岩石学报  2018, Vol. 34 Issue (8): 2410-2424   PDF    
高镍铜镍矿床的特征、形成机制与勘查展望
毛亚晶1,2 , 秦克章1,2,3 , 唐冬梅1,2     
1. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学, 北京 100049
摘要:岩浆铜镍矿床100%硫化物中的Ni含量与赋矿岩石和成矿过程紧密相关,记录岩浆成分、分异程度与硫化物演化过程。硫化物异常高镍(高镍硫化物)往往被认为与科马提质岩浆或者后期热液作用密切相关。近年研究结合勘查证实,赋含高镍硫化物的矿床(高镍铜镍矿床)不仅限于科马提岩,还与苦橄质、玄武质岩浆有关,另外,热液富集作用并不是必要因素。本文总结了世界上高镍铜镍矿床的基本特征和形成机制,分析提出了不同机制的判别标志,并展望了其勘查前景。详细对比高镍铜镍矿床的产出环境、赋矿岩相、矿石特征、矿物组合等特征,该类矿床往往产于大陆裂谷和造山带环境,与基性程度较高的岩浆有关,以橄榄岩赋矿为主,含镍硫化物组合主要为镍黄铁矿-磁黄铁矿-黄铜矿组合,少数为针镍矿-镍黄铁矿-黄铁矿组合。科马提岩相关矿床可将Ni含量大于16%的硫化物定义为高镍硫化物,苦橄质-玄武质岩浆相关矿床的硫化物可分为高镍硫化物(Ni>10%)、中镍硫化物(5%~10%)和富铜硫化物(Ni<5%,Cu>Ni)。原生高镍硫化物可由富镍岩浆熔离、硫化物从橄榄石中吸取Ni、硫化物结晶分异、硫化物与硫不饱和岩浆反应等机制形成。苦橄质-玄武质岩浆相关的矿床,硫化物与橄榄石的Fe-Ni交换反应是高镍硫化物形成的重要机制。辉石岩源区地幔部分熔融形成富镍岩浆是否为高镍硫化物形成的必要条件尚存争议。不同机制形成的高镍硫化物具有迥异的岩石-矿物组合和地化特征。硫化物矿物组合、橄榄石成分(Fo值、Ni含量、Fo值-Ni含量的相关性)、伴生元素(铜、铂族元素)丰度-配分模式等特征可作为区分不同高镍硫化物形成机制的有效指标。我国新疆黄山南、坡一和青海夏日哈木矿床(部分浸染状矿化橄榄岩)以赋含高镍硫化物为特征,新疆喀拉通克矿床的硫化物则以富铜为特征,中国其余矿床的硫化物均属中镍硫化物。目前研究指示中国的高镍铜镍矿床与母岩浆相对富镍、硫化物与橄榄石Fe-Ni交换作用密切相关,后者可使硫化物Ni含量提升3%~5%。在铜镍矿床勘查方面,稀疏-中等浸染状高镍硫化物矿石即可达到工业品位,稠密浸染状-块状高镍硫化物矿石可达到很高的Ni品位(10%),是高品位镍矿勘查的一个重要方向。造山带环境富水、相对高氧逸度(可高达QFM+1)的岩浆可能是形成高镍硫化物的有利条件,该环境橄榄石Fo值较高(>87mol%)的岩体有利于形成高镍硫化物。
关键词: 岩浆铜镍矿床     高镍硫化物     黄山南     坡一     夏日哈木     造山带铜镍矿勘查    
Characteristics, genetic mechanism, and exploration perspective of Ni-rich sulfide in magmatic Ni-Cu systems
MAO YaJing1,2, QIN KeZhang1,2,3, TANG DongMei1,2     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Nickel content in sulfide (Ni tenor) is an important parameter in magmatic Ni-Cu deposit. It records Ni content in magma, the degrees of magma evolution and sulfide fractionation. Generally, high-Ni tenor sulfides are believed to be associated with komatiitic magma or alteration processes. However, it is shown that some of the high-Ni tenor sulfides could also be generated by basaltic, picritic magmas without secondary alteration process. This study summarized the characteristics and genetic mechanism of the Ni-Cu deposits having high-Ni tenor sulfides, proposed the discernment sign for different mechanisms, discussed its exploration prospect. The high Ni tenor deposits commonly occur in continental rift and orogenic belts and hosted by olivine-rich rocks, forming by less evolved magmas which are relatively enriched in Ni. The primary Ni-bearing mineral is dominantly by pentlandite, but some komatiitic related deposits are dominated by millerite. According to the Ni tenor in sulfide, the komatiitic related sulfides having higher than 16% Ni could be defined as high-Ni tenor, whereas the non-komatiitic related sulfides could be defined as high Ni tenor (Ni > 10%), medium Ni tenor (5%~10%), and low Ni tenor (Ni < 5%, Cu > Ni). The primary high Ni sulfide can be formed by segregation from Ni-rich magma, the absorption of Ni from olivine, the sulfide fractional crystallization, and the reaction of sulfide with sulfur-unsaturated magma. For picritic and basaltic magmas (relatively Ni-rich), Fe-Ni exchange between sulfide and olivine is an important mechanism. Whether the partial melting of the pyroxene mantle source is a necessary condition for the formation of high-Ni tenor sulfides remains debatable. The high-Ni sulfides formed by different mechanisms have diverse rock-mineral assemblages and geochemical characteristics, i.e. sulfide mineral assemblages, olivine components (Fo values, Ni contents, correlations between Fo values versus Ni content), chalcophile element (copper, platinum group elements) abundance in sulfide. Thus, these features are valid indicators of the different high-Ni sulfide formation mechanisms. In China, the sulfides in the Huangshannan, Poyi, and Xiarihamu deposits are characterized by high-Ni tenor, whereas those in the Kalatongke deposit are featured by low-Ni and high-Cu tenor. Recent research indicates that Ni-rich sulfide hosting deposits in China were formed by relatively Ni-rich parent magma and Fe-Ni exchange between sulfide and olivine, the latter factor results in 3%~5% Ni tenor increase in the sulfide. For exploration in high-Ni sulfide bearing intrusions, industrial Ni grades could be achieved for sparse disseminated ores, whereas very high Ni grade could be achieved for densely disseminated ores. Therefore, these intrusions are capable of exploring high-grade Ni ores. In orogenic belts, magmas with relatively high oxygen fugacity (up to QFM+1) and water may provide favorable conditions for the formation of high-Ni sulfides. In such setting, intrusions with olivine high Fo values (> 87mol%) may host high Ni sulfides.
Key words: Magmatic sulfide deposit     High Ni tenor sulfide     Huangshannan     Poyi     Xiarihamu     Orogenic Ni-Cu deposit exploration    

岩浆铜镍矿床的100%硫化物成分指硫化物成分(Tenor),包括S、As、Te、Fe、Ni、Cu、Au、铂族元素(PGE)等在纯硫化物中的百分含量。硫化物中各元素的含量和比值不仅与岩浆性质紧密相关,还与岩浆演化、橄榄石结晶和硫化物结晶分异等相关(Naldrett, 2004)。硫化物的Ni含量是铜镍矿床研究和系统对比的重要参数。根据国际地科联(IUGS)对高镁火山岩的最新分类方案:MgO>18%、SiO2在30%~52%之间、Na2O+K2O<2%为科马提岩;MgO在12%~18%之间、SiO2在30%~52%之间、Na2O+K2O<2%为苦橄岩;MgO<12%、SiO2<52%、Na2O+K2O<2%为玄武岩(Le Bas, 2000)。不同性质岩浆及其熔离出硫化物的Ni含量具有显著的区别。科马提质岩浆的Ni含量高,硫化物Ni含量普遍大于10%,与玄武质和苦橄质岩浆相关的硫化物Ni含量往往在1%~10%之间。而在造山带环境中,多个玄武质和苦橄质岩浆相关的铜镍矿床中发现含Ni大于10%的硫化物,如黄山南(Mao et al., 2014, 2016, 2017; Zhao et al., 2016)、坡一(Xue et al., 2016; Mao et al., 2017)、夏日哈木(Song et al., 2016)、Giant Mascot(Manor et al., 2016)等矿床。这些矿床的硫化物都显示高镍的特征。

