岩石学报  2018, Vol. 34 Issue (7): 1991-2016   PDF    
柴北缘果可山岩体的岩浆混合作用:来自岩相学、矿物学和地球化学证据
牛漫兰1 , 赵齐齐1 , 吴齐1 , 李秀财1 , 闫臻2 , 李继亮3 , 孙毅1 , 苑潇宇1     
1. 合肥工业大学资源与环境工程学院, 合肥 230009;
2. 中国地质科学院地质研究所, 北京 100037;
3. 中国科学院地质与地球物理研究所, 北京 100029
摘要:青海南山岩浆岩带沿柴达木盆地和西秦岭造山带北缘分布,主要由与古特提斯洋俯冲-碰撞相关的晚二叠世-三叠纪花岗岩组成。本文对柴北缘东段果可山石英闪长岩及其中镁铁质微粒包体开展岩相学、矿物学、地球化学和Sr-Nd同位素综合研究及成因约束,为探究壳-幔相互作用提供新信息。LA-ICP-MS锆石U-Pb定年结果显示,果可山石英闪长岩与镁铁质包体形成于~247Ma。石英闪长岩属中钾钙碱性Ⅰ型花岗岩,具有中等K2O含量(1.43%~2.18%)和高Mg#值(48.9~52.4),还表现出富集轻稀土元素、大离子亲石元素(如U、K、Pb),亏损重稀土元素和高场强元素(如Nb、Ta、Ti)和弱Eu负异常特征(Eu/Eu*=0.71~0.85)。Sr-Nd同位素组成和矿物不平衡结构(如斜长石韵律环带和突变环带及角闪石包裹黑云母)表明,石英闪长岩主要源自镁铁质下地壳部分熔融并伴有富集地幔来源镁铁质组分的参与。镁铁质微粒包体呈椭球状,发育冷凝边和特殊的显微结构(如针状磷灰石、斜长石反环带和斜长石含刀刃状角闪石),具有更低的SiO2含量(56.68%~59.28%)、更高的εNdt)和Mg#值(58.5~62.2)以及更平坦的稀土配分曲线,暗示果可山镁铁质包体和寄主花岗岩是由源自遭受俯冲交代地幔的镁铁质岩浆与古老下地壳(古元古代晚期)来源的长英质岩浆不同比例混合形成的。结合前人对区域沉积学和构造解析研究结果,本文认为青海南山早-中三叠世岩浆活动与古特提斯洋向北俯冲诱发的幔源岩浆底侵和岩浆混合作用有关。
关键词: 镁铁质微粒包体     早-中三叠世     斜长石复杂环带     岩浆混合     果可山岩体     柴北缘    
Magma mixing identified in the Guokeshan pluton, northern margin of the Qaidam basin: Evidences from petrography, mineral chemistry, and whole-rock geochemistry
NIU ManLan1, ZHAO QiQi1, WU Qi1, LI XiuCai1, YAN Zhen2, LI JiLiang3, SUN Yi1, YUAN XiaoYu1     
1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: The Qinghai Nanshan magmatic belt, located along the northern margin of the Qaidam basin (NQB) and West Qinling Orogen, is mainly composed of Late Permian to Triassic granites that are genetically linked to subduction and collision of the Paleo-Tethys ocean. To constrain their origins and provide new insights on the curst-mantle interaction, an integration of methods including pertrology, mineralogy, geochemistry and Sr-Nd isotopes is performed on the mafic microgranular enclaves (MMEs) and their host quartz diorites from the Guokeshan pluton in the eastern segment of the NQB. Zircon LA-ICP-MS dating reveals that the Guokeshan quartz-diorites are coeval with their MMEs (~247Ma). The quartz diorites are medium-K calc-alkaline Ⅰ-type granites that exhibit moderate potassium (K2O=1.43%~2.18%) and high Mg# (48.9~52.4). They are also characterized by arc-type enrichment of LREEs and LLIEs (e.g., U, K, Pb), depletion of HREEs and HFSEs (e.g., Nb, Ta, Ti) and weakly Eu depletions (Eu/Eu*=0.71~0.85). Their evolved Sr-Nd isotopic compositions, coupled with disequilibrium textures of oscillatory-zoned plagioclases, spike zone in plagioclase and biotite enclosed within amphibole, indicate precursor magmas were mainly produced by partial melting of mafic lower crust with additional input of a mafic component derived from an enriched mantle. In contrast, the MMEs possess lower SiO2 (56.68%~59.28%), and higher εNd(t) and Mg# values(58.5~62.2), and flatter REE distribution patterns. In combination with field and petrological observations, such as chilled margins, spheroidal shapes, acicular apatite, reverse-zoned plagioclase, blade-shaped amphibole in plagioclase, the MMEs and host granitoids were inferred as products by different percentage mixing of subduction-related metasomatized mantle-derived mafic and ancient (Late-Paleoproterozoic) crust-derived felsic magmas. In association with previous sedimentological research and tectonic analysis, in this paper, we propose that the Early-Middle Triassic magmatism in the Qinghai Nanshan magmatic belt might be related to underplating of mantle-derived magma and magma mixing induced by the northernward subduction of the Paleo-Tethys ocean.
Key words: Mafic microgranular enclave     Early-middle Triassic     Complex plagioclase zoning     Magma mingling     Guokeshan pluton     Northern margin of the Qaidam basin    

岩浆混合作用是花岗岩形成的重要方式之一(Yang et al., 2007; Gao et al., 2016a),既可以发生在镁铁质与长英质岩浆之间(Collins, 1996; Barbarin, 2005),也可以在不同壳源岩浆间进行(Fiannacca et al., 2008; Bolhar et al., 2012)。由于物理化学性质存在显著差异,镁铁质和长英质岩浆之间通常表现为机械混合(Sparks et al., 1977; Sarjoughian et al., 2012),可以部分保留各自独特的地球化学组成,分别形成包体和寄主花岗岩(Sparks and Marshall, 1986; Barbarin and Didier, 1992)。同时,机械混合还会产生不平衡的结晶条件,导致包体和寄主岩存在矿物间不平衡共生现象,如长石环斑结构(Wark and Stimac, 1992)、角闪石包裹黑云母微晶(Arsland and Aslan, 2006; 陆天宇等, 2016),以及单矿物内部复杂的成分变化,如斜长石中熔蚀结构、复杂环带和成分突变等(Castro, 2001; 谢磊等, 2004; Chen et al., 2016; Fu et al., 2016)。因此,对寄主花岗岩及共存包体开展深入系统的岩相学和矿物学研究,是查明岩浆混合作用存在与否和反演岩浆混合过程的最佳手段(Huppert and Sparks, 1998; Browne et al., 2006; Ma et al., 2017),也可为探讨花岗岩成因提供有效证据。

柴北缘构造带毗邻祁连造山带和柴达木地块(图 1),其间分别被青海南山断裂和柴达木北缘断裂所分割,以元古宙和早古生代变质作用、岩浆活动广泛发育为特征(Song et al., 2003; Gong et al., 2012; Cheng et al., 2017; Zhang et al., 2017)。此外,柴北缘东段出露大量印支期岩浆岩(图 2),向东可与西秦岭北缘同期花岗岩相连,共同构成北西-南东向展布的青海南山岩浆岩带(图 1b; 闫臻等, 2012)。此岩浆带的形成与古特提斯洋演化紧密相关(郭安林等, 2009; 闫臻等, 2012; Luo et al., 2012),主要由晚二叠世-中三叠世钙碱性Ⅰ型花岗岩组成(强娟, 2008; Guo et al., 2012; 徐学义等, 2014; 程婷婷等, 2015; Li et al., 2015; 吴才来等, 2016)。部分学者根据花岗岩地球化学特征及其内部发育矿物不平衡共生结构和暗色包体,推断岩浆混合作用在青海南山岩浆岩带的形成中起重要作用(韦萍等, 2013; Luo et al., 2015; 彭渊等, 2016; 张永明等, 2017a, b, c)。然而,迄今仍缺乏对花岗岩及包体系统的岩相学、矿物学以及地球化学工作,因此难以对岩浆混合过程、岩浆源区组分和壳-幔物质交换以及花岗岩成因进行合理的认识。

图 1 中国大地构造简图(a)和西秦岭及其邻区构造地质简图(b, 据闫臻等, 2012) QHNSF-青海南山断裂;SZWL-宗务隆南缘断裂;YKWLF-鱼卡-乌兰断裂;NQF-柴达木北缘断裂 Fig. 1 Simplified tectonic division of China, showing the major tectonic units (a) and sketch geological map of the West Qinling orogen and its periphery (b, after Yan et al., 2012) QHNSF-Qinghai Nanshan fault; SZWL-South Zongwulong fault; YKWLF-Yuka-Wulan fault; NQF-North Qadiam fault

图 2 乌兰地区地质简图(据地质部青海省地质区域地质测量队, 1968修改) 锆石U-Pb年龄数据引自:(1)强娟, 2008;(2)陈金, 2011;(3)Chen et al. (2012);(4)程婷婷, 2015;(5)康珍等, 2015;(6)李秀财等, 2015a;(7)孙娇鹏等, 2015;(8)彭渊等, 2016;(9)吴才来等, 2016;(10)钱兵等, 2017;(11)王玉松等, 2017 Fig. 2 Sketch geological map of the Wulan region

① 地质部青海省地质区域地质测量队. 1968. 1:20万乌兰幅地质图

本文以柴北缘东段中三叠世果可山岩体及其中镁铁质微粒包体为主要研究对象,在前人研究基础上,重点开展岩相学、矿物学、全岩地球化学和Sr-Nd同位素的精细研究,剖析它们的成因和岩浆来源,揭示岩浆混合过程,为探讨柴北缘东段至西秦岭北缘早中三叠世壳-幔相互作用和动力学机制提供新的证据。

1 区域地质背景

柴北缘构造带自南向北依次划分为柴北缘超高压俯冲变质带、欧龙布鲁克微陆块以及宗务隆造山带3个次级构造单元(陆松年等, 2002)。柴北缘超高压俯冲变质带主要由中元古代沙柳河岩群、中-新元古代花岗片麻岩、早古生代榴辉岩、蛇绿岩和滩间山群等组成(郝国杰等, 2004; Song et al., 2014);欧龙布鲁克微陆块结晶基底由古元古代德令哈杂岩、达肯大板岩群以及中元古代万洞沟岩群构成(Wang et al., 2008; Gong et al., 2012),被具有坳拉谷沉积性质的南华系-震旦系全吉群以及早古生代以来的沉积-火山岩系不整合覆盖(Lu et al., 2008; 张璐等, 2012; 孙娇鹏等, 2016);宗务隆构造带出露地层为石炭纪-二叠纪宗务隆群和早-中三叠世隆务河组、古浪堤组(郭安林等, 2009; 孙娇鹏等, 2015)。

柴北缘海西晚期-印支期火成岩,除少量出露于构造带西端冷湖地区外(董增产等, 2015; Zhang et al., 2017),大多分布于欧龙布鲁克微陆块东部乌兰地区(图 2),以晚二叠世-中三叠世辉长岩和钙碱性Ⅰ型花岗岩为主(258~237Ma; 程婷婷, 2015; 王苏里和周立发, 2016; 吴才来等, 2016),还含少量晚三叠世A型花岗岩(215~214Ma; 强娟, 2008; 陈金, 2011)。围岩主要为斜长角闪岩、片麻岩、混合岩、变粒岩、石英片岩、千枚岩和大理岩,属于石炭纪宗务隆群果可山组(彭渊等, 2016)。

