岩石学报  2018, Vol. 34 Issue (8): 2359-2379   PDF    
东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义
国显正1,2 , 栗亚芝2 , 贾群子2 , 李金超2 , 孔会磊2 , 南卡俄吾3     
1. 中国地质大学(武汉)地质调查研究院, 武汉 430074;
2. 国土资源部岩浆作用成矿与找矿重点实验室, 中国地质调查局西安地质调查中心, 西安 710054;
3. 陕西省土地工程建设集团, 西安 710075
摘要:五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩较为发育,花岗岩与金及多金属成矿关系不明,岩石成因,成岩成矿动力学背景仍然存在分歧。本文对该矿集区出露的侵入岩展开详细的年代学和地球化学研究。通过LA-ICP-MS锆石U-Pb定年,获得花岗闪长岩体、英云闪长岩体、石英闪长玢岩脉年龄分别为244.1±2.0Ma、241.9±0.5Ma、211.5±0.4Ma。岩石地球化学特征表明五龙沟矿集区侵入岩整体为一套高钾钙碱性岩石系列,具有轻稀土富集,富集大离子亲石元素(如Rb、Ba、Th),高场强元素出现不同程度的亏损特征,源区由下地壳角闪岩相部分熔融,演化过程中经历了分离结晶作用,岩浆为壳源岩浆与幔源岩浆在不同比例下混合的产物。基于本文最新研究成果及综合前人资料,构筑了五龙沟矿集区晚二叠世-三叠纪成岩成矿年代学格架,区内岩浆活动分为两期,早期260~235Ma,晚期225~210Ma,其中峰值分别为245Ma和220~215Ma;多金属矿化时代与早期岩浆岩活动一致,金成矿与早晚两期岩浆活动密切相关。五龙沟矿集区金及多金属成矿构造环境早期形成俯冲-碰撞转换阶段,晚期为后碰撞伸展。
关键词: 花岗岩     锆石U-Pb定年     岩石地球化学     五龙沟矿集区     东昆仑    
Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun: Implication for metallogenic tectonic
GUO XianZheng1,2, LI YaZhi2, JIA QunZi2, LI JinChao2, KONG HuiLei2, NAMKHA Norbu3     
1. Geological Survey, China University of Geosciences, Wuhan 430074, China;
2. MLR Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposit, Xi'an Center of Geological Survey, CGS, Xi'an 710054, China;
3. Shaanxi Provincial Land Engineering Construction Group Co., LTD, Xi'an 710075, China
Abstract: The granite is well developed in the Wulonggou area, in Late Permian-Triassic East Kunlun. In order to study the genesis and tectonic of the rocks, a detailed geochronology and geochemical study were carried out in the intrusive rocks. The U-Pb zircon ages by LA-ICP-MS of the granodiorite, tonalite and quartz diorite porphyrite is 244.1±2.0Ma, 241.9±0.5Ma and 211.5±0.4Ma, respectively. The chemical features show that the magmatic rock in the Wulonggou orefield is a series of high-K calc-alkaline rocks, and belong to the enrichment LREE type. The granite enriched in large ion lithophile elements (such as Rb, Ba and Th), but depletion of high field strong elements with different degrees. And the granite source region is the partial melting of the amphibolite phase and in the process of evolution with experienced crystallization. The magma has the same source region, which is the mixed product of crustal and mantle magma but different ratios. As a result, the gold and polymetallic metallogenic tectonic setting of Wulonggou orefield is early subduction and late post-collision extension. Through the research and collection of data, we build the Late Permian-Triassic chronology framework of Wulonggou intrusive rock. The magmatic activity in the area is divided into two periods, the early is 260~235Ma, the later is 225~210Ma, which 245Ma is the main peak and the late peak is 220~215Ma. The polymetallic mineralization age is consistent with the early magmatic activity, mainly occurring in 240~245Ma and gold mineralization closely related late. The Wulonggou gold and polymetallic mineralization tectonic setting is subduction-collision transformation in the early stage, and the latter is post-collision extension.
Key words: Granite     Zircon U-Pb dating     Petrogeochemistry     Wulonggou orefield     East Kunlun    

东昆仑造山带内蕴藏了丰富的矿产资源,矿产种类繁多并且储量巨大,是我国重要的成矿带之一(丁清峰, 2004; 钱壮志等, 2004; 许长坤等, 2012; 杜玉良等, 2012; 李金超等, 2015; 张照伟等, 2015; 国显正等, 2016a; 刘建楠等, 2016; 高永宝等, 2017; 潘彤等, 2017)。同时该造山带岩浆岩广泛出露(殷鸿福和张克信, 1998; 莫宣学和潘桂棠, 2006; 莫宣学等, 2007; 马昌前等, 2015),发育有记录地幔演化的深成镁铁-超镁铁质岩(罗照华等, 2002; 王冠等, 2014; 冯惠彬等, 2015; 张照伟等, 2017a, b),又有造山作用过程中陆壳生长的花岗岩类及火山岩(郭正府等, 1998; 罗照华等, 1999; 袁万明, 2000a; 谌宏伟等, 2005; 莫宣学等, 2007; 王秉璋等, 2009; 丰成友等, 2012; Yu et al., 2017),不仅反映了该区造山作用及过程,而且完好地记录了该区不同构造事件及深部动力学过程,并且大部分花岗岩的分布区也是重要金属矿床的集中区,如五龙沟矿集区。

东昆仑造山带中花岗岩和多种矿床相关,发育各种岩浆热液矿床(李厚民等, 2003; 杜玉良等, 2012; 高永宝等, 2017)、矽卡岩型铁铜矿床(丰成友等, 2011; 赵一鸣等, 2013; 周建厚等, 2015)和斑岩型铜钼矿床(何书跃等, 2009; 刘建楠等, 2012; 许庆林等, 2014; 国显正等, 2016b)等。可见,花岗岩的成岩作用与成矿关系密切,但五龙沟矿集区内花岗岩与金及多金属成矿之间的联系尚不清楚。大量学者对五龙沟金多金属矿集区构造环境(钱壮志等, 1997; 张德全等, 2007)、花岗岩时代(袁万明等, 2002; 陆露, 2011; 李希等, 2014; 罗明非等, 2015; 栗亚芝等, 2015; 严威等, 2016; 王涛等, 2016),成矿时代(袁万明等, 2000b; Ding et al., 2015; 寇林林等, 2015; Zhang et al., 2017)、矿床地球化学(张金阳等, 2012; 田承盛, 2012; 王铜, 2015; Zhang et al., 2017)、矿物学(李厚民等, 2001a; 张金阳等, 2012),金矿化遥感蚀变特征(周轶群和胡道功, 2012)、控矿构造(钱壮志等, 1997; 陆露等, 2013; 寇林林等, 2015; 陈柏林等, 2016, 2018)、金矿找矿标志(魏占浩等, 2015; 张东等, 2016; 韩玉等, 2017)等不同方面开展了研究。然而矿集区内岩浆演化序列不明,岩石成因、成岩成矿动力学背景认识仍然存在分歧。本文针对五龙沟矿集区内花岗闪长岩体,以及前人尚未研究过的英云闪长岩体,石英闪长玢岩脉展开详细岩石学,岩石地球化学研究,同时基于本文研究成果与前人资料,系统梳理矿集区内有关的花岗岩时代,成矿时代,构筑成岩成矿年代学格架;分析不同时代花岗岩岩石地球化学组成,探讨岩石成因、源区性质、成岩成矿构造环境;阐述五龙沟矿集区岩浆活动与成矿作用关系,旨在提高矿集区内矿床理论研究水平和促进下一步找矿勘查工作。

1 地质背景

五龙沟矿集区位于东昆仑东段中东部,大地构造位置处于柴达木地块与巴颜喀拉构造带之间(姜春发, 2000),挟持于东昆北、东昆中断裂(图 1a),矿区出露的主要地层为金水口岩群白沙河岩组(图 1b),由一套黑云斜长片麻岩、斜长角闪岩、大理岩夹榴辉岩、榴闪岩透镜体等组成。另外在矿集区南部还有中元古界长城纪小庙组和新元古界青白口系丘吉东沟组,岩性主要由灰色黑云石英片岩、变砾岩组成,局部夹透镜状大理岩。奥陶纪祁漫塔格群地层主要分布在石灰沟-黑石沟-红旗沟一带,主要岩性为一套白云质大理岩、浅变质碎屑岩以及变质中基性火山岩夹生物碎屑岩等。区内构造主体表现为五龙沟复式背斜和近平行展布的三条脆韧性剪切带,自北东向南西依次为岩金沟剪切带、萤石沟-红旗沟剪切带、三道梁-苦水泉剪切带(李厚民等, 2001b; 丰成友等, 2004; 张德全等, 2007),剪切带之间分布有次级断裂,相互交切、分枝复合,构成了区内错纵复杂的构造格局,众多金矿床主要产出北西-南东向韧性剪切带中(图 1)。矿集区内岩浆活动强烈,侵入岩分布广泛,英云闪长岩主要出露在石灰沟,岩石片麻理发育;二长花岗岩、黑云母花岗岩和石英闪长岩,主要出露于红旗沟,黄龙沟一带,形成时代在420~410Ma(陆露, 2011; 李希等, 2014; 王铜, 2015; 严威, 2016);花岗闪长岩出露在五龙沟口、黑石山,斜长花岗岩在月亮湾一带发育。脉岩主要由超镁铁质岩-镁铁质岩-中性岩等组成,包括辉石岩、辉长岩、闪长岩、闪长玢岩、石英闪长玢岩等(Zhang et al., 2017)。矿集区内已知矿床(点)超过50余处,主要为Au、Cu、Pb、Zn、Sb、Mo等金属矿产,另有萤石等非金属矿,构成了五龙沟矿集区。