Cowden and Woolrich (1987)将西澳Kambalda矿床(科马提岩相关)的硫化物分为3类:低镍硫化物(Ni<6%)、中镍硫化物(6%<Ni<14%)和高镍硫化物(Ni>14%)。Barnes and Lightfoot (2005)根据硫化物Ni/Cu比值和Ni含量,以Ni含量6%为界对所有铜镍矿床进行了简单划分,将硫化物平均Ni含量大于6%的矿床分为一类,并指出该类矿床往往与超基性(科马提质)岩浆相关。但是,近年多个新发现矿床表明硫化物Ni含量大于6%的矿床并非都与科马提质岩浆相关(Mao et al., 2016; Xue et al., 2016; Song et al., 2016; Barnes et al., 2011a)。上述Cowden and Woolrich (1987)的分类只针对Kambalda矿床,且在科马提岩中的普遍性还有待商榷,而Barnes and Lightfoot (2005)的简单划分方案不足以突出近年发现高镍硫化物矿床的特征,也无法满足铜镍矿床精细划分的需求。故而需要新的基于硫化物Ni含量的矿床划分方案。另外,高镍硫化物的形成机制随着这类矿床的发现而受到了广泛关注,但仍是众说纷纭(Barnes et al., 2013; Sciortino et al., 2015; Song et al., 2016; Zhao et al., 2016; Mao et al., 2017)。通常认为热液改造是针镍矿、六分硫镍矿等富镍矿物形成的主要原因(Eckstrand, 1975; Donaldson, 1981; Konnunaho et al., 2013; Pirajno and González-álvarez, 2013)。近年研究指出应谨慎地对待高镍硫化物与热液蚀变之间的联系(Barnes et al., 2011a, 2013; Mao et al., 2017)。理清这类硫化物的形成机制,不仅有助于理解该类铜镍矿床形成过程的共性与特殊性,还有望为铜镍矿床勘查(尤其是高品位镍矿勘探)提供参考。

本文首先评述硫化物成分的计算方法;然后对比中国与其他国家赋含高镍硫化物的矿床在含矿岩相、硫化物组合和矿物成分等方面的异同,在此基础上定义高镍硫化物的Ni含量,并总结这类矿床的全球分布、基本特征与形成机制;随后,对比各种高镍硫化物的形成机制,探讨不同机制之间的关键判别特征,以期丰富赋含高镍铜镍矿床研究并为铜镍矿床勘探提供参考;最后展望中国高镍硫化物矿床的勘查前景。

1 硫化物成分计算方法评述

本文讨论的硫化物Ni含量是指经过换算后纯硫化物的Ni含量(Tenor),并不是矿石Ni含量(Ni品位)。目前最常用的硫化物Ni含量计算方法为全岩成分计算和XRF(X射线荧光光谱分析)面扫描分析,以下是两种方法的计算过程和存在问题分析。

铜镍矿石的硫化物矿物组合相对简单,以磁黄铁矿、镍黄铁矿、黄铜矿为主,部分矿床含少量黄铁矿。在矿物成分已知(或者合理假设)的前提下,全岩Ni、Cu含量可估算黄铜矿、镍黄铁矿以及这两个矿物的硫含量,剩余硫可计算磁黄铁矿比例,根据各个矿物的成分和比例,可以进一步计算硫化物的含铁量。以这些矿物为主的矿石,可使用Barnes and Lightfoot (2005)的经验公式计算硫化物成分。超基性岩中,Ni除了赋存于硫化物中、还有部分以硅酸镍形式赋存于橄榄石(500×10-6~5000×10-6)、斜方辉石、单斜辉石和角闪石中(n×10-5~n×10-4)。因此,硫化物成分计算要先扣除硅酸镍,尤其是对于硫含量较低的稀疏-中等浸染状矿化橄榄岩。这些样品的硫化物成分计算必须根据样品橄榄石的比例与Ni含量扣除硅酸镍。另外,硫含量小于1%的样品还存在较大的硫分析误差。因此,全岩成分反算适用于硫含量大于1%且橄榄石含量低的样品(Barnes et al., 2011b)。

针对硫含量较低且橄榄石比例较高的样品,Barnes et al. (2011a)Mao et al. (2017a)开展二维(2D)XRF扫描分析,获得样品一个平整面上各硫化物与硅酸盐矿物的面积比,结合硫化物成分与密度,计算得到硫化物成分。XRF面扫描的优点是分析结果不受硫分析误差和硅酸镍影响。Mao et al. (2018)对比了薄片尺度(2cm×3cm大小)XRF面扫描与全岩成分计算得到的硫化物成分,两者较为一致。该方法局限性在于计算结果只代表一个面的硫化物成分,只适用于硫化物成分差异不大的中细粒矿石,不适合硫化物分布不均匀的矿石。Godel (2013)通过3D扫描,获得了矿石中镍黄铁矿、磁黄铁矿和黄铜矿的3D分布,更准确地估算了硫化物成分,但高分辨率3D分析的缺点是耗时较长且成本较高。因分析样品体积较小(最大为直径2.5cm的圆柱体),故只能代表样品局部的硫化物成分。另外,2D、3D扫描只能得到硫化物主量元素含量,其他伴生元素含量,例如PGE、Au、As、Te等,目前只能通过全岩分析获得。

2 高镍硫化物与高镍铜镍矿床的定义

中国铜镍矿床都与玄武质、苦橄质岩浆相关,这些矿床的硫化物成分(表 1图 1)与全球同类铜镍矿床硫化物成分类比表明其硫化物Ni含量往往低于10%。因此,对于玄武质、苦橄质岩浆相关的铜镍矿床,本文建议将硫化物含Ni大于10%定义为高镍硫化物,赋含高镍硫化物的矿床主要有巴西的Santa Rita矿床、中国的黄山南、坡一、夏日哈木矿床和加拿大的Giant Mascot矿床,其特征列于表 1。根据硫化物Ni和Cu含量,可这些矿床的硫化物分为:1)高镍硫化物(Ni>10%);2)中镍硫化物(5%<Ni<10%);3)低镍(高铜)硫化物(Ni<5%,Cu>Ni或者两者相当)。蕴藏高镍、中镍和低镍硫化物的矿床分别称为高镍硫化物矿床(高镍铜镍矿床)、中镍硫化物矿床(中镍矿床)和低镍硫化物矿床(低镍矿床),本文将部分矿体为高镍特征的矿床也作为高镍铜镍矿床进行讨论。喀拉通克矿床是中国典型的低镍矿床,中国其它铜镍矿床为中镍矿床。需要指出的是,高镍铜镍矿床并不等于高品位矿床,例如,金川和红旗岭都是高品位矿床(镍品位大于1%),但是其硫化物含Ni小于10%,并不是高镍铜镍矿床。

表 1 高镍铜镍矿床特征简表 Table 1 Characteristics of high-Ni tenor magmatic Ni-Cu deposits

图 1 铜镍矿床中硫化物Ni-Cu含量相关性图 数据来源:金川(Song et al., 2009; Chen et al., 2013),立马河(Tao et al., 2008),白马寨(Wang and Zhou, 2006),喀拉通克(Song and Li, 2009; 钱壮志等, 2009),其他矿床数据出处见表 1 Fig. 1 Nickel vs. Cu tenor in sulfide from typical magmatic Ni-Cu deposits Data source: Jinchuan (Song et al., 2009a; Chen et al., 2013), Limahe (Tao et al., 2008), Baimazhai (Wang and Zhou, 2006), Kalatongke (Song and Li, 2009; Qian et al., 2009), see Table 1 for other deposits

以上标准并不适合科马提岩相关的铜镍矿床。Cowden and Woolrich (1987)将西澳Kambalda矿床(科马提岩相关)的硫化物分为3类:低镍硫化物(Ni<6%)、中镍硫化物(6%<Ni<14%)和高镍硫化物(Ni>14%)。而其他科马提质岩浆相关的硫化物Ni含量普遍在6%~16%之间,如Perseverance、Honeymoon Well、Kambalda等矿床(Barnes, 2006; Arndt et al., 2008)。结合上述情况,对于科马提岩相关硫化物,本文建议将硫化物Ni含量大于16%定义为高镍硫化物,赋含高镍硫化物的矿床(包括部分矿体赋含高镍硫化物)主要有澳大利亚的Betheno、Black Swan、Otter Shoot、Kambalda、Mount Keith,加拿大的Dumont和South Manasan矿床、芬兰的Kevitsa矿床和Vaara矿化岩体,其特征列于表 1

3 中国与全球高镍铜镍矿床的分布和基本特征 3.1 中国的高镍铜镍矿床

中亚造山带南缘和东昆仑造山带是近年中国新增铜镍矿床的主要产地(汤中立等, 2006; 李文渊, 2015; 秦克章等, 2015, 2017),也是高镍铜镍矿床的重要区域,有黄山南、坡一和夏日哈木矿床(图 2),与玄武质和苦橄质岩浆相关。黄山南矿床几乎所有硫化物都为高镍硫化物,坡一和夏日哈木矿床部分矿体的硫化物为高镍硫化物。

图 2 高镍铜镍矿床的全球分布图(据Maier and Groves, 2011修改; 造山带分布据Goldfarb et al., 2001) Fig. 2 Global distribution of high-Ni tenor magmatic Ni-Cu deposits (base map after Maier and Groves, 2011; distribution of orogenic belts after Goldfarb et al., 2001)

