, Chen ZW and Han YC. 2016. Petrogenesis, oxygen fugacity characteristics and mineralization significance of two kinds of Jurassic-Cretaceous granites in southern Anhui, SE China. Acta Petrologica Sinica, 32(2): 399-418.
Li S, Yang XY and Sun WD. 2012. Ages and zircon Hf isotope geochemistry of the Dengjiawu Mo deposit in Shexian, South Anhui Province. Acta Petrologica Sinica, 28(12): 3980-3992.
Li XH. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. DOI:10.1016/S1367-9120(99)00060-7
Li XH, Chen ZG, Liu DY and Li WX. 2003. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province, SE China:Age, origin, and tectonic significance. International Geology Review, 45(10): 898-921. DOI:10.2747/0020-6814.45.10.898
Li XH, Li WX and Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. DOI:10.1007/s11434-007-0259-0
Liu SB, Wang CH, Liu ZQ, Liu JG, Wan HZ, Chen GH, Zhang C, Zhang SD and Zhang XL. 2014. Northeast Jiangxi Taqian-Fuchun metallogenic belt magmatite time limit and sequence division and its significance. Rock and Mineral Analysis, 33(4): 598-611.
Lv K, Wang Y and Xiao J. 2011. Geochemistry characteristics of Xihuashan granite and structural environment discussion. Journal of East China Institute of Technology, 34(2): 117-128.
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. DOI:10.1016/S0016-7037(99)00165-9
Mao JW, Pirajno F and Cook N. 2011a. Mesozoic metallogeny in East China and corresponding geodynamic settings:An introduction to the special issue. Ore Geology Reviews, 43(1): 1-7. DOI:10.1016/j.oregeorev.2011.09.003
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011b. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314. DOI:10.1016/j.oregeorev.2011.07.010
Mao JW, Cheng YB, Chen MH and Franco P. 2013a. Major types and time-space distribution of Mesozoicore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294. DOI:10.1007/s00126-012-0446-z
Mao JW, Xiong BK, Liu J, Pirajno F, Chng YB, Ye HS, Song SW and Dai P. 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China:Implications for petrogenesis, mineralization and geodynamic setting. Lithos, 286-287: 35-52. DOI:10.1016/j.lithos.2017.05.023
Mao ZH, Cheng YB, Liu JJ, Yuan SD, Wu SH, Xiang XK and Luo XH. 2013b. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53(3): 422-433.
Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK and Luo XH. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, Middle Yangtze River region, China:Implications for petrogenesis, geodynamics setting, and mineralization. Gondwana Research, 28(2): 816-836. DOI:10.1016/j.gr.2014.07.005
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215-224. DOI:10.1016/0012-8252(94)90029-9
Nie LQ, Zhou TF, Fan Y, Zhang QM, Zhang M and Wang LH. 2016. La-ICP-MS U-Pb zircon age and molybdenite Re-Os dating of Donggushan, the first tungsten deposit found in the Luzong orefield, Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 303-318.
Patiňo Douce AE and Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. DOI:10.1007/BF00310707
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125.
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Qin Y, Wang DH, Li YH, Wang KY, Wu LB and Mei YP. 2010. Rock-forming and ore-forming ages of the Baizhangyan tungsten-molybdenum ore deposit in Qingyang, Anhui Province and their geological significance. Earth Science Frontiers, 17(2): 170-177.
Qu WJ and Du AD. 2004. Correction of mass discrimination in the determination of the isotope abundance for rhenium and osmium in molybdenite by inductively coupled plasma mass spectrometry. Journal of Chinese Mass Spectrometry Society, 25(Suppl.): 181-182.
