岩石学报  2018, Vol. 34 Issue (7): 1897-1913   PDF    
准噶尔西北缘吐尔库班套阿拉斯加型镁铁-超镁铁岩体的发现及意义
秦克章1,2,3 , 郭正林1,4,5 , 唐冬梅1,2 , 李金祥1,6 , 郭旭吉4 , 董连慧1,7     
1. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学, 北京 100049;
4. 新疆维吾尔自治区有色地质勘查局706队, 阿勒泰 839000;
5. 新疆鑫汇地质矿业有限责任公司, 乌鲁木齐 830000;
6. 中国科学院青藏高原研究所, 北京 100101;
7. 新疆维吾尔自治区地质矿产勘查局, 乌鲁木齐 830000
摘要:在西准噶尔萨吾尔岛弧带上首次发现了阿拉斯加型(岛弧型)镁铁-超镁铁环状杂岩体,并伴有铜镍矿化,这对认识区域构造格局与区域铜镍找矿具有重要意义。吐尔库班套杂岩体主要岩性为角闪辉长岩、辉长岩和橄榄岩。橄榄岩位于杂岩体的中部,辉长岩主要位于边部,角闪辉长岩位于杂岩体的最外带,表现出环状岩体特征。辉长岩锆石U-Pb谐和年龄为394.6±4.9Ma,形成于早泥盆世。元素地球化学特征表明该镁铁-超镁铁杂岩体来自同一源区,是同一原始岩浆分异演化的产物。高Mg和Cr特征及Sr-Nd-Hf同位素特征暗示源区可能主要显示出略亏损地幔的性质,但由于俯冲富水洋壳物质的加入或者在上升过程中受到地壳物质混染,显示出轻微富集地幔的特征。亏损高场强元素Nb、Ta、Zr、Hf、Ti为岛弧岩浆的特征。该岩体明显不同于新疆东天山黄山、图拉尔根、香山和额尔齐斯东段的喀拉通克等早二叠世造山后伸展背景的Cu-Ni矿床,与美国阿拉斯加东南部Duke Island杂岩体赋存的Cu-Ni矿床相类似。确认其为产于岛弧构造背景的阿拉斯加型岩体。同时确立了在萨乌尔山地区,准噶尔洋壳的俯冲作用在早泥盆世就已存在。在萨乌尔岛弧带泥盆纪阿拉斯加型岩体中具有寻找岩浆硫化物铜-镍-铂矿的地质条件与潜力。
关键词: 吐尔库班套杂岩体     锆石定年     地球化学     阿拉斯加型     西准噶尔萨乌尔岛弧     Cu-Ni-PGE矿化潜力    
Discovery of Alaskan-style Tuerkubantao mafic-ultramafic complex in NW-Junggar, NW China, and its significance
QIN KeZhang1,2,3, GUO ZhengLin1,4,5, TANG DongMei1,2, LI JinXiang1,6, GUO XuJi4, DONG LianHui1,7     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. No. 706 Geological Party, Xinjiang Geoexploration Bureau for Nonferrous Metals, Altay 839000, China;
5. Xinjiang Xinhui Geoexploration and Mining Co. limited, Urumqi 830000, China;
6. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
7. Xinjiang Bureau of Geology and Mineral Resource, Urumqi 830000, China
Abstract: Northwestern margin of Junggar is located at the convergence of southwestern of Altai metallogenic belt and north of West Junggar, and in the binding district between Siberian plate and the Junggar plate, and is an important tectonic-magmatic-metallogenic province in northern Xinjiang. The Devonian Tuerkubantao mafic-ultramafic complex of Alaskan type was discovered in the Sawuer arc belt for the first time, accompanying by copper-nickel mineralization, which has significance on the prospecting of the regional and circum-Junggar arc belt. Tuerkubantao complex has the ring-shape characteristics, peridotite, gabbro, and hornblende gabbro occurs from inner to outer. Gabbro yields a zircon U-Pb concordia age of 394.6±4.9Ma, forming in the Early Devonian. Major and trace element characteristics indicate that the mafic-ultramafic complex was the product of differentiation of the same primary magma from the mantle source. High MgO and Cr abundance, Sr-Nd and Hf isotopic characteristics suggest that the magma source may be slightly depleted mantle, contaminated by the addition of subducted oceanic crust and by a small amount of crustal material in the process of ascend from mantle to upper crust. The rocks are characterized by enrichments in large-ion lithophile elements (LILE:Rb, Ba, Sr), more mobile highly incompatible lithophile elements (HILE) (U, Th) and relatively depletion in high field strength elements (HFSE:Nb, Ta, Zr, Hf, Ti, P) suggesting that the primary magma of Tuerkubantao mafic-ultramafic complex is arc magma in nature. However, it is significantly different from Xiangshan, Huangshan and Tulaergen magmatic Cu-Ni deposit in the eastern Tianshan, and Kalatongke in the eastern section of Irtysh metallogenic belt forming at the Early Permian post-orogenic extension setting, but is similar to Duke Island Complex hosting Cu-Ni mineralization in the southeastern Alaska. Based on these features, we confirm Tuerkubantao complex is the Alaskan-type formed in the arc setting. In addition, the inference supports previous view that the subduction of Junggar oceanic crust has been existed in the Sawuer region in the Early Devonian. This study has great significance for the regional Cu-Ni-PGE prospecting.
Key words: Tuerkubantao complex     Petrofacies     Zircon U-Pb age     Alaskan-style     Sawuer arc, West Junggar     Cu-Ni-PGE mineralization    

准噶尔西北缘位于阿尔泰成矿带西南部和西准噶尔北部衔接部位,是新疆北部重要的成矿带之一,在构造上位于西伯利亚板块与哈萨克斯坦-准噶尔板块的汇聚带,是中亚造山带的重要组成部分。该区在古生代时期经历了复杂的俯冲、增生、碰撞造山等构造演化阶段(秦克章等, 1999, 2017; Xiao et al., 2004, 2009; Yin et al., 2017)。伴随着古生代强烈的构造活动及其演化过程,形成了丰富的矿产资源。针对其构造属性、演化阶段及时限,现在仍有许多不同的认识,但泥盆纪-石炭纪该区处于古亚洲洋俯冲阶段是各方的共识(张海洋等, 2008; Gao et al., 2009; Zhang et al., 2009)。新疆有色地勘局706队在准噶尔西北缘萨吾尔山东缘的科克森套地区发现了吐尔库班套镁铁-超镁铁岩体,作为铜镍矿的评价靶区。岩体属性、时代、形成环境的厘定直接关系到对区域构造环境及成矿潜力的认识,亟待研究查明。王玉往等(2011)获得辉长岩和片麻状花岗岩时代为363~355Ma,提出其为蛇绿混杂岩;Deng et al. (2015)获得辉长岩锆石LA-ICP-MS年龄为370.4±4.8Ma,认为产于晚泥盆世活动陆缘弧伸展背景。我们的研究表明,吐尔库班套形成时代为早泥盆世,不同于北疆主要的含铜镍硫化物岩体多形成于早二叠世,岩体的性质属于阿拉斯加型岩体,该岩体时代与构造属性的研究对区域俯冲时限的限定及岩体成矿潜力判断均有重要意义。本文将通过对其形成时代、地球化学性质和锆石Hf同位素等研究,及与典型的阿拉斯加型岩体的对比,对该岩体基本特征进行细致介绍,并讨论其成矿意义。

1 区域地质概况

中国阿尔泰造山带是中亚造山带的重要组成部分(Xiao et al., 2004),位于西伯利亚克拉通和塔里木-华北克拉通之间,北邻西萨彦岭古岛弧带和乌列善-科布多古岛弧带,西南侧以额尔齐斯深断裂与准噶尔地体相接(Shen et al., 2007; Zhou et al., 2008; Gao et al., 2009; Lin et al., 2013; 秦克章等, 2017),该造山带西起俄罗斯、哈萨克斯坦,穿过新疆北部,直到蒙古南部,绵延两千多千米。