黄山南矿床位于东天山黄山-图拉尔根成矿带,是2010年查明的隐伏中型铜镍矿床,蕴含近30百万吨矿石量,镍平均品位0.4%,铜0.12%(Zhao et al., 2016)。赋矿岩体的就位时代为278Ma(Mao et al., 2016),与东天山铜镍矿形成峰期一致(~280Ma)(Han et al., 2004; Qin et al., 2011; Su et al., 2011)。黄山南岩体主要岩相为橄榄岩、橄榄辉石岩、辉长苏长岩、闪长岩等,其中橄榄岩和橄榄辉石岩为含矿岩相,橄榄石最高Fo值接近88mol%,最高Ni含量达3500×10-6。矿石以稀疏-中等浸染状为主,也发育少量块状矿石,硫化物含Ni(扣除橄榄石中硅酸镍)高达15%~18%(图 2),远高于东天山其他铜镍矿床的硫化物(平均Ni含量6%, Mao et al., 2017),类似于科马提质岩浆相关的硫化物。黄山南矿床含镍矿物主要为镍黄铁矿(图 3),与其他铜镍矿床相比,例如黄山矿床(也称黄山西矿床)的浸染状矿石(图 4),黄山南矿床硫化物高镍的原因是镍黄铁矿比例高。该矿床详细地质特征与矿体特征可见发表论文(王润民等, 1987; Mao et al., 2016, 2017; Zhao et al., 2016)。

图 3 新疆黄山南高镍铜镍矿床矿石照片(a)与XRF扫描图像(b),显示硫化物中镍黄铁矿(41vol%)、磁黄铁矿和黄铜矿的比例 Fig. 3 Optic photo (a) and XRF scanning image (b) of a high-Ni tenor ore from the Huangshannan deposit, showing the proportions of pentlandite (41vol%), pyrrhotite, and chalcopyrite

图 4 新疆黄山铜镍矿床矿石照片(a)与XRF扫描图像(b),显示硫化物中镍黄铁矿(20vol%)、磁黄铁矿和黄铜矿的比例 Fig. 4 Optic photo (a) and XRF scanning image (b) of a medium-Ni tenor ore from the Huangshan deposit, showing the proportions of pentlandite (20vol%), pyrrhotite, and chalcopyrite

坡一矿床位于新疆北山地区,以Ni边界品位0.20%圈定,有26个矿体,Ni资源量达130万吨,按照0.3%圈定,Ni资源量约为20万吨,达到大型规模(Xia et al., 2013; Xue et al., 2016)。因总体品位较低、埋深大、交通不便等因素,目前尚未开采。坡一基性-超基性杂岩体长12.7km,宽0.5~6.9km,整个岩体出露面积约59.6km2。坡一杂岩体分两期,第一侵入期次岩浆形成外围大面积的橄榄辉长苏长岩、橄榄辉长岩相和辉长岩(基性岩);第二侵入期次岩浆形成含长辉橄岩、橄长岩、纯橄岩和含长橄榄单辉岩(超基性岩)。超基性岩相地表呈水滴状,长2.2km,平均宽0.6km,面积约1.32km2,穿插于基性岩中。超基性岩中橄榄石最高Fo值达90mol%,Ni含量高达3500×10-6。第一期次的辉长岩年龄为276.1±1.9Ma,第二期次超基性岩年龄为269.9±1.7Ma(Xue et al., 2016)。矿体赋存于第二期超基性岩中,呈似层状或透镜状产于辉橄岩和纯橄岩底部,局部呈悬浮状产出。扣除橄榄石Ni含量后,其硫化物Ni含量平均为12%(Xue et al., 2016)。矿石面扫描分析表明部分浸染状矿石硫化物Ni含量达到13%~16%,为高镍硫化物Mao et al. (2018),但是目前高镍矿体的产状仍不清晰。

2010年青海省第五地质矿产勘查院对夏日哈木地区以Ni元素为主的HS26号化探异常进行了查证,首次在东昆仑造山带发现超大型岩浆铜镍矿床(李世金等, 2012)。夏日哈木矿床位于东昆仑造山带西端,含矿岩体(Ⅰ号岩体)长约1.6km,宽约0.7km,出露面积约1.12km2,其侵位时代为411.6Ma,可能形成于俯冲时期(Li et al., 2015)。岩体东端出露地表,西端隐伏,在剖面上呈一平缓的岩床状。岩体包括橄榄岩(方辉橄榄岩和斜长二辉橄榄岩)、辉石岩(橄榄辉石岩和斜方辉石岩)、辉长苏长岩等岩石,其中橄榄岩与辉石岩为主要含矿岩相。硫化物组合以磁黄铁矿、镍黄铁矿和黄铜矿为主(丰成友等, 2016)。橄榄石Fo值高达90mol%,Ni含量高达4500×10-6(表 1)。矿石以浸染状、稠密浸染状和半块状为主,部分辉石岩中发育角砾状矿石。夏日哈木主矿体的硫化物含Ni在4%~8%之间,为中镍硫化物。但是部分硫含量小于5%的橄榄岩,硫化物含Ni在10%~20%之间,这些高镍硫化物矿体赋存于岩体西端隐伏橄榄岩中(Song et al., 2016)(表 1)。

3.2 世界上其他高镍铜镍矿床

世界上与玄武质和苦橄质岩浆相关的高镍铜镍矿床有巴西Mirabela层状岩体中的Santa Rita矿床(Barnes et al., 2011b),加拿大的Giant Mascot矿床(Manor et al., 2016),芬兰的Kevitsa矿床(Yang et al., 2013)(表 1图 2)。

Santa Rita矿床位于San Francisco克拉通内,赋矿岩体地表长4km,宽2.5km,向下延伸达3km,剖面上呈船型。该矿床与拉斑性质岩浆相关、侵位时代为2.05~2.1Ga,以赋含厚层硫化物(厚度为50~200m,硫化物含量平均约5%)为特征,区别于典型的层状岩体。典型层状岩体硫化物(<5%)含量低且含硫化物层位较薄,例如Bushveld、Stillwater等。Santa Rita矿床的岩石从下往上依次为底部橄榄岩、中部辉石岩和浅部辉长岩。橄榄石Fo值在84mol%~88mol%之间,Ni含量在2500×10-6~4000×10-6之间。矿体呈层状,赋存于中部辉石岩和橄榄辉石岩中,厚度50~200m。矿体由下往上,硫化物Ni含量从20%降到10%,Cu含量(5%~8%)基本不变。硫化物以磁黄铁矿、镍黄铁矿和黄铜矿为主(Barnes et al., 2011b)。Barnes et al. (2011b)认为该矿床由当前岩浆房中略富集Ni的残余熔体与新注入且亏损Ni和PGE的岩浆在原地混合形成。

Giant Mascot矿床产于加拿大British Columbia省的Cordillera,赋矿岩体地表呈不规则状,成矿岩浆为玄武质,侵位时代为93Ma,成矿背景为汇聚型板块边缘。岩体以发育大量斜方辉石和角闪石为特征,主要岩相有纯橄岩、橄榄岩、辉石岩、角闪辉石岩和角闪石岩。橄榄石Fo值为80mol%~89mol%,Ni含量在336×10-6~3859×10-6之间。矿石赋存于纯橄岩和橄榄岩中,呈管状、透镜状和平板状,且伴生PGE,硫化物含PGE可达8×10-6~28×10-6。硫化物以磁黄铁矿、镍黄铁矿和黄铜矿为主。该矿床主体以中镍硫化物为主,但是部分硫化物Ni含量高达14%(Manor et al., 2016)。

除上述之外,世界上其他高镍硫化物基本与科马提岩相关,以赋含Ni含量大于16%的硫化物为特征,部分矿床硫化物含Ni可达35%。这些矿床有澳大利亚的Betheno、Perseverance和Black Swan(Donaldson, 1981; Barnes et al., 2009, 2011a),加拿大的Dumont和South Manasan矿床,矿化岩体有Vaara(Konnunaho et al., 2013)(表 1)。科马提岩相关的高镍硫化物具以下共同特征:(1)产于古老克拉通,如Yilgarn克拉通、北美克拉通;(2)形成时间集中在2.7~2.9Ga,少数形成于1.9Ga,如加拿大的South Manasan矿床;(3)岩石普遍经历强烈蚀变作用,主要有蛇纹石化、透闪石化、绿泥化、滑石化、碳酸盐化等;(4)新鲜岩石橄榄石Fo值往往大于90mol%,最高Ni含量在3500×10-6以上,但个别矿床橄榄石Ni含量低于2500×10-6,如South Manasan矿床;(5)硫化物赋存于科马提岩底部橄榄石堆晶岩中;(6)矿石以稀疏浸染状为主,但往往在底部接触带赋存块状矿石;(7)原生硫化物有两种矿物组合:一种是磁黄铁矿与镍黄铁矿组合、不含或含少量黄铜矿(图 5图 6),另一种是镍黄铁矿、针镍矿和黄铁矿组合,不含磁黄铁矿(图 6)(Keele and Nickel, 1974; Barnes et al., 2011b)。