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 1-64
Shirey SB and Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141. DOI:10.1021/ac00109a036
Sisson TW, Ratajeski K, Hankins WB and Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. DOI:10.1007/s00410-004-0632-9
Smoliar MI, Walker RJ and Morgan JW. 1996. Re-Os ages of group ⅡA, ⅢA, ⅣA, and ⅣB iron meteorites. Science, 271(5252): 1099-1102. DOI:10.1126/science.271.5252.1099
Song GX. 2010. Research on magmatism-mineralization and metallogenic system of skarn-porphyry type W-Mo deposits in Chizhou area, the Middle-Lower Yangtz Valley. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-217 (in Chinese with English summary)
Song GX, Qin KZ, Li GM, Liu TB, Li JX, Li XH and Chang ZS. 2012. Geochronologic and isotope geochemical constraints on magmatism and associated W-Mo mineralization of the Jitoushan W-Mo deposit, Middle-Lower Yangtze Valley. International Geology Review, 54(13): 1532-1547. DOI:10.1080/00206814.2011.646806
Stein HJ, Markey RJ, Morgan JW, Hannah JL and Schersten A. 2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova, 13(6): 479-486. DOI:10.1046/j.1365-3121.2001.00395.x
Su HM and Jiang SY. 2017. A comparison study of tungsten-bearing granite and related mineralization in the northern Jiangxi-southern Anhui provinces and southern Jiangxi Province in South China. Science China (Earth Sciences), 60(11): 1942-1958. DOI:10.1007/s11430-016-9071-6
Su YP, Zheng JP, Griffin WL, Zhao JH, O'Reilly SY, Tang HY, Ping XQ and Xiong Q. 2013. Petrogenesis and geochronology of Cretaceous adakitic, I-and A-type granitoids in the NE Yangtze block:Constraints on the eastern subsurface boundary between the North and South China blocks. Lithos, 175-176: 333-350. DOI:10.1016/j.lithos.2013.05.016
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In: Sauders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=specpubgsl&resid=42/1/313
Wan HZ, Liu ZQ, Liu SB, Chen YC, Wang CH, Chen GH, Liang LJ, Li SS, Zhang SD and Liu XL. 2015. LA-ICP-MS Zircon U-Pb dating of granodioritic porphyry located Zhuxi copper-tungsten mine in Northeast Jiangxi and its geological significance. Rock and Mineral Analysis, 34(4): 492-502.
Wang JG, Wang LW, Chen XY, Zhao XD, Jiang Y, Zhou ZY, Yu GC and Yu YW. 2010. SHRIMP U-Pb ages of zircons from Kailingjiao and Lichenjia granodiorites in western Zhejiang and their geological implications. Geology in China, 37(6): 1559-1565.
Wang KY. 2008. Discovery of molybdenum orebody of porphyry type (disseminated) in tungsten-molybdenum ore deposit, Baizhangyan, Qingyang County and the implications in ore prospecting. Geology of Anhui, 18(3): 185-188.
Wang XG, Liu ZQ, Liu SB, Wang CH, Liu JG, Wan HZ, Chen GH, Zhang SD and Liu XL. 2015. LA-ICP-MS zircon U-Pb dating and petrologic geochemistry of fine grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance. Rock and Mineral Analysis, 34(5): 592-599.
Wang YF. 2015. The geochemical characteristics and diagenesis research of Cheng'an composite pluton, Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-87 (in Chinese with English summary)
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Wong J, Sun M, Xing GF, Li XH, Zhao GC, Wong K, Yuan C, Xia XP, Li LM and Wu FY. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125~100Ma and its tectonic significance for South China. Lithos, 112(3-4): 289-305. DOI:10.1016/j.lithos.2009.03.009
Wu FY, Ji WQ, Sun DH, Yang YH and Li XH. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150(5): 6-25.
Wu SH, Wang XD and Xiong BK. 2014. Fluid inclusion studies of the Xianglushan skarn tungsten deposit, Jiangxi Province, China. Acta Petrologica Sinica, 30(1): 178-188.
Xiang XK, Wang P, Sun DM and Zhong B. 2013. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi Province and its geological implications. Geological Bulletin of China, 32(11): 1824-1831.