科克森套镁铁-超镁铁岩带位于西伯利亚古板块与准噶尔古板块衔接处西伯利亚古板块—侧的萨吾尔-加波萨尔古生代岛孤内的次级活动带内(图 1),吐尔库班套铜镍矿是科克森套镁铁-超镁铁岩带内新近发现的最重要的铜镍矿点(图 2),也是最具找矿意义的镁铁-超镁铁杂岩体。

图 1 准噶尔西北缘-阿尔泰构造-成矿分区示意图(据芮行健, 1993; 秦克章, 2000修改) 1-海沟和俯冲方向;2-岛弧区与弧后区分界线;3-冲断层;4-火山沉积盆地边界;5-酸性火山岩;6-中性火山岩;7-沉积岩、变质岩及混合花岗岩;8-中基性火山岩;9-火山碎屑岩;10-蛇绿杂岩及基性岩;11-扩张中心;12-板块单元分区:Ⅰ-阿尔曼台-洪古勒愣缝合带;Ⅱ-萨吾尔-加波萨尔岛弧带;Ⅲ-额尔齐斯韧性剪带;Ⅳ-阿尔泰南缘弧后盆地;Ⅴ-青河-哈龙陆缘深成岩浆弧;Ⅵ-诺尔特板内断陷盆地;F-卡拉先格尔断裂 Fig. 1 Sketched map showing tectonic-metallogenic division in northwestern Junggar and southern Altay (modified after Rui, 1993; Qin, 2000) 1-trench and subduction direction; 2-boundary between arc and back-arc basin; 3-thrust fracture; 4-boundary of volcanic-sedimentary basin; 5-acid volcanic rocks; 6-intermediate volcanic rocks; 7-sedimentary, metamorphic and granite rocks; 8-intermediate-mafic volcanic rocks; 9-volcanclastic rocks; 10-ophiolite and mafic rocks; 11-spreading center; 12-palte tectonic division: Ⅰ-Armantai-Honggulelun suture zone; Ⅱ-Sawuer-Jiabosaer arc; Ⅲ-Ertis ductile-shear zone; Ⅳ-Back-arc basin along Southern Alaty margin; Ⅴ-Qinghe-Halong epi-continental intrusion zone; Ⅵ-Nuoerte intra-plate depression basin; F-Kalaxianger fracture

图 2 吐尔库班套地区区域地质图 1-石炭系下统那林卡拉组;2-第三系;3-泥盆系中统蕴都喀腊组;4-黑云母花岗岩;5-镁铁-超镁铁岩带 Fig. 2 Regional geological map along Tuerkubantao complex 1-Nalinkala Formation of Carboniferous; 2-Teritary; 3-Wendukala Formation of Middle Devonian; 4-biotite granite; 5-mafic-ultramafic intrusion
2 吐尔库班套镁铁-超镁铁岩体的地质与岩相特征 2.1 地层与构造

蕴都喀腊组(D2y)为主要出露地层,可划分为上、下两个亚组。

下亚组(D2ya)分布在岩体北部,呈残山出露,地层倾向北,倾角35°~65°,局部产状变化较大。主要岩性为泥质板岩、薄层硅质岩与泥质岩互层、黑云母石英粉砂岩、黑云母变石英粉砂岩、砂岩及灰岩透镜体。

上亚组(D2yb)分布于杂岩体南侧,是杂岩体的顶盖层。主要岩性为英安岩、石英粗面岩、凝灰岩及英安角砾岩等。

构造以断裂构造发育为主,有北西西向和近南北向两组。

北西向或北西西向断裂为区内主要构造,多发育在超镁铁岩带南、北两侧,在平面上由一系列大致平行岩体展布的断裂组成。断裂长一般为30~50m,最长1500m,发育构造角砾岩、碳酸盐化、硅化(石英脉、石英网脉带)和赭石化。断层产状不稳定,南倾和北倾者均有,但总体向北倾,倾角60°~75°。断裂性质属压扭性,个别张性,平面上呈略向南突出的弧型及舒缓波状分布。

近南北向断裂多发育在镁铁-超镁铁岩中,规模较小,具平移断层的特点。对早期断层、岩体及地层有较明显的破坏作用,其形成相对较晚。

2.2 岩体特征

吐尔库班套岩体呈带状沿中泥盆统蕴都喀腊组上、下亚组接触面侵入,其南侧侵入接触关系比较清楚。接触带处未见明显的蚀变矿物,但有微弱的硅化和细小的闪长岩脉。其北侧与黑云母花岗闪长岩呈被侵入接触关系,在黑云母花岗闪长岩中可见辉长岩捕虏体。

2.2.1 岩体规模、形态、产状

岩体由中性岩、镁铁岩、超镁铁岩三部分组成。并以镁铁岩为主体,而超镁铁岩在地表只是呈脉状、透镜状分布于镁铁岩中(图 3)。

图 3 吐尔库班套岩体分布略图(据新疆有色地勘局706队, 2011修改) Fig. 3 Geological map of Tuerkubantao complex 1-biotite quartz siltstone; 2-peridotite; 3-gabbro; 4-biotite granite

① 新疆有色地勘局706队. 2011.新疆阿勒泰市吐尔库班套勘查工作总结报告

岩体总体呈北西西-南东东向带状展布,长约6km,宽0.2~0.5km。其产状依据岩体特征推测大致向南倾,倾角南侧约30°,北侧约60°。

在镁铁岩中分布有19个大小不等的超镁铁岩体,岩体的产出形态较为复杂。

2.2.2 岩体岩相学特征

通过野外地质现象结合镜下鉴定,吐尔库班套镁铁-超镁铁杂岩体的主要岩相特征如下:

橄榄岩 呈暗绿色-黑色,半自形粒状结构、块状构造;橄榄石含量为60%~80%,多蛇纹石化、伊丁石化,蛇纹石沿橄榄石颗粒的裂纹及边缘交代(图 4a, b);在蛇纹石化的同时,游离出来的铁质往往沿橄榄石裂纹或矿物边缘形成磁铁矿,橄榄石裂隙中发育大量的铬铁矿、尖晶石和少量钛铁矿;辉石占20%~40%,为斜方辉石(紫苏辉石)和单斜辉石(透辉石、普通辉石),斜方辉石大多绿泥石化,为长板状或蚀变后呈不规则的几何形状,有的呈橄榄石的反应边或呈他形粒状填隙在橄榄石颗粒间隙或者包裹在其中;单斜辉石大多发生绿泥石化、透闪石化,以他形粒状填隙在橄榄石颗粒之间,其中可见出溶的星点状钛铁矿。位于杂岩体的中部。

图 4 吐尔库班套杂岩体的主要岩石类型的镜下照片 a、b)橄榄岩;(c)辉长岩;(d)角闪辉长岩 Fig. 4 Microscopic photos of major intrusive rocks in Tuerkubantao complex (a, b) peridotite; (c) gabbro; (d) hornblende gabbro

辉长岩 主要矿物为基性斜长石和辉石(图 4c),次要矿物是普通角闪石、橄榄石,副矿物包括磁铁矿、钛磁铁矿、尖晶石等;辉石占40%~80%,主要为单斜辉石,多蚀变为纤维状角闪石、绿泥石、透闪石等;斜长石占20%~60%,为拉长石和倍长石,常呈板状,多数新鲜。主要位于杂岩体边部。

角闪辉长岩 主要矿物为基性斜长石和辉石(图 4d),次要矿物为橄榄石等,副矿物为磁铁矿、钛铁矿等。辉石占40%~45%,主要为单斜辉石;斜长石占35%~45%,为基性斜长石:拉长石和倍长石;角闪石含量>10%,为褐色或棕色的普通角闪石,横截面发育明显的“角闪石式”解理。分布于杂岩体的最外带。