图 5 西澳Black Swan块状矿石照片(a)与XRF扫描图像(b),显示硫化物中镍黄铁矿比例高达60vol% Fig. 5 Optic photo (a) and XRF scanning image (b) of a massive ore from Black Swan deposit (high-Ni tenor, komatiite related), Western Australia, showing the proportion of pentlandite could be as high as 60vol%

图 6 Fe-S-Ni体系在850℃ (a)和<130℃ (b)的相图显示高镍铜镍矿床两类硫化物矿物组合 850℃底图据Sugaki and Kitakaze (1998)Barnes et al. (2011a);<130℃底图据Naldrett (2004);典型铜镍矿床的硫化物成分据Naldrett (2011),其他矿床数据出处见表 1.缩写:Gs-斜方硫镍矿;Heaz-六方硫镍矿;Liq-硫化物熔体;MSS-单硫化物固溶体;Mil-针镍矿;Pn-镍黄铁矿;Poly-辉镍矿;Po-磁黄铁矿;Mpo-单斜磁黄铁矿;Hpo-六方磁黄铁矿;Py-黄铁矿;Tr-硫铁矿;Viol-紫硫镍矿;Vs-方硫镍矿 Fig. 6 Fe-Ni-S phase diagrams at temperatures of 850℃ (a) and < 130℃ (b) showing sulfide assemblage of high-Ni tenor ores Phase diagram at 850℃ is from Sugaki and Kitakaze (1998), Barnes et al. (2011a), phase diagram of < 130℃ is from Naldrett (2004). The sulfide composition of medium-Ni tenor Ni-Cu deposits is from Naldrett (2011), sources of other deposits are listed in Table 1. Abbreviations: Gs-godlevskite; Heaz-heazlewoodite; Liq-sulfide liquid; MSS-monosulfide solid solution; Mil-millerite; Pn-pentlandite; Poly-polydimite; Po-pyrrhotite; Mpo-monoclinic pyrrhotite; Hpo-hexagonal pyrrhotite; Py-pyrite; Tr-troilite; Viol-violarite; Vs-vaesite
3.3 高镍铜镍矿床的特征归纳

玄武质-苦橄质岩浆相关高镍铜镍矿床与科马提质岩浆相关的高镍铜镍矿床具有明显差异,但也有许多相同点。系统对比这两类高镍铜镍矿床的形成时代、产出背景、赋矿岩相、橄榄石成分、矿石产出部位、矿石类型、矿石矿物组合等异同,得出以下共同特征:

(1) 成矿时代跨度大;

(2) 赋矿岩石以纯橄岩和橄榄岩为主,少数为橄辉岩和辉石岩赋矿;

(3) 矿石常产出于岩体底部,以稀疏-中等浸染状为主,部分矿床以块状和稠密浸染状矿石为主;

(4) 高镍硫化物与中镍硫化物在同一矿床中相伴产出,即稀疏浸染状矿石与稠密浸染状、块状矿石相伴产出,例如Black Swan、Otter Shoot、Kambalda、Dumont、黄山南、夏日哈木等矿床。

(5) 橄榄石Ni含量高,基本都在2000×10-6以上(图 7);多数高镍硫化物都亏损PGE,也有部分硫化物伴生或共生PGE,如Dumont、South Manasan、Giant Mascot矿床;

图 7 高镍与中镍铜镍矿床的橄榄石Fo值与Ni含量相关性图(数据出处见表 1) Fig. 7 Plot of Fo value vs. Ni content in olivine of high-Ni and medium-Ni tenor magmatic Ni-Cu deposits (see Table 1 for data source)

同时,也具有以下差异:

(1) 玄武质-苦橄质岩浆相关矿床的产出背景丰富,包括克拉通边缘与板块汇聚边缘,但与科马提岩相关的高镍铜镍矿床普遍产于克拉通环境;

(2) 原生高镍硫化物有两种矿物组合,一种为镍黄铁矿-磁黄铁矿-黄铜矿组合,另一种为镍黄铁矿-针镍矿-黄铁矿组合,后者目前只在科马提岩中有报道;

(3) 科马提岩相关的高镍硫化物含镍可高达35%,普遍在20%~30%之间(图 8),基本不含Cu(图 1),赋矿纯橄岩普遍蚀变强烈;苦橄-玄武质岩浆相关高镍硫化物含Ni为10%~20%,且伴生Cu(图 1图 8),岩石蚀变相对较弱;

图 8 高镍与中镍铜镍矿床的橄榄石Fo值与硫化物Ni含量相关性图(数据出处见表 1) Fig. 8 Plot of Fo value in olivine vs. Ni tenor in sulfide of high-Ni and medium-Ni tenor magmatic Ni-Cu deposits (see Table 1 for data source)

(4) 科马提岩相关矿床的橄榄石Fo值往往在90mol%以上,玄武质和苦橄质岩浆相关矿床橄榄石Fo值往往在85mol%以上(图 7)。

4 高镍硫化物的形成机制与判别 4.1 高镍硫化物的形成机制

以往认为热液作用的二次富集是高镍硫化物形成的重要机制。矿化纯橄岩蚀变过程中可形成镍黄铁矿、针镍矿、六方硫镍矿、紫硫镍矿等矿物(图 6),与蛇纹石和滑石等蚀变矿物伴生(Eckstrand, 1975; Donaldson, 1981; Pirajno and González-álvarez, 2013),蚀变过程使硫化物丢失大量的硫,从而提高了硫化物中Ni、Cu、PGE等金属元素的丰度(Konnunaho et al., 2013)。近年,随着多个赋含原生高镍铜镍矿床的发现与深入研究,逐渐认识到高镍硫化物并不一定是热液作用的产物(Barnes et al., 2011b, 2013),还可由岩浆过程形成,例如硫化物结晶分异、母岩浆异常富镍、橄榄石与硫化物发生Fe-Ni交换反应、硫化物与硫不饱和岩浆反应等机制。

4.1.1 硫化物结晶分异

硫化物熔体冷却过程中,首先形成单硫化物固溶体(mss)与残余熔体,mss最终结晶为磁黄铁矿和镍黄铁矿(Naldrett, 2004)。特定的条件下,Ni、Ir和Rh等元素在mss和硫化物熔体的分配系数(Dmss/硫化物)大于1,Cu、Pt和Pd等元素的Dmss/硫化物小于1,因此,mss与硫化物熔体分离可导致Cu、Pt和Pd在残余硫化物熔体富集,使mss富集Ni (Naldrett, 2004; 宋谢炎等, 2009)。Ni在mss和硫化物之间的分配系数还与岩浆硫含量有关,当岩浆硫过饱和时,Ni在mss中的相容性增加(Li et al., 1996)。许多矿区因硫化物分离结晶作用而形成相对富集Fe、Os、Ir、Ru、Rh的矿石和富集Cu、Pt、Pd、Au的矿石,也形成部分高镍矿石(Barnes et al., 1997)。

4.1.2 母岩浆富镍

异常富镍岩浆是高镍硫化物形成的重要机制,也是科马提岩相关硫化物相对于玄武质岩浆相关硫化物更为富Ni的原因。科马提质岩浆相比玄武质岩浆,因其源区熔融程度更高,岩浆含Ni也更高,西澳Mount Keith矿床的冷凝边含Ni高达1200×10-6(Fiorentini et al., 2007)。芬兰Kevitsa矿床赋存世界上Ni含量最高的橄榄石,含Ni高达14000×10-6。该矿床部分矿体(富Ni和PGE)的硫化物Ni含量也高达15%~30%。通过不同产状橄榄石元素成分填图、电子探针分析和硫化物成分研究,Yang et al. (2013)认为玄武质岩浆同化早期科马提岩相关的块状-半块状硫化物形成了异常富镍岩浆,该岩浆结晶形成了异常富镍的橄榄石。富镍玄武质岩浆也可直接熔离出高镍硫化物。夏威夷部分玄武岩中的橄榄石呈现富镍特征,Sobolev et al. (2005)计算得到这些岩浆Ni含量可达到500×10-6~600×10-6,高于现代玄武质岩浆的Ni含量(往往小于200×10-6)(Klein and Langmuir, 1987)。