Xiang XK, Yin QQ, Sun KK and Chen B. 2015. Origin of the Dahutang syn-collisional granite-porphyry in the middle segment of the Jiangnan orogeny:Zircon U-Pb geochronologic, geochemical and Nd-Hf isotopic constraints. Acta petrologica et Mineralogica, 34(5): 581-600.
Xiao J, Wang Y, Hong YL, Zhou YZ, Xie MH, Wang DS and Guo JS. 2009. Geochemistry characteristics of Xihuashan tungsten granite and its relationship to tungsten metallogenesis. Journal of East China Institute of Technology, 32(1): 22-31.
Xie GQ, Mao JW, Li RL, Zhang ZS, Zhao WC, Qu WJ, Zhao CS and Wei SK. 2006. Metallogenic epoch and geodynamic framework of Cu-Au-Mo-(W) deposits in southeastern Hubei Province:Constraints from Re-Os molybdenite ages. Mineral Deposits, 25(1): 43-52.
Xie GQ, Li RL, Jiang GH, Zhao CS and Hou KJ. 2008. Geochemistry and petrogenesis of Late Mesozoic granitoids in southeastern Hubei Province and constrains on the timing of lithospheric thinning, Middle-Lower Reaches of the Yangtze River, eastern China. Acta Petrologica Sinica, 24(8): 1703-1714.
Xie GQ, Mao JW and Zhao HJ. 2011. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China. Lithos, 125: 693-710. DOI:10.1016/j.lithos.2011.04.001
Xie GQ, Mao JW, Zhu QQ, Yao L, Li YH, Li W and Zhao HJ. 2015. Geochemical constraints on Cu-Fe and Fe skarn deposits in the Edong district, Middle-Lower Yangtze River metallogenic belt, China. Ore Geology Reviews, 64: 425-444. DOI:10.1016/j.oregeorev.2014.08.005
Xie JC, Xia DM, Fang D, Yan J, Yang XY, Sun WD and Li QZ. 2016. Geochemistry of Late Mesozioc granodiorites in southern Anhui Province:Constraints for rock-and ore-forming. Acta Petrologica Sinica, 32(2): 439-455.
Xu XS, Suzuki K, Liu L and Wang DZ. 2010. Petrogenesis and tectonic implications of Late Mesozoic granites in the NE Yangtze Block, China:Further insights from the Jiuhuashan-Qingyang complex. Geological Magazine, 147(2): 219-232. DOI:10.1017/S0016756809990367
Xue HM, Wang YG, Ma F, Wang C, Wang DE and Zuo YL. 2009. Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusion:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton, China. Science in China (Series D), 52(11): 1756-1770. DOI:10.1007/s11430-009-0133-9
Yu XQ, Jiang LL, Xu W, Qiu RL, Du JG and Dai SQ. 2007. Identification and basic characteristics of the Anhui-Zhejiang-Jiangxi fault zone. Earth Science Frontiers, 14(3): 102-113.
Yuan SD, Mao JW, Cook N J, Wang XD, Liu XF and Yuan YB. 2015. A late cretaceous tin metallogenic event in nanling W-Sn metallogenic province:Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geology Reviews, 65: 283-293. DOI:10.1016/j.oregeorev.2014.10.006
Zhang JJ, Wang GJ, Yang XY, Sun WD and Dai SQ. 2012. The petrogenesis of the Jingde granodiorite and its MMEs:Constraints from geochemistry, zircon U-Pb dating and Hf isotopic compositions. Acta Petrologica Sinica, 28(12): 4047-4063.
Zhang MY, Feng CY, Li DX, Wang H, Zhou JH, Ye SZ and Wang GH. 2016. Geochronological study of the Kunshan W-Mo-Cu deposit in the Dahutang area, northern Jiangxi Province and its geological significance. Geotectonica et Metallogenia, 40(3): 503-516.