2.2.3 岩相带划分及其展布特征

岩体自南向北大致可划分为四个岩相带,各岩相带之间,既有渐变过渡关系,也有截然接触关系。其展布特征如下:

(1) 闪长岩岩相带(A):分布于岩带西南侧。北与二辉辉长岩-混染辉长岩岩相带呈渐变接触,南被第三系、第四系覆盖。岩相带总体呈近东西向展布,与杂岩体走向一致,长约600m,宽25~150m,主要岩石为闪长岩,次有辉石闪长岩,辉石闪长岩为其向辉长岩的过渡种属,岩相带内有裂隙型铜金矿化,现圈出的⑥号矿化体,即位于该岩相带中。

(2) 二辉辉长岩-混染辉长岩岩相带(B):是杂岩体的主要岩相带,总体走向与杂岩体一致,长5500m,宽100~450m。主要由细、中、粗粒混染辉长岩(苏长岩、二辉辉长岩)及伟晶相辉长岩和斜长岩、辉石岩异离体组成。

此岩相带在中粗粒混染辉长岩内接触带见有稀疏浸染状铜矿化,在辉石岩异离体中见有熔离型眼球状铜矿化,裂隙型铜矿化主要分布在该岩相带内。

(3) 橄榄岩-二辉辉石岩-橄榄辉长苏长岩岩相带(C):此岩相带在地表呈不连续的脉状,透镜状岩体分布于杂岩体中部,总体呈北西西向展布,断续长1800m,东部呈小露头零星分布。由1、2、3、4、9、10、11、12、13、14、15、16、17、18、19号等15个超镁铁岩体组成。岩相带内见熔离Ni矿化,分布于3号岩体④号矿化带内。

(4) 橄榄辉石岩-辉长岩岩相带(D):出露于杂岩体北西部边缘,长约700m,宽20~50m,岩石类型以辉长岩为主,次有橄榄岩及辉石橄榄岩,由6、7号岩体组成。此岩相带岩石类型为单一的中细粒辉长岩,可能属杂岩体底部边缘相,其北部黑云母花岗闪长岩中含有该岩相带的捕掳体。

2.2.4 杂岩体分异特征

吐尔库班套杂岩体大致可划分为四个岩相带。其中橄榄岩-二辉辉石岩-橄榄辉长岩相带分布于中心,向外依次为橄榄辉石岩-辉长岩岩相带、二辉辉长岩-角闪辉长岩岩相带、闪长岩岩相带,具有阿拉斯加型环状杂岩体的特征。

据杂岩体岩石类型及岩相带展布特征分析,本区杂岩体具不完善的单向分异特点,自南向北(从岩体上部到岩体下部),岩性大致有基性程度逐渐增高的趋势(即由闪长岩→辉长岩→超基性岩)。就单个岩相带而言,亦有这样的趋势,如:混染辉长岩岩相带,底部常有小的辉石岩异离体出现;二辉辉石岩-橄榄苏长辉长岩-辉长岩岩相带,其二辉辉石岩异离体主要分布在岩相带底部。又如3号岩体,其北盘与黑云母花岗闪长岩呈被侵入接触,从接触带向南依次为二辉橄榄岩→方辉橄榄岩→二辉橄榄岩→二辉辉石岩→混染辉长岩等。这些均说明杂岩体均有单向分异特征。也显示了岩体南倾的趋势。

另外,基性岩内常出现杂乱堆积现象,即矿物粒度、晶形、含量在很小的范围内急剧变化。

除上述现象外,部分岩体还表现对称分异的特点,如5号岩体,岩体中心二辉橄榄岩和二辉橄辉岩交替出现,是岩体的主要岩相,由此岩相两侧依次为:南侧(岩体上盘)从北向南为二辉辉石岩→橄榄苏长辉长岩→中粒辉长岩;北侧从南至北为二辉辉石岩→辉长岩。

3 样品采集及实验方法

用于锆石U-Pb测年的样品取自吐尔库班套镁铁-超镁铁岩体地表露头西部的新鲜辉长岩,主要矿物为单斜辉石和斜长石。重力筛选法分选出来的锆石大多呈长柱状,在镜下挑选出无明显裂隙、晶形较好的颗粒,用环氧树脂制作成样品靶,经抛光、超声波清洗后,对锆石进行透射、反射、背散射和阴极发光(CL)等显微照相。CL观察显示锆石生长环带清晰可见,为典型的岩浆锆石,选择测定了20个锆石颗粒,大多>100μm,无继承性锆石核(图 5a)。

图 5 吐尔库班套杂岩体中辉长岩的LA-ICP-MS锆石阴极发光图像(a)、207Pb/235U-206Pb/238U年龄谐和图(b)和加权平均年龄(c) Fig. 5 Cathodoluminescene images of zircon (a), LA-ICP-MS zircon 207Pb/235U-206Pb/238U concordia diagram (b) and weighted average age (c) of gabbro from Tuerkubantao complex

在中国科学院地质与地球物理研究所采用Neptune多接受电感耦合等离子体质谱和Geolas 193nm ArF准分子激光剥蚀系统对锆石的Th、U、Pb同位素及其比值,Hf同位素比值和176Lu/177Hf比值进行精确的测定。标样为国际标准锆石91500,采用Ar为载气,在40μm束斑直径、8Hz激光频率下扫描,激光剥蚀时间为26s,180Hf的信号强度为3.5V。分析原理及流程见Wu et al. (2006)。标准锆石91500的测定结果为0.282298±0.000018,该值与目前用溶液法获得的值在误差范围内一致。

对吐尔库班套镁铁-超镁铁岩体中的主要岩相橄榄岩、橄辉岩、辉长岩进行了主量和微量元素化学分析。主量元素采用顺序式X射线荧光光谱仪(XRF-1500),其中FeO含量为滴定法测定,微量元素采用电感耦合等离子体质谱仪(ICP-MS)分析,两项测试均在中国科学院地质与地球物理研究所矿产资源研究院重点实验室完成。

Sr-Nd同位素在中国科学院地质与地球物理研究所同位素分析测试中心测试,基性岩和围岩用MAT262仪器测试,用瑞利法则进行分馏校正,详细分析流程和方法见(Chen et al., 2007)。Sr-Nd和Pb含量较低的超基性岩样品,在中国科学院地质与地球物理研究所用IsoProbe-T仪器测试。详细分析流程和方法如下:称取200mg样品, 加入适量的稀释剂(87Rb-84Sr和149Sm-150Nd),然后加入2mL HF和少量的HClO4,在电热板上使得样品彻底溶解,赶尽HF后,用3N HCl提取,用于Rb-Sr和Sm-Nd分离,将3N HCl淋洗,用2.5N HCl提取上树脂,使用2.5N HCl淋洗集体元素,然后用5N HCl依次淋洗Rb、Sr,用6N HCl淋洗树脂,接收稀土元素,用于Sm、Nd分离。在IsoProbe-T型质谱仪上测量。

4 锆石LA-ICP-MS U-Pb年代学

吐尔库班套Cu-Ni矿化点的辉长岩(Te)的锆石粒度变化于50~200μm之间,阴极发光图像显示锆石具有较好的晶形,并显示明显的岩浆结晶环带;锆石的Th、U含量分别为87.4×10-6~672×10-6、254×10-6~1007×10-6,Th/U比值均较高(为0.41~0.91,表 1),U、Th含量之间呈现较好的线性关系,207Pb/235U、206Pb/238U比值变化比较小,上述特征说明锆石为岩浆成因(Claesson et al., 2000; Belousova et al., 2002; Fernando et al., 2003)。辉长岩11颗锆石(表 1)207Pb/235U-206Pb/238U谐和年龄为394.6±4.9Ma(MSWD=1.4;图 5b)和加权平均年龄为394.9±4.8Ma(MSWD=1.3;图 5c),结果很好的限定了该杂岩体形成于早泥盆世。