图 1 五龙沟矿集区大地构造位置及地质简图(a, 据Xiong et al., 2014; b, 据Zhang et al., 2017修改) Fig. 1 The structural site and sketch geological map of the Wulonggou deposit (a, after Xiong et al., 2014; b, after Zhang et al., 2017)

金矿体产出严格受韧性剪切带控制,产状与韧性剪切带基本一致,多金属矿受接触带控制;矿石矿物主要有黄铁矿、毒砂、黄铜矿、辉锑矿、辉铁锑矿、方铅矿、闪锌矿、磁黄铁矿,微量银金矿、自然金和碲金矿等;矿石构造主要以浸染状构造为主,其次为细脉状、网脉状及角砾状构造(图 2);围岩蚀变以硅化、绢云母化为主,其次有铁碳酸盐化、高岭土化等。

图 2 五龙沟矿集区岩浆岩及多金属矿石镜下照片 (a)花岗闪长岩镜下照片;(b)英云闪长岩镜下照片;(c)石英闪长玢岩镜下照片;(d-i)典型矿石矿物组成.Bi-黑云母;Pl-斜长石;Qtz-石英;Apy-毒砂;Py-黄铁矿;Po-磁黄铁矿;Gn-方铅矿;Sp-闪锌矿;CCp-黄铜矿 Fig. 2 Photo micrographs of Wulonggou magmatic rock and ore samples (a) microscopic characteristics of granodiorite; (b) microscopic characteristics of tonalite; (c) microscopic characteristics of quartz dioritic porphyrite; (d-i) the ore mineral composition. Bi-biotite; Pl-plagioclase; Qtz-quartz; Apy-arsenopyrite; Py-pyrite; Po-pyrrhotite; Gn-galena; Sp-sphalerite; CCp-chalcopyrite
2 岩石学特征

本文研究工作针对五龙沟矿集区出露的花岗闪长岩、英云闪长岩和石英闪长玢岩。

花岗闪长岩,灰白色,中粗粒结构,块状构造为主。岩石由斜长石、钾长石、石英、少量黑云母组成。斜长石,呈半自形板状,杂乱分布,粒度一般0.2~2.0mm;多数绢云母化,部分可见环带构造,含量50%~55%;钾长石,呈他形粒状、少量宽板状,杂乱分布,粒度一般0.2~2.0mm,含量25%~30%;石英,呈他形粒状,杂乱状、部分填隙状分布,粒度一般0.2~2.0mm,含量20%±;黑云母,呈片状,星散状分布,部分绿泥石化,含量5%±。

英云闪长岩,灰白色,块状构造,中粗粒结构,岩石糜棱岩化发育,矿物具有定向排列特征,主要由斜长石(60%±),石英(25%±),黑云母(10%±)等组成。石英晶体具有塑性变形,波状、带状消光,长石晶体多呈板状,黑云母部分被拉长(图 2b)。

石英闪长玢岩,斑状结构,块状构造;斑晶主要为斜长石和角闪石,斜长石多呈半自形板状,晶体中环带结构较为发育,种属为中长石,粒径大小一般在1.2~4mm之间,含量约30%;角闪石斑晶呈柱状,横切面为六边形,粒径在1.1~3.2mm之间。基质为细粒结构,主要矿物有斜长石,角闪石与石英,岩石次生蚀变明显,不论是斜长石斑晶还是基质中斜长石都发生较强的绢云母化与绿帘石化。

3 样品及分析方法 3.1 样品采集

本文研究工作针对五龙沟矿集区出露的花岗闪长岩、英云闪长岩和石英闪长玢岩,具体采样位置见图 1。花岗闪长岩采自黑石山多金属矿,该岩体与金水口岩群接触带产出铁铜金多金属矿体,采样坐标N36°15′43″、E95°55′5″;英云闪长岩为赋金矿石围岩,采样坐标N36°08′55.34″、E96°01′00.15″;石英闪长玢岩切穿金矿体,采自苦水泉金矿,采样坐标N36°12′52.74″、E95°54′32.22″。

3.2 分析方法

所采样品锆石分选在在河北省廊坊区域地质调查研究所实验室进行;锆石制靶、反射光、阴极发光图像分析在西北大学大陆动力学国家重点实验室进行;英云闪长岩,石英闪长玢岩LA-(MC)-ICP-MS锆石U-Pb年龄测定在天津地质调查中心完成,花岗闪长岩在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,仪器详细参数及操作方法参考(Yuan et al., 2004);数据处理应用ICPMSDataCal程序(Liu et al., 2010),普通铅校正采用Anderson推荐的方法(Andersen, 2002);年龄计算及谐和图的绘制采用Isoplot 3.0程序(Ludwig, 2003)。

用于年龄配套的岩石地球化学样品主量元素采用X射线荧光光谱(XRF)进行分析,分析精度优于1%;稀土和微量元素采用SX50型电感耦合等离子质谱仪(ICP-MS)分析,分析精度优于5%~10%,英云闪长岩,石英闪长玢岩其测试分析在西安地质矿产研究所实验测试中心完成,花岗闪长岩测试分析在国土资源部武汉综合岩矿测试中心完成。

4 分析结果 4.1 LA-ICP-MS锆石U-Pb定年

五龙沟花岗闪长岩,英云闪长岩,石英闪长玢岩锆石先在显微镜下观察,挑选晶型好,无杂质,无包裹体结合CL图像分析进行年龄测定选点,锆石形态为透明-半透明长柱状(长200~400μm),长宽比多介于2:1~4:1,晶体自形程度较高,多为自形,少量呈半自形,锆石具有明显的岩浆韵律环带和明暗相间的环带结构,显示典型的岩浆锆石特征(图 3),表明属于岩浆结晶的产物(Andersen, 2002)。锆石U-Pb测试得到的年龄数据及同位素比值可见表 1图 4,花岗闪长岩获得有效分析点18个,206Pb/238U加权平均年龄为244.1±2.0Ma(N=18,MSWD=2.3);英云闪长岩获得有效分析点33个点,206Pb/238U加权平均年龄为241.9±0.5Ma(N=33,MSWD=0.51)表明该年龄为英云闪长岩的结晶年龄,形成于中三叠世;石英闪长玢岩206Pb/238U表面年龄介于210~214Ma,加权平均年龄为211.5±0.4Ma(N=37,MSWD=0.47),表明形成于晚三叠世。

图 3 五龙沟矿集区岩浆岩典型锆石阴极发光图像 Fig. 3 Typical CL images of zircons from Wulonggou magmatic rock

表 1 五龙沟花岗闪长岩、英云闪长岩和石英闪长玢岩锆石LA-ICP-MS测年结果 Table 1 LA-ICP-MS isotopic data of zircon from Wulonggou granodiorite, tonalite and quartz dioritic porphyrite

图 4 五龙沟矿集区岩浆岩锆石U-Pb年龄谐和图及加权平均年龄图 Fig. 4 Zircon U-Pb concordia diagram and weighted mean ages diagram from Wulonggou magmatic rock
4.2 全岩地球化学

主量元素分析结果见表 2。花岗闪长岩、英云闪长岩和石英闪长玢岩样品的SiO2含量分别为69.00%~70.48%、66.57%~67.22%和64.43%~65.89%;Al2O3含量介于14.67%~14.8%、15.63%~15.98%和16.22%~16.53%;K2O/Na2O比值分别为0.71~1.01、0.81~0.95和0.64~0.78;花岗闪长岩MgO含量为0.65%~0.89%,Mg#=29~30;石英闪长玢岩MgO含量1.92%~2.21%,Mg#介于47.4~47.9之间,变化范围不大,均大于40。在SiO2-K2O图(图 5a)上,石英闪长玢岩主要落在钙碱性系列,花岗闪长岩,英云闪长岩主要在高钾钙碱性区域;铝饱和指数A/CNK主要集中在1附近(图 5b)。