Zhang YS. 2015. The Mesozoic magmatism geochronological and petrogenesis in southern Anhui Province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-56 (in Chinese with English summary)
Zhao C, Xie XN, Ma C, Liu JX and Cao CH. 2015. Geological significance of zircon age and Re-Os isotopic measurement on molybdenite from Matou Cu-Mo polymetallic deposit in Chizhou, Anhui Province, China. The Chinese Journal of Nonferrous Metals, 25(12): 3461-3472.
Zhao P, Jiang YH, Liao SY, Zhou Q and Jin GD. 2010. SHRIMP zircon U-Pb age, Sr-Nd-Hf isotopic geochemistry and petrogenesis of the Ehu pluton in northeastern Jiangxi Province. Geological Journal of China Universities, 16(2): 218-225.
Zhao PL, Yuan SD, Mao JW, Santosh M, Li C and Hou KJ. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province:Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 78: 120-137. DOI:10.1016/j.oregeorev.2016.03.004
Zhao WG, Cai XB, Di QS, Yu YL and Wei GH. 2008. Geological characteristics and genesis of the Dawujian tungsten deposit in South Anhui Province. Journal of Hefei University of Technology (Natural Science), 31(10): 1544-1547.
Zhong GX, Zhou TF, Yuan F, Jiang QS, Fan Y, Zhang DY and Huang JM. 2014. Discovery of scheelite in Yaojialing large Zinc-gold deposit in Tongling ore district, Anhui Province, China. Acta Geologica Sinica, 88(4): 620-629.
Zhou J, Jiang YH, Xing GF, Zeng Y and Ge WY. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383. DOI:10.1080/00206814.2013.774199
Zhou J, Jiang YH, Zeng Y and Ge WY. 2013. Zircon U-Pb age and Sr, Nd, Hf isotope geochemistry of Jingde pluton in eastern Jiangnan orogen, South China. Geology in China, 40(5): 1379-1391.
Zhou TF, Yuan F, Hou MJ, Du JG, Fan Y, Zhu G and Yue SC. 2004. Genesis and geodynamic background of Yanshanian granitoids in the eastern Jiangnan uplift in the adjacent area of Anhui and Jiangxi provinces, China. Journal of Mineralogy and Petrology, 24(3): 65-71.
Zhou X, Yu XQ, Wang DE, Zhang DH, Li CL, Fu JZ and Dong HM. 2011. Characteristics and geochronology of the W, Mo-bearing granodiorite porphyry in Dongyuan, southern Anhui. Geoscience, 25(2): 201-210.
Zhou X, Yu XQ, Yang HM, Wang DE, Du YD and Ke HB. 2012. Petrogenesis and geochronology of the high Ba-Sr Kaobeijian granodiorite porphyry, Jixi County, South Anhui Province. Acta Petrologica Sinica, 28(10): 3403-3417.
安徽省地质矿产局. 1987. 安徽省区域地质志. 北京: 地质出版社: 1-720.
陈芳, 王登红, 杜建国, 许卫, 胡海风, 余有林, 汤金来. 2013. 安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义. 岩矿测试, 32(6): 970-977. DOI:10.3969/j.issn.0254-5357.2013.06.020
陈芳, 王登红, 杜建国, 许卫, 王克友, 余有林, 汤金来. 2015. 安徽宁国兰花岭钨钼矿床含矿岩体的地球化学特征、LA-ICP-MS锆石U-Pb年代学研究. 大地构造与成矿学, 39(2): 369-377. DOI:10.3969/j.issn.1001-1552.2015.02.017
陈国华, 舒良树, 舒立旻, 张诚, 欧阳永棚. 2015. 江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景. 中国科学(地球科学), 45(12): 1799-1818.
陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季俊峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473. DOI:10.3969/j.issn.1006-7493.2008.04.001
陈骏, 王汝成, 朱金初, 陆建军, 马东升. 2014. 南岭多时代花岗岩的钨锡成矿作用. 中国科学(地球科学), 44(1): 111-121.