表 1 吐尔库班套杂岩体辉长岩(Te)的LA-ICP-MS锆石U-Pb年龄分析结果 Table 1 LA-ICP-MS U-Pb dating results of zircons in gabbro from Tuerkubantao complex
5 岩石地球化学特征 5.1 主量元素

吐尔库班套岩体的主量元素测定结果见表 2。SiO2含量38.40%~53.60%,为超基性-基性系列。Al2O3含量为1.68%~19.01%,Fe2O3T含量为4.04%~11.41%,MgO含量为6.46%~35.73%,CaO含量为0.15%~10.61%,且在辉长岩中含量达到最高,乃是由于随着岩浆的演化,单斜辉石和基性斜长石结晶的结果;而后CaO降低是由于单斜辉石含量减少和斜长石成分向富K、Na趋势演化。Na2O含量为0.02%~4.00%,K2O含量为0.02%~1.72%,TiO2含量都<1%。SiO2与MgO、FeOT呈明显负相关,而与Al2O3、CaO、Na2O、K2O、TiO2含量呈明显正相关(图 6),是由于橄榄石、铬铁矿等早期结晶矿物相分离结晶作用引起的,暗示它们可能为同源岩浆结晶分异的产物。

表 2 吐尔库班套杂岩体的岩石主量元素(wt%)、微量元素(×10-6)和Sr-Nd同位素分析结果 Table 2 Major element (wt%), trace element (×10-6) and Sr-Nd isotopic compositions from Tuerkubantao complex

图 6 吐尔库班套杂岩体的主量元素氧化物与MgO相关性图 Fig. 6 Harker diagrams of oxide versus MgO of rocks from the Tuerkubantao complex
5.2 微量元素

吐尔库班套镁铁-超镁铁杂岩体的稀土总含量∑REE为3.68×10-6~67.69×10-6 (表 2),角闪辉长岩和辉长岩样品的∑REE值明显高于超基性岩,从超基性岩到基性岩∑REE逐渐增大。稀土元素球粒陨石标准化配分曲线相对平坦(图 7),(La/Yb)N为1.39~3.10,Eu*为0.77~2.08。大部分样品中高δEu值与斜长石的堆积有关,而低δEu值则与斜长石的亏损有关。稀土元素非常类似的分配型式,进一步表明吐尔库班套镁铁-超镁铁杂岩体来自同一源区,是同一原始岩浆分异演化的产物。

图 7 吐尔库班套杂岩体球粒陨石标准化稀土元素配分图(a-c, 标准化值据Boynton, 1984)和原始地幔标准化不相容元素蛛网图(d-f, 标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE patterns (a-c, normalization values after Boynton, 1984) and primitive mantle-normalized spider diagrams of trace-elements (d-f, normalization values after Sun and McDonough, 1989) of various lithofacies from the Tuerkubantao complex

样品的原始地幔标准化微量元素配分曲线图(图 7)基本相似,辉长岩和角闪辉长岩总体上富集大离子亲石元素(LILE:如Rb、Ba、K、Sr)和活泼的高场强元素(如:U),相对亏损高场强元素(HFSE:如Nb、Zr、Ti);而橄榄岩只相对富集Cs、U,同样亏损高场强元素Nb、Zr、Hf、Ti,都具有岛弧岩浆的特征,暗示岩浆在源区可能受到俯冲流体或者熔体的富集交代。

在固体地幔玄武岩熔体体系中,过渡族元素Cr、Ni、Co易保留在固相中,而V等不相容元素相对富集于熔融相中。图 8所示,Co、Ni和Cr与MgO呈负相关,表明可能是由于在岩浆演化过程中橄榄石、辉石、铬尖晶石等矿物的结晶,Co、Ni和Cr表现出相容性而进入早期结晶矿物中造成的。与黄山南(徐明星和李忠权, 1992; Mao et al., 2016)、黄山(Mao et al., 2014)和图拉尔根(孙赫等, 2006)含铜镍矿镁铁-超镁铁岩体的过渡族元素特征一致。Sr、V和La与MgO呈负相关,是由于在早期岩浆演化过程中表现为不相容性,而进入熔体相。

图 8 吐尔库班套杂岩体微量元素Cr、V、Ni、Co、Sr和La与MgO相关图解 图例同图 6 Fig. 8 Correlation diagrams of trace element Cr, V, Ni, Co, Sr and La versus MgO for Tuerkubantao complex Legend same as Fig. 6
5.3 Sr-Nd同位素特征

吐尔库班套杂岩体的Sr-Nd同位素结果见表 2,(87Sr/86Sr)i比值在0.704220~0.704332之间,(143Nd/144Nd)i比值在0.512252~0.512315之间,εNd(t)在+2.5~+3.8之间,在(87Sr/86Sr)i-εNd(t)四象限图中(图 9),处于第二象限,落入OIB的范围,沿着地幔演化趋势变化,显示出地幔的特点(图 10)。由于εNd(t)值都为正值,亏损地幔的作用相对比较大。

图 9 吐尔库班套杂岩体的岩石(87Sr/86Sr)i-εNd(t)图解 Fig. 9 The (87Sr/86Sr)I vs. εNd(t) diagram of mafic rocks in Tuerkubantao complex Data of Seguam from Singer et al., 1992, Data of Augustine and Western Aleutians from Johnson et al., 1996

图 10 吐尔库班套杂岩体中辉长岩锆石εHf(t)-U/Pb年龄图解 Fig. 10 εHf(t) vs. U/Pb diagram of zircon from gabbro of Tuerkubantao complex
5.4 辉长岩的锆石Hf同位素特征

分析点的锆石Hf分析数据(表 3)比较均一,176Lu/177Hf比值从0.000260~0.001555,均小于0.0020,显示锆石在形成之后放射成因Hf的积累极为有限。176Hf/177Hf测试值的范围为0.282699~0.282861,(176Hf/177Hf)i的范围为0.282692~0.282851,与不同储源库的该比值比较,接近球粒陨石和富集地幔的值。εHf(t)均为正值,变化范围为5.9~11.7。

表 3 吐尔库班套杂岩体中辉长岩的锆石Hf同位素结果 Table 3 Hf isotopic compositions of zircon from gabbro of Tuerkubantao complex
6 讨论 6.1 岩浆源区特征

吐尔库班套镁铁-超镁铁杂岩体具有高Mg、Cr特征(表 1),表明该含铜镍矿杂岩体具有幔源特征(Wilson, 1989; Cox et al., 1980)。岩石都具有亏损高场强元素(Nb、Ta、Zr、Hf)(图 7图 8)和低TiO2(一般 < 1%)的特征(表 2),微量元素和稀土元素特征表明该含矿杂岩体具有岛弧岩浆特征(Kelemen, 1990; Hawkesworth et al., 1993; Su et al., 2012);且辉长岩锆石的εHf(t)范围在6.1~11.7(表 3)之间;其(87Sr/86Sr)i比值在0.70420~0.70432之间,(143Nd/144Nd)i比值在0.512252~0.512315之间,εNd(t)在+2.5~+3.8之间。Sr-Nd-Hf同位素特征暗示源区可能主要显示出略亏损地幔的特征,但由于俯冲富水洋壳物质的加入或者在上升过程中受到地壳物质混染,降低了岩浆源区的亏损程度。通常认为高La/Sm(>4.5)值指示了地壳物质的混染(Lassiter and Depaolo, 1997),由表 2可知,所有岩石样品的La/Sm(1.53~2.78) < 4.5,说明地壳物质的混染较弱。我们认为吐尔库班套岩浆的地球化学特征可能代表源区的特征,是受俯冲流体或者熔体交代的亏损地幔。