表 2 五龙沟岩浆岩主量元素(wt%)和微量元素含量(×10-6) Table 2 The data of major elements (wt%) and trace elements (×10-6) of Wulonggou magmatic rock

图 5 五龙沟岩浆岩K2O-SiO2图解(a)和A/CNK-A/NK图解(b)(底图据Peccerillo and Taylor, 1976) 1-花岗闪长岩;2-英云闪长岩;3-石英闪长玢岩;4-260Ma花岗闪长岩(据罗明非等, 2015);5-244Ma斜长花岗岩(据栗亚芝等, 2015);6-240Ma花岗岩(据夏锐, 2017).图 8图 10-图 12图例及数据来源同此图 Fig. 5 K2O vs. SiO2 (a) and A/CNK vs. A/NK (b) plots for the Wulonggou magmatic rock (after Peccerillo and Taylor, 1976)

图 8 花岗岩成因类型图解(a, b, 底图据Whalen et al., 1987; c, d, 底图据Frost et al., 2001) FG-高分异的I型花岗岩;OGT-未分异的M、I、S型花岗岩 Fig. 8 Discrimination diagram of granite in Wulonggou magmatic rock (a, b, after Whalen et al., 1987; c, d, after Frost et al., 2001)

图 10 五龙沟岩浆岩Mg#-SiO2图解(a)和(Al2O3+MgO+FeOT+TiO2)-Al2O3/(MgO+FeOT+TiO2)图解(b)(底图据Altherr and Siebel, 2002) Fig. 10 Mg# vs. SiO2(a) and (Al2O3+MgO+FeOT+TiO2) vs. Al2O3/(MgO+FeOT+TiO2) (b) discrimination diagrams of Wulongou magmatic rock

图 11 五龙沟岩浆岩Ce/Yb-Y/Nb图解(a)和Ba/Nb-La/Nb图解(b)(底图据Eby, 1990) Fig. 11 Ce/Yb vs. Y/Nb diagram (a) and Ba/Nb vs. La/Nb diagram (b) of Wulongou magmatic rock (after Eby, 1990)

图 12 五龙沟岩浆岩构造判别图解(底图a, 据Pearce et al., 1984; b, 据Batchelor and Bowden, 1985) WPG-板内花岗岩;ORG-洋脊花岗岩;VAG+syn-COLG-火山弧+同碰撞花岗岩.①-幔源花岗岩;②-板块碰撞前消减地区花岗岩;③-板块碰撞后隆起花岗岩;④-造山晚期花岗岩;⑤-非造山A型花岗岩;⑥-同碰撞花岗岩;⑦-造山期后A型花岗岩 Fig. 12 The tectonic discrimination diagrams of Wulonggou magmatic rock (a, after Pearce et al., 1984; b, after Batchelor and Bowden, 1985)

稀土与微量元素分析结果见表 2。本文获得244Ma花岗闪长岩稀土元素总量∑REE主要集中在155.2×10-6~203.5×10-6,LREE/HREE=9.05~20.9,轻重稀土分馏明显,(La/Yb)N介于11.6~30.0,平均为26.9,在稀土配分模式图中(图 6a),260Ma花岗闪长岩与之相似,呈明显右倾型,240Ma花岗岩较缓的右倾型;260Ma花岗闪长岩具有弱的负铕异常,244Ma花岗闪长岩δEu为1.09~1.33,大于1,具有Eu正异常,表明稀土元素经历了较强的分异作用;240Ma花岗岩具有显著的负铕异常0.42~0.58,表明源区可能与斜长石矿物的分离结晶作用有关。

图 6 五龙沟岩浆岩球粒陨石标准化稀土元素配分曲线图(a、c、e)及原始地幔标准化微量元素蛛网图(b、d、f)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns (a, c, e) and primitive mantle-normalized trace element patterns (b, d, f) for the Wulonggou magmatic rock (normalization values after Sun and McDonough, 1989)

英云闪长岩稀土元素总量∑REE为96.94×10-6~166.1×10-6,平均为142.2×10-6,LREE/HREE介于2.16~3.83之间,(La/Yb)N为1.3~3.2,稀土元素配分曲线呈右倾型,中等程度的负铕异常(图 6c)。斜长花岗岩球粒陨石标准化稀土元素配分模式图与英云闪长岩一致,表现出为轻稀土富集,重稀土亏损呈右倾配分模式的特征曲线,显示出同源岩浆演化特点。而晚三叠世石英闪长玢岩,同样表现出为轻稀土富集,重稀土亏损呈右倾配分模式的特征曲线(图 6e),LREE/HREE介于6.36~9.98之间,平均8.24,(La/Yb)N为6.6~11.9。

在原始地幔标准化微量元素蜘蛛图上(图 6b),260Ma花岗闪长岩与244Ma花岗闪长岩表现出明显富集Rb、Ba等大离子亲石元素、LREE,相对亏损高场强元素,如Nb、Ta、P、Ti等,具有Rb、Ba峰,Nb、Ta谷特点,与岛弧或活动大陆边缘钙碱性岩浆岩特征较为相似,指示可能与受到早期俯冲作用改造的富集岩石圈地幔密切相关,或者岩石受到壳幔混合作用的影响。240Ma花岗岩表现出富集大离子亲石元素(如Rb、Ba、K),相对亏损高场强元素Nb、Ta、Ti等,与花岗闪长岩配分有一定的差异;斜长花岗岩与英云闪长岩配分模式基本一致,富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Nb、Ta、Ti等(图 6d)。而晚期的石英闪长玢岩(211Ma),同样富集大离子亲石元素,但高场强元素Nb、Ta谷不明显(图 6f)。

5 讨论 5.1 成岩成矿年代学格架

本文获得五龙沟矿集区内花岗闪长岩244.1±2.0Ma、英云闪长岩241.9±0.5Ma、石英闪长玢岩211.5±0.4Ma,同时搜集该区岩浆岩年龄,金矿和多金属矿成矿年龄(表 3)。可以看出(图 7)在矿集区范围内岩浆岩具有两期次活动特征,早期260~235Ma,其中245Ma为主要峰值,然后出现一个间歇息,晚期225~210Ma,峰期为220~215Ma,多金属成矿与早期岩浆岩活动具有同期性,表明受岩浆岩时空分布控制;Ding et al.(2014)获得黑石山多金属矿床花岗岩脉LA-ICP-MS锆石U-Pb年龄245±2Ma、244±2Ma,夏锐(2017)获得年龄为240±1Ma,而本文获得花岗闪长岩体年龄为244Ma,代表了岩浆冷凝结晶时间,为五龙沟矿集区早三叠世岩浆活动的产物;而金矿的成矿时代具有多期性,张德全等(2007)对含矿糜棱岩绢云母40Ar-39Ar定年结果为237±1Ma;陆露(2011)对深水潭含矿流纹岩进行了锆石LA-ICP-MS U-Pb年龄测定,其结果为210±1Ma,与本次获得的石英闪长玢岩脉年龄一致,该脉岩穿插含金矿体,其年龄可以限定苦水泉金矿成矿年龄下限;Ding et al .(2014)获得黄龙沟切穿含金韧性断裂的闪长岩脉年龄为215Ma;Zhang et al .(2017)对水闸东沟矿化正长花岗岩进行了绢云母40Ar-39Ar测年,其年龄为237±1Ma和231±2Ma,因此,根据含金矿石蚀变年龄或岩脉与矿体之间切割关系限定五龙沟矿集区金成矿年龄介于210~237Ma,而多金属成矿主要发生在早期240~245Ma,表明矽卡岩型多金属矿化时代与早期岩浆岩活动一致,而金矿成矿与早晚两期岩浆活动均具有较密切关系。

表 3 五龙沟矿田成岩成矿年龄一览表 Table 3 The list magmation and mineralization age in the Wulonggou deposits

图 7 五龙沟矿集区岩浆活动与成矿作用图 Fig. 7 Age histogram of magmation and mineralization in the Wulonggou deposits
5.2 岩石成因及其源区