4.1.3 橄榄石-硫化物发生Fe-Ni交换反应

硫化物结晶温度低于橄榄石,橄榄石结晶之后会与粒间硫化物熔浆发生元素交换反应,主要为Fe-Ni交换。橄榄石和硫化物Fe-Ni交换系数可以用KD表示:KD=(XNiS/XFeS)硫化物/(XNiO/XFeO)橄榄石,KD与硫化物Ni含量呈正相关、而与氧逸度(fO2)呈负相关(Brenan, 2003; Barnes et al., 2013)。通过澳大利亚Betheno矿床和巴西Mirabela矿床橄榄石-硫化物-熔体的三相平衡研究,Barnes et al. (2013)认为这两个矿床的高镍硫化物受橄榄石和硫化物Fe-Ni交换反应控制,指出该机制在高镍铜镍矿床中可能具有普遍性,并认为高镍岩浆并不一定需要异常富镍的成矿岩浆。

4.1.4 硫化物与硫不饱和岩浆反应

硫化物中金属元素丰度不仅与该元素在硫化物和岩浆之间的分配系数(D)有关,还与岩浆和硫化物的质量比(R值)密切相关(Campbell and Naldrett, 1979)。当R<10D时,硫化物中该元素的含量与R值呈正相关,但当R远远大于D时(R>10D),R值增大不会增加该元素在硫化物中含量。PGE在硫化物和岩浆之间的分配系数为~20000(Naldrett, 2011),近年发现可高达n×106(Mungall and Brenan, 2014)。因此,R值越大,越有利于PGE富集。另一方面,Ni在硫化物与玄武质岩浆之间的分配系数约为300,当R值为3000时硫化物Ni接近最大值,即异常高R值(>3000)虽然有利于PGE富集,但是难以形成异常富集Ni的矿石。然而,硫化物与硫不饱和岩浆反应,因Cu、Ni和PGE比Fe亲硫性更强,岩浆将带走硫化物中的FeS而使硫化物富集Ni、Cu、PGE等元素(Kerr and Leitch, 2005; Naldrett, 2010)。因此,与硫不饱和岩浆反应使硫化物不仅异常富集Ni,还异常富集Cu和PGE等金属元素。

4.2 不同形成机制之间的判别手段 4.2.1 硫化物矿物组合

针镍矿、镍黄铁矿和黄铁矿为高镍硫化物中一种重要的原生矿物组合(Barnes et al., 2011a),这一组合目前只见于科马提岩相关矿床,例如Betheno、Otter shoot和Black swan等矿床。且此类科马提质岩相关矿床不含或只含少量Cu,很少发育黄铜矿(表 1)。因此,黄铜矿和针镍矿等硫化物矿物组合可以区分科马提质岩浆与其他性质岩浆形成的高镍硫化物。少量针镍矿在我国蚀变较强的铜镍矿床中有报道,如煎茶岭(王瑞廷等, 2005)和香山(肖凡和王敏芳, 2014)等矿床,其硫化物矿物组合为镍黄铁矿、磁黄铁矿、针镍矿和紫硫镍矿,且与蚀变矿物伴生,应由蚀变作用形成。因此,使用硫化物矿物组合判别必须结合蚀变矿物组合与硫化物相图(图 6)。科马提岩相关高镍硫化物的另一种矿物组合为磁黄铁矿、镍黄铁矿和黄铜矿,以镍黄铁矿比例较高为特征(高达60vol%,图 5)。这一矿物组合与玄武质和苦橄质岩浆相关的高镍硫化物并无区别(图 3图 4图 6)。磁黄铁矿-镍黄铁矿-黄铜矿组合的高镍硫化物形成机制可通过橄榄石成分进一步限定。

4.2.2 橄榄石Fo值、Ni含量与Fo值-Ni含量相关性图解

橄榄石Fo值和Ni含量指示岩浆基性程度与Ni含量,Fo值与Ni含量相关性还可用于指示高镍硫化物的形成机制。橄榄石Fo值-Ni含量图解(图 7图 9)还可初步判别科马提质岩浆、苦橄质岩浆和玄武质岩浆,科马提质岩浆相关矿床的橄榄石最高Fo值往往在90mol%以上,可达95mol%,玄武质和苦橄质岩浆相关矿床的橄榄石最高Fo值大于85mol%,往往在87mol%~90mol%之间(图 7图 9)。科马提岩相关高镍硫化物的容矿岩石普遍为纯橄岩,且橄榄石Fo值往往大于90mol%,即使经历了强烈蚀变改造,其全岩仍然以高Mg#为特征(Barnes et al., 1988),该特征可区分大部分玄武质和苦橄质岩浆相关的橄榄岩。Ni在橄榄石和基性岩浆之间分配系数在5~20之间,为相容元素。通过合理估算母岩浆主量元素含量,可计算Ni在橄榄石与岩浆之间的分配系数(Li and Ripley, 2010),从而计算岩浆Ni含量。Mao et al. (2016)通过该方法计算得到黄山南矿床母岩浆含Ni约为450×10-6,结合主量成分,认为黄山南矿床与相对富镍的苦橄质岩浆相关。Fo值与Ni含量的相关性可指示多个成矿过程,反相关指示橄榄石与硫化物的Fe-Ni交换反应,Ni含量急剧降低指示硫化物熔离作用,Fo值降低而Ni含量略微降低指示橄榄石与硅酸盐熔体的Fe-Mg交换反应(图 9)。因此,橄榄石的Fe-Ni相关性可作为硫化物与橄榄石发生Fe-Ni交换的重要判别手段。但需强调的是,橄榄石Fo值与Ni含量负相关性只表明橄榄石与硫化物发生了Fe-Ni交换,并不能证实硫化物从橄榄石中获取Ni。

图 9 橄榄石Fo值与Ni相关性图 不同曲线表示硫化物熔离、橄榄石结晶分异、橄榄石与硫化物Fe-Ni交换反应、橄榄石与熔体再平衡等过程 Fig. 9 Plot of Fo value in olivine vs. Ni content in olivine showing different olivine compositional variation trends of different processes in forming high-Ni tenor ores
4.2.3 PGE丰度与配分模式

硫化物的PGE含量和配分模式记录岩浆与硫化物的演化过程(Naldrett, 2004; 宋谢炎等, 2009),可用于判断硫化物结晶分异作用和不饱和岩浆与硫化物反应等高镍硫化物的形成机制。硫化物结晶分异形成的高镍硫化物倾向于富集IPGE(Ir族PGE)并亏损PPGE(Pt族PGE),且只在局部或者部分矿石中富集Ni。例如,金川部分样品含Ni高达15%(图 1),且这些样品也相对富集IPGE,富铜贫镍样品则富集PPGE,指示由硫化物结晶分异形成(Chen et al., 2013)。硫化物与硫不饱和岩浆反应,Kerr and Leitch (2005)称之为“多阶段溶解-富集”模式,使硫化物不仅富集Ni,而且也富集PGE等强亲硫性元素。即使母岩浆亏损PGE,经历多阶段溶解的矿床相对于其他未经历多阶段溶解的矿床,其硫化物将更为富集PGE。

5 高镍硫化物研究的争论问题

橄榄石-硫化物-熔体之间Fe-Ni交换反应被认为是多个高镍铜镍矿床形成的重要机制(Barnes et al., 2013; Le Vaillant et al., 2016; Mao et al., 2017)。硫化物与橄榄石的Fe-Ni反应还与硫化物Ni含量、氧逸度等密切相关(Brenan and Caciagli, 2000; Brenan, 2003; Mao et al., 2018)。硫化物与橄榄石交换反应过程使黄山南矿床硫化物额外富集3%~5%镍(Mao et al., 2017)。但是,黄山南矿床的硫化物即使没有经历这一过程,仍然具有较高的镍含量,指示相对富集Ni的母岩浆是黄山南高镍铜镍矿床形成的重要因素之一。另外,根据质量平衡,硫化物从橄榄石中获取Ni,必将使橄榄石亏损Ni,使橄榄石成分落在橄榄石结晶分异演化线左边(图 9)。但是,目前与高镍硫化物共生的橄榄石基本都落在演化线右侧或附近区域,如黄山南和Bethno矿床(图 9),并没有记录Ni丢失过程。该现象有以下几种解释:(1)硫化物通过Fe-Ni反应从大量橄榄石中吸取Ni,因此并未造成橄榄石明显Ni亏损;(2)橄榄石发生镍丢失后,又与熔体进行Fe-Mg交换反应,使Fo值下降,从而落在橄榄石结晶分异演化线右侧;(3)橄榄石与硫化物Fe-Ni交换反应可能并不是高镍硫化物形成的决定性因素。综上所述,橄榄石与硫化物Fe-Ni交换过程及相对富镍的岩浆与高镍硫化物的关系仍有待进一步剖析。