6.2 成岩构造背景

吐尔库班套岩体在岩石主量、微量成分特征、地壳混染程度、岩浆源区性质方面均不同于新疆东天山地区黄山-镜儿泉带内图拉尔根、香山,中天山地块内天宇、白石泉岩体,北山的坡一和准东北的喀拉通克、柯麦孜巴依等造山后伸展背景的Cu-Ni矿床(毛景文等, 2002; 秦克章等, 2002, 2007, 2012; Qin et al., 2003, 2011; Zhou et al., 2004; 孙赫等, 2006; Han et al., 2007; 唐冬梅等, 2009; Zhang et al., 2009; Su et al., 2011, 2012, 2013; Xue et al., 2016; Tang et al., 2017)。吐尔库班套杂岩体表现出环状特征,表现出平面上中心为超基性的橄榄岩,边部为基性的辉长岩、角闪辉长岩,外围为闪长岩;从中心向外基性逐渐程度降低,其中的辉石主要为单斜辉石。结合杂岩体亏损高场强元素Nb、Ta、Zr、Hf、Ti,明显具有岛弧岩浆的特征,与美国阿拉斯加东南部Duke Island杂岩体赋存的Cu-Ni矿床相类似,进一步确定其为产于岛弧构造背景的阿拉斯加型岩体(Himmelberg and Loney, 1995; Johan, 2002; Ripley, 2009; Deng et al., 2015)。王玉往等(2011)认为吐尔库班套岩体属于蛇绿岩。但蛇绿岩的Sr-Nd同位素表现出明显的受海水影响的特点(邱瑞昭等, 2002; 钟立峰等, 2006),吐尔库班套岩体的Sr-Nd同位素并没有该特点,同时,低εNd(t)、低(87Sr/86Sr)i比值也区别于西准达拉布特等典型蛇绿岩(刘希军等, 2009)的特征,反而与阿拉斯加东南部Duke Island杂岩体赋存的Cu-Ni矿床(Ripley et al., 2005; Thakurta et al., 2008)以及东疆峡东阿拉斯加型岩体(Su et al., 2012, 2017)相类似。因而,我们认为吐尔库班套岩体为形成于俯冲阶段的阿拉斯加型镁铁-超镁铁岩体。结合其辉长岩锆石年龄为394.6±4.9Ma,形成于早泥盆世。同时确立了在萨乌尔山地区,准噶尔洋壳的俯冲作用在早泥盆世就已存在。准噶尔洋北向阿尔泰活动陆缘俯冲,科克森套南侧吐尔库班套一带处于岛弧根部(同期弧火山岩已被剥蚀殆尽),主缝合带还在其南侧,阿尔曼台-扎河坝-洪古勒愣深大断裂是准噶尔-哈萨克斯坦板块与西伯利亚板块碰撞结合的缝合带,在其北侧能划分出完整的沟-弧-盆体系(秦克章等, 1999; 秦克章, 2000),从南向北依次为洪古勒愣缝合带(产出与蛇绿岩有关的铬铁矿)、萨吾尔山岛弧带(产出铜、镍、金矿)、额尔齐斯韧性剪切带(产出金、铜、镍矿)和阿尔泰南缘泥盆系弧后盆地(产出铁、铜、铅、锌、金矿)等四个构造-成矿区(郭正林, 2010; 郭正林等, 2010),弧前、弧、弧后组合齐全。该认识具有重要的成矿意义。

6.3 成矿条件分析

全球岩浆铜镍矿的产出构造环境,除了与陨石有关的Sudbury特例外,归纳起来总体有4种:稳定克拉通上的张裂带或陆内裂谷(如美国Duluth),大火成岩省地幔柱,如俄罗斯Noril’sk,我国攀西),造山后伸展(及地幔柱叠置,如东天山的黄山、图拉尔根等)和增生弧(如美国阿拉斯加Duke岩体)(汤中立等, 2006; Qin et al., 2011; 秦克章等, 2012, 2015)。国外经典阿拉斯加型岩体铜镍多为矿化或贫矿,而含PGE较高。据已有资料,只有少数阿拉斯加型杂岩体发现有富硫化物层(Ripley, 2009);但这些矿床的地质背景指示,阿拉斯加型杂岩体及俯冲构造背景不是寻找岩浆铜镍硫化物矿化的重点靶区。不少地区的含Pt的砂铂型矿床被认为与俯冲带侵入岩中含PGE的铬铁矿(主要是阿拉斯加型岩体)有关(Johan, 2002)。

俯冲带缺少世界级的岩浆铜镍矿床,表明挤压背景不利于这类矿床的形成(Pettigrew and Hattori, 2006)。新疆东部新发现的峡东和本文所研究的准噶尔西北缘吐尔库班套镁铁-超镁铁杂岩体具有高镁特征,峡东岩体位于中天山地块中,构造背景相对稳定,没有经历过明显的抬升,岩体剥蚀程度低(孙赫等, 2009),系准噶尔洋和南天山洋志留纪、泥盆纪、石炭纪多次增生演化的产物(Su et al., 2012, 2014)。橄榄岩和辉长岩中发育韵律层及其中产出大量的铬铁矿,已确定为典型的阿拉斯加型岩体,是寻找超镁铁岩型铂族矿和铬铁矿的重要线索。

吐尔库班套岩体地球化学异常以Cu、Ni为主(图 11),配合有As、Hg,Cu、Ni异常形态完整,呈东西走向,As、Hg异常与Cu、Ni相吻合,强度较高。Ni极大值为315×10-6,平均76.7×10-6,异常分布于基性-超基性小岩体中,局部见孔雀石化,是寻找以Cu、Ni为主的有色金属矿床有利地段。

图 11 吐尔库班套岩体镍元素异常剖析图 图中点号为Ni含量高值点位置 Fig. 11 Ni element anomaly of Tuerkubantao complex Punctuation mark showing the location of high Ni content

杂岩体磁异常特征磁异常对岩体含矿性评价具有特征指示作用。岩带中主要分布有T-M-1、T-M-2、T-M-3三个磁异常,磁异常主要分布于岩带的西部,东部为大片的磁异常平静区,3个异常沿东西方向呈串珠状弧形排列。异常特征详见表 4

表 4 吐尔库班套磁异常特征一览表 Table 4 Characteristics of magnetic analomaly in Tuerkubantao area

与超镁铁岩有关的铜镍矿化体特征岩体内共发现十余处不同类型的矿化点,这些矿化点在地表连续,分布较集中,圈出多条矿化体,据矿化成因可分为:熔离型,接触带型,裂隙型铜镍矿化。特征如下:

熔离型Cu、Ni矿化仅见于超镁铁-镁铁岩内辉石岩中。控矿岩相为橄榄岩、橄辉岩及含长辉石岩。金属硫化物呈星点状、稀疏浸染状、细脉状分布,局部见似海绵陨铁结构。此类矿化共圈出四条,即②、③、④、⑤号矿化体。控矿岩相均为橄榄岩,Cu 0.00%~0.13%,Ni 0.10%~0.32%,Au 0.06×10-6~0.13×10-6;Pt 0.004×10-6,Pd 0.008×10-6。矿化体内可见零星黄铁矿分布及裂隙型孔雀石矿化。在光片中见有黄铁矿、磁黄铁矿、镍黄铁矿及后期贯入的显微黄铜矿微脉。

接触带型Cu、Ni矿化产自3号、4号岩体与辉长岩接触部位的构造破碎带中。以①号矿化体为代表,矿化体断续长600m,宽1~2m,矿化岩石以中粗粒混染辉长岩为主,次有含长橄榄岩、橄榄岩。在辉长岩内可见黄铁矿、黄铜矿及孔雀石呈稀疏浸染状分布,Cu 0.01%~0.05%;Ni 0.03%~0.26%;Au 0.07×10-6~0.13×10-6;Pt 0.01×10-6,Pd 0.01×10-6