花岗岩成因类型的划分目前常用的I型、A型、S型等方案(Chappell, 1974; Winchester and Floyd, 1977),并且已有大量的文献及其综述文章论述形成机制与成因(吴福元等, 2007, 2015; Zhao and Zhou, 2009; 张旗等, 2012; Foden et al., 2015; Mukherjee, 2015)。在主量与微量元素Zr+Nb+Ce+Y对(K2O+Na2O)/CaO及Zr+Nb+Ce+Y对FeOT/MgO图解中(图 8a, b),260Ma花岗闪长岩与244Ma花岗闪长岩以及240Ma花岗岩呈明显过渡关系,从未分异花岗岩I、S、M型区域向A型花岗岩区域过渡,斜长花岗岩、英云闪长岩、石英闪长玢岩均落入未分异花岗岩I、S、M型区域。关于A型花岗岩的成因目前尚无统一的认识,国内外学者提出至少9种成因模式,如由下地壳部分熔融形成(Collins et al., 1982);Creaser et al.(1991)认为地壳火成岩源区经麻粒岩相变质作用,直接熔融形成(Creaser et al., 1991; Frost et al., 2001);或是由壳幔岩浆混合作用形成(Yang et al., 2006)等诸多观点。尽管有很多不同的A型花岗岩的成因模式,但是他们具有相似的地球化学特征,高硅、富碱,贫钙、镁,具有高的(Na2O+K2O)/Al2O3和FeOT/MgO、Ga/Al比值,富Rb、Th、Nb、Ta、Zr、Hf、Ga、Y,贫Ba、Sr、Ti、P、Cr、Co、Ni、V等(Whalen et al., 1987; Frost et al., 2001; Wu et al., 2002; Mukherjee; 2015; Hu et al., 2017),五龙沟240Ma花岗岩(夏锐, 2017)具有富钾(Na2O=3.40%~3.93%,K2O=3.69%~4.18%)、贫镁(MgO=0.43%~0.88%)、表现出富集大离子亲石元素(如Rb,Ba)和亏损高场强元素(如Nb,Ta和Ti),负δEu异常特征(0.42~0.58),具有A型花岗岩地球化学特征。在SiO2对FeOT/(FeOT+MgO)图解上(图 8c),岩石分为两类,一类为花岗闪长岩系列投入到镁质I型与铁质A型花岗岩交汇区,另一类英云闪长岩、斜长花岗岩、石英闪长玢岩均落入镁质I型区域;在SiO2对Na2O+K2O-CaO图解中落在钙性与钙碱性I型花岗岩区域(图 8d),样品点也分为两个区域。Eby (1990)根据A型花岗岩产出的构造环境和化学成分,将A型花岗岩划分为A1和A2两类,其中,A1代表了大陆裂谷和板块内部环境下的岩浆作用;A2代表了经历过陆-陆碰撞或岛弧岩浆作用之后的地壳物质的部分熔融;在A型花岗岩分类图解中240Ma花岗岩主要落在A2区域,而260Ma与244Ma花岗闪长岩未能区分开(图 9);张旗等(2012)认为A型花岗岩的形成与源岩无关,只与压力有关,因此本文研究认为244Ma与240Ma花岗岩不可能属于两种不同成因类型,更可能表明二者岩石形成时源区温压的变化。

图 9 A型花岗岩分类图解(底图据Eby, 1990) 1-244Ma花岗闪长岩(本文);2-260Ma花岗闪长岩(据罗明非等, 2015);3-240Ma花岗岩(据夏锐, 2017) Fig. 9 Discrimination diagram of A type granite (after Eby, 1990)

五龙沟地区花岗岩岩石成因整体为一套高钾钙碱性I型花岗岩,但是地球化学属性可分为两类,一类具有I型花岗岩到A型花岗岩过渡地球化学特征,岩性主要为花岗岩、花岗闪长岩;另一类为高钾钙碱性I型花岗岩,岩性为斜长花岗岩、英云闪长岩、石英闪长玢岩。

Mg#可用来指示岩石源区是否经历了熔融或是壳幔混合作用,SiO2与Mg#协变图解中随着SiO2含量的增加,Mg#降低(图 10a),而下地壳岩石部分熔融形成的熔体其Mg#小于0.45(Rapp and Watson, 1995),这表明五龙沟花岗闪长岩,花岗岩可能来源于地壳。实验岩石学(Rushmer, 1991; Rapp and Watson, 1995)表明斜长角闪岩的脱水熔融可能产生长英质熔体中的钙碱性岩石组合,如英云闪长岩、花岗闪长岩和闪长岩等,在(Al2O3+MgO+FeOT+TiO2)对Al2O3/(MgO+FeOT+TiO2)图解中,所有样品均落入角闪岩部分熔融区域(图 10b)。微量元素Sr易取代斜长石中的Ca,主要富集在富钙斜长石、磷灰石等,五龙沟早期花岗岩贫Sr,说明其形成过程中,富钙斜长石、磷灰石等含Sr矿物经历了分离结晶作用,同时暗示花岗岩岩浆源区并非直接来自幔源,而幔源金伯利岩、大陆碱性玄武岩和橄榄玄武岩等通常具有高Sr特征(Zeng et al., 2011);Nb和Ta,Zr和Hf在与地幔演化相关的岩浆过程中很难发生分馏(Hofmann, 1988),球粒陨石的Nb/Ta和Zr/Hf比值较高(Nb/Ta=17.5,Zr/Hf=34.2)(Sun and McDonough, 1989),大陆地壳的平均Nb/Ta=13.4左右,Zr/Hf=36.7左右(Taylor and Mclennan, 1986)。在大陆地壳分异和演化过程中,Nb/Ta和Zr/Hf比值并非完全固定,彼此之间会发生分异(Hoffmann et al., 2011),可能是流(熔)体与岩浆相互作用形成(Dostal and Chatterjee, 2000),或是相关矿物的分离结晶(Long et al., 2015)等原因。

五龙沟244Ma花岗闪长岩Zr/Hf比值介于28.2~30.1,242Ma英云闪长岩与211Ma石英闪长玢岩Zr/Hf比值分别为34.1~35.5,34.3~34.9与球粒陨石值较为接近,244Ma花岗闪长岩与242Ma英云闪长岩Nb/Ta比值分别为8.7~12.7,10.2~11.4,均低于大陆地壳平均值,其岩浆中P,Ti元素均出现明显的负异常,可能是由于磷灰石和钛铁矿的进一步分离结晶,以上表明岩石发生发生了分离结晶作用;另外,花岗闪长岩Ce/Y比值逐渐减小(图 11),这可能是由Y和HREE含量相对较高的角闪石引起,Y/Nb比值基本不变(图 11),这表明五龙沟矿集区内岩浆可能具有相同类型的来源(Eby, 1990)。五龙沟花岗闪长岩具有较高的Ba/La比值,这可能是与含黑云母或角闪石的部分熔融有关,在La/Nb-Ba/Nb图解中可以看出,岩石经历了一定分离结晶作用。同位素资料表明260Ma花岗闪长岩具有均一的87Sr/86Sr(0.7091~0.7076),较低的εNd(t)值-5.3~-4.3,εHf(t)-3.5~0.6,是由古老的基性下地壳部分熔融形成,同时具有幔源物质的贡献(罗明非等, 2015)。同时结合野外观察,在英云闪长岩体,花岗闪长岩中含大小不等的镁铁质包体,包体形状通常为椭圆状、水滴状,少部分为透镜状或棱角状,与寄主岩石均表现典型的火成岩结构构造,其次包体中不发育堆晶结构。因此本文认为,五龙沟地区侵入岩源区主要为下地壳部分熔融形成,为壳源岩浆与幔源岩浆在不同比例下混合的结果,具有相同的物质来源,岩浆在演化过程中经历了一定的分离结晶作用。

5.3 构造环境

主量元素地球化学特征表明五龙沟矿集区侵入岩主体为高钾钙碱性系列。根据Pearce et al. (1984)提出的花岗岩构造环境判别图解中(图 12a),五龙沟矿集区侵入岩在Y-Nb图解中除240Ma花岗岩,其余样品均投在火山岛弧与同碰撞花岗岩区域(Pearce et al., 1984),在R1-R2图上可以看出五龙沟260Ma花岗闪长岩,244Ma花岗闪长岩与240Ma花岗岩主要落在板块碰撞前消减地区花岗岩区域,而244Ma斜长花岗岩与241Ma英云闪长岩板块碰撞前花岗岩向同碰撞花岗岩区域过渡,以及晚期211Ma石英闪长玢岩主要位于同碰撞花岗岩区域(图 12b)。