陈思. 2014.安徽贵池牯牛降复式岩体成岩作用研究.硕士学位论文.合肥: 合肥工业大学, 1-54
陈雪霏, 汪应庚, 孙卫东, 杨晓勇. 2013. 皖南宁国竹溪岭地区花岗岩锆石U-Pb年代学及地球化学及其成因研究. 地质学报, 87(11): 1662-1678.
陈子微, 余心起, 周翔, 郝国胜, 邱骏挺, 李鹏举. 2013. 皖南休宁县里东坑似斑状花岗闪长岩成岩成矿特征分析. 中国地质, 40(6): 1762-1776.
樊佳星. 2015.皖南天井山地区燕山期岩浆作用及成矿.硕士学位论文.合肥: 合肥工业大学, 1-54
范羽. 2015.安徽青阳地区钨钼成矿作用研究.硕士学位论文.合肥: 合肥工业大学, 1-143
丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学. 吉林大学学报(地球科学版), 41: 111-121.
丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858-3868.
郭春丽, 陈毓川, 黎传标, 陈郑辉, 楼法生. 2011. 赣南晚侏罗世九龙脑钨锡铅锌矿集区不同成矿类型花岗岩年龄、地球化学特征对比及其地质意义. 地质学报, 85: 1188-1205.
郭春丽, 陈振宇, 楼法生, 许以明. 2014. 南岭与钨锡矿床有关晚侏罗世花岗岩的成矿专属性研究. 大地构造与成矿学, 38(2): 301-311.
侯明金. 2005.江南隆起带(安徽部分)燕山晚期岩浆活动与深部过程.博士学位论文.合肥: 合肥工业大学, 1-115
胡正华, 刘栋, 刘善宝, 郎兴海, 张家菁, 陈毓川, 施光海, 王艺云, 雷天浩, 聂龙敏, 沙珉, 龚良信, 刘战庆. 2015. 江西乐平塔前钼(钨)矿床成岩成矿时代及意义. 成都理工大学学报(自然科学版), 42(3): 312-322. DOI:10.3969/j.issn.1671-9727.2015.03.07
华仁民, 张文兰, 陈培荣, 王汝成. 2003. 赣南大吉山与漂塘花岗岩及有关成矿作用特征对比. 高校地质学报, 9: 609-619. DOI:10.3969/j.issn.1006-7493.2003.04.013
华仁民, 陈培荣, 张文兰, 陆建军. 2005a. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107.
华仁民, 陈培荣, 张文兰, 姚军明, 林锦富, 张展适, 顾晟彦. 2005b. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304.
黄安杰, 温祖高, 刘善宝, 刘消清, 刘献满, 张家菁, 施光海, 刘占庆. 2013. 江西乐平塔前钨钼矿中辉钼矿Re-Os定年及其地质意义. 岩石矿物学杂志, 32(4): 496-504. DOI:10.3969/j.issn.1000-6524.2013.04.007
黄兰椿, 蒋少涌. 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900.
黄兰椿, 蒋少涌. 2013. 江西大湖塘富钨花岗斑岩年代学, 地球化学特征及成因研究. 岩石学报, 29(12): 4323-4335.
蒋少涌, 徐耀明, 朱志勇, 周巍, 孔凡斌, 孙岩. 2013. 九瑞矿集区燕山期构造-岩浆作用及其与铜金多金属成矿关系研究. 岩石学报, 29(12): 4051-4068.
蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639-655.
李斌, 张赞赞, 吴明安, 周涛发, 赵文广, 蔡晓兵, 狄勤松. 2015. 皖南宁国大坞尖钨钼矿床成岩成矿年龄——以花岗闪长斑岩锆石U-Pb和辉钼矿Re-Os年龄为依据. 地质通报, 34(2-3): 569-578.
李超, 屈文俊, 杜安道, 孙文静. 2009. 铼-锇同位素定年法中丙酮萃取铼的系统研究. 岩矿测试, 28(3): 233-238. DOI:10.3969/j.issn.0254-5357.2009.03.008
李鹏举, 余心起, 邱骏挺, 李红英, 陈子微, 韩亚超. 2016. 皖南侏罗-白垩纪两类花岗岩的岩石成因、氧逸度特征及成矿意义. 岩石学报, 32(2): 399-418.