2 岩体地质和岩相学特征

果可山岩体出露于青海省乌兰县东北约33km处(37°10′~37°16′N,98°33′~98°48′E),紧邻宗务隆造山带产出,出露面积约70km2,呈NW-SE向延伸的不规则状侵位于果可山组片麻岩中(图 2)。果可山岩体主要由石英闪长岩组成,LA-ICP-MS锆石U-Pb年代学研究结果显示其形成于中三叠世(247±3Ma; 王玉松等, 2017)。野外调查发现该岩体中普遍存在暗色镁铁质微粒包体,但是空间分布不均(图 3)。包体形态多样,多数呈椭圆状或鹅卵状(图 3a, b),少量为棱角状或不规则状,直径从数毫米至数十厘米不等。它们与寄主岩之间界线一般较为截然,并发育冷凝边结构(图 3b, c),但在某些位置可见弥散型扩散边界(图 3a, d)。

图 3 果可山岩体野外地质特征 Fig. 3 Field photographs of the Guokeshan pluton

寄主石英闪长岩呈灰白色,具块状构造和中粒结构,主要由斜长石(45%~50%)、石英(15%~20%)、角闪石(10%~15%)、碱性长石(5%~10%)和黑云母(5%~10%)组成,副矿物包括锆石、磷灰石和榍石。斜长石通常为自形-半自形长棱柱状,普遍发育聚片双晶、净-边结构、树枝状结构和熔蚀结构以及环带结构(图 4a, b),内部常发生绢云母化。碱性长石基本未见双晶发育,发生不同程度的高岭土化,偶见包裹少量他形角闪石(图 4a)。角闪石和黑云母普遍以自形-半自形晶体分布于其它矿物间,前者时常蚀变为绿泥石或绿帘石。部分他形石英包含有具环带结构的斜长石微晶(图 4a)。

图 4 果可山岩体石英闪长岩(a、b)和镁铁质微粒包体典型岩相学特征(c-f) 矿物名称缩写:Qtz-石英;Pl-斜长石;Afs-碱性长石;Amp-角闪石;Bt-黑云母;Ap-磷灰石 Fig. 4 Representative photomicrographs of host quartz diorites (a, b) and enclosed mafic microgranular enclaves (c-f) Mineral abbreviations: Qtz-quartz; Pl-plagioclase; Afs-alkali feldspar; Amp-amphibole; Bt-biotite; Ap-apatite

尽管包体矿物组合与寄主岩相似,但是矿物比例和结构特征显著不同。它们的矿物颗粒更细,具有更高的镁铁质矿物和更低的碱性长石、石英含量(图 4b),由角闪石(25%~40%)和斜长石(30%~45%)及少量黑云母(~5%)、碱性长石、石英(5%~10%)组成。斜长石大多呈自形-半自形板状,除普遍具有环带结构和熔蚀结构外(图 4b-d图 5d),还常包裹针状或刀刃状角闪石(图 4b-d)形成嵌晶结构。角闪石明显可以分为自形-半自形短柱状和针状-刀刃状两类,前者充填于斜长石之间,甚至在局部聚集形成集合体,后者则部分贯入斜长石或完全被斜长石包裹。某些自形角闪石还包裹有黑云母(图 4f)或斜长石,且被包裹黑云母普遍发育不规则的边部。另外,针状和短柱状磷灰石同时存在于包体内,以针状为主。

图 5 斜长石显微或背散射图像(上)以及An成分(中)和CaO含量变化(下)剖面 (a)寄主岩斜长石发育中长石突变环带;(b)寄主岩斜长石内部分熔蚀核部被韵律环带包裹;(c、d)包体内斜长石发育核-边结构 Fig. 5 Photomicrographs or backscattered electron images of plagioclases and profiles showing variations of An and CaO contents (a) a plagioclase grain from the quartz diorite shows clear discontinuous zoning, with an andesine spike; (b) a plagioclase grain from the quartz diorite shows oscillatory zoned growth on a partially resorbed core; (c, d) plagioclase grains in the mafic microgranular enclave show absorbed cores enclosed by clear rims
3 矿物化学特征

对果可山石英闪长岩(13GKS01)及所含镁铁质微粒包体(15GKS16)开展了矿物成分分析,测试工作在合肥工业大学电子探针实验室完成,仪器型号为JEOL JAX-8230,实验条件为加速电压15kV,电子束流20nA,电子束斑为3μm。斜长石和角闪石结构式分别以8个和23个O进行计算,角闪石Fe3+校正依据Si+Al+Ti+Mg+Fe+Mn=13进行(Droop, 1987)。斜长石和角闪石矿物分析结果分别列于表 1表 2

表 1 果可山岩体石英闪长岩和镁铁质微粒包体斜长石电子探针成分(wt%) Table 1 Electron microprobe analyses of plagioclases from quartz-diorite and MME in Guokeshan pluton (wt%)

表 2 果可山岩体石英闪长岩和镁铁质微粒包体角闪石电子探针成分(wt%) Table 2 Electron microprobe analyses of hornblendes from quartz-diorite and MME in Guokeshan pluton (wt%)
3.1 斜长石

虽然寄主岩和包体内半自形-自形斜长石普遍发育多种类型的熔蚀和生长结构(图 4图 5),但主要呈现为部分熔蚀(以筛状熔蚀为主)核部发育环带状增生边,并显示出复杂的成分环带(表 1)。

寄主岩KS-01斜长石核部经历了强烈的孔隙状熔蚀,与未熔蚀的边部接触关系平整(图 5a)。核部相对富钙,属拉长石(An=66.3;CaO=13.48%)。边部成分变化明显,含有成分突变环带。突变环带在正交偏光下颜色相对两侧明显更暗(图 5a),An含量为36.8~43.2,普遍低于它们内侧(An=55.9~65.7)和外侧(An=33.9~44.9),成分为中长石。KS-02斜长石发育树枝状结构和背散射图像颜色交替变化的稀疏韵律环带(图 5b)。核部成分较为一致(An=53.8~57.3;CaO=11.01%~12.43%),属于拉长石;边部则在中长石-拉长石间波动(An=40.1~60.0;CaO=8.23%~12.43%),正-反环带多次交替出现。此外,该斜长石还存在层间晶面熔蚀结构,韵律环带内低An成分环带内部及其与两侧高An环带接触部分常见熔蚀现象,使得晶体棱角和边缘变得光滑。

包体斜长石都发育清晰的核-边结构,核部被不同程度的熔蚀,边部较为干净(图 5c, d)。KS03斜长石核部几乎被完全熔蚀,与边部呈港湾状接触,属中长石(An=41.5~47.6;CaO=8.51%~9.66%)。边部成分由内至外向着富钠方向迁移,从拉长石逐渐演化为中长石(An=34.9~65.4;CaO=7.41%~13.54%);但是,两者接触带较核部更加富钙,构成反环带(图 5c)。KS04斜长石核部虽然遭受筛状熔蚀,但是熔蚀和残留的斜长石间成分无明显差异(图 5d),均为富钙倍长石(An=78.2~86.4;CaO=15.47%~16.92%)。边部与核部间接触面较为平整,成分主要为中长石(An=36.8~50.5;CaO=7.40%~10.50%),相较于核部更加富钠。

3.2 角闪石

角闪石是寄主岩和包体中最常见的镁铁质矿物,记录母岩浆的结晶物理条件和化学性质(Ridolfi et al., 2010; Ridolfi and Renzulli, 2012)。寄主岩角闪石主要呈自形-半自形柱状,包体角闪石则分为自形-半自形柱状和针状或刀刃状两类(图 4c-f)。两种岩石中自形-半自形角闪石都属于镁角闪石(Leake et al., 1997; 图 6a),并且具有低的Fe/(Mg+Fe)比值(0.35~0.47),表明它们是在高氧逸度条件下结晶形成的(Anderson and Smith, 1995; 图 6b)。角闪石偏低的全碱(Na2O+K2O=0.71%~1.71%)和铝(Al2O3=7.18%~9.46%)含量,表明它们源自钙碱性岩浆(Ridolfi and Renzulli, 2012; 图 6f)。然而,寄主岩和包体角闪石成分仍存在明显差异,前者具有更高的TAl、Ti、A(Na+K)、Fe2+阳离子数,更低的Ca、Mg阳离子数和Mg/(Mg+Fe2+)比值(图 6)。

图 6 角闪石化学成分及置换机制 Fig. 6 Compositions and substitution mechanisms for amphiboles

Erdmann et al. (2014)Putirka (2016)利用高温高压平衡实验数据,定量检验并确认了角闪石地质温度计的可靠性,我们采用Putirka (2016)提出的角闪石温度计得到寄主岩和包体中自形-半自形角闪石的结晶温度分别为790~809℃、764~799℃。所测角闪石TAl变化可以由对于温度变化敏感的浅闪石和钛铁镁闪石置换来解释(Blundy and Holland, 1990; Bachmann and Dungan, 2002; 图 6c, d),与对压力敏感的斜长石置换无关(Johnson and Rutherford, 1989; Schmidt, 1992; 图 6f),说明它们的铝含量主要受温度控制。这种情况下经验性角闪石全铝压力计(Hammarstrom and Zen, 1986; Schmidt, 1992),难以获得准确的压力估计(Anderson and Smith, 1995; Bachmann and Dungan, 2002)。根据Ridolfi and Renzulli (2012)提出的基于角闪石整体成分的压力计,我们获得寄主岩和包体角闪石的结晶压力分别为1.80~2.06kbar和1.19~1.66kbar,对应结晶深度分别为6.80~7.78km和4.48~6.28km(表 2)。此外,根据Ridolfi et al. (2010)提出的湿度估计公式,获得两者角闪石含水量分别为6.4%~7.0%和6.2%~6.4%。

4 LA-ICP-MS锆石U-Pb年代学

果可山镁铁质微粒包体(15GKS15)锆石U-Th-Pb同位素比值和微量元素含量是在合肥工业大学质谱实验室内利用LA-ICP-MS同时完成的,具体仪器型号与测试方法和过程见王玉松等(2017),测试结果分别见表 3表 4

表 3 果可山岩体镁铁质暗色包体LA-ICP-MS锆石U-Pb定年结果 Table 3 Zircon U-Pb dating results obtained by LA-ICP-MS for the mafic microgranular enclave (Sample 15GKS16) in the Guokeshan pluton

表 4 果可山岩体内镁铁质暗色微粒包体锆石微量元素分析结果(×10-6) Table 4 LA-ICP-MS zircon trace element concentrations (×10-6) for the mafic microgranular enclave enclosed in the Guokeshan pluton

根据透射光和CL图像可将包体中锆石分为两类(图 7)。Ⅰ类锆石呈淡黄色-无色、透明、自形短棱柱状,不发育裂隙;粒径介于120~200μm之间,长宽比为1:1~3:1。CL图像显示,它们普遍具有清晰的核-边或核-幔-边结构,核部发育密集的震荡环带,发光性较强,边部颜色发黑,无分带性(图 7b)。Ⅱ类锆石颗粒更大(长轴长度为80~500μm),长短轴比更高(1.5:1~6:1),多呈自形长柱状,偶见短柱状。它们以裂隙极度发育和低透明度为典型特征,由未分带、暗色的核部与相对明亮、发育环带的边部组成(图 7c),暗示核部具高U、Th含量,并遭受强烈的放射性损伤(Ewing et al., 2003)。