然而具体构造环境还应结合详细的地质过程加以讨论,由于造山作用复杂性,不同学者对东昆仑印支期造山带构造演化阶段存在着不同看法:东昆仑古特提斯洋盆关闭时间在晚二叠世(罗照华等, 1999; 袁万明等, 2000a; 刘成东等, 2003);早三叠世时期东昆仑处于活动大陆边缘环境,但到中晚三叠世时洋盆就已经闭合(谌宏伟等, 2005; Xiong et al., 2014; 马昌前等, 2015);洋盆于晚三叠世仍未闭合,古特提斯洋壳仍然持续俯冲(Liu, 2006; Yuan et al., 2009)。以上分歧的焦点在于岩浆活动形成的构造环境以及洋盆何时关闭。根据五龙沟花岗岩岩石形成时代,以及区域岩浆作用的时空分布关系,本文认为五龙沟矿集区内花岗闪长岩244Ma、斜长花岗岩244Ma、英云闪长岩241Ma、花岗岩240Ma岩浆活动事件与古特提斯洋的关闭密切相关,处于大陆边缘环境,从而形成了复杂的岩石类型,其次区域上的中三叠世希里科特组与闹仓坚沟组存在角度不整合,且在242~237Ma,东昆仑的地层沉积环境由浅海相转变为河流相(李瑞保, 2012);以及在东昆仑清水泉地区角闪岩相片岩244Ma的同期的高压变质作用记录(Chen et al., 2007)等证据表明,在中三叠世五龙沟地区~240Ma洋盆已经闭合,由此五龙沟早期花岗岩形成与大陆边缘环境,构造背景为俯冲-碰撞的转换阶段,造成了岩浆的多样性,而晚期211Ma该区域已处于后碰撞伸展的构造背景。

5.4 构造-岩浆-成矿作用

同位素资料表明五龙沟矿集区内金属硫化物矿物中硫同位素主要来源于岩浆,并且具深源特征(张金阳等, 2012),硫化物中的铅同位素显示造山带铅特征,为岩浆来源(Ding et al., 2014; 王铜, 2015; 夏锐, 2017; 李金超, 2017)。五龙沟矿集区内岩浆活动的多期次性对成矿具有重要作用,使得该区成矿与早期俯冲-碰撞造山、晚期后伸展作用有密切联系。

古元古代,由元古界地层组成的柴达木地块分裂出来的昆中陆壳,是一个相对富金地体,为后期金矿床形成奠定一定的矿质基础(李厚民等, 2001b);古生代,长期发育的以岩浆弧为主的构造环境,使寒武纪、泥盆纪多期次类型不同的岩浆广泛侵入,提供了一定的矿质来源;二叠纪,昆南(阿尼玛卿)洋壳向北俯冲,昆仑山向南逆冲推覆,引发同构造基性、中酸性及碱性岩浆侵入(Xiong et al., 2014; 马昌前等, 2015),带来了大量深部成矿物质。多期次广泛岩浆活动所形成的岩浆岩及其相伴的热变质作用,为后期容矿空间的形成创造了有利的物质条件,同时韧性变形形成的片理、片麻理等动力变质岩的各向渗透异性,可使相关的容矿空间具有良好屏蔽性。韧脆性剪切带,作为具有各向异性的构造薄弱带,在金矿成矿期,构成导通深部的岩浆矿液运移通道(陈柏林等, 2016)。在五龙沟矿集区260Ma随古特提斯洋俯冲、拼贴,至约240Ma洋盆在该区关闭,形成一系列逆冲断裂及大型韧性剪切带,构造-岩浆活动导致广泛的深熔作用发生,熔融岩浆携带流体、成矿物质沿断裂上升侵位,在此过程中流体与地层及前期形成的岩体进行水-岩交换反应,萃取大量的成矿物质,在接触带形成矽卡岩多金属矿床(李德彪和吴齐, 2013),如黑石山多金属矿床,以及在次级韧性剪切带内有利部位沉淀成部分金矿体,形成金矿床。

晚三叠世五龙沟地区225~215Ma进入到后碰撞伸展阶段,地壳强烈抬升、加厚,岩石圈拆沉、减薄,幔源岩浆底侵、壳-幔混合作用强烈(Xiong et al., 2014),沿断裂带发生的陆内走滑造山作用,不仅使早期韧性剪切构造由深层次进入浅层次,而且对其进行了改造(李德彪和吴齐, 2013),从而发生强烈的褶皱变形,相伴形成由NWW向断裂构成的NWW向走滑断裂体系,岩浆携带成矿流体及成矿物质进一步发生迁移,萃取围岩中大量成矿物质,在上升侵位过程中沿韧脆性剪切带扩容部位沉淀成矿,改造并叠加了前期的金矿体,之后形成了中基性脉岩,进一步改造先期形成的矿体。

6 结论

(1) 五龙沟矿集区内岩浆作用强烈,花岗闪长岩形成于244.1±2.0Ma,岩石为高钾钙碱性系列,具有I型花岗岩到A型花岗岩过渡地球化学特征;英云闪长岩年龄为241.9±0.5Ma,石英闪长玢岩年龄为211.5±0.4Ma,岩石均为高钾钙碱性I型花岗岩。

(2) 五龙沟矿集区内岩浆具有相同的源区,为壳源岩浆与幔源岩浆在不同比例下混合的结果,源区为下地壳角闪岩相的部分熔融,演化过程中经历了分离结晶作用。

(3) 五龙沟矿集区内岩浆活动分为两期,早期260~235Ma,晚期225~210Ma,金成矿与两期岩浆活动密切有关,多金属成矿与早期岩浆岩活动一致。矿集区内成矿环境早期260~235Ma为俯冲-碰撞转换阶段;晚期成矿环境为后碰撞伸展。