近年来,在甘肃北山新发现了黑山铜镍矿化岩体。Xie et al. (2012)获得了北山褶皱带东部黑山Ni-Cu-(PGE)硫化物含矿岩体的锆石U-Pb年龄为~357Ma,时代为石炭纪,说明其形成于洋壳俯冲阶段,在世界造山带中独具特色。结合西天山的菁布拉克矿化岩体(431±6Ma)构造背景的研究(Yang and Zhou, 2009),Song et al. (2011)认为新疆北部古生代岩浆硫化物含矿岩体不仅形成于早二叠世,志留世-石炭世也有硫化物矿床的形成,只是规模较小。这些矿床的形成年代跨度之大,表明二叠纪之前矿床的成因与塔里木地幔柱可能并无直接的联系。

青海东昆仑夏日哈木大型镍铜矿床(Ni金属达118万吨),系青海地矿局五院新近取得的重大找矿发现,岩体岩相分异较明显,底部为橄榄岩,向上依次为辉橄岩、橄辉岩、辉石岩、辉长岩。其成矿期辉长岩锆石U-Pb年龄为424±1Ma(Peng et al., 2016)、超镁铁岩锆石年龄为(411.6±2.4Ma)(Li et al., 2015),成矿后辉长岩锆石年龄为393.5±3.4Ma(泥盆纪, 李世金等, 2012)属于古特提斯构造域(泥盆纪-中三叠世),早于同一构造带上的矽卡岩-斑岩铜钼矿床(204~228Ma, 晚三叠世, 丰成友等, 2012),表明阿拉斯加型杂岩体及俯冲构造背景也是寻找岩浆铜镍硫化物矿化的重点靶区。其产出环境明显不同于全球其它经典的岩浆铜镍矿区,是一类具有特殊意义的重要矿床(秦克章等, 2015, 2017)。东昆仑构造带经历了原特提斯和古特提斯两阶段构造-岩浆活动(潘裕生和方爱民, 2000)。对东昆仑产出阿拉斯加型岩体及相关矿化的可能性应给予足够的重视。

参考甘肃北山新发现黑山石炭纪含铜镍镁铁-超镁铁岩体、东昆仑山新发现的泥盆纪夏日哈木大型铜镍矿床,对长期忽略的阿拉斯加型岩体的铜镍成矿潜力应该给予充分重视。在萨吾尔岛弧带上阿拉斯加型(岛弧型)镁铁-超镁铁环状杂岩体的首次确认,并伴有铜镍矿化,这对区域铜镍找矿具有重大意义。

7 结论

准噶尔西北缘吐尔库班套镁铁-超镁铁质杂岩体具有以下特征:

(1) 产出在科克森套韧性剪切带之南侧,阿尔曼台-洪古勒愣缝合带之北。

(2) 平面上具有岩相从中心向外基性程度逐渐降低的趋势,呈环状岩体特点,且含水矿物如角闪石、黑云母多见。

(3) 获得辉长岩锆石U-Pb谐和年龄为394.6±4.9Ma,形成于早泥盆世。

(4) 具有与岛弧相似的轻稀土富集、高场强元素亏损、不相容元素含量低等特征;其Nd、Sr、Hf同位素特征,均显示幔源岩浆特征,同时又区别于区域上典型的蛇绿岩由于受海水影响而表现出的Sr初始比值变化较大等特征。

(5) 产出环境分析:该岩体可能为含水的岛弧岩浆结晶分异在俯冲带附近形成的阿拉斯加型侵入岩体。该岩体产出于萨乌尔岛弧带东段、科克森套韧性剪切带之南缘,说明该地区在中泥盆纪为俯冲的构造背景。阿拉斯加型超镁铁质岩具有不同于蛇绿岩及层状侵入体的独特化学成分,尤其以辉石表现突出,同时阿拉斯加型岩体以显著贫硅、镁及富钙、钛和略富铁为特征。

(6) 成矿潜力分析:吐尔库班套镁铁-超镁铁岩体具有良好的岩相分带,表现出显著的磁异常和Ni地球化学异常,地表见有孔雀石化。具有良好的成矿潜力,开辟了新的找矿思路。铜镍找矿方向应集中于超镁铁岩集中发育的深部,同时应注意PGE矿化的可能性。该研究评价对于区域上俯冲岛弧环境除斑岩铜矿之外的阿拉斯加型岩体的铜镍铂矿化勘查评价将具有借鉴意义。

致谢      感谢审稿专家和终审主编的宝贵修改意见!

第一作者所主攻的造山带演化与成矿作用研究方向发端于1998年始追随孙枢先生和李继亮先生两位恩师作博士后,谨以此文庆贺李继亮先生八十寿辰暨从事地质工作六十周年!