图 7 果可山岩体寄主岩(a)和镁铁质微粒包体(b、c)锆石典型CL图像、透射光图像及相应206Pb/238U年龄和U含量 寄主岩锆石数据王玉松等(2017) Fig. 7 Representative cathodoluminenscence and transmitted-light photos for zircon crystals from the host rock (a) and mafic microgranular enclave (b, c) in Guokeshan pluton, together with 206Pb/238U ages and U concentrations Data for zircons in the host rocks are from Wang et al. (2017)

Ⅰ类锆石具有低的Th(98.1×10-6~177×10-6)、U含量(206×10-6~349×10-6)和较高Th/U比(0.44~0.55)(图 8a),表现出与典型未蚀变火成岩锆石相似的稀土配分特征,即轻稀土亏损、重稀土富集和显著Ce正异常、Eu负异常(图 9a),属岩浆成因(Hoskin and Schaltegger, 2003)。7颗锆石206Pb/238U年龄集中于254~241Ma,加权平均年龄为247±5Ma(MSWD=0.43;图 8d),与寄主石英闪长岩形成时代相一致(247±3Ma; 王玉松等, 2017)。5颗锆石206Pb/208U年龄明显偏老(图 8b),变化于457~285Ma之间,可能为捕获或继承锆石。

图 8 果可山岩体内镁铁质微粒包体中不同类型锆石的Th/U比值(a)、谐和图(b、c)和加权平均年龄(d)及206Pb/238U年龄与Th、U含量之间的协变关系(e、f) Fig. 8 Th/U ratios (a), U-Pb concordia diagrams (b, c), weighted mean ages (d), and the correlations between 206Pb/238U age and Th-U concentrations (e, f) for the various types of zircon crystals from the mafic microgranular enclave in Guokeshan pluton

图 9 果可山岩体镁铁质微粒包体锆石微量元素特征(球粒陨石标准化值据Boynton, 1984; b, 据Hoskin, 2005) Fig. 9 Variation diagrams for the trace elements and elment ratios of the zircon grains from the mafic microgranular enclave in Guokeshan pluton (the chondrite normalization values from Boynton, 1984; b, after Hoskin, 2005)

Ⅱ类锆石的Th、U含量和Th/U比值变化范围极宽,分别为132×10-6~4443×10-6、485×10-6~3164×10-6、0.23~1.77(表 4),其中Th、U含量普遍高于Ⅰ类锆石。所测年龄与U含量之间存在明显的关联性,即当U < 1500×10-6时,206Pb/238U年龄随U含量增加迅速降低,但当U>1500×10-6时,206Pb/238U年龄陡然变年轻,随后基本保持不变(图 8e),这可能与放射性损伤引起的Pb丢失、U局部富集和/或后期热液蚀变过程中的元素、同位素交换有关(Mezger and Krogstad, 1997; Utsunomiya et al., 2004; Wang et al., 2014)。此外,年龄和Th间也存在相似的相关性(图 8f);据此可将Ⅱ类锆石进而分为低U(< 1500×10-6)和高U(>1500×10-6)两组,前者的206Pb/238U年龄为257~244Ma,加权平均年龄为251±5Ma(N=8,MSWD=0.41),同寄主岩和Ⅰ类锆石结晶年龄相近;后者则具有更高的Th/U比和更年轻的206Pb/238U年龄(222~211Ma),加权平均年龄为218±4Ma(N=8,MSWD=0.31;图 8d);Ⅱ类锆石微量元素的含量变化也与U密切相关(图 9)。它们的稀土元素总量和U元素含量之间存在清晰的正相关性(图 9c),这可能是热液流体直接结晶、岩浆锆石遭受热液蚀变改造、放射性损伤或岩浆分异等原因所致。热液沉淀型锆石通常以更高的轻稀土含量、更平坦的轻稀土配分曲线和更弱的Ce异常为特征,有别于岩浆锆石(Hoskin, 2005)。部分Ⅱ类锆石虽具极高的稀土含量,并过度富集轻稀土,但仍表现出高Ce正异常,明显不同于热液成因锆石(图 9a, b)。同等衰变时间,高U锆石产生更多的放射性损伤累积,更易受热液蚀变影响(Marsellos and Garver, 2010)。放射性损伤会使锆石LREE富集程度与Th、U含量间呈正相关(Whitehouse and Kamber, 2002),但本文锆石(La/Gd)N值未随Th+U含量增加而发生明显改变(图 9f),表明此机制不是它们富集稀土的主要原因。此外,当U < 1000×10-6时,Ⅱ类锆石Hf和Ti含量与U分别呈正相关和负相关(图 9d, e),与Ⅰ类和寄主岩锆石一致,符合岩浆演化趋势,即锆石Hf含量会随岩浆演化程度增强而增加(Hoskin and Schaltegger, 2003; Claiborne et al., 2010),Ti含量随着结晶温度降低而逐步减小(Watson and Harrison, 2005; Barth and Wooden, 2010),表明它们的微量元素变化主要受岩浆分异控制,故而我们认为其206Pb/238U年龄与U含量间清晰的负相关性(图 8c),是由放射性损伤过程Pb丢失引起的,与热液流体蚀变无关。当U>1000×10-6时,Ⅱ类锆石Hf、Ti含量分别发生突降和突增,不遵循岩浆演化趋势(图 9d, e),指示它们遭受热液流体的改造,发生开放体系下元素和同位素交换,有利于稀土元素和Ti进入锆石晶格,并导致Hf元素和206Pb/238U年龄的突然降低(图 8图 9);随U含量增加锆石与外部热液流体间物质交换增强,微量元素和同位素重新达到平衡,故而U高于1500×10-6后,Ⅱ类锆石稀土配分型式和年龄保持一致(图 8图 9)。

Ⅰ类锆石显示出与寄主岩锆石相一致的晶体形态、内部结构、微量元素含量及U-Pb年龄(图 8图 9),暗示它们可能通过物质交换从寄主岩浆获得的,结合包体又被寄主岩包裹的野外关系,我们认为果可山镁铁质微粒包体应该与寄主岩是同期形成的(约247Ma);Ⅱ类锆石更高的长短轴比,可能反映了更快的结晶速度,允许更多的Th、U进入锆石晶格(Wang et al., 2011; Kirkland et al., 2015),最终导致放射性损伤及元素含量、年龄的改变。

5 全岩地球化学特征

主量、稀土和微量元素含量测定均在广州澳实矿物实验中心完成。主量元素分析是在ME-XRF26型X荧光光谱仪上进行的,精度优于5%;稀土和微量元素测试分别在ME-MS61型和ME-MS81型等离子体质谱仪上完成,精度优于10%。全岩Rb-Sr、Sm-Nd同位素比值测定,是在中国科学技术大学壳幔物质与环境重点实验室内Finnigan MAT262多接收表面热电离质谱(MC-TIMS)上完成,测试过程中Sr-Nd同位素质量分馏校正分别采用86Sr/88Sr=0.119400和143Nd/144Nd=0.721900。主量、微量元素数据列于表 5,Sr-Nd同位素测试结果见表 6

表 5 果可山岩体镁铁质微粒包体和寄主石英闪长岩主量元素(wt%)、微量和稀土元素(×10-6)分析结果 Table 5 Major (wt%) and trace (×10-6) element compositions of the mafic microgranular enclaves and their hosts from the Guokeshan pluton

表 6 果可山岩体寄主石英闪长岩和镁铁质微粒包体全岩Sr-Nd同位素分析结果 Table 6 Whole-rock Sr-Nd isotopic compositions of the host quartz-diorites and MMEs from the Guokeshan pluton
5.1 主量和微量元素特征

寄主岩含有高的SiO2(64.00%~66.48%)和低的全碱含量(Na2O+K2O=4.68%~5.26%),落入石英闪长岩范围内(图 10a),属于中钾钙碱性岩石(图 11e)。它们具有中等的Al2O3含量(15.88%~16.20%)和A/CNK值(0.95~1.02),表现出准铝质-弱过铝质性质(图 10b)。它们的稀土元素总量偏低(81.9×10-6~91.5×10-6),呈现出轻重稀土分馏显著的右倾配分曲线(LREE/HREE=5.69~9.14)和弱Eu负异常(Eu/Eu*=0.71~0.85)(图 12a)。在微量元素原始地幔标准化图解中(图 12b),寄主岩都富集大离子亲石元素(Cs、Rb、U、K和Pb),强烈亏损Ba、P和高场强元素(Nb、Ta和Ti)。果可山石英闪长岩的主量、微量元素特征可与乌兰地区早-中三叠世花岗岩类相比(图 10-图 12),且与之构成一致的主要氧化物线性变化趋势。

图 10 果可山岩体石英闪长岩和镁铁质微粒包体岩石分类 (a) TAS图解(Middlemost, 1994;碱性/亚碱性分界线据Irvine and Baragar, 1971);(b) A/CNK-A/NK图解(Maniar and Piccoli, 1989).乌兰早-中三叠世岩浆岩地球化学数据陈能松等, 2007a; 程婷婷, 2015; 王苏里和周立发, 2016; 吴才来等, 2016图 11图 14图 15中图例和数据来源同此图 Fig. 10 Chemical classifications of host quartz diorites and mafic microgranular enclaves from the Guokeshan pluton (a) TAS diagram (Middlemost, 1994; alkaline/subalkaline dividing line from Irvine and Baragar, 1971); (b) A/CNK vs. A/NK diagram (Maniar and Piccoli, 1989). Data of the Early-Middle Triassic igneous rocks from the Wulan region are from Chen et al., 2007a; Cheng, 2015; Wang and Zhou, 2016; Wu et al., 2016; Symbols and data sources in Fig. 11, Fig. 14, and Fig. 15 are the same as this figure

图 11 果可山石英闪长岩及所含镁铁质暗色包体代表性二元图解(d, 据Liu et al., 2010; e, 据Peccerillo and Taylor, 1976; i, 据Stern and Kilian, 1996; Rapp et al., 1999修改) Fig. 11 Representative binary variation plots for the quartz diorites and enclosed MMEs in Guokeshan pluton (d, after Liu et al., 2010; e, after Peccerillo and Taylor, 1976; i, modified after Stern and Kilian, 1996; Rapp et al., 1999)

图 12 果可山镁铁质微粒包体球粒陨石标准化稀土元素配分图(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough, 1989) Fig. 12 Chondrite-normalized rare earth element distribution patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spidergrams (b, normalization values after Sun and McDonough, 1989) for mafic microgranular encalves from Guokeshan pluton

图 14 果可山岩体寄主岩与包体元素比值协变图解(a, 据Tsuchiya et al., 2005; b, 据Zorpi et al., 1989) Fig. 14 Element correlation diagrams of mafic mircogranular enclaves and host rocks from the Guokeshan pluton (a, after Tsuchiya et al., 2005; b, after Zorpi et al., 1989)

图 15 乌兰地区印支早期花岗岩类源岩(a, 据Patiño Douce, 1999)和形成构造环境(b, 据Pearce et al., 1984)判别图解 Fig. 15 Source rocks (a, after Patiño Douce, 1999) and tectonic environment (b, after Pearce et al., 1984) discrimination diagrams for the Early Indosinian granitoids in Wulan region