致谢      野外采样得到青海省第一地质矿产勘查院的支持;实验测试得到天津地调中心的帮助;审稿过程中,得到专家有益建议;在此一并致谢。

参考文献
Altherr R and Siebel W. 2002. I-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. DOI:10.1007/s00410-002-0352-y
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55. DOI:10.1016/0009-2541(85)90034-8
Chappell BW. 1974. Two contrasting granite type. Pacific Geology, 8: 173-174.
Chen BL, Deng YL, Chen JL, Zhang YL, Wang Y, Zhang H, Wang T and Han Y. 2016. Two ore-controlling structure systems in wulonggou gold orefield, Qinghai Province and its expecting significance. Geotectonica et Metallogenia, 40(2): 224-236.
Chen BL, Zhang H, Chen JL, Wang Y, Wang T, Han Y and Zhang YL. 2018. Deformation conditions of ore-controlling structural zone in the Wulonggou Gold Orefield, eastern Kunlun Mountains:Evidence from EBSD fabrics analysis. Acta Geoscientica Sinica, 39(1): 1-13.
Chen HW, Luo ZH, Mo XX, Liu CD and Ke S. 2005. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt. Geology in China, 32(3): 386-395.
Chen NS, Sun M, Wang QY, Zhao GC, Chen Q and Shu GM. 2007. EMP chemical ages of monazites from central zone of the eastern Kunlun orogen:Records of multi-tectonometamorphic events. Chinese Science Bulletin, 52(16): 2252-2263. DOI:10.1007/s11434-007-0299-5
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. DOI:10.1007/BF00374895
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology, 19(2): 163-166. DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Ding QF. 2004. Metallogenesis and mineral resources assessment in eastern Kunlun orogenic belt. Ph. D. Dissertation. Changchun: Jilin University, 1-150 (in Chinese with English summary)
Ding QF, Jiang SY and Sun FY. 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China:Petrogenesis and tectonic implications. Lithos, 205: 266-283. DOI:10.1016/j.lithos.2014.07.015
Ding QF, Liu F and Yan W. 2015. Zircon U-Pb geochronology and Hf isotopic constraints on the petrogenesis of Early Triassic granites in the Wulonggou area of the Eastern Kunlun Orogen, Northwest China. International Geology Review, 57(13): 1735-1754. DOI:10.1080/00206814.2015.1029541
Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218. DOI:10.1016/S0009-2541(99)00113-8
Du YL, Jia QZ and Han SF. 2012. Mesozoic tectono-magmatic-mineralization and copper-gold polymetallic ore prospecting research in East Kunlun metallogenic belt in Qinghai. Northwestern Geology, 45(4): 69-75.
Eby GN. 1990. The a-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134. DOI:10.1016/0024-4937(90)90043-Z
Feng CY, Zhang DQ, Wang FC, She HQ, Li DX and Wang Y. 2004. Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geoscientica Sinica, 25(4): 415-422.
Feng CY, Zhao YM, Li DX, Liu JN, Xiao Y, Li GC and Ma SC. 2011. Skarn types and mineralogical characteristics of the Fe-Cu-polymetallic skarn deposits in the Qimantage area, western Qinghai Province. Acta Geologica Sinica, 85(7): 1108-1115.
Feng CY, Wang S, Li GC, Ma SC and Li DS. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China:Chronology, geochemistry and metallogenic significances. Acta Petrologica Sinica, 28(2): 665-678.
Feng HB, Meng FC, Li SR and Jia LH. 2015. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of East Kunlun, Northwest China. Acta Petrologica Sinica, 31(8): 2129-2144.
Foden J, Sossi PA and Wawryk CM. 2015. Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, 212-215: 32-44. DOI:10.1016/j.lithos.2014.10.015
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048. DOI:10.1093/petrology/42.11.2033
Gao YB, Li WY, Li K and Qian B. 2017. Magmatism and mineralization during Early Mesozoic continental accretion process in Qimantag, East Kunlun Mountains. Mineral Deposits, 36(2): 463-482.
Guo XZ, Jia QZ, Li JC, Kong HL, Li YZ, Xu RK and Namhka N. 2016a. Geochemical characteristics and geochronology of porphyroid biotite monzogranite from the Reshui Mo polymetallic deposit, East Kunlun Mountains. Geology in China, 43(4): 1165-1177.
Guo XZ, Jia QZ, Zheng YY, Li JC, Li YZ and Kong HL. 2016b. Re-Os isotopic dating of molybdenite from reshui molybdenum polymetallic deposit in the East Kunlun and its geological significance. Acta Geologica Sinica, 90(10): 2818-2829.
Guo ZF, Deng JF, Xu ZQ, Mo XX and Luo ZH. 1998. Late Palaeozoic-Mesozoic intracontinental orogenic process and intermediate acidic igneous rocks from the eastern Kunlun Mountains of northwestern China. Geoscience, 12(3): 51-59.
Han Y, Chen BL, Deng YL, Wang Y, Zhang H, Wang T, Li SN and Li SP. 2017. Two alteration episodes of the Wulonggou gold ore field in Qinghai Province and its prospecting significance. Acta Geologica Sinica, 91(3): 561-570.
He SY, Li DS, Li LL, Qi LY and He SF. 2009. Re-Os age of molybdenite from the Yazigou copper (molybdenum) mineralized area in eastern Kunlun of Qinghai Province, and its geological significance. Geotectonica et Metallogenia, 33(2): 236-242.
Hoffmann JE, Münker C, Næraa T, Rosing MT, Herwartz D, Garbe-Schönberg D and Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. DOI:10.1016/j.gca.2011.04.027
Hofmann AW. 1988. Chemical differentiation of the earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. DOI:10.1016/0012-821X(88)90132-X
Hu QH, Yu KZ, Liu YS, Hu ZC and Zong KQ. 2017. The 131~134Ma A-type granites from northern Zhejiang Province, South China:Implications for partial melting of the Neoproterozoic lower crust. Lithos, 294-295: 39-52. DOI:10.1016/j.lithos.2017.09.016
Jiang CF. 2000. The Structure of Central Orogenic Zone Opens and Closes. Beijing: Geological Publishing House.
Kou LL, Zhang S, Zhong KH and Tian CS. 2015. A study of the deformation characteristics of the ductile shear zone in the Wulonggou gold ore concentration area, East Kunlun, Qinghai. Geology in China, 42(2): 495-503.
Li DB and Wu Q. 2013. Geological characteristics and prospecting potential of Heishishan Cu-polymetallic deposit in Qinghai Province. Journal of Hefei University of Technology (Natural Science Edition), 36(1): 99-103.
Li HM, Shen YC, Hu ZG and Qian ZZ. 2001a. Minerogenetic mechanism and condition of Wulonggou gold deposit in East Kunlun Mountains, Qinghai Province. Geology and Prospecting, 37(1): 65-69.
Li HM, Sun JD, Shen YC, Hu ZG, Tang HY, Qian ZZ and Liu JQ. 2001b. Study on the occurrence and content of gold in minerals and ores of Wulonggou gold deposit, Qinghai Province. Acta Mineralogica Sinica, 21(1): 89-94.
Li HM, Shen YC, Qian ZZ, Hu ZG, Wang CL and Yu FC. 2003. Relationship between As-rich gold deposits and nearby igneous rocks from East Kunlun to South Qilian Mountains. Journal of Jilin University (Earth Science Edition), 33(1): 26-31.
Li JC, Du W, Cheng YS, Kong HL, Liu JX, Li YZ, Jia QZ, Namkha N and Xia MZ. 2015. Characteristics of gold deposits and ore-control factors in the East Kunlun mineralization belt, Qinghai Province. Geology and Exploration, 51(6): 1079-1088.
Li JC. 2017. Metallogenic regularity and metallogenic prognosis of gold deposit in the East Kunlun Orogen, Qinghai Province. Ph. D. Dissertation. Xi'an: Chang'An University, 1-122 (in Chinese with English summary)
Li RB. 2012. Research on the Late Paleozoic-Early Mesozoic orogeny in East Kunlun Orogen. Ph. D. Dissertation. Xi'an: Chang'An University, 1-173 (in Chinese with English summary)
Li X, Yuan WM, Hao NN, Duan HW, Chen XN, Mo XX and Zhang AK. 2014. Characteristics and tectonic setting of granite in Wulonggou area, East Kunlun Mountains. Global Geology, 33(2): 275-288.
Li YZ, Kong HL, Li JC, Jia QZ, Wang JY and Namhka N. 2015. Geochemistry and zircon U-Pb geochronology of the Yueliangwan plagiogranite in the Wulonggou gold deposit, Qinghai Province. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2): 401-409.
Liu CD, Mo XX, Luo ZH, Yu XH, Chen HW, Li SW and Zhao X. 2003. Pb-Sr-Nd-O isotope characteristics of granitoids in East Kunlun Orogenic Belt. Acta Geoscientica Sinica, 24(6): 584-588.