富镍玄武质岩浆的形成机制仍颇具争议。Sobolev et al.(2005, 2007)发现夏威夷玄武岩中富镍橄榄石斑晶含有较高的Mn/Fe和Ni/(Mg/Fe)比值,通过模拟计算认为富镍岩浆来源于辉石岩源区部分熔融,辉石岩源区则由俯冲洋壳与地幔橄榄岩反应形成。辉石岩地幔源区这一模型也被引入到铜镍矿床中,用于解释高镍硫化物的成因(Song et al., 2016; Zhao et al., 2016)。但是,辉石岩地幔熔融形成富镍岩浆这一模式也受到很多学者的质疑。Ni在橄榄石与熔体之间的分配系数与温度呈负相关,深部地幔源区熔融的岩浆相对浅部地幔熔融的岩浆温度更高。因此,来源更深的岩浆含有更高的Ni含量。富镍玄武质岩浆的更简单模式是其来源于较深橄榄岩源区的部分熔融(Li and Ripley, 2010)。总而言之,辉石岩地幔与富镍矿床的联系仍有待深入研究,尤其是地幔源区普遍被改造的造山带地区。

6 中国高镍铜镍矿床的勘查展望

随着镍金属价格下滑和环保成本提高,镍矿开采成本逐步增加,铜镍矿勘查的工业品位也随之升高,使铜镍矿床勘查以寻找高品位矿石(Ni大于1%)为方向。高品位铜镍矿往往含硫化物大于20vol%,以块状、稠密浸染状和海绵陨铁状矿石为主,例如中国的金川、夏日哈木、喀拉通克和红旗岭等矿床(王润民和赵昌龙, 1991; 汤中立, 1996; Wei et al., 2013; Song et al., 2016),其平均Ni品位都≥1%。另一方面,同为稠密浸染状和块状矿石,国外有的矿床平均镍品位远大于1%,可达到10%以上,如西澳大利亚的Bethno矿床镍平均品位为30%(Barnes et al., 2011a),Black Swan的Silver Swan矿体Ni平均品位大于20%。这些异常高品位镍矿床,除了硫化物含量高,另一重要因素是硫化物为高镍硫化物。假设硫化物含Ni为10%,含有10%硫化物的岩石镍品位为1%,即含高镍硫化物的中等浸染状矿石Ni品位可达1%。另外,高镍铜镍矿床成矿过程需要的硫含量也少于中镍矿床所需要的硫,其成矿过程不需要大量围岩硫的加入。值得指出的是,因稀疏浸染状高镍硫化物矿石与稠密浸染状-块状高镍硫化物矿石往往伴生(表 1),基性-超基性岩体中即使只发现了少量高镍硫化物,其深部勘查前景也值得注意。在这类岩体的评价中,首先要查明并圈定高镍硫化物的空间分布。但需要注意的一点是,高镍硫化物普遍与富镍橄榄石伴生,其评价必须考虑硅酸镍的影响(郭鼎民等, 2016)。

中国是否具有赋含高镍铜镍矿床的勘查前景?中国镍资源主要来源于金川,占中国镍资源50%以上(汤中立等, 2006),与克拉通边缘和裂谷环境密切相关。中国其他镍资源基本来自造山带铜镍矿床,如东昆仑的夏日哈木,中亚造山带的喀拉通克、黄山、黄山东、图拉尔根、坡一、黄山南、红旗岭等矿床,与苦橄质-玄武质岩浆相关(李世金等, 2012; Xie et al., 2012; Mao et al., 2014, 2016; Li et al., 2015; Xue et al., 2016)。另外,多个高镍铜镍矿床在造山带产出的事实,结合造山带中成矿岩浆特有的性质,例如富水(秦克章等, 2012; Tang et al., 2013)、相对高氧逸度(可达QFM+1, Mao et al., 2018)、相对富Ni的母岩浆(Song et al., 2016; Zhao et al., 2016),指示造山带环境可能是高镍硫化物形成的有利环境。因此,有足够理由相信高镍铜镍矿床乃至高品位镍矿床,有望在中亚、东昆仑和特提斯等造山带取得进一步勘查突破。

7 结论

本文归纳总结了赋含高镍硫化物(高镍铜镍矿床)的赋矿岩相、橄榄石成分、矿体赋存部位、硫化物矿物组合、PGE丰度等特征,并对比分析了高镍硫化物不同的形成机制,得到了以下主要结论:

(1) 玄武质和苦橄质岩浆相关的矿床,其硫化物可分为高镍硫化物(Ni>10%)、中镍硫化物(5%<Ni<10%)和低镍(高铜)硫化物(Ni<5%,Cu>Ni或两者相当)。与科马提岩相关的矿床,硫化物Ni含量大于16%可定义为高镍硫化物。

(2) 原生高镍硫化物可由硫化物结晶分异、母岩浆异常富镍、橄榄石与硫化物Fe-Ni交换反应、硫化物与硫不饱和岩浆反应等机制形成。

(3) 不同富镍机制可通过硫化物矿物组合、橄榄石Fo值与Ni含量、Fo值与Ni含量相关性图解、PGE丰度与配分模式等差异加以区分。

(4) 中国的高镍硫化物与苦橄-玄武质岩浆相关,相对富镍的母岩浆与橄榄石-硫化物Fe-Ni交换反应是该类硫化物形成的主要因素,国外的高镍硫化物主要与科马提质岩浆相关。

(5) 造山带可能是高镍铜镍矿床勘查的有利环境。

附录 XRF面扫描实验分析

矿石样品面扫描在CSIRO和中国石油大学(青岛)使用Bruker M4 Tornado仪器测试获得。图像扫描使用探头为XFlash® silicon drift detector,电压为50kV,电流为500nA,不使用滤镜,每个像素的空间分辨率为40μm,每个像素扫描时间为8~10ms。该条件下可获得Si、P、Ca、Ni、Fe、S、Cu、Cr、Ti、K、Mn等元素的分布图,单元素图像根据Kα峰的强度生成。该仪器条件下,Ni等金属元素检测值为n×10-3。文中展示三元素组合图由Bruker自带软件合成,不同矿物比例使用图像处理软件ImageJ(1.5)分析得到。

致谢      新疆野外工作得到了有色集团704地质队陈寿波总工、尹希文、郭海滨、席斌斌等,亚克斯矿业股份有限公司谢军辉主任、郭鼎民、谈雄、梁玉宗等,天目公司任管良总经理,新疆地矿局第六大地质队邓刚总工等的大力支持。中国地质调查局西安地质调查中心李文渊、张照伟、王亚磊等组织了夏日哈木矿床野外考察。中国石油大学(青岛)宋玲、陈国辉和韩同城在XRF面扫描实验中提供了帮助。课题组薛胜超、康珍、姚卓森、牛艳杰等在野外和实验工作中给予了帮助并开展有益的交流,与澳大利亚联邦科工组织CSIRO的Steve J. Barnes的讨论与交流开阔了笔者的眼界。方林茹细致地修改了初稿。两位匿名审稿人为本文的完善提供了宝贵的意见和建议。在此向以上单位和个人表示诚挚的谢意。