果可山岩体内镁铁质微粒包体的元素特征明显不同于石英闪长岩(图 10-图 12),具体表现为:(1)相对贫硅(56.68%~59.28%)、碱(3.78%~4.48%)和铝(13.34%~15.20%),落入闪长岩范围内(图 10a);(2)具有更高的Fe2O3T(6.76%~7.84%)、MgO(4.89%~6.45%)、CaO(7.62%~7.70%)、Cr(100×10-6~300×10-6)、Ni(14.9×10-6~44.5×10-6)含量和Mg#值(58.5~62.2);(3)轻重稀土分馏程度更低(LREE/HREE=2.6~3.4)、中-重稀土元素含量更高,Eu负异常更加明显(δEu=0.66~0.74)。在稀土元素球粒元素标准化图解中(图 12a),包体给出相对平坦、轻稀土元素略微上隆的稀土配分型式,异于同时代辉长岩、闪长岩和花岗岩。它们显示出与寄主岩相似的微量元素分配型式,富集Cs、Rb、Pb、K等大离子亲石元素,亏损Ba、P及Nb、Ta、Ti等高场强元素,但是包体Nb、Ta、Zr和Hf等高场强元素含量相对更低(图 12b)。包体与寄主岩间存在明显的成分间隔,除在FeOT、MgO和CaO上构成负相关趋势外,其它元素普遍不存在线性相关(图 11)。包体Nb/Ta比值较低(9.50~10.3),且随SiO2增加而降低;同时Sr、Y与SiO2之间分别正相关和负相关,可能存在角闪石分异,因为在角闪石中Y是相容元素,Sr、Nb和Ta是不相容元素,且Nb分配系数高于Ta(Sisson, 1994; Foley et al., 2002)。

5.2 Sr-Nd同位素

果可山石英闪长岩具有均一的Sr-Nd同位素组成((87Sr/86Sr)i=0.7063~0.7064;εNd(t)=-4.24~-3.26;图 13)。相比之下,包体Sr同位素初始值变化更加明显(0.7037~0.7077),εNd(t)值略高(-3.02~-2.85;表 6)。

图 13 果可山岩体寄主岩和包体Sr-Nd同位素组成 乌兰地区海西晚期-印支早期岩浆岩数据来源:早泥盆世A型花岗岩(吴才来等, 2016);中二叠世辉长岩(Zeng et al., 2018);晚二叠世-中三叠世岩浆岩(陈能松等, 2007a; 吴才来等, 2016) Fig. 13 Sr-Nd initial isotopic compositions for the quartz-diorites and enclaves from the Guokeshan pluton Data sources for Late Hercynian to Early Indosinian igneous rocks exposed in Wulan region: Early Devonian A-type granite (Wu et al., 2016); Middle Permian gabbros (Zeng et al., 2018); Late Permian to Middle Traissic magmatic rocks (Chen et al., 2007a; Wu et al., 2016)
6 讨论 6.1 果可山镁铁质微粒包体的成因

花岗岩类中镁铁质包体的成因长期存在争议,现已提出的成因模式主要有以下四种:(1)残留体,代表了花岗岩源区残留物质或者难熔部分(Chappell et al., 1987; White and Chappell, 1977; Chappell and Wyborn, 2012);(2)同源包体,是与花岗岩同源的母岩浆通过晶体-液相分离形成的镁铁质矿物堆积(Dodge and Kistler, 1990; Shellnutt et al., 2010; Shao et al., 2017);(3)围岩捕掳体(Wei et al., 2006);(4)岩浆混合,不同来源的岩浆不充分混合的产物(Vernon, 1984, 2014; Barbarin, 2005; Ma et al., 2017)。

残留体形成于熔体抽离之后,常保留变质或沉积残余结构,富含过铝质矿物。残留体的标志性特征是,它们和寄主岩的主量、微量元素含量构成线性变化(Chappell and White, 1992; Dorais and Spencer, 2014)。此外,残留体内还可以观察到少量硅酸盐玻璃,这在S型花岗岩所含片理化包体中尤为常见(Chappell and Wyborn, 2012)。然而,上述特征都未见于果可山镁铁质微粒包体中。同源堆晶体模式既难以解释本文包体在寄主岩中随机分布,并常与之呈截然接触的野外特征(图 3; Didier and Barbarin, 1991),亦不能使包体获得异于寄主岩的Sr-Nd同位素组成。另外,它们的细粒结构、低镁铁质矿物(如角闪石和黑云母)含量(< 50%)和斜长石反环带、熔蚀结构(图 4c, d图 5c, d),也不支持同源包体成因(Donaire et al., 2005)。围岩捕掳体通常以典型的变质结构和更老的结晶年龄而有别于寄主岩,这与果可山暗色包体的岩浆结构及与石英闪长岩同期形成的特征不吻合。故而,本文基于以下大量证据,采用岩浆混合模式来解释本文包体的成因。

果可山微粒包体在石英闪长岩中不均匀分布,主要呈椭圆状、透镜状或棱角状(图 3a-c),说明它们主要是在塑性状态下进入寄主岩浆的(Karsli et al., 2007)。部分包体具有弥散性边界(图 3a, d),说明其与寄主岩浆之间热差异较低(Hibbard, 1995),并在完全结晶前与之发生了一定程度的混合(Kusiak et al., 2009)。然而,多数包体与寄主岩间呈截然的浑圆状或不规则状接触(图 3),常发育冷凝边,意味着包体岩浆和寄主岩浆温度差异显著(Sarjouhian et al., 2012; Bora et al., 2013),这会抑制不同成分熔体间的对流,阻碍成分均一化作用的发生。这两种接触关系的共存,说明同一岩浆体系内不同批次镁铁质岩浆存在明显的粘度变化(Nittmann et al., 1985; Perugini et al., 2004),同时,镁铁质岩浆淬冷化和对寄主岩浆的加热,均对动态岩浆房内镁铁质微粒包体的形成起重要作用(Donaire et al., 2005; Kaygusuz and Aydınçakır, 2009)。包体斜长石中大量刀刃状或针状角闪石(图 4b, d)和针状磷灰石的存在(图 4e),反映镁铁质岩浆是尚处于部分熔融状态时注入寄主酸性岩浆的(Yang et al., 2007; Xia et al., 2014),富水混合岩浆在淬冷环境下出现晶体快速生长(Wyllie et al., 1962; Barbarin and Didier, 1992)。

斜长石中复杂成分环带和熔蚀现象,也是支持包体岩浆混合成因的有力证据(图 5c, d)。某些斜长石发育反环带结构,即筛状熔蚀的中长石核部,被An陡增且发育正环带的边部包裹(图 5c),反映开放体系下的结晶作用(Pearce and Kolisnik, 1990; Słaby and Götze, 2004)。核部斜长石可能是镁铁质岩浆注入更冷的花岗岩浆时,通过物质交换获得的,并受加热作用的影响而发生熔蚀(Hibbard, 1981; Barbarin, 2005)。随后,相对基性的混合岩浆与被熔蚀的斜长石达到新的热平衡,围绕酸性斜长石晶出更富钙的斜长石,构成反环带;随着混合岩浆逐步冷却,斜长石在平衡状态下继续生长形成干净的正环带边部(Wilcox, 1999; Browne et al., 2006)。少量斜长石是由高An核部和An骤然降低的边部共同构成的(图 5d),可能是记录了共存镁铁质和长英质岩浆间的混合(Chen et al., 2017)。斜长石核部虽发育筛状结构,但成分变化极小,表明内部熔蚀可能是岩浆上升过程中快速降压作用造成的(Nelson and Montana, 1992; Kocak et al., 2011),而不是外来高温岩浆进入的结果。另外,包体内还可见角闪石包含黑云母的不平衡共生现象(图 3f),这不遵循鲍文反应序列(Bowen, 1928),可能与岩浆混合作用有关(陆天宇等, 2016)。此外,包体和寄主岩的主要氧化物含量也支持岩浆混合成因。两者在MgO-FeOT图解中沿岩浆混合趋势分布(图 14b; Zorpi et al., 1989),并在CaO/Al2O3-K2O/MgO(图 14c)和Al2O3/CaO-Na2O/CaO(图 14d)图解中分别表现出良好的曲线和线性相关,符合岩浆混合趋势(Langmuir et al., 1978)。共存异源岩浆之间的相互作用不仅会引发晶体交换,还必然会伴随元素扩散,导致包体和寄主岩的化学成分和同位素组成发生改变(Lesher, 1990; Chen et al., 2009a)。实验研究表明,基性和酸性岩浆混合过程中,K、P、Ba、Rb、Sr、Zr、Nb和LREE将向基性岩浆快速迁移(Johnston and Wyllie, 1988; Tate et al., 1997)。然而,果可山包体的Ba、Sr、Zr、La、Ce和Pr含量都显著低于石英闪长岩(表 5),指示包体与寄主岩浆间化学均一化程度较低。相较而言,两者的εNd(t)值差异较小,指示两种岩浆经历了较高程度的同位素平衡(Pin et al., 1990),因为混合过程中同位素扩散速率远远高于化学交换(Lesher, 1990)。

果可山闪长质包体具有比寄主岩更低的SiO2(56.68%~59.28%)和更高的MgO(4.89%~6.45%)含量、Mg#(58.5~62.2)值,指示源区包含显著的镁铁质岩浆贡献,可由镁铁质下地壳或地幔岩石的部分熔融提供。尽管变玄武岩在高温条件(>1075℃)下脱水部分熔融可以形成准铝质的低Si熔体(SiO2 < 56%, Rapp and Watson, 1995),但是却不能取得和本文包体相匹配的富Mg特征(图 11d, i),排除了包体源自下地壳的可能。果可山包体的Cr(100×10-6~300×10-6)和Ni(14.9×10-6~44.5×10-6)虽低于原始地幔岩浆(Cr=300×10-6~500×10-6, Ni>300×10-6; Fery, 1978)和乌兰印支早期辉长岩(图 14a),但明显高于石英闪长岩,落在Tsuchiya et al. (2005)提出的幔源岩浆范围内。包体中部分斜长石含有高An核部(图 5d),是高温、原生镁铁质-超镁铁质岩浆的典型特征(Waight and Tørnqvist, 2018),其形成与高H2O含量导致Ca优先置换Na有关(Sisson and Grove, 1993; Panjasawatwong et al., 1995)。结合早期针状角闪石的大量出现和角闪石矿物成分特征(图 4表 2),可以推断包体镁铁质母岩浆具有高的含水量和氧逸度。同时,包体呈现出明显的Nb、Ta、Zr、Hf负异常和富集的Sr-Nd同位素组成(图 12b图 13a),这显然主要继承于富集地幔来源的母岩浆,而无法用亏损地幔来源熔体遭受强烈地壳混染来解释,因为地壳混染无法产生负Zr-Hf异常(Zhao and Zhou, 2009)。鉴于乌兰中二叠世和印支早期辉长岩都具有较富集的Sr-Nd-Hf同位素组成((87Sr/86Sr)i=0.7067~0.7097, εNd(t)=-5.65~-4.20, εHf(t)=-2.2~+5.2; 程婷婷等, 2015; 吴才来等, 2016; Zeng et al., 2018),均源自俯冲流体交代的富集岩石圈地幔。故而,本文推断果可山镁铁质微粒包体是富集地幔来源的镁铁质岩浆与地壳物质部分熔融产生的长英质岩浆混合的结果。

6.2 果可山石英闪长岩的成因

果可山石英闪长岩含有少量角闪石和黑云母,缺乏白云母、电气石和石榴子石等过铝质矿物(图 3a),还具有相对低的A/CNK值(< 1.1;图 10b)、P2O5含量(0.10%~0.11%)和锆石饱和温度(723~748℃;表 5),且P2O5与SiO2间存在清晰的负相关性(图 11h)。上述特征与典型Ⅰ型花岗岩相一致,异于S型和A型花岗岩(Chappell and White, 1992; Chappell, 1999; King et al., 1997)。它们的MgO、FeO和TiO2含量随SiO2增加而降低(图 11a, c, d),暗示成岩过程中发生了镁铁质矿物的分异。石英闪长岩的Al2O3、CaO、Sr含量与SiO2呈明显的负相关(图 11b, g, j),还表现出轻微的Eu和Ba负异常,指示存在长石的结晶分异。