Liu HT. 2006. Petrology, geochemistry and geochronology of Late Triassic volcanics, Kunlun orogenic belt, western China:Implications for tectonic setting and petrogenesis. Geochemical Journal, 39(1): 1-20.
Liu JN, Feng CY, Qi F, Li GC, Ma SC and Xiao Y. 2012. SIMS zircon U-Pb dating and fluid inclusion studies of Xiadeboli Cu-Mo ore district in Dulan County, Qinghai Province, China. Acta Petrologica Sinica, 28(2): 679-690.
Liu JN, Feng CY, Xiao KY, He SY, Li DX and Zhao YM. 2016. Mineralization characteristics and resource potential analysis of the East Kunlun metallogenic belt. Acta Geologica Sinica, 90(7): 1364-1376.
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Long XP, Wilde SA, Wang Q, Yuan C, Wang XC, Li J, Jiang ZQ and Dan W. 2015. Partial melting of thickened continental crust in central Tibet:Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414: 30-44. DOI:10.1016/j.epsl.2015.01.007
Lu L. 2011. Study on the ore-controlling structure of Wulonggou gold deposit in East Kunlun Mountain. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-93 (in Chinese with English summary)
Lu L, Zhang YL, Wu ZH and Hu DG. 2013. K-Ar dating of fault gouge from the main fault of Wulonggou gold deposit in Dulan, Qinghai Province. Journal of Geomechanics, 19(4): 385-391, 446.
Ludwig KR. 2003. Mathematical-statistical treatment of data and errors for 230Th/U geochronology. Reviews in Mineralogy and Geochemistry, 52(1): 631-656. DOI:10.2113/0520631
Luo MF, Mo XX, Yu XH, Li XW and Huang XF. 2015. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinhai Province. Earth Science Frontiers, 22(5): 182-195.
Luo ZH, Deng JF, Cao YQ, Guo ZF and Mo XX. 1999. On Late Paleozoic-Early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai Province. Geoscience, 13(1): 51-56.
Luo ZH, Ke S, Cao YQ, Deng JF and Chen HW. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297.
Ma CQ, Xiong FH, Yin S, Wang LX and Gao K. 2015. Intensity and cyclicity of orogenic magmatism:An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568.
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51.
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414.
Mukherjee S. 2015. A review on out-of-sequence deformation in the Himalaya. In: Mukherjee S, Carosi R, van der Beek P, Mukherjee BK and Robinson D (eds. ). Tectonics of the Himalay. Geological Society, London, Special Publications, 1-317
Pan T, Li SP, Zhao CX, Chen J, Jing TT and Lin H. 2017. Metallogenic model and prospecting direction of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun area. Geological Bulletin of China, 36(7): 1276-1287.
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Qian ZZ, Li HM and Hu Z. 1997. Study of structures controlling gold deposites in Wulonggou areas, Qinghai Province. Journal of Earth Sciences and Environment, 19(Suppl): 27-32.
Qian ZZ, Tang ZL, Jiao JG and Tang DM. 2004. Geological characteristics, metallogenic epochs and metallogenic settings of skarn-type ore deposits in East Kunlun area. Mineral Deposits, 23(S1): 124-130.
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rushmer T. 1991. Partial melting of two amphibolites:Contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. DOI:10.1007/BF00311184
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313-345
Taylor SR and Mclennan SM. 1986. The continental crust:Its composition and evolution. Journal of Geology, 94(4): 632-633. DOI:10.1086/629067
Tian CS. 2012. Research on gold mineralization and metallogenic prognosis in Wulonggou ore concentration areas of middle part of East Kunlun. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-176 (in Chinese with English summary)
Wang BZ, Luo ZH, Li HY, Chen HW and Hu XL. 2009. Petrotectonic assemblages and temporal-spatial framework of the Late Paleozoic-Early Mesozoic intrusions in the Qimantage Corridor of the East Kunlun belt. Geology in China, 36(4): 769-782.
Wang G, Sun FY, Li BL, Li SJ, Zhao JW, Ao C and Yang QA. 2014. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Science Frontiers, 21(6): 381-401.
Wang T. 2015. Study of the geological characteristics and genesis of Wulonggou gold deposit, Qinghai Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-75 (in Chinese with English summary)
Wang T, Li B, Chen J, Wang JS, Li WF and Jin TT. 2016. Characteristics of chronology and geochemistry of the Early Silurian monzagranite in the Wulonggou area, East Kunlun and its geological significance. Journal of Mineralogy and Petrology, 36(2): 62-70.
Wei ZH, Sun FZ, Chen SL, Deng YL, Li H, Yu B, Wei ZX, Ma YJ and Chen JL. 2015. Characteristics of the structurally superimposed halo and deep ore forecast in ore belt Ⅺ of Wulonggou gold deposits-clustered district, Qinghai Province. Contributions to Geology and Mineral Resources Research, 30(4): 614-622.
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. DOI:10.1016/0009-2541(77)90057-2
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173. DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238.
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36.
Xia R. 2017. Paleo-tethys orogenic process and gold metallogenesis of the East Kunlun. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-206 (in Chinese with English summary)
Xiong FH, Ma CQ, Jiang HA, Liu B and Huang J. 2014. Geochronology and geochemistry of middle devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau:Implications for the transition from Prototethys to Paleotethys orogeny. Chemie der Erde-Geochemistry, 74(2): 225-235. DOI:10.1016/j.chemer.2013.07.004
Xu CK, Liu SB, Zhao ZZ, Zhang MF, Zhang KC, Liu JH, Zhan FY, Huang CH, Zhang ZY, Wang HY, Zhang WJ and Qiao Q. 2012. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai. Acta Geologica Sinica, 86(10): 1621-1678.
Xu QL, Sun FY, Li BL, Qian Y, Li L and Yang YQ. 2014. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 38(2): 421-433.
Yan W. 2016. Study on the petrogenesis, tectonic and ore-controlling significance of Caledonian and Indosinian granite from Wulonggou area in the Eastern Kunlun, Qinghai Province. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Yan W, Qiu DM, Ding QF and Liu F. 2016. Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite of Wulonggou area in Eastern Kunlun Orogen. Journal of Jilin University (Earth Science Edition), 46(2): 443-460.
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106. DOI:10.1016/j.lithos.2005.10.002
Yin HF and Zhang KX. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science (Journal of China University of Geosciences), 23(5): 438-442.
Yu M, Feng CY, Santosh M, Mao JM, Zhu YF, Zhao YM and Li DX. 2017. The Qimantagh orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103-123. DOI:10.1016/j.earscirev.2017.02.008
Yuan C, Sun M, Xiao WJ, Wilde S, Li XH, Liu XH, Long XP, Xia XP, Ye K and Li JL. 2009. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for adakite and magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510. DOI:10.1007/s00531-008-0335-y
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb Age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. DOI:10.1111/ggr.2004.28.issue-3
Yuan WM, Mo XX, Yu XH and Luo ZH. 2000a. The record of Indosinian tectonic setting from the granotoid of Eastern Kunlun Mountains. Geological Review, 46(2): 203-211.
Yuan WM, Wang SC and Wang LF. 2000b. Metallogenic thermal history of the wulonggou gold deposits in East Kunlun Mountains in the light of fission track thermochronology. Acta Geoscientia Sinica, 21(4): 389-395.
Yuan WM, Mo XX, Yu XH, Luo ZH and Wang SC. 2002. Indication of quartz ree geochemistry on gold mineralization in Wulonggou gold-ore area, eastern Kunlun Mountains, Qinghai Province. Geology and Prospecting, 38(1): 15-17.
Zeng LS, Gao LE, Xie KJ and Jing LZ. 2011. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes:Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266. DOI:10.1016/j.epsl.2011.01.005
Zhang D, Zhu LX, Su L, Ma SM, Chen HQ and Li JY. 2016. Study on multiple attributes geochemical abnormal in Wulonggou gold deposit, Qinghai Province. Acta Geologica Sinica, 90(10): 2874-2886.