参考文献
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602-622. DOI:10.1007/s00410-002-0364-7
Boynton WV. 1984. Cosmochemistry of the earth elements: Meteorite studies. In: Henderson R (ed. ). Rare Earth Element Geochemistry. Developments in Geochemistry 2. Amsterdam: Elsevier, 89-92
Chen FK, Li XH, Wang X and Siebe W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunan Thethyan belt, southwestern China. International Journal of Earth Sciences, 96: 1179-1194. DOI:10.1007/s00531-006-0146-y
Claesson S, Vetrin V and Bayanova T. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola Peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51: 95-108. DOI:10.1016/S0024-4937(99)00076-6
Cox KG. 1980. A model for flood basalt volcanism. Journal of Petrology, 21: 629-650. DOI:10.1093/petrology/21.4.629
Deng YF, Yuan F, Zhou TF, White NC, Zhang DY, Guo XJ, Zhang RF and Zhao BB. 2015. Zircon U-Pb geochronology, geochemistry, and Sr-Nd isotopes of the Ural-Alaskan type Tuerkubantao mafic-ultramafic intrusion in southern Altai orogen, China:Petrogenesis and tectonic implications. Journal of Asian Earth Secences, 113: 36-50. DOI:10.1016/j.jseaes.2015.05.007
Feng CY, Wang S, Li GC, Ma SS and Li DS. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China:Chronology, geochemistry and metallogenic significances. Acta Petrologica Sinica, 28(2): 665-678.
Fernando C, John MH, Paul WOH and Peter K. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. DOI:10.2113/0530469
Gao J, Long LL, Klemd R, Qian Q, Liu DY, Xiong XM, Su W, Liu W, Wang YT and Yang FQ. 2009. Tectonic evolution of the South Tianshan Orogen, NW China:Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98: 1221-1238. DOI:10.1007/s00531-008-0370-8
Guo ZL. 2010. Tectonic-metallogenic division, regional metallogenic regularity and exploration potential analysis in northwestern margin of Junggar, NW China. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, CAS: 1-152.
Guo ZL, Li JX, Qin KZ, Dong LH, Guo XJ, Tang DM and Du XW. 2010. Zircon U-Pb geochronology and geochemistry of Hanzheganeng Cu-Au deposit in West Junggar, Xinjiang:Implications for magma source and metallogenic tectonic setting. Acta Petrologica Sinica, 26(12): 3563-3578.
Han CM, Xiao WJ, Zhao GC, Qu WJ, Mao QG and Du AD. 2007. Re-Os dating of the Kalatongke Cu-Ni deposit, Altay Shan, NW China, and resulting geodynamic implications. Ore Geology Reviews, 32: 452-468. DOI:10.1016/j.oregeorev.2006.11.004
Hawkesworth CJ, Gallagher K, Hergt JM and McDermott F. 1993. Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21: 175-204. DOI:10.1146/annurev.ea.21.050193.001135
Himmelberg GR and Loney RA. 1995. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska, US Geol. Sur. Prof. Pap., 1564: 47.
Johan Z. 2002. Alaskan-type complexes and their platinum-group element mineralization. In: Cabri LJ (ed. ). The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of Platinum-Group Elements. CIM Special Volume, 54: 669-720
Johnson KE, Harmon RS, Richardson JM, Moorbath S and Strong DF. 1996. Isotope and trace element geochemistry of Augustine volcano, Alaska:Implications for magmatic evolution. Journal of Petrology, 37: 95-115. DOI:10.1093/petrology/37.1.95
Kelemen PB, Johnson KTM, Kinzler RJ and Irving AJ. 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 345: 521-524. DOI:10.1038/345521a0
Lassiter JC and Depaolo DJ. 1997. Plume-lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints. In: Mahoney J (ed. ). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography 100, American Geophysical Union, 335-355
Li CS, Zhang ZW, Li WY, Wang YL, Sun T and Ripley EM. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China. Lithos, 216: 224-240.
Li SJ, Sun FY, Gao YW, Zhao JW, Li LS and Yang QA. 2012. The theoretical guidance and the practice of small intrusions forming large deposits:The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185-191.
Lin W, Chu Y, Ji WB, Zhang HP, Shi YH, Wang ZY, Li Z and Wan QC. 2013. Geochronological and geochemical constraints for a Middle Paleozoic continental arc in northern margin of the Tarim Block:Implications for the Paleozoic tectonic evolution of the South Chinese Tianshan. Lithosphere, 5: 355-381. DOI:10.1130/L231.1
Liu XJ, Xu JF, Wang SQ, Hou QY, Bai ZH and Lei M. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica, 25(6): 1373-1389.
Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330.
Mao YJ, Qin KZ, Li CS, Xue SC and Ripley EM. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China. Lithos, 200: 111-125.
Mao YJ, Qin KZ, Tang DM, Feng HY and Xue SC. 2016. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37. DOI:10.1016/j.jseaes.2016.07.028
Pan YS and Fang AM. 2010. Formation and evolution of the Tethys in Tibetan Plateau. Chinese Journal of Geology, 45(1): 92-101.
Peng B, Sun FY, Li BL, Wang G, Li SJ, Zhao TF, Li L and Zhi YB. 2016. The geochemistry and geochronology of the Xiarihamu Ⅱ mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China:Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Review, 73: 13-28. DOI:10.1016/j.oregeorev.2015.10.014
Pettigrew N and Hattori K. 2006. The Quetico intrusions of Western Superior Province:Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Research, 149(1-2): 21-42. DOI:10.1016/j.precamres.2006.06.004
Qin KZ, Sun S, Chen HH and Hao J. 1999. Temporal-spatial distribution framework of metal deposits in northern Xinjiang: As guides of Paleozoic archipelago-type collision orogenic belts. In: Chen HH, Hou QL and Xiao WJ (eds. ). Collision Orogenic Belts of China. Beijing: China Ocean Press, 183-196 (in Chinese with English abstract)
Qin KZ. 2000. Metallogeneses in relation to Central-Asia Type Orogeny of Northern Xinjiang. Post-doctoral Research Report. Beijing: Institute of Geology and Geophysics, CAS: 1-195.
Qin KZ, Fang TH, Wang S, Zhu BQ, Feng YM, Yu HF and Xiu QY. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW-China. Xinjiang Geology, 20(4): 302-308.
Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb R and Seltman (eds. ). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: Geological Society London Special Publication, 227-249
Qin KZ, Ding KS, Xu YX, Sun H, Xu XW, Tang DM and Mao Q. 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang. Mineral deposits, 26(1): 1-14.
Qin KZ, Su BX, Patrick AS, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China):Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260. DOI:10.2475/03.2011.03
Qin KZ, Tang DM, Su BX, Mao YJ, Xue SC, Tian Y, Sun H, San JZ, Xiao QH and Deng G. 2012. The tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, Northern Xinjiang. Northwestern Geology, 45(4): 83-116.
Qin KZ, Tang DM and Su BX. 2015. Tectonic environments and metallogenesis of magmatic Cu-Ni sulfide deposits in the orogenic belts. In:Zhai MG and Xiao WJ (eds.). Advance in Modern Earth Science. Beijing: Science Press: 328-361.
Qin KZ, Li GM, Zhao JX, Zhai MG, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of Collage orogenesis of microcontinents and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325.
Qiu RZ, Xiao R, Zhou S, Li SR, Cai ZY and Zhang WQ. 2002. Geochronology and Nd and Sr isotope characteristics of gabbro dikes from the Shemalagou area in the Middle sector of the Bangongco-Nujiang ophiolite belt, North Tibet. Geological Review, 48: 64-68.
Ripley EM, Li CS and Thakurta J. 2005. Magmatic Cu-Ni-PGE mineralization at a convergent plate boundary:Preliminary mineralogical and isotopic studies of the Duke Island Complex, Alaska:Mineral Deposit Research. Meeting the Global Challenge, 1 and 2: 49-51.
Ripley EM. 2009. Magmatic sulfide mineralization in Alaskan-type complexes. In:Li CS and Ripley EM (eds.). New Developments in Magmatic Ni-Cu and PGE deposits. Beijing: Geological Publishing House.
Rui XJ. 1993. Primary Gold Deposits in Altay, Xinjiang. Beijing: Geological Publishing House: 1-274.
Shen P, Shen YC, Liu TB, Li GM and Zeng QD. 2007. Genesis of volcanic-hosted gold deposits in the Sawur gold belt, northern Xinjiang, China:Evidence from REE, stable isotopes, and noble gas isotopes. Ore Geology Review, 32: 207-226. DOI:10.1016/j.oregeorev.2006.10.005