Ⅰ型花岗岩存在两种主要的形成方式(Gao et al., 2016b):中基性岩浆的结晶分异(Castro, 2013);地壳岩石的部分熔融,并伴有或不伴有幔源物质贡献(Roberts and Clemens, 1993; Sisson et al., 2005; Xu et al., 2014)。本文石英闪长岩的MgO(2.06%~2.49%)和Mg#值(48.9~52.4)都高于纯玄武质岩石在1~4GPa条件下产生的熔体(图 11d, j),还发育大量暗色包体(图 3),暗示岩浆房中存在富集地幔来源熔体的加入。然而,某些斜长石发育稀疏的韵律环带和层间晶面熔蚀(图 5b),反映了晶体生长中物理化学条件曾发生多次改变,可能是岩浆混合过程中基性岩浆反复注入寄主酸性岩浆,导致斜长石经历高频率、反复的生长与溶解(Karsli et al., 2004; Pietranik et al., 2006),这排除了寄主岩是由中基性岩浆分异而成的可能。另外,它们的高SiO2(64.00%~66.48%)和低Cr(15.9×10-6~40.0×10-6)、Ni(7.50×10-6~8.00×10-6)含量(表 3),表明母岩浆主要来自地壳源区。同时,果可山石英闪长岩与同期花岗岩在Sr-Nd同位素组成上构成明显负相关(图 13a),两者的(87Sr/86Sr)i(0.7063~0.7013)和εNd(t)值(-7.71~-3.26)与SiO2之间分别呈正和负相关(图 13b, c)。上述事实共同表明,壳幔岩浆混合在果可山石英闪长岩的形成中起着重要作用,不仅为之提供了直接的幔源物质贡献,可能还为地壳熔融的发生提供了足够的水和热量。

晚太古代-新元古代岩浆和碎屑锆石Hf同位素研究,指示柴北缘存在三个主要地壳生长期:中太古代-新太古代晚期(2.9~2.5Ga)、古元古代晚期(1.7Ga)和中元古代晚期-新元古代早期(1.23~0.85Ga)(陈能松等, 2007b; Chen et al., 2009b; Zhang et al., 2014; Musafa et al., 2016; Liao et al., 2017; Lu et al., 2018)。乌兰印支早期花岗岩的Nd同位素年龄(tDM2)变化于1678~1257Ma(陈能松等, 2007a; 吴才来等, 2016; 本文数据),并随SiO2含量增加而增加,说明它们的地壳源区可能为晚古元古代地壳,其中,本文石英闪长岩可能因古老地壳物质贡献比例更低(图 13b, c),而具有更年轻同位素模式年龄(1330~1257Ma)。此外,在花岗岩源区判别图解中(图 15a),乌兰印支早期花岗岩(包括果可山岩体)都落在角闪岩脱水部分熔融获得的熔体范围内。因此,我们认为果可山石英闪长岩是富集地幔来源的高温基性岩浆底侵并加热古老下地壳,使角闪岩重熔产生长英质熔体,并与之混合形成的。

6.3 动力学背景

目前,柴北缘东段-西秦岭北缘晚二叠世-早中三叠世花岗岩的形成环境尚存在争议,一是形成于碰撞后阶段的俯冲板片断离(Luo et al., 2012; 路英川等, 2017),二是阿尼玛卿-勉略洋向北俯冲(Guo et al., 2012; Yan et al., 2014; Li et al., 2014, 2015)或宗务隆洋向南俯冲(郭安林等, 2009; 彭渊等, 2016)的结果。

西秦岭北缘早-中三叠世隆务河组存在大量印支早期辉绿岩、花岗岩(250~234Ma)的侵入(Li et al., 2014)。Yan et al. (2014)通过系统的沉积相和物源分析,认为隆务河群沉积于安第斯型活动大陆边缘的弧前盆地。另外,柴北缘东段内与造山后伸展相关的A型花岗岩仅局限于晚三叠世(215~214Ma; 强娟, 2008; 陈金, 2011),明显晚于印支早期Ⅰ型花岗岩。这些证据表明青海南山岩浆带中印支早期花岗岩的形成与碰撞后伸展无关。王毅智等(2001)郭安林等(2009)认为乌兰印支早期岩体北侧宗务隆群果可山组中发育的晚石炭世蛇绿岩,代表了宗务隆洋的形成。前人研究是通过全岩Rb-Sr等时线法确定蛇绿岩玄武岩和辉绿玢岩的形成时代(331.31±88Ma, 318±3Ma; 王毅智等, 2001),然而全岩Rb-Sr同位素年龄因易受后期热事件扰动,可信度较低。然而,近年来在果可山组内识别出早古生代岩浆-变质-沉积事件(孙娇鹏等, 2015; 李秀财等, 2015a, b)。彭渊等(2018)报道了天俊南山蛇绿岩内镁铁质火山岩夹层形成时代为453±8Ma,而蛇绿岩的碎屑岩围岩内最年轻碎屑锆石峰值为400~500Ma,沉积于晚奥陶世-早泥盆世早期,这些都表明原天峻南山蛇绿岩和果可山群可能形成于早古生代。因此,晚石炭世-早中三叠世宗务隆洋是否存在尚存疑问。更重要的是,西秦岭三叠系沉积具有由早-中三叠世浊流沉积向中-晚三叠世浅海-陆相沉积演化特征,并具有自北向南水体逐渐加深的特征(闫臻等, 2012; Yan et al., 2014),且花岗岩在空间上具有自北向南逐渐变年轻的特征(付长垒等, 2016)。结合柴北缘东段早-中三叠世基性岩和花岗岩普遍表现出弧岩浆岩的地球化学特征(图 12),其中花岗岩在构造判别图解中落入岛弧花岗岩范围内(图 15b)。以上研究显示,青海南山印支早期岩浆带应形成于古特提斯洋(阿尼玛卿洋)向北俯冲的大陆边缘弧环境。遭受俯冲流体交代的地幔部分熔融产生的富水、高温镁铁质岩浆底侵并加热古老下地壳,使其重熔产生长英质熔体,并与之不同比例混合形成了柴北缘东段果可山石英闪长岩及包体。

7 结论

(1) 柴北缘东段果可山岩体内镁铁质微粒包体和寄主石英闪长岩同期形成于中三叠世。

(2) 果可山岩体中包体和寄主石英闪长岩是由曾遭受俯冲交代的富集地幔来源镁铁质熔体与下地壳角闪岩脱水熔融形成的长英质熔体不同比例混合而成的。

(3) 果可山岩体形成于古特提斯洋向北俯冲的大陆边缘弧环境下。古特提斯洋向北俯冲诱使含水富集地幔部分熔融产生镁铁质岩浆,底侵并加热古老下地壳,致使其发生脱水熔融,随后发生岩浆混合形成果可山岩体。

致谢      中国科学技术大学陈福坤教授和肖平老师在全岩Sr-Nd同位素、合肥工业大学资源与环境工程学院李全忠副教授和王娟博士分别在LA-ICP-MS锆石U-Pb定年和EMPA矿物成分测试工作中给予了帮助,在此表示感谢。