Zhang DQ, Wang FC, She HQ, Feng CY, Li DX and Li JW. 2007. Three-order ore-controlling structural system of orogenic gold deposits in the northern Qaidam margin-East Kunlun region. Geology in China, 34(1): 92-100.
Zhang H. 2015. Study on the characteristics of tectonic ore-control of Wulonggou gold deposit in Qinghai Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-46 (in Chinese with English summary)
Zhang JY, Ma CQ and Li JW. 2012. Visible gold-forming environment evidenced by sulfide mineralogical characteristics of Shuizhadonggou-Huanglonggou gold deposit in eastern Kunlun orogen. Mineral Deposits, 31(6): 1184-1194.
Zhang JY, Ma CQ, Li JW and Pan YM. 2017. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, western China. Ore Geology Reviews, 81: 342-357. DOI:10.1016/j.oregeorev.2016.11.003
Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract)
Zhang ZW, Li WY, Qian B, Wang YL, Li SJ, Liu CZ, Zhang JW, Yang QA and You MX. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance. Geology in China, 42(3): 438-451.
Zhang ZW, Wang YL, Qian B and Li WY. 2017a. Zircon SHRIMP U-Pb age of the binggounan magmatic Ni-Cu deposit in East Kunlun Mountains and its tectonic implications. Acta Geologica Sinica, 91(4): 724-735.
Zhang ZW, Wang YL, Qian B, Liu YG, Qi CW, Dong J and Yin JH. 2017b. Mineralogical characteristics of the Shitoukengde mafic-ultramafic intrusions in East Kunlun orogenic belt and the ore-forming indication. Geology and Exploration, 53(5): 825-837.
Zhao JH and Zhou MF. 2009. Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. Journal of Geology, 117(1): 54-70. DOI:10.1086/593321
Zhao YM, Feng CY, Li DX, Liu JN, Xiao Y, Yu M and Ma SC. 2013. Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area, western Qinghai Province. Mineral Deposits, 32(1): 1-19.
Zhou JH, Feng CY, Li DX, Wang H, Zhag MY, Li GC and Wang ZZ. 2015. Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit, East Kunlun. Acta Petrologica Sinica, 31(8): 2277-2293.
Zhou YQ and Hu DG. 2012. Spectral characteristics of alteration minerals and its application in gold deposit prospecting in Wulonggou, Qinghai Province. Journal of Geomechanics, 18(3): 331-338.
陈柏林, 邓元良, 陈建林, 张延林, 王永, 张昊, 王铜, 韩玉. 2016. 青海五龙沟金矿田两种控矿构造识别及其找矿意义. 大地构造与成矿学, 40(2): 224-236.
陈柏林, 张昊, 陈建林, 王永, 王铜, 韩玉, 张延林. 2018. 东昆仑五龙沟金矿田控矿构造带的变形条件——来自EBSD组构的启示. 地球学报, 39(1): 1-13. DOI:10.3975/cagsb.2017.112503
谌宏伟, 罗照华, 莫宣学, 刘成东, 柯珊. 2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制. 中国地质, 32(3): 386-395.
丁清峰. 2004. 东昆仑造山带区域成矿作用与矿产资源评价. 博士学位论文. 长春: 吉林大学, 1-150
杜玉良, 贾群子, 韩生福. 2012. 青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究. 西北地质, 45(4): 69-75.
丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4): 415-422.
丰成友, 赵一鸣, 李大新, 刘建楠, 肖晔, 李国臣, 马圣钞. 2011. 青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征. 地质学报, 85(7): 1108-1115.
丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义. 岩石学报, 28(2): 665-678.
冯惠彬, 孟繁聪, 李胜荣, 贾丽辉. 2015. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8): 2129-2144.
高永宝, 李文渊, 李侃, 钱兵. 2017. 东昆仑祁漫塔格早中生代大陆地壳增生过程中的岩浆活动与成矿作用. 矿床地质, 36(2): 463-482.
国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾. 2016a. 东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究. 中国地质, 43(4): 1165-1177.
国显正, 贾群子, 郑有业, 李金超, 栗亚芝, 孔会磊. 2016b. 东昆仑热水钼多金属矿床辉钼矿Re-Os同位素年龄及地质意义. 地质学报, 90(10): 2818-2829.
郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 51-59.
韩玉, 陈柏林, 邓元良, 陈建林, 王永, 张昊, 王铜, 李少南, 李少平. 2017. 青海五龙沟金矿田两期蚀变作用及其找矿意义. 地质学报, 91(3): 561-570.
何书跃, 李东生, 李良林, 祁兰英, 何寿福. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义. 大地构造与成矿学, 33(2): 236-242.
姜春发. 2000. 中央造山带开合构造. 北京: 地质出版社.
寇林林, 张森, 钟康惠, 田承盛. 2015. 东昆仑五龙沟金矿矿集区韧性剪切带构造变形特点研究. 中国地质, 42(2): 495-503.
李德彪, 吴齐. 2013. 青海省黑石山地区铜多金属矿床的地质特征及找矿前景. 合肥工业大学学报(自然科学版), 36(1): 99-103.
李厚民, 沈远超, 胡正国, 钱壮志. 2001a. 青海东昆仑五龙沟金矿床成矿条件及成矿机理. 地质与勘探, 37(1): 65-69.
李厚民, 孙继东, 沈远超, 胡正国, 汤红云, 钱壮志, 刘继庆. 2001b. 青海五龙沟金矿床矿石、矿物含金性及金的赋存状态. 矿物学报, 21(1): 89-94.
李厚民, 沈远超, 钱壮志, 胡正国, 王崇礼, 于凤池. 2003. 东昆仑-南祁连富砷金矿与矿区岩浆岩的关系. 吉林大学学报(地球科学版), 33(1): 26-31.
李金超, 杜玮, 成永生, 孔会磊, 柳建新, 栗亚芝, 贾群子, 南卡俄吾, 夏明哲. 2015. 青海省东昆仑成矿带主要金矿床特征及关键控矿因素分析. 地质与勘探, 51(6): 1079-1088.
李金超. 2017. 青海东昆仑地区金矿成矿规律及成矿预测. 博士学位论文. 西安: 长安大学, 1-122
李瑞保. 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究. 博士学位论文. 西安: 长安大学, 1-173
李希, 袁万明, 郝娜娜, 段宏伟, 陈小宁, 莫宣学, 张爱奎. 2014. 东昆仑五龙沟花岗岩特征及其构造背景. 世界地质, 33(2): 275-288.
栗亚芝, 孔会磊, 李金超, 贾群子, 王家有, 南卡俄吾. 2015. 青海五龙沟矿区月亮湾斜长花岗岩地球化学特征及U-Pb年代学研究. 矿物岩石地球化学通报, 34(2): 401-409.
刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2003. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征. 地球学报, 24(6): 584-588.
刘建楠, 丰成友, 亓锋, 李国臣, 马圣钞, 肖晔. 2012. 青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究. 岩石学报, 28(2): 679-690.
刘建楠, 丰成友, 肖克炎, 何书跃, 李大新, 赵一鸣. 2016. 东昆仑成矿带成矿特征与资源潜力分析. 地质学报, 90(7): 1364-1376.
陆露. 2011. 东昆仑五龙沟金矿构造控矿特征研究. 硕士学位论文. 北京: 中国地质科学院, 1-92
陆露, 张延林, 吴珍汉, 胡道功. 2013. 青海省都兰县五龙沟金矿主断裂带断层泥K-Ar定年. 地质力学学报, 19(4): 385-391, 446.
罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞. 2015. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义. 地学前缘, 22(5): 182-195.
罗照华, 邓晋福, 曹永清, 郭正府, 莫宣学. 1999. 青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化. 现代地质, 13(1): 51-56.
罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297.
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568.
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43-51.
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
潘彤, 李善平, 赵呈祥, 陈静, 金婷婷, 林浩. 2017. 东昆仑地区夏日哈木铜镍矿床成矿模式及找矿方向. 地质通报, 36(7): 1276-1287.
钱壮志, 李厚民, 胡正国. 1997. 青海五龙沟地区金矿控矿构造研究. 地球科学与环境学报, 19(S1): 27-32.
钱壮志, 汤中立, 焦建刚, 唐冬梅. 2004. 东昆仑地区矽卡岩型矿床地质特征、成矿时代及成矿环境. 矿床地质, 23.
田承盛. 2012. 东昆仑中段五龙沟矿集区金矿成矿作用及成矿预测研究. 博士学位论文. 北京: 中国地质大学, 1-176
王秉璋, 罗照华, 李怀毅, 谌宏伟, 胡旭莉. 2009. 东昆仑祁漫塔格走廊域晚古生代-早中生代侵入岩岩石组合及时空格架. 中国地质, 36(4): 769-782.
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.
王铜. 2015. 青海五龙沟金矿床地质特征与成因研究. 硕士学位论文. 北京: 中国地质大学, 1-75
王涛, 李彬, 陈静, 王进寿, 李五福, 金婷婷. 2016. 东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义. 矿物岩石, 36(2): 62-70.
魏占浩, 孙凤舟, 陈苏龙, 邓元良, 李惠, 禹斌, 魏子鑫, 马永久, 陈建林. 2015. 青海五龙沟金矿集区Ⅺ矿带构造叠加晕特征与深部预测. 地质找矿论丛, 30(4): 614-622. DOI:10.6053/j.issn.1001-1412.2015.04.020
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
夏锐. 2017. 东昆仑古特提斯造山过程与金成矿作用. 博士学位论文. 北京: 中国地质大学, 1-206
许长坤, 刘世宝, 赵子基, 张梅芬, 张开成, 刘建华, 詹发余, 黄朝晖, 张钟月, 王红英, 张文君, 乔强. 2012. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究. 地质学报, 86(10): 1621-1678. DOI:10.3969/j.issn.0001-5717.2012.10.006
许庆林, 孙丰月, 李碧乐, 钱烨, 李良, 杨延乾. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景. 大地构造与成矿学, 38(2): 421-433.
严威. 2016. 青海省东昆仑五龙沟地区加里东期、印支期花岗岩成因及构造意义与控矿意义研究. 硕士学位论文. 长春: 吉林大学
严威, 邱殿明, 丁清峰, 刘飞. 2016. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义. 吉林大学学报(地球科学版), 46(2): 443-460.
殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学-中国地质大学学报, 23(5): 438-442.
袁万明, 莫宣学, 喻学惠, 罗照华. 2000a. 东昆仑印支期区域构造背景的花岗岩记录. 地质论评, 46(2): 203-211.
袁万明, 王世成, 王兰芬. 2000b. 东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据. 地球学报, 21(4): 389-395.
袁万明, 莫宣学, 喻学惠, 罗照华, 王世成. 2002. 青海省五龙沟矿区金矿化的石英稀土元素地球化学指示. 地质与勘探, 38(1): 15-17.
张东, 朱立新, 苏磊, 马生明, 陈宏强, 李景运. 2016. 青海五龙沟金矿多属性地球化学异常研究. 地质学报, 90(10): 2874-2886. DOI:10.3969/j.issn.0001-5717.2016.10.023
张德全, 王富春, 佘宏全, 丰成友, 李大新, 李进文. 2007. 柴北缘-东昆仑地区造山型金矿床的三级控矿构造系统. 中国地质, 34(1): 92-100.
张昊. 2015. 青海省五龙沟金矿构造控矿特征研究. 硕士学位论文. 北京: 中国地质大学, 1-46
张金阳, 马昌前, 李建威. 2012. 东昆仑水闸东沟-黄龙沟金矿床硫化物矿物学特征对可见金形成条件的制约. 矿床地质, 31(6): 1184-1194.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626.
张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义. 中国地质, 42(3): 438-451.
张照伟, 王亚磊, 钱兵, 李文渊. 2017a. 东昆仑冰沟南铜镍矿锆石SHRIMPU-Pb年龄及构造意义. 地质学报, 91(4): 724-735.
张照伟, 王亚磊, 钱兵, 刘月高, 祁昌炜, 董俊, 尹建华. 2017b. 东昆仑石头坑德镁铁-超镁铁质岩体矿物学特征及成矿指示. 地质与勘探, 53(5): 825-837.
赵一鸣, 丰成友, 李大新, 刘建楠, 肖晔, 于淼, 马圣钞. 2013. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征. 矿床地质, 32(1): 1-19.
周建厚, 丰成友, 李大新, 王辉, 张明玉, 李国臣, 王增振. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学. 岩石学报, 31(8): 2277-2293.
周轶群, 胡道功. 2012. 青海五龙沟金矿区蚀变矿物光谱特征与找矿应用. 地质力学学报, 18(3): 331-338.