李双, 杨晓勇, 孙卫东. 2012. 皖南歙县邓家坞钼矿床年代学及Hf同位素地球化学研究. 岩石学报, 28(12): 3980-3992.
李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. DOI:10.3321/j.issn:0023-074X.2007.09.001
刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 张小林. 2014. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 33(4): 598-611. DOI:10.3969/j.issn.0254-5357.2014.04.023
吕科, 王勇, 肖剑. 2011. 西华山复式花岗岩株地球化学特征及构造环境探讨. 东华理工大学学报(自然科学版), 34: 117-128. DOI:10.3969/j.issn.1674-3504.2011.02.004
聂利青, 周涛发, 范裕, 张千明, 张明, 汪龙虎. 2016. 长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义. 岩石学报, 32(2): 303-318.
秦燕, 王登红, 李延河, 王克友, 吴礼彬, 梅玉萍. 2010. 安徽青阳百丈岩钨钼矿床成岩成矿年龄测定及地质意义. 地学前缘, 17(2): 170-177.
屈文俊, 杜安道. 2004. 电感耦合等离子体质谱法测定辉钼矿中Re、Os含量质量分馏效应的校正. 质谱学报, 25(增): 181-182.
宋国学. 2010.长江中下游池州地区矽卡岩-斑岩型钨钼矿成岩成矿作用与成矿系统研究.博士学位论文.北京: 中国科学院地质与地球物理研究所, 1-27
苏慧敏, 蒋少涌. 2017. 赣南和赣北-皖南钨成矿带含钨花岗岩及其成矿作用特征对比研究. 中国科学(地球科学), 47(11): 1292-1308.
万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 2015. 赣东北朱溪铜钨矿区花岗闪长斑岩La-ICP-Ms锆石U-Pb定年及地质意义. 岩矿测试, 34(4): 494-502.
汪建国, 汪隆武, 陈小友, 赵旭东, 姜禹, 周宗尧, 余国春, 俞云文. 2010. 浙西开岭脚和里陈家花岗闪长岩锆石SHRIMP U-Pb年龄及其地质意义. 中国地质, 37(6): 1559-1565. DOI:10.3969/j.issn.1000-3657.2010.06.002
汪雅菲. 2015.安徽城安岩体地球化学特征及成因研究.硕士学位论文.合肥: 合肥工业大学, 1-87
王克友. 2008. 青阳县百丈岩钨钼矿床中斑岩型(浸染状)钼矿体的发现及其找矿意义. 安徽地质, 18(3): 185-188. DOI:10.3969/j.issn.1005-6157.2008.03.006
王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599.
吴胜华, 王旭东, 熊必康. 2014. 江西香炉山矽卡岩型钨矿床流体包裹体研究. 岩石学报, 30(1): 178-188.
项新葵, 王朋, 孙德明, 钟波. 2013. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义. 地质通报, 32(11): 1824-1831. DOI:10.3969/j.issn.1671-2552.2013.11.015
项新葵, 尹青青, 孙克克, 陈斌. 2015. 江南造山带中段大湖塘同构造花岗斑岩的成因-锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石矿物学杂志, 34(5): 581-600. DOI:10.3969/j.issn.1000-6524.2015.05.001
肖剑, 王勇, 洪应龙, 周玉振, 写明璜, 王定生, 郭家松. 2009. 西华山钨矿花岗岩地球化学特征及与钨成矿的关系. 东华理工大学学报(自然科学版), 32: 22-31.
谢桂青, 毛景文, 李瑞玲, 张祖送, 赵维超, 屈文俊, 赵财胜, 魏世昆. 2006. 鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄. 矿床地质, 25(1): 43-52. DOI:10.3969/j.issn.0258-7106.2006.01.006
谢桂青, 李瑞玲, 蒋国豪, 赵财胜, 侯可军. 2008. 鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约. 岩石学报, 24(8): 1703-1714.