祝贺李继亮研究员八十寿诞,感谢李老师在青海野外工作中给予的悉心指导。

参考文献
Anderson JL and Smith DR. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5): 549-559.
Arslan and Aslan. 2006. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(2): 177-193. DOI:10.1016/j.jseaes.2005.03.002
Bachmann O and Dungan MA. 2002. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. American Mineralogist, 87(8-9): 1062-1076. DOI:10.2138/am-2002-8-903
Barbarin B and Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between co-existing felsic and mafic magmas. Transactions of the Royal Society of Edinburgh Earth Sciences, 83(1-2): 145-153. DOI:10.1017/S0263593300007835
Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin, and relations with the hosts. Lithos, 80(1-4): 155-177. DOI:10.1016/j.lithos.2004.05.010
Barth AP and Wooden JL. 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chemical Geology, 277(1-2): 149-159. DOI:10.1016/j.chemgeo.2010.07.017
Blundy JD and Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208-224. DOI:10.1007/BF00306444
Bolhar R, Ring U, Kemp AIS, Whitehouse MJ, Weaver SD, Woodhead JD, Uysal IT and Turnbull R. 2012. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece:Part 2 Geochemistry. Contributions to Mineralogy and Petrology, 164(6): 915-933. DOI:10.1007/s00410-012-0759-z
Bora S, Kumar S, Yi K, Kim N and Lee TH. 2013. Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. Journal of Asian Earth Sciences, 70-71: 99-114. DOI:10.1016/j.jseaes.2013.03.006
Bowen NL. 1928. The Evolution of Igneous Rocks. New York: Dover Publications
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Browne BL, Eichelberger JC, Patino LC, Vogel TA, Uto K and Hoshizumi H. 2006. Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. Journal of Volcanology and Geothermal Research, 154(1-2): 103-116. DOI:10.1016/j.jvolgeores.2005.09.022
Castro A. 2001. Plagioclase morphologies in assimilation experiments:Implications for disequilibrium melting in the generation of granodiorite rocks. Mineralogy and Petrology, 71(1-2): 31-49. DOI:10.1007/s007100170044
Castro A. 2013. Tonalite-granodiorite suites as cotectic systems:A review of experimental studies with applications to granitoid petrogenesis. Earth-Science Reviews, 124: 68-95. DOI:10.1016/j.earscirev.2013.05.006
Chappell BW, White AJR and Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28(6): 1111-1138. DOI:10.1093/petrology/28.6.1111
Chappell BW and Whit AJR. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edingburgh:Earth Sciences, 83(1-2): 1-26. DOI:10.1017/S0263593300007720
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551. DOI:10.1016/S0024-4937(98)00086-3
Chappell BW, Bryant C and Wyborn D. 2012. Peraluminous Ⅰ-type granites. Lithos, 153: 142-153. DOI:10.1016/j.lithos.2012.07.008
Chen B, He JB and Ma XH. 2009a. Petrogenesis of mafic enclaves from the north Taihang Yanshanian intermediate to felsic plutons:Evidence from petrological, geochemical, and zircon Hf-O isotopic data. Science in China (Series D), 52(9): 1331-1344. DOI:10.1007/s11430-009-0130-z
Chen CJ, Chen B and Wang ZQ. 2016. Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization, Tongling, East China:Evidence from petrological and in situ Sr-Hf isotopic data. Lithos, 248-251: 80-93. DOI:10.1016/j.lithos.2016.01.009
Chen J. 2011. The petrogeochemistry of intermediate-acidic intrusive rocks in Shengge area and its tectonic significance. Master Degree Thesis. Xi'an: Chang'an University (in Chinese with English summary)
Chen NS, Wang XY, Zhang HF, Sun M, Li XY and Chen Q. 2007a. Geochemistry and Nd-Sr-Pb isotopic compositions of granitoids from Qaidam and Oulongbuluke micro-blocks, NW China:Constraints on basement nature and tectonic affinity. Earth Sciences (Journal of China University of Geosciences), 32(1): 7-21.
Chen NS, Xia XP, Li XY, Sun M, Xu P, Liu XM and Wang QY. 2007b. Timing of magmatism of the granite plutons along North Qaidam margin and implications for Precambrian crustal accretions:Zircon U-Pb dating and Hf isotope evidences. Acta Petrologica Sinica, 23(2): 501-512.
Chen NS, Gong SL, Sun M, Li XY, Xia XP, Wang QY, Wu FY and Xu P. 2009b. Precambrian evolution of the Quanji Block, northeastern margin of Tibet:Insights from zircon U-Pb and Lu-Hf isotope compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376. DOI:10.1016/j.jseaes.2008.10.004
Chen Q, Sun M, Zhao GC, Yang FL, Long XP, Li JH, Wang J and Yu Y. 2017. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane:An igneous response to the closure of the Paleo-Tethys ocean. Lithos, 290-291: 1-17. DOI:10.1016/j.lithos.2017.07.019
Chen XH, Gehrels G, Yin A, Li L and Jiang RB. 2012. Paleozoic and Mesozoic basement magmatisms of eastern Qaidam Basin, northern Qinghai-Tibetan Plateau:LA-ICP-MS zircon U-Pb geochronology and its geological significance. Acta Geologica Sinica, 86(2): 350-369. DOI:10.1111/j.1755-6724.2012.00665.x
Cheng F, Jolivet M, Hallot E, Zhang DW, Zhang CH and Guo ZJ. 2017. Tectono-magmatic rejuvenantion of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248-263. DOI:10.1016/j.gr.2017.06.004
Cheng TT. 2015. Zircon U-Pb dating and tectonic setting of intrusive rocks in Wulan along the North magion of Qaidam terrane. Master Degree Thesis. Hefei: Hefei University of Technology (in Chinese with English summary)
Cheng TT, Niu ML, Wu Q, Xia WJ and Li XC. 2015. Petrogenesis of the Chahannuo gabbro on the northern margin of Qaidam Basin:Constraint from geochemistry, zircon U-Pb dating and Lu-Hf isotopes. Chinese Journal of Geology, 50(3): 741-755.
Cherniak DJ and Watson EB. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5-24. DOI:10.1016/S0009-2541(00)00233-3
Claiborne LL, Miller CF and Wooden JL. 2010. Trace element composition of igneous zircon:A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4): 511-531. DOI:10.1007/s00410-010-0491-5
Collins WJ. 1996. Lachlan Fold Belts granitoids:products of three-component mixing. Transactions of the Royal Society of Edinburgh Earth Sciences, 87(1-2): 171-181. DOI:10.1017/S0263593300006581
Didier J and Barbarin B. 1991. The different types of enclaves in granites-nomenclature. In: Didier J and Barbarin B (eds. ). Enclaves and Granite Petrology. Amsterdam: Elsevier, 19-24
Dodge FCW and Kistler RW. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research-Solid Earth and Planets, 95(B11): 17841-17848. DOI:10.1029/JB095iB11p17841
Donaire T, Pascual E, Pin C and Duthou JL. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. DOI:10.1007/s00410-005-0652-0
Dong ZC, Yang C, Gu PY, Wang H, Zha XF, Chen RM and Zhang HD. 2015. Geochronology and geochemistry of Yangchangbeishan biotite adamellite of Lenghu area in Qinghai and their geological sigificance. Geotectonica et Metallogenia, 39(1): 167-178.
Dorais MJ and Spencer CJ. 2014. Revisiting the importance of residual source material (restite) in granite petrogenesis:The Cardigan Pluton, New Hampshire. Lithos, 202-203: 237-249. DOI:10.1016/j.lithos.2014.05.007
Droop GTB. 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361): 431-435. DOI:10.1180/minmag.1987.051.361.10
Erdmann S, Martel C, Pichavant M and Kushnir A. 2014. Amphibole as an archivist of magmatic crystallization conditions:Problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167: 1016. DOI:10.1007/s00410-014-1016-4
Ewing RC, Meldrum A, Wang LM, Weber WJ and Corrales LR. 2003. Radiation effects in zircon. In: Hanchar JM and Hoskin PWO (eds. ). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America, 387-425
Fiannacca P, Williams IS, Cirrincione R and Pezzino A. 2008. Crustal contributions to Late Hercynian peraluminous magmatism in the Southern Calabria-Peloritani Orogen, Southern Italy:Petrogenetic inferences and the Gondwana connection. Journal of Petrology, 49(8): 1497-1514. DOI:10.1093/petrology/egn035
Foley SF, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840. DOI:10.1038/nature00799
Fu CL, Yan Z, Guo XQ, Niu ML, Chen L and Xia WJ. 2016. Magma source and tectonic setting of the granitoids associated with Saishitang Cu deposit in the West Qinling terrane. Acta Pertologica Sinica, 32(7): 1997-2014.
Fu LB, Wei JH, Tan J, Santosh M, Zhang DH, Chen JJ, Li YJ, Zhao SQ and Peng LN. 2016. Magma mixing in the Kalaqin core complex, northern North China Craton:Linking deep lithospheric destruction and shallow extension. Lithos, 206: 390-412.
Gao P, Zheng YF and Zhao ZF. 2016a. Magma mixing in granite petrogenesis:Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences, 123: 142-161. DOI:10.1016/j.jseaes.2016.04.003
Gao P, Zheng YF and Zhao ZF. 2016b. Experimental melts from crustal rocks:A lithochemical constraint on granite petrogenesis. Lithos, 266-267: 133-157. DOI:10.1016/j.lithos.2016.10.005
Goldstein SL, Onions RK and Hamilton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2): 221-236. DOI:10.1016/0012-821X(84)90007-4
Gong SL, Chen NS, Wang QY, Kusky TM, Wang L, Zhang L, Ba J and Liao FX. 2012. Early Paleoproterozoic magmatism in the Quanji massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance:LA-ICPMS U-Pb zircon geochronology and geochemistry. Gondwana Research, 21(1): 152-166. DOI:10.1016/j.gr.2011.07.011
Guo AL, Zhang GW, Qiang J, Sun YG, Li G and Yao AP. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1): 1-12.
Guo XQ, Yan Z, Wang ZQ, Wang T, Hou KJ, Fu CL and Li JL. 2012. Middle Triassic arc magmatism along the northeastern margin of the Tibet:U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China. Journal of the Geological Society, 169(3): 327-336. DOI:10.1144/0016-76492011-083
Hammarstrom JM and Zen E. 1986. Aluminum in hornblende:An empirical igneous geobarometer. American Mineralogist, 71(11-12): 1297-1313.
Hao GJ, Lu SN, Wang HC, Xin HT and Li HK. 2004. The pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block. Earth Science Frontiers, 11(3): 115-122.
Hibbard MJ. 1981. The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2): 158-170. DOI:10.1007/BF00371956
Hibbard MJ. 1995. Petrography to Petrogenesis. New Jersey: Prentice Hall, 1-575
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. DOI:10.2113/0530027
Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. DOI:10.1016/j.gca.2004.07.006
Huppert HE and Sparks RSJ. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599-624. DOI:10.1093/petrology/29.3.599
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. DOI:10.1139/e71-055
Jahn BM and Condie KC. 1995. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. DOI:10.1016/0016-7037(95)00103-7
Johnston AD and Wyllie PJ. 1988. Interaction of granitic and basic magmas:experimental observations on contamination processes at 10kbar with H2O. Contributions to Mineralogy and Petrology, 98(3): 352-362. DOI:10.1007/BF00375185
Johnson MC and Rutherford. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with applicable to Long Valley Caldera (California) volcanic rocks. Geology, 17(9): 837-841. DOI:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Kang Z, Jiang CY, Ling JL, Zhao YF, Song YF and Zhou W. 2015. Petrogenesis and ore genesis of the ilmenite-rich Kendelong mafic-ultramafic intrusion in Wulan, Qinghai. Acta Petrologica Sinica, 31(8): 2193-2210.