参考文献
Arndt N, Lesher CM and Barnes SJ. 2008. Komatiite. Cambridge: Cambridge University Press: 1-487.
Arndt NT and Lesher CM. 1992. Fractionation of REEs by olivine and the origin of Kambalda komatiites, Western Australia. Geochimica et Cosmochimica Acta, 56(12): 4191-4204. DOI:10.1016/0016-7037(92)90260-P
Barnes SJ, Hill RET and Gole MJ. 1988. The perseverance ultramafic complex, Western Australia:The product of a Komatiite Lava River. Journal of Petrology, 29(2): 305-331. DOI:10.1093/petrology/29.2.305
Barnes SJ, Makovicky E, Makovicky M, Rose-Hansen J S and Karup-Moller S. 1997. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid. Canadian Journal of Earth Sciences, 34(4): 366-374. DOI:10.1139/e17-032
Barnes SJ and Lightfoot PC. 2005. Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents. Economic Geology, 100: 179-213. DOI:10.2113/100.1.0179-a
Barnes SJ. 2006. Komatiite-hosted nickel sulfide deposits: Geology, geochemistry and genesis. In: Barnes SJ (ed. ). Nickel Deposits of the Yilgarn Craton: Geology, Geochemistry, and Geophysics Applied to Exploration. Colorado, Special Publication, Society of Economic Geologists, 51-117
Barnes SJ, Wells MA and Verrall MR. 2009. Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4): 539-562. DOI:10.2113/gsecongeo.104.4.539
Barnes SJ, Godel BM, Locmelis M, Fiorentini ML and Ryan CG. 2011a. Extremely Ni-rich Fe-Ni sulfide assemblages in komatiitic dunite at Betheno, Western Australia:Results from synchrotron X-ray fluorescence mapping. Australian Journal of Earth Sciences, 58(7): 691-709. DOI:10.1080/08120099.2011.586048
Barnes SJ, Osborne GA, Cook D, Barnes L, Maier WD and Godel B. 2011b. The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil:Geology, sulfide geochemistry, and genesis. Economic Geology, 106(7): 1083-1110. DOI:10.2113/econgeo.106.7.1083
Barnes SJ, Fiorentini ML and Fardon MC. 2012. Platinum group element and nickel sulphide ore tenors of the Mount Keith nickel deposit, Yilgarn Craton, Australia. Mineralium Deposita, 47(1-2): 129-150. DOI:10.1007/s00126-011-0348-5
Barnes SJ, Godel B, Gürer D, Brenan JM, Robertson J and Paterson D. 2013. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides. Economic Geology, 108(8): 1971-1982. DOI:10.2113/econgeo.108.8.1971
Brenan JM and Caciagli NC. 2000. Fe-Ni exchange between olivine and sulphide liquid:Implications for oxygen barometry in sulphide-saturated magmas. Geochimica Et Cosmochimica Acta, 64(2): 307-320. DOI:10.1016/S0016-7037(99)00278-1
Brenan JM. 2003. Effects of fO2, fS2, temperature, and melt composition on Fe-Ni exchange between olivine and sulfide liquid:Implications for natural olivine-sulfide assemblages. Geochimica Et Cosmochimica Acta, 67(14): 2663-2681. DOI:10.1016/S0016-7037(02)01416-3
Campbell IH and Naldrett AJ. 1979. The influence of silicate:Sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 74(6): 1503-1506. DOI:10.2113/gsecongeo.74.6.1503
Chen LM, Song XY, Keays RR, Tian YL, Wang YS, Deng YF and Xiao JF. 2013. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the Western Jinchuan Intrusion, northwestern China:Insights from platinum group element geochemistry. Economic Geology, 108(8): 1793-1811. DOI:10.2113/econgeo.108.8.1793
Cowden A and Woolrich P. 1987. Geochemistry of the Kambalda iron-nickel sulfides:Implications for models of sulfide-silicate partitioning. The Canadian Mineralogist, 25: 21-36.
Donaldson MJ. 1981. Redistribution of ore elements during serpentinization and talc-carbonate alteration of some Archean dunites, Western Australia. Economic Geology, 76(6): 1698-1713. DOI:10.2113/gsecongeo.76.6.1698
Dowling SE, Barnes SJ, Hill RET and Hicks JD. 2004. Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia.2:Geology and genesis of the orebodies. Mineralium Deposita, 39(7): 707-728. DOI:10.1007/s00126-004-0438-8
Eckstrand OR. 1975. The Dumont serpentinite; a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70(1): 183-201. DOI:10.2113/gsecongeo.70.1.183
Feng CY, Zhao YM, LI DX, Liu JN and Liu CZ. 2016. Mineralogical characteristics of the Xiarihamu nickel deposit in the Qiman Tagh Mountain, East Kunlun, China. Geological Review, 62(1): 215-228.
Fiorentini ML, Rosengren N, Beresford SW, Grguric B and Barley ME. 2007. Controls on the emplacement and genesis of the MKD5 and Sarah's Find Ni-Cu-PGE deposits, Mount Keith, Agnew-Wiluna Greenstone Belt, Western Australia. Mineralium Deposita, 42(8): 847-877. DOI:10.1007/s00126-007-0140-8
Franchuk A, Lightfoot PC and Kontak DJ. 2016. High tenor Ni-PGE sulfide mineralization in the South Manasan ultramafic intrusion, Paleoproterozoic Thompson Nickel Belt, Manitoba, Canada. Ore Geology Reviews, 72: 434-458. DOI:10.1016/j.oregeorev.2015.07.021
Godel B. 2013. High-resolution X-ray computed tomography and its application to ore deposits:From data acquisition to quantitative three-dimensional measurements with case studies from Ni-Cu-PGE deposits. Economic Geology, 108(8): 2005-2019. DOI:10.2113/econgeo.108.8.2005
Goldfarb RJ, Groves DI and Gardoll S. 2001. Orogenic gold and geologic time:A global synthesis. Ore Geology Reviews, 18(1-2): 1-75. DOI:10.1016/S0169-1368(01)00016-6
Groves DI and Keays RR. 1979. Mobilization of ore-forming elements during alteration of dunites, Mt. Keith-Betheno, Western Australia. The Canadian Mineralogist, 17: 373-389.
Guo DM, Mao YJ, Xie JH, Tian AQ, Kou LJ, Tan X and Niu YJ. 2016. Sulfide enrichment process and silicate nickel contents of the Huangshan magmatic Ni-Cu deposit and implications for regional Ni-Cu exploration. Xinjiang Geology, 34(3): 367-374.
Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin, 49(22): 2424-2429.
Keele RA and Nickel EH. 1974. The geology of a primary millerite-bearing sulfide assemblage and supergene alteration at the Otter Shoot, Kambalda, Western Australia. Economic Geology, 69(7): 1102-1117. DOI:10.2113/gsecongeo.69.7.1102
Kerr A and Leitch AM. 2005. Self-destructive sulfide segregation systems and the formation of high-grade magmatic ore deposits. Economic Geology, 100(2): 311-332.
Klein EM and Langmuir CH. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research:Solid Earth, 92(B8): 8089-8115. DOI:10.1029/JB092iB08p08089
Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert RS and Wing BA. 2013. The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland:Evidence for assimilation of external sulfur and post-depositional desulfurization. Mineralium Deposita, 48(8): 967-989. DOI:10.1007/s00126-013-0469-0
Le Bas MJ. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10): 1467-1470. DOI:10.1093/petrology/41.10.1467
Le Vaillant M, Barnes SJ, Fiorentini ML, Santaguida F and Törmänen T. 2016. Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit. Ore Geology Reviews, 72: 128-148. DOI:10.1016/j.oregeorev.2015.06.002
Li C, Barnes SJ, Makovicky E, Rose-Hansen J and Makovicky M. 1996. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid:Effects of composition and temperature. Geochimica Et Cosmochimica Acta, 60(7): 1231-1238. DOI:10.1016/0016-7037(96)00009-9
Li CS and Ripley EM. 2010. The relative effects of composition and temperature on olivine-liquid Ni partitioning:Statistical deconvolution and implications for petrologic modeling. Chemical Geology, 275(1-2): 99-104. DOI:10.1016/j.chemgeo.2010.05.001
Li CS, Zhang ZW, Li WY, Wang YL, Sun T and Ripley EM. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China. Lithos, 216-217: 224-240. DOI:10.1016/j.lithos.2015.01.003
Li SJ, Sun FY, Gao YW, Zhao JW, Li LS and Yang Q. 2012. The theoretical guidance and the practice of small intrusions forming large deposits:The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185-191.
Li WY. 2015. Metallogenic geological characteristics and newly discovered orebodies in Northwest China. Geology in China, 42(3): 365-380.
Maier WD and Groves DI. 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46(8): 841-857. DOI:10.1007/s00126-011-0339-6
Manor MJ, Scoates JS, Nixon GT and Ames DE. 2016. The giant mascot Ni-Cu-PGE deposit, British Columbia:Mineralized conduits in a convergent margin tectonic setting. Economic Geology, 111(1): 57-87. DOI:10.2113/econgeo.111.1.57
Mao YJ, Qin KZ, Ripley EM and Tang D. 2014. Olivine geochemistry, PGE geochemistry and S isotopes of the Permian Huangshannan Ni-rich sulfide deposit: Implications for ore genesis in the Huangshan Ni-Cu ore field. In: Anikina EV, Ariskin AA and Barnes SJ (eds. ). Yekaterinburg: 12th International Platinum Symposium, 143