谢建成, 夏冬梅, 方德, 闫峻, 杨晓勇, 孙卫东, 李全忠. 2016. 皖南晚中生代花岗闪长岩地球化学:成岩成矿制约. 岩石学报, 32(2): 439-455.
薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙. 2009. 皖南太平-黄山复合岩体的SHRIMP年代学:由钙碱性向碱性转变对扬子克拉通东南部中生代岩石圈减薄时间的约束. 中国科学(D辑), 39(7): 979-993.
余心起, 江来利, 许卫, 邱瑞龙, 杜建国, 戴圣潜. 2007. 皖浙赣断裂带的界定及其基本特征. 地学前缘, 14(3): 102-113. DOI:10.3321/j.issn:1005-2321.2007.03.009
张俊杰, 王光杰, 杨晓勇, 孙卫东, 戴圣潜. 2012. 皖南旌德花岗闪长岩与暗色包体的成因:地球化学、锆石U-Pb年代学与Hf同位素制约. 岩石学报, 28(12): 4047-4063.
张明玉, 丰成友, 李大新, 王辉, 周建厚, 叶少贞, 汪国华. 2016. 赣北大湖塘地区昆山W-Mo-Cu矿床侵入岩锆石U-Pb、辉钼矿Re-Os年代学及地质意义. 大地构造与成矿学, 40(3): 503-516.
张元朔. 2015.皖南中生代岩浆活动年代学格架和岩石成因.硕士学位论文.合肥: 合肥工业大学, 1-56
赵超, 谢兴楠, 马春, 柳建新, 曹创华. 2015. 安徽池州马头铜钼矿床锆石年龄与辉钼矿Re-Os同位素测定的地质意义. 中国有色金属学报, 25(12): 3461-3472.
赵鹏, 姜耀辉, 廖世勇, 周清, 靳国栋. 2010. 赣东北鹅湖岩体SHRIMP锆石U-Pb年龄、Sr-Nd-Hf同位素地球化学与岩石成因. 高校地质学报, 16(2): 218-225. DOI:10.3969/j.issn.1006-7493.2010.02.009
赵文广, 蔡晓兵, 狄勤松, 余有林, 魏国辉. 2008. 皖南大坞尖钨(钼)矿床地质特征及成因分析. 合肥工业大学学报(自然科学版), 31(10): 1544-1547. DOI:10.3969/j.issn.1003-5060.2008.10.002
钟国雄, 周涛发, 袁峰, 蒋其胜, 范裕, 张达玉, 黄建满. 2014. 安徽铜陵姚家岭大型锌金矿床中新发现白钨矿. 地质学报, 88(4): 620-629. DOI:10.3969/j.issn.1006-0995.2014.04.034
周洁, 姜耀辉, 曾勇, 葛伟亚. 2013. 江南造山带东段旌德岩体锆石LA-ICPMS年龄和Nd-Sr-Hf同位素地球化学. 中国地质, 40(5): 1379-1391. DOI:10.3969/j.issn.1000-3657.2013.05.004
周涛发, 袁峰, 侯明金, 杜建国, 范裕, 朱光, 岳书仓. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景. 矿物岩石, 24(3): 65-71. DOI:10.3969/j.issn.1001-6872.2004.03.008
周翔, 余心起, 王德恩, 张德会, 李春麟, 傅建真, 董会明. 2011. 皖南东源含W、Mo花岗闪长斑岩及成矿年代学研究. 现代地质, 25(2): 201-210. DOI:10.3969/j.issn.1000-8527.2011.02.002
周翔, 余心起, 杨赫鸣, 王德恩, 杜玉雕, 柯宏飙. 2012. 皖南绩溪县靠背尖高Ba-Sr花岗闪长斑岩年代学及其成因. 岩石学报, 28(10): 3403-3417.