Singer BS, Myers JD and Frost CD. 1992. Mid-Pleistocene basalt from the Seguam volcanic center, central Aleutian arc, Alaska:Local lithospheric structures and source variability in the Alectian arc. Journal of Geophysical Research, 97: 4561-4578. DOI:10.1029/92JB00003
Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusion. Earth and Planetary Science Letters, 219: 311-324. DOI:10.1016/S0012-821X(04)00012-3
Song XY, Xie W, Deng YF, Crawford AJ, Zheng WQ, Zhou GF, Deng G, Cheng SL and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW-China. Lithos, 127: 128-143. DOI:10.1016/j.lithos.2011.08.011
Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian Orogenic Belt:Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531. DOI:10.1016/j.gr.2010.11.015
Su BX, Qin KZ, Sakyi PA, Malaviarachchi SPK, Liu PP, Tang DM, Xiao QH, Sun H, Ma YG and Mao Q. 2012. Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt:Inferences from petrological and mineralogical studies. International Geology Review, 54(3): 249-269. DOI:10.1080/00206814.2010.543009
Su BX, Qin KZ, Santosh M, Sun H and Tang DM. 2013. The Early Permian mafic-ultramafic complexes in the Beishan Terrane, NW China:Alaskan-type intrusives or rift cumulates?. Journal of Asian Earth Sciences, 66(8): 175-187.
Su BX, Qin KZ, Zhou MF, Sakyi PA, Joyashish T, Tang DM, Liu PP, Xiao QH and Sun H. 2014. Petrological, geochemical and geochronological constraints on the origin of the Xiadong Ural-Alaskan type complex in NW China and tectonic implication for the evolution of southern Central Asian Orogenic Belt. Lithos, 200: 226-240.
Su BX, Chen C, Bai Y, Pang KN, Qin KZ and Sakyi PA. 2017. Lithium isotopic composition of Alaskan-type intrusion and its implication. Lithos, 286.
Sun H, Qin KZ, Li JX, Xu XW, San JZ, Ding KS, Hui WD and Xu YX. 2006. Petrographic, petro-geochemical characteristics in the Tulargen Cu-Ni-Co sulfide deposit, Eastern Tianshan, and its tectonic background. Geology in China, 33(3): 606-617.
Sun H, Qin KZ, Su BX, Fan X, Tang DM and Li J. 2009. Discovery of komatiitic ultramafic intrusion in Mid-Tianshan terrain:Xiadong intrusion, Xinjiang. Acta Petrologica Sinica, 25: 738-748.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basin. Geological Society of London Special Publication, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu-Ni deposit:Constraints on source and genesis of mafic-ultramafic intrusions in eastern Xinjiang. Acta Petrologica Sinica, 25: 817-831.
Tang DM, Qin KZ, Xue SC, Mao YJ, Evans NJ, Niu YJ and Chen JL. 2017. Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China:Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry. Lithos, 292-293: 49-68. DOI:10.1016/j.lithos.2017.08.021
Tang ZL, Quan ZZ and Jiang CY, et al. 2006. Magmatic Cu-Ni-PGE sulfide deposits and metallogenetic prognosis. Beijing: Geological Publishing House.
Thakurta J, Ripley EM and Li CS. 2008. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska, Geochemistry, Geophysics, Geosystems, 9: Q07003, doi: 10.1029/2008GC001982
Wang YW, Wang JB, Wang LJ, Long LL, Tang PZ, Liao Z and Zhang HQ. 2011. Discovery of Tuerkubantao ophiolite melange in Xinjiang and its significance. Earth Science Frontiers, 18(3): 151-165.
Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman: 1-464.
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105-126. DOI:10.1016/j.chemgeo.2006.05.003
Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the lateral growth of Central Asia. Journal of the Geological Society, London, 161: 339-342. DOI:10.1144/0016-764903-165
Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL and Sun S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309: 221-270. DOI:10.2475/03.2009.02
Xie W, Song XY, Deng YF, Wang YS and Ba DH. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230. DOI:10.1016/j.lithos.2012.03.010
Xu MX and Li ZQ. 1992. Discussion of petrographic characteristics and origin of Huangshannan ore-bearing mafic-ultramafic complex, in Hami, Xinjiang. Journal of Chengdu College of Geology, 19(1): 77-84.
Xue SC, Qin KZ, Li CS, Tang DM, Mao YJ, Qi L and Ripley EM. 2016. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim Craton, western China. Economic Geology, 111(6): 1465-1484. DOI:10.2113/econgeo.111.6.1465
Yang SH and Zhou MF. 2009. Geochemistry of the~430Ma Jingbulake mafic-ultramafic intrusion in the Chinese Tianshan NW China:Implications for the subduction related magmatism in the South Tianshan orogenic belt. Lithos, 113: 259-273. DOI:10.1016/j.lithos.2009.07.005
Yin JY, Chen W, Xiao WJ, Yuan C, Zhang B, Cai KD and Long XP. 2017. Late Silurian-Early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW-China:Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Research, 43: 55-73. DOI:10.1016/j.gr.2015.06.016
Zhang HY, Niu HC, Shen XM, Ma L and Yu XY. 2008. Late Paleozoic tectonic evolution and polymetallic ore-forming processes in southern Altay and northern Junggar. Mineral Deposits, 27(5): 596-601.
Zhang ZC, Mao JW, Chai FM, Yan SH, Chen BL and Pirajno F. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, Northern Xinjiang, Northwest China:Implications for the genesis of magmatic Ni-Cu sulfide deposits. Economic Geology, 104(2): 185-203. DOI:10.2113/gsecongeo.104.2.185
Zhong LF, Xia B, Zhou GQ, Wang R, Wei DL and Li JF. 2006. Origin of the Luobusa ophiolite, Southern Tibet:Sr-Nd-Pb isotopic constraints on crust lavas. Journal of Mineral and Petrology, 26(1): 57-63.
Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China:Implications for the tectonic evolution of the central Asian orogenic belt. Chemical Geology, 209: 233-257. DOI:10.1016/j.chemgeo.2004.05.005
Zhou TF, Yuan F, Fan Y, Zhang DY, Cooke D and Zhao GC. 2008. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China:Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106: 191-206. DOI:10.1016/j.lithos.2008.06.014
丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义. 岩石学报, 28(2): 665-678.
郭正林. 2010. 准噶尔西北缘构造-成矿分区、区域成矿规律及找矿潜力分析. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-152
郭正林, 李金祥, 秦克章, 董连慧, 郭旭吉, 唐冬梅, 杜兴旺. 2010. 新疆西准噶尔罕哲尕能Cu-Au矿床的锆石U-Pb年代学和岩石地球化学特征:对源区和成矿构造背景的指示. 岩石学报, 26(12): 3563-3578.
李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185-191.
刘希军, 许继峰, 王树庆, 侯青叶, 白正华, 雷敏. 2009. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义. 岩石学报, 25(6): 1373-1389.
毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球化学意义. 矿床地质, 21(4): 323-330.
潘裕生, 方爱民. 2010. 中国青藏高原特提斯的形成与演化. 地质科学, 45(1): 92-101.
秦克章, 孙枢, 陈海泓, 郝杰. 1999. 新疆北部金属矿床时空分布格局——古生代多岛海型碰撞造山带的标志. 见: 陈海泓, 侯泉林, 肖文交主编. 中国碰撞造山带研究. 北京: 海洋出版社, 183-196
秦克章. 2000. 新疆北部中亚型造山与成矿作用. 博士后研究工作报告. 北京: 中国科学院地质与地球物理研究所, 1-195
秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区、演化与成矿地质背景研究. 新疆地质, 20(4): 302-308.
秦克章, 丁奎首, 许英霞, 孙赫, 徐兴旺, 唐冬梅, 毛骞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究. 矿床地质, 26(1): 1-14.
秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁-超镁铁岩Cu-Ni矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析. 西北地质, 45(4): 83-116.
秦克章, 唐冬梅, 苏本勋. 2015. 造山带岩浆铜镍硫化物矿床: 研究进展与展望. 见: 翟明国, 肖文交主编. 现代地质科学进展. 北京: 科学出版社, 328-361
秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国大陆演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325.
邱瑞昭, 肖润, 周肃, 李胜荣, 蔡志勇, 张文秦. 2002. 藏北班公湖-怒江带舍玛拉沟蛇绿岩中辉长岩Sm-Nd定年和Sr、Nd同位素研究. 地质论评, 48: 64-68.
芮行健, 等. 1993. 新疆阿尔泰岩金矿床. 北京: 地质出版社: 1-274.
孙赫, 秦克章, 李金祥, 徐兴旺, 三金柱, 丁魁首, 惠卫东, 许英霞. 2006. 东天山图拉尔根铜镍钴硫化物矿床岩相、岩石地球化学特征及其形成的构造背景. 中国地质, 33(3): 606-617.
孙赫, 秦克章, 苏本勋, 范新, 唐冬梅, 李军. 2009. 中天山地块科马提质超镁铁岩体的发现:新疆峡东岩体. 岩石学报, 25(4): 738-748.
唐冬梅, 秦克章, 孙赫, 苏本勋, 肖庆华, 程松林, 李军. 2009. 天宇岩体的年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, 25(4): 817-831.
汤中立, 钱壮志, 姜常义, 等. 2006. 中国铜镍铂岩浆硫化物矿床与成矿预测. 北京: 地质出版社.
王玉往, 王京彬, 王莉娟, 龙灵莉, 萍芝, 廖震, 张会琼. 2011. 新疆吐尔库班套蛇绿混杂岩的发现及其意义. 地学前缘, 18(3): 151-165.
徐明星, 李忠权. 1992. 新疆黄山南含矿镁铁-超镁铁杂岩体的岩石学特征及成因探讨. 成都地质学院学报, 19(1): 77-84.
张海洋, 牛贺才, 沈晓明, 马林, 于学元. 2008. 阿尔泰造山带南缘和准噶尔板块北缘晚古生代构造演化及多金属成矿作用. 矿床地质, 27(5): 596-601.
钟立峰, 夏斌, 周国庆, 王冉, 韦栋梁, 李建峰. 2006. 藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nd-Pb同位素制约. 矿物岩石, 26(1): 57-63.