Karsli O, Aydin F and Sadiklar MB. 2004. Magma interaction recorded in plagioclase zoning in granitoid systems, Zigana granitoid, Eastern Pontides, Turkey. Turkish Journal of Earth Sciences, 13(3): 287-305.
Karsli O, Chen B, Aydin F and Şengör C. 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek plutons, Eastern Turkey:Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98(1-4): 67-96. DOI:10.1016/j.lithos.2007.03.005
Kaygusuz A and Aydınçakır E. 2009. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration. Chemie der Erde-Geochemistry, 69(3): 247-277. DOI:10.1016/j.chemer.2008.08.002
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Kirkland CL, Smithies RH, Taylor RJM, Evans T and McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397-414. DOI:10.1016/j.lithos.2014.11.021
Kocak K, Zedef V and Kansun G. 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey:Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1-4): 149-167. DOI:10.1007/s00710-011-0165-7
Kusiak MA, Dunkley DJ, Słaby E, Martin H and Budzyń. 2009. Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology, 37(12): 1063-1066. DOI:10.1130/G30048A.1
Langmuir CH, Vocke Jr RD, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392. DOI:10.1016/0012-821X(78)90053-5
Leake BE, Woolley AR, ARPS CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo YZ. 1997. Nomenclature of amphiboles:Report of the Subcommitte on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246.
Lesher CE. 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344(6263): 235-237. DOI:10.1038/344235a0
Li XC, Niu ML, Yan Z, Wu Q, Xia WJ, Han Y and Da LC. 2015a. SHRIMP zircon dating for migmatitic biotite plagioclase gneiss from Erlangdong Dakendaban Group in Wulan at the northern margin of Qaidam Basin and its geological significance. Chinese Journal of Geology, 50(3): 728-740.
Li XC, Niu ML, Yan Z, Da LC, Han Y and Wang YS. 2015b. LP/HT metamorphic rocks in Wulan County, Qinghai Province:An Early Paleozoic paired metamorphic belt on the northern Qaidam Basin. Science Bulletin, 60: 1-13. DOI:10.1007/s11434-014-0714-7
Li XW, Mo XX, Bader T, Schelterns M, Yu XH, Dong GC and Huang XF. 2014. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha complex, central China:Petrogenesis and geodynamic implications. Journal of Asian Earth Sciences, 95: 164-181. DOI:10.1016/j.jseaes.2014.07.017
Li XW, Mo XX, Huang XF, Dong GC, Yu XH, Luo MF and Liu YB. 2015. U-Pb zircon geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Early Indosinian Tongren pluton in West Qinling:Petrogenesis and geodynamic implications. Journal of Asian Earth Sciences, 97: 38-50. DOI:10.1016/j.jseaes.2014.10.017
Liao FX, Wang QY, Chen NS, Santosh M, Xu YX and Mustafa HA. 2018. Geochemistry and geochronology of the~0.82Ga high-Mg gabbroic dykes from the Quanji massif, Southeast Tarim Block, NW China:Implications for the Rodinia supercontinent assembly. Journal of Asian Earth Sciences, 157: 3-21. DOI:10.1016/j.jseaes.2017.06.021
Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178. DOI:10.1016/j.gca.2010.09.003
Lu SN, Wang HC, Li HK, Yuan GB, Xin HT and Zheng JK. 2002. Redefiniation of the "Dakendaban Group" on the northern margin of the Qaidam Basin. Geological Bulletin of China, 21(1): 19-23.
Lu SN, Li HK, Zhang CL and Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107. DOI:10.1016/j.precamres.2007.04.025
Lu TY, He ZY, Zhang ZM, Shui XF and Yan LL. 2016. Magma mixing of the Nyemo post-collisional granite from the Gangdese magmatic belt, Tibet:Evidence of microstructures. Acta Petrologica Sinica, 32(12): 3613-3623.
Lu YC, Liu JJ, Zhang D, Wang DZ, Sun H, Wang B, Zhang WH and Kang JK. 2017. Zircon U-Pb LA-ICP-MS dating, petrogenesis and tectonic implication of the granodiorite at the Shuangpengxi skarn type-gold-copper deposit, West Qinling. Acta Petrologica Sinica, 33(2): 545-564.
Lu ZL, Zhang JX and Mattinson C. 2018. Tectonic erosion related to continental subduction:An example from the eastern North Qaidam Mountains, NW China. Journal of Metamorphic Geology: 1-14.
Luo BJ, Zhang HF and Lü XB. 2012. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China:Petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology, 164(4): 551-569. DOI:10.1007/s00410-012-0748-2
Luo BJ, Zhang HF, Xu WC, Guo L, Pan FB and Yang H. 2015. The Middle Triassic Meiwu batholith, West Qinling, Central China:Implications for the evolution of compositional diversity in a composite batholith. Journal of Petrology, 56(6): 1139-1172. DOI:10.1093/petrology/egv032
Ma XX, Meert JG, Xu ZQ and Zhao ZB. 2017. Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet. Lithos, 278-281: 126-139. DOI:10.1016/j.lithos.2017.01.020
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Marsellos AE and Garver JI. 2010. Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. American Mineralogist, 95(8-9): 1192-1201. DOI:10.2138/am.2010.3264
Mezger K and Krogstad EJ. 1997. Interpretation of discordant U-Pb zircon ages:An evaluation. Journal of Metamorphic geology, 15(1): 127-140. DOI:10.1111/j.1525-1314.1997.00008.x
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Review, 37(3-4): 215-224. DOI:10.1016/0012-8252(94)90029-9
Mustafa HA, Wang QY, Chen NS, Liao FX, Sun M and Salih MA. 2016. Geochemistry of metamafic dykes from the Quanji massif:Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China. Journal of Earth Science, 27(4): 529-544. DOI:10.1007/s12583-015-0659-z
Nelson ST and Montana A. 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist, 77(11-12): 1242-1249.
Nittmann J, Daccord G and Stanley HE. 1985. Fractal growth of viscous fingers:quantitative characterization of a fluid instability phenomenon. Nature, 314(6007): 141-144. DOI:10.1038/314141a0
Panjasawatwong Y, Danyushevsky LV, Crawford AJ and Harris KL. 1995. An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10kbar:Implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology, 118: 420-432. DOI:10.1007/s004100050024
Patiño Douce. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?. Geological Society London Special Publications, 168(1): 55-75. DOI:10.1144/GSL.SP.1999.168.01.05
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Pearce TH and Kolisnik AM. 1990. Observations of plagioclase zoning using interference imaging. Earth-Science Reviews, 29(1): 398-419.
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Peng Y, Ma YS, Liu CL, Li ZX, Sun JP and Shao PC. 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam. Earth Science Frontiers, 23(2): 206-221.
Peng Y, Zhang YS, Sun JP, Xing EY and Yu HT. 2018. Provenance and tectonic setting of the Zhongwunongshan Group from the Zhongwunongshan structural belt and its adjacent areas in North Qaidam, China:Evidence from geochemistry and detrital zircon geochronology. Geotectonica et Metallogenia, 42(1): 126-149.
Perugini D, Ventura G, Petrelli MP and Po li. 2004. Kinematic significance of morphological structures generated by mixing of magmas:A case study from Salina Island (southern Italy). Earth and Planetary Science Letters, 222(3-4): 1051-1066. DOI:10.1016/j.epsl.2004.03.038
Peucat JJ, Vidal P, Bernard-Griffiths J and Condie KC. 1988. Sr, Nd, and Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India:Syn-accretion vs. post-accretion granulites. Journal of Geology, 97(5): 537-549.
Pietranik A, Koepke J and Puziewicz J. 2006. Crystallization and resorption in plutonic plagioclase:Implications on the evolution of granodiorite magma (Gęsiniec granodiorite, Strzelin Crystalline Massif, SW Poland). Lithos, 86(3-4): 260-280. DOI:10.1016/j.lithos.2005.05.008
Pin C, Binon M and Belin JM. 1990. Origin of microgranular enclaves in granitoids:equivocal Sr-Nd evidence from Hercynian rocks in the Massif Central (France). Journal of Geophysical Research, 95(B11): 17821-17828. DOI:10.1029/JB095iB11p17821
Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4): 841-858. DOI:10.2138/am-2016-5506
Qian B, Zhang ZW, Wang YL, Mi JR, Shui YD and Shao J. 2017. Zircon U-Pb geochronology, geochemistry and metallogensis of the Hudesheng mafic-ultramafic intrusion in the eastern section of northern Qaidam Basin. Geology and Exploration, 53(5): 0838-0854.
Qiang J. 2008. The granitoids Zongwulong tectonic zone on the northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance. Master Degree Thesis. Xi'an: Northwest University (in Chinese with English summary)
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(3): 891-931.
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0
Ridolfi F, Renzulli A and Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45-66. DOI:10.1007/s00410-009-0465-7
Ridolfi F and Renzulli. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas:thermobarometric and chemometric empirical equations valid up to 1, 130℃ and 2.2GPa. Contributions to Mineralogy and Petrology, 163(5): 877-895. DOI:10.1007/s00410-011-0704-6
Roberts MP and Clemens JD. 1993. Origin of high-potassium, calc-alkaline, Ⅰ-type granitoids. Geology, 21(9): 825-828. DOI:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
Sarjoughian F, Kananian A, Haschke M, Ahmadian J, Ling WL and Zong KQ. 2012. Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran. Journal of Asian Earth Sciences, 54-55: 49-63. DOI:10.1016/j.jseaes.2012.03.013
Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310. DOI:10.1007/BF00310745
Shao FL, Niu YL, Liu Y, Chen S, Kong JJ and Duan M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos, 280-283: 33-44.
Shellnutt JG, Jahn BM and Dostal J. 2010. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2): 34-36. DOI:10.1016/j.lithos.2010.07.011
Sisson TW and Grove TL. 1993. Temperatures and H2O contents of low-MgO high-alumina basalts. Contributions to Mineralogy and Petrology, 113(2): 167-184. DOI:10.1007/BF00283226
Sisson TW. 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117(1-4): 331-344. DOI:10.1016/0009-2541(94)90135-X
Sisson TW, Ratajeski K, Hankins WB and Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. DOI:10.1007/s00410-004-0632-9
Słaby E and Götze J. 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modeling:A case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine, 68(4): 561-577. DOI:10.1180/0026461046840205
Song SG, Yang JS, Liou JG, Wu CL, Shi RD and Xu ZQ. 2003. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 70(3-4): 195-211. DOI:10.1016/S0024-4937(03)00099-9
Song SG, Niu YL, Su L, Zhang C and Zhang LF. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129: 59-84. DOI:10.1016/j.earscirev.2013.11.010
Sparks RSJ, Sigurdsson H and Wilson L. 1977. Magma mixing:A mechanism for triggering acid explosive eruptions. Nature, 267(5609): 315-318. DOI:10.1038/267315a0
Sparks RSJ and Marshall LA. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29(1-4): 99-124. DOI:10.1016/0377-0273(86)90041-7
Stern CR and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. DOI:10.1007/s004100050155
Sun JP, Chen SY, Peng Y, Shao PC, Ma S and Liu J. 2015. Detemination of Early Cambrian zircon SHRIMP U-Pb datings in Zongwulong tectonic belt, northern margin of Qaidam Basin, and its geological significance. Geological Review, 61(4): 743-752.