Mao YJ, Qin KZ, Tang DM, Feng HY and Xue SC. 2016. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37. DOI:10.1016/j.jseaes.2016.07.028
Mao YJ, Qin KZ, Barnes SJ, Tang DM, Xue SC and Le Vaillant M. 2017. Genesis of the Huangshannan high-Ni tenor magmatic sulfide deposit in the Eastern Tianshan, northwest China:Constraints from PGE geochemistry and Os-S isotopes. Ore Geology Reviews, 90: 591-606. DOI:10.1016/j.oregeorev.2017.05.015
Mao YJ, Qin KZ, Barnes SJ, Ferrainac C, Iacono-Marzianoc G, Verrall M, Tang DM and Xue SC. 2018. A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni-Cu deposits in the southern Central Asian Orogenic Belt. Mineralium Deposita, 53(6): 731-755. DOI:10.1007/s00126-017-0771-3
Mungall JE and Brenan JM. 2014. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta, 125: 265-289. DOI:10.1016/j.gca.2013.10.002
Naldrett AJ. 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Berlin Heidelberg: Springer
Naldrett AJ. 2010. From the mantle to the bank:The life of a Ni-Cu-(PGE) sulfide deposit. South African Journal of Geology, 113(1): 1-32. DOI:10.2113/gssajg.113.1-1
Naldrett AJ. 2011. Fundamentals of magmatic sulfide deposits. Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry and Genesis, 17. Denver, Colorado: Society of Economic Geologists, 1-50
Pirajno F and González-álvarez I. 2013. A re-appraisal of the Epoch nickel sulphide deposit, Filabusi Greenstone Belt, Zimbabwe:A hydrothermal nickel mineral system?. Ore Geology Reviews, 52: 58-65. DOI:10.1016/j.oregeorev.2012.11.005
Qian ZZ, Wang JZ, Jiang CY, Jiao JG, Yan HQ, He K and Sun T. 2009. Geochemistry characters of platinum-group elements and its significances on the process of mineralization in the Kalatongke Cu-Ni sulfide deposit, Xinjiang, China. Acta Petrologica Sinica, 25(4): 832-844.
Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern tianshan and Beishan in correlation with flood basalts in Tarim basin (NW china):Constraints on a ca.280Ma mantle plume. American Journal of Science, 311(3): 237-260. DOI:10.2475/03.2011.03
Qin KZ, Tang DM, Su BX, Mao YJ, Xue SC, Tian Y, Sun H, San JZ, Xiao QH and Deng G. 2012. The tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, Northern Xinjiang. Northwestern Geology, 45(4): 83-116.
Qin KZ, Tang DM and Su BX. 2015. Tectonic environments and metallogeneses of magmatic Cu-Ni sulfide deposits in the orogenic belts. In: Zhai M and Xiao W (eds. ). Advance in Modern Earth Science-Plate Tectonics, Geological Events and Resource Effect. Beijing: Science Press, 328-361 (in Chinese)
Qin KZ, Zhai MG, Li GM, Zhao JX, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325.
Sciortino M, Mungall JE and Muinonen J. 2015. Generation of high-Ni sulfide and alloy phases during serpentinization of dunite in the Dumont Sill, Quebec. Economic Geology, 110(3): 733-761. DOI:10.2113/econgeo.110.3.733
Sobolev AV, Hofmann AW, Sobolev SV and Nikogosian IK. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597. DOI:10.1038/nature03411
Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM and Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417. DOI:10.1126/science.1138113
Song XY and Li XR. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China:Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303-327. DOI:10.1007/s00126-008-0219-x
Song XY, Keays RR, Zhou MF, Qi L, Ihlenfeld C and Xiao JF. 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2): 404-424. DOI:10.1016/j.gca.2008.10.029
Song XY, Hu RZ and Chen LM. 2009. Geochemical natures of copper, nickel and PGE and their significance for the study of origin and evolution of mantle-derived magmas and magmatic sulfide deposits. Earth Science Frontiers, 16(4): 287-305.
Song XY, Yi JN, Chen LM, She YW, Liu CZ, Dang XY, Yang QA and Wu SK. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Economic Geology, 111(1): 29-55. DOI:10.2113/econgeo.111.1.29
Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531. DOI:10.1016/j.gr.2010.11.015
Sugaki A and Kitakaze A. 1998. High form of pentlandite and its thermal stability. American Mineralogist, 83(1-2): 133-140. DOI:10.2138/am-1998-1-213
Tang DM, Qin KZ, Su BX, Sakyi PA, Liu YS, Mao Q, Santosh M and Ma YG. 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures. Lithos, 170-171: 144-163. DOI:10.1016/j.lithos.2013.02.013
Tang ZL. 1996. The main mineralization mechanism of magma sulfide deposits in China. Acta Geologica Sinica, 70(3): 237-243.
Tang ZL, Qian ZZ and Jiang CY, et al. 2006. Magmatic Ni-Cu-PGE Sulphide Deposits and Metallogenic Prognosis in China. Beijing: Geological Publishing House: 1-304.
Tao Y, Li CS, Song XY and Ripley EM. 2008. Mineralogical, petrological, and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores, SW China. Mineralium Deposita, 43(8): 849-872. DOI:10.1007/s00126-008-0207-1
Wang CY and Zhou MF. 2006. Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China. Mineralium Deposita, 41(8): 771-783. DOI:10.1007/s00126-006-0094-2
Wang RM, Liu DQ and Yin DT. 1987. The conditions of controlling metallogny of Cu, sulphide ore deposits and the orientation of finding ore Hami, Xinjiang, China. Journal of Mineralogy and Petrology, 7(1): 1-152.
Wang RM and Zhao CL. 1991. Intruson 1 of the Kalatongke Magmatic Ni-Cu Deposit, Xinjiang. Beijing: Geological Publishing House (in Chinese)
Wang RT, Mao JW, He Y, Tang ZL, Wang DS and Ren XH. 2005. Geochemical characteristics of platinum group elements of the sulfide nickel ores and related rocks in Jianchaling, Lueyang County, Shaanxi Province, China and their implication for genesis. Acta Petrologica Sinica, 21(1): 219-226.
Wei B, Wang CY, Li C and Sun Y. 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, Northeastern China. Economic Geology, 108(8): 1813-1831. DOI:10.2113/econgeo.108.8.1813
Xia MZ, Jiang CY, Li C and Xia ZD. 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim Craton, NW China. Economic Geology, 108(8): 1865-1878. DOI:10.2113/econgeo.108.8.1865
Xiao F and Wang MF. 2014. Characters of hydrothermal processes and their metallogenic potential in Xiangshan Cu-Ni deposit, Xinjiang. Resources Survey & Environment, 35(4): 270-279.
Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ and Li XB. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230. DOI:10.1016/j.lithos.2012.03.010
Xue SC, Qin KZ, Li CS, Tang DM, Mao YJ, Qi L and Ripley EM. 2016. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim Craton, Western China. Economic Geology, 111(6): 1465-1484. DOI:10.2113/econgeo.111.6.1465
Yang SH, Maier WD, Hanski EJ, Lappalainen M, Santaguida F and Määttä S. 2013. Origin of ultra-nickeliferous olivine in the Kevitsa Ni-Cu-PGE-mineralized intrusion, northern Finland. Contributions to Mineralogy and Petrology, 166(1): 81-95. DOI:10.1007/s00410-013-0866-5
Zhao Y, Xue CJ, Zhao XB, Yang YQ, Ke JJ, Zu B and Zhang GZ. 2016. Origin of anomalously Ni-rich parental magmas and genesis of the Huangshannan Ni-Cu sulfide deposit, Central Asian Orogenic Belt, Northwestern China. Ore Geology Reviews, 77: 57-71. DOI:10.1016/j.oregeorev.2016.02.003
丰成友, 赵一鸣, 李大新, 刘建楠, 刘长征. 2016. 东昆仑祁漫塔格山地区夏日哈木镍矿床矿物学特征. 地质论评, 62(1): 215-228.
郭鼎民, 毛亚晶, 谢军辉, 田翱齐, 寇利杰, 谈雄, 牛艳杰. 2016. 东疆黄山铜镍矿床硫化物聚集过程和硅酸镍含量及对铜镍矿勘查的指示. 新疆地质, 34(3): 367-374.
李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185-191.
李文渊. 2015. 中国西北部成矿地质特征及找矿新发现. 中国地质, 42(3): 365-380.
钱壮志, 王建中, 姜常义, 焦建刚, 闫海卿, 何克, 孙涛. 2009. 喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义. 岩石学报, 25(4): 832-844.
秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析. 西北地质, 45(4): 83-116.
秦克章, 唐冬梅, 苏本勋. 2015. 造山带岩浆铜镍硫化物矿床: 研究进展与展望. 见: 翟明国, 肖文交编. 板块构造、地质事件与资源效应-地质科学若干新进展. 北京: 科学出版社, 328-361
秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325.
宋谢炎, 胡瑞忠, 陈列锰. 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义. 地学前缘, 16(4): 287-305.
汤中立. 1996. 中国岩浆硫化物矿床的主要成矿机制. 地质学报, 70(3): 237-243.
汤中立, 钱壮志, 姜常义, 等. 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测. 北京:地质出版社: 1-304.
王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩-黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究. 矿物岩石, 7(1): 1-152.
王润民, 赵昌龙. 1991. 新疆喀拉通克一号铜镍硫化物矿床. 北京: 地质出版社.
王瑞廷, 毛景文, 赫英, 汤中立, 王东生, 任小华. 2005. 煎茶岭硫化镍矿床的铂族元素地球化学特征及其意义. 岩石学报, 21(1): 219-226.
肖凡, 王敏芳. 2014. 新疆香山铜镍矿区热液作用性质及其成矿潜力研究. 资源调查与环境, 35(4): 270-279.