Sun JP, Chen SY, Peng Y, Ma S, Shao PC and Liu J. 2016. Early Neoproterozoic glacier event in Oulongbuluke block:Evidence from CIA index. Geological Review, 62(1): 29-36.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tate MC, Clarke DB and Heaman LM. 1997. Progressive hybridisation between Late Devonian mafic-intermediate and felsic magmas in the Meguma Zone of Nova Scotia, Canada. Contributions to Mineralogy and Petrology, 126(4): 401-415. DOI:10.1007/s004100050259
Tsuchiya N, Suzuki S, Kimura JI and Kagami H. 2005. Evidence for slab melt/mantle reaction:Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79(1-2): 179-206. DOI:10.1016/j.lithos.2004.04.053
Utsunomiya S, Palenik CS, Valley JW, Cavosie AJ, Wilde SA and Ewing RC. 2004. Nanoscale occurrence of Pb in an Archean zircon. Geochimica et Cosmochimica Acta, 68(22): 4679-4686. DOI:10.1016/j.gca.2004.04.018
Vernon RH. 1984. Microgranitoid enclaves in granites:Globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967): 438-439. DOI:10.1038/309438a0
Vernon RH. 2014. Microstructures of microgranitoid enclaves and the origin of S-type granitoids. Australian Journal of Earth Sciences, 61(2): 227-239. DOI:10.1080/08120099.2014.886623
Waight TE and Tørnqvist JB. 2018. Sr isotope zoning in plagioclase from andesites at Cabo De Gata, Spain: Evidence for shallow and deep contamination. Lithos, in Press
Wang QY, Chen NS, Li XY, Hao S and Chen HH. 2008. LA-ICPMS zircon U-Pb geochronological constraints on the tectonothermal evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chinese Science Bulletin, 53(18): 2849-2858.
Wang SL and Zhou LF. 2016. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implication of the bojitein the Zongwulong Mountain. Journal of Northwest University (Natural Science Edition), 46(5): 716-724.
Wang X, Griffin WL, Chen J, Huang PY and Li X. 2011. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks:Improved zircon-melt distribution coefficients. Acta Geologica Sinica, 85(1): 164-174. DOI:10.1111/acgs.2011.85.issue-1
Wang XL, Coble MA, Valley JW, Shu XJ, Kitajima K, Spicuzza MJ and Sun T. 2014. Influence of radiation damage on Late Jurassic zircon from southern China:Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chemical Geology, 389: 122-136. DOI:10.1016/j.chemgeo.2014.09.013
Wang YS, Niu ML, Li XC, Wu Q, Han Y, Zhao QQ and Da LC. 2017. LA-ICP-MS zircon U-Pb dating and pertogenesis of the quartz-diorites from the Guokeshan area in the northern margin of the Qaidam Basin. Acta Geologica Sinica, 91(1): 94-110.
Wang YZ, Bai YS and Lu HL. 2001. Geological characteristics of Tianjunnanshan ophiolite in Qinghai and its forming environment. Qinghai Geology, 29(1): 29-35.
Wark DA and Stimac JA. 1992. Origin of mantle (rapakivi) feldspars:Experimental evidence of a dissolution-and diffusion-controlled mechanism. Contributions to Mineralogy and Petrology, 111(3): 345-361. DOI:10.1007/BF00311196
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844. DOI:10.1126/science.1110873
Wei P, Mo XX, Yu XH, Huang XF, Ding Y and Li XW. 2013. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling. Acta Petrologica Sinica, 29(11): 3981-3992.
Wei QR, Li DW, Zheng JP and Wang JH. 2006. Deep-derived enclaves (belonging to middle-lower crust metamorphic rocks) in the Liuhe-Xiangduo area, eastern Tibet:Evidence from petrogeochemistry. Chinese Journal of Geochemistry, 25(3): 245-254. DOI:10.1007/BF02840419
White AJR and Chappell BW. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2): 7-22. DOI:10.1016/0040-1951(77)90003-8
Whitehouse MJ and Kamber BS. 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth and Planetary Science Letters, 204(3-4): 333-346. DOI:10.1016/S0012-821X(02)01000-2
Wilcox RE. 1999. The idea of magma mixing:History of a struggle for acceptance. Journal of Geology, 107(4): 421-432. DOI:10.1086/314357
Wu CL, Lei M, Wu D and Li TX. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam. Acta Geoscientica Sinica, 37(4): 493-516.
Wyllie PJ, Cox KG and Biggar GM. 1962. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 3(2): 238-243. DOI:10.1093/petrology/3.2.238
Xia R, Wang CM, Deng J, Carranza EJM, Li WL and Qing M. 2014. Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton. Journal of Asian Earth Sciences, 93: 193-210. DOI:10.1016/j.jseaes.2014.07.013
Xie L, Wang DZ, Wang RC, Qiu JS and Chen XM. 2004. Complex zoning texture in plagioclase from the quartz diorite enclave in the Putuo granitic complex, Zhejiang Province:record of magma mixing. Acta Petrologica Sinica, 20(6): 1397-1408.
Xu HJ, Ma CQ, Zhao JH and Zhang JF. 2014. Magma mixing generated Triassic Ⅰ-type granites in South China. The Journal of Geology, 122(3): 329-351. DOI:10.1086/675667
Xue XY, Chen JL, Gao T, Li P and Li T. 2014. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrance, NW China. Acta Petrologica Sinica, 30(2): 371-389.
Yan Z, Wang ZQ, Li JL, Xu ZQ and Deng JF. 2012. Tectonic settings and accretionary orogenesis of the West Qinling Terrane, northeastern margin of the Tibet Plateau. Acta Pertologica Sinica, 28(6): 1808-1828.
Yan Z, Guo XQ, Fu CL, Aitchison J, Wang ZQ and Li JL. 2014. Detrital heavy mineral constraints on the Triassic tectonic evolution of the West Qinling Terrane, NW China:Implications for understanding subduction of the Paleotethyan Ocean. The Journal of Geology, 122: 591-608. DOI:10.1086/677264
Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. 2007. Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190.
Zeng L, Zhang KJ, Tang XC, Zhang YX and Li ZW. 2018. Mid-Permian rifting in Central China:Record of geochronology, geochemistry and Sr-Nd-Hf isotopes of bimodal magmatism on NE Qinghai-Tibetan Plateau. Gondwana Research, 57: 77-89. DOI:10.1016/j.gr.2017.12.013
Zhang L, Ba J, Chen NS, Wang QY, Liao FX and Li XY. 2012. U-Pb age spectra and trace elements of detrital zircon from Quanji Group:Implications for thermal events and early evolution in the basement. Earth Science (Journal of China University of Geosciences), 37(Suppl.): 28-42.
Zhang L, Wang QY, Chen NS, Sun M, Santosh M and Ba J. 2014. Geochemistry and detrital zircon U-Pb and Hf isotopes of the paragneiss suite from the Quanji massif, SE Tarim Craton:Implications for Paleoproterozoic tectonics in NW China. Journal of Asian Earth Sciences, 95: 33-50. DOI:10.1016/j.jseaes.2014.05.014
Zhang L, Chen RX, Zheng YF, Hu ZC and Xu LJ. 2017. Whole-rock and zircon geochemical distinction between oceanic-and continental-type eclogites in the North Qaidam orogen, northern Tibet. Gondwana Research, 44: 67-88. DOI:10.1016/j.gr.2016.10.021
Zhang YM, Pei XZ, Li ZC, Li RB, Liu CJ, Pei L, Chen YX, Wang M and Chen GC. 2017a. LA-ICP-MS zircon U-Pb dating, petrogenesis of the Gouhou complex in the Qinghai Nanshan tectonic zone, and its geological implications. Geotectonica et Metallogenia, 41(5): 908-932.
Zhang YM, Pei XZ, Li ZC, Li RB, Liu CJ, Pei L, Chen YX, Chen GC and Wang M. 2017b. LA-ICP-MS zircon U-Pb dating, geochemistry and its geological significance of the Heimahe granitic pluton in the western segment of the Qinghai Nanshan tectonic belt. Geological Review, 63(4): 1079-1101.
Zhang YM, Pei XZ, Li ZC, Li RB, Liu CJ, Pei L, Chen YX, Chen GC, Wang M and Lin GC. 2017c. LA-ICP-MS zircon U-Pb dating and geochemistry of the Dangjiasi granitic complex in the Qinghai Nanshan tectonic zone, and its geological implications. Acta Geologica Sinica, 91(3): 523-541.
Zhao JH and Zhou MF. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107: 152-168. DOI:10.1016/j.lithos.2008.09.017
Zorpi MJ, Coulon C, Orsini JB and Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315-329. DOI:10.1016/0040-1951(89)90147-9
陈金. 2011. 青海省乌兰县生格地区中-酸性侵入岩岩石地球化学特征及其构造意义. 硕士学位论文. 西安: 长安大学 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1948089
陈能松, 王新宇, 张宏飞, 孙敏, 李晓彦, 陈强. 2007a. 柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示. 地球科学-中国地质大学学报, 32(1): 7-21.
陈能松, 夏小平, 李晓彦, 孙敏, 徐平, 柳小明, 王新宇, 王勤燕. 2007b. 柴北缘花岗片麻岩的岩浆作用计时和前寒武纪地壳增长的锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 501-512.
程婷婷. 2015. 柴北缘乌兰地区三叠纪侵入岩锆石U-Pb定年及其形成环境探讨. 硕士学位论文. 合肥: 合肥工业大学 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2913210
程婷婷, 牛漫兰, 吴齐, 夏文静, 李秀财. 2015. 柴北缘察汉诺辉长岩成因:岩石地球化学、锆石U-Pb年代学与Lu-Hf同位素制约. 地质科学, 50(3): 741-755.
董增产, 杨成, 辜平阳, 王红, 查显锋, 陈锐明, 张海迪. 2015. 青海冷湖盐场北山黑云母二长花岗岩年代学、地球化学及其地质意义. 大地构造与成矿, 39(1): 167-178.
付长垒, 闫臻, 郭现轻, 牛漫兰, 陈雷, 夏文静. 2016. 西秦岭与赛仕塘铜矿床有关的花岗质岩浆源区特征及大地构造背景探讨. 岩石学报, 32(7): 1997-2014.
郭安林, 张国伟, 强娟, 孙延贵, 李广, 姚安平. 2009. 青藏高原东北缘印支期宗务隆造山带. 岩石学报, 25(1): 1-12.
郝国杰, 陆松年, 王惠初, 辛后田, 李怀坤. 2004. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化. 地学前缘, 11(3): 115-122.
康珍, 姜常义, 凌锦兰, 赵彦锋, 宋艳芳, 周伟. 2015. 青海省乌兰地区肯德隆富钛铁矿镁铁-超镁铁质岩体的岩石与矿石成因. 岩石学报, 31(8): 2193-2210.
李秀财, 牛漫兰, 闫臻, 吴齐, 夏文静, 韩雨, 笪梁超. 2015a. 柴北缘乌兰县二郎洞达肯大板岩群中混合岩化黑云斜长片麻岩锆石SHRIMP测年及其意义. 地质科学, 50(3): 728-740.
李秀财, 牛漫兰, 闫臻, 笪梁超, 韩雨, 王玉松. 2015b. 青海省乌兰县早古生代低压高温变质岩:柴北缘存在双变质带?. 科学通报, 60: 1-13.
陆松年, 王惠初, 李怀坤, 袁桂邦, 辛后田, 郑健康. 2002. 柴达木盆地北缘"达肯达坂群"的再厘定. 地质通报, 21(1): 19-23.
陆天宇, 贺振宇, 张泽明, 水新芳, 颜丽丽. 2016. 西藏冈底斯尼木后碰撞花岗岩的岩浆混合作用:显微结构证据. 岩石学报, 32(12): 3613-3623.
路英川, 刘家军, 张冬, 王大钊, 孙昊, 王斌, 张文华, 康建坤. 2017. 西秦岭双朋西矽卡岩型金铜矿花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义. 岩石学报, 33(2): 545-564.
彭渊, 马寅生, 刘成林, 李宗星, 孙娇鹏, 邵鹏程. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义. 地学前缘, 23(2): 206-221.
彭渊, 张永生, 孙娇鹏, 邢恩源, 于华泰. 2018. 柴北缘北部中吾农山构造带及邻区中吾农山群物源和构造环境:来自地球化学与锆石U-Pb年代学的证据. 大地构造与成矿, 42(1): 126-149.
钱兵, 张照伟, 王亚磊, 弥佳茹, 水应东, 邵继. 2017. 柴达木北缘东段呼德生镁铁-超镁铁质岩体锆石U-Pb年代学、地球化学及成岩成矿分析. 地质与勘探, 53(5): 838-854.
强娟. 2008. 青藏高原东北缘宗务隆构造带花岗岩及其构造意义. 硕士学位论文. 西安: 西北大学 http://cdmd.cnki.com.cn/Article/CDMD-10697-2008076563.htm
孙娇鹏, 陈世悦, 彭渊, 邵鹏程, 马帅, 刘金. 2015. 柴达木盆地北缘宗务隆构造带早古生代锆石SHRIMP年龄的测点及其地质意义. 地质论评, 61(4): 743-752.
孙娇鹏, 陈世悦, 彭渊, 马帅, 邵鹏程, 刘金. 2016. 欧龙布鲁克地块新元古代早期冰川事件:来自CIA指数的证据. 地质论评, 62(1): 29-36.
王苏里, 周立发. 2016. 宗务隆山角闪辉长岩LA-ICP-MS锆石U-Pb定年、地球化学特征及其地质意义. 西北大学学报(自然科学版), 46(5): 716-724.
王玉松, 牛漫兰, 李秀财, 吴齐, 韩雨, 赵齐齐, 笪梁超. 2017. 柴达木盆地北缘果可山石英闪长岩LA-ICP-MS锆石U-Pb定年及其成因. 地质学报, 91(1): 94-110.
王毅智, 拜永山, 陆海莲. 2001. 青海天峻南山蛇绿岩的地质特征及其形成环境. 青海地质, 29(1): 29-35.
韦萍, 莫宣学, 喻学惠, 黄雄飞, 丁一, 李小伟. 2013. 西秦岭夏河花岗岩的地球化学、年代学及地质意义. 岩石学报, 29(11): 3981-3992.
吴才来, 雷敏, 吴迪, 李天啸. 2016. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因. 地球学报, 37(4): 493-516.
谢磊, 王德滋, 王汝成, 邱检生, 陈小明. 2004. 浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录. 岩石学报, 20(6): 1397-1408.
徐学义, 陈隽璐, 高婷, 李平, 李婷. 2014. 西秦岭北缘花岗质岩浆作用及构造演化. 岩石学报, 30(2): 371-389.
闫臻, 王宗起, 李继亮, 许志琴, 邓晋福. 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828.
张璐, 巴金, 陈能松, 王勤燕, 廖梵汐, 李晓彦. 2012. 全吉群碎屑锆石的U-Pb年龄谱和微量元素:基底热事件信息和早期演化启示. 地球科学-中国地质大学学报, 37(增刊): 28-42.
张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 裴先治, 陈有炘, 裴磊, 王盟, 陈国超. 2017a. 青海南山沟后岩浆杂岩体锆石U-Pb年代学、岩石成因及其地质意义. 大地构造与成矿, 41(5): 908-932.
张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 陈有炘, 陈国超, 王盟. 2017b. 青海南山构造带西段黑马河花岗杂岩体锆石U-Pb年代学、地球化学特征及其地质意义. 地质论评, 63(4): 1079-1101.
张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 裴磊, 陈有炘, 陈国超, 王盟, 林广春. 2017c. 青海南山当家寺花岗岩体锆石U-Pb年代学及其地质意义. 地质学报, 91(3): 523-541.