岩石学报  2018, Vol. 34 Issue (6): 1801-1812   PDF    
北京云蒙山大水峪韧性剪切带糜棱岩的变形温度
张慧1 , 王娟2 , 彭涛1 , 范文寿1 , 陈艺超1 , 侯泉林1 , 吴春明1     
1. 中国科学院大学地球与行星科学学院, 北京 100049;
2. 合肥工业大学资源与环境工程学院, 合肥 230009
摘要:横穿北京云蒙山东部的白垩纪大水峪韧性剪切带的云蒙峡剖面中,主体岩石为花岗质-闪长质糜棱岩,普遍发生了脆性-韧性变形。糜棱岩中的残斑为斜长石、钾长石,基质为斜长石、钾长石、石英、角闪石、黑云母。糜棱岩中一类斜长石基质与斜长石残斑化学成分基本相同,是斜长石残斑机械破碎的产物,未经历动态重结晶。另一类斜长石基质的An值明显高于斜长石残斑的An值,表明此类斜长石基质经历了动态重结晶作用。糜棱岩中钾长石基质的Or值略大于钾长石残斑Or值。本文根据糜棱岩中经历动态重结晶的斜长石基质和钾长石基质,采用二长石温度计估算的糜棱岩韧性变形温度条件为450~630℃。发现随着背离云蒙山岩基的方向,自西而东,大水峪糜棱岩带的韧性变形温度条件有明显的递降现象。
关键词: 糜棱岩     云蒙山     变形温度     大水峪韧性剪切带    
Temperature conditions of mylonitization of the Dashuiyu ductile shear zone, Mt. Yunmeng, Beijing
ZHANG Hui1, WANG Juan2, PENG Tao1, PHAM Van Tho1, CHEN YiChao1, HOU QuanLin1, WU ChunMing1     
1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. College of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Abstract: The Cretaceous granitic-dioritic mylonite of the Yunmengxia Gorge within the Dashuiyu ductile shear zone, exposes to the eastern margin of Mt. Yunmeng, Beijing. The mylonite experienced brittle-ductile deformation, and the porphyroclasts in the mylonite are mainly consisting of plagioclase and K-feldspar, while the fine-grained matrix includes plagioclase, K-feldspar, quartz, hornblende and biotite. One kind of plagioclase matrix is compositionally identical to the original plagioclase porphyroclast and is thus deciphered to have been mechanically peeled off from the plagioclase porphyroclast. Another kind of the plagioclase matrix is enriched in An content than that of the plagioclase porphyroclast and is thus inferred to have experienced dynamic recrystallization. The Or content of the K-feldspar matrix is slightly higher than that of the K-feldspar porphyroclast. The temperature conditions of ductile deformation of the mylonite in the Yunmengxia Gorge were estimated to be 450~630℃ by applying the two-feldspar geothermometer using chemical composition of the recrystallized matrix plagioclase and K-feldspar pairs. It is found that gradual temperature decreasing from the west to the east in the Yunmengxia Gorge mylonite is obvious, in application of different versions of the two-feldspar geothermometer.
Key words: mylonite     Mt. Yunmeng     deformation temperature     Dashuiyu ductile shear zone    

中生代以来,华北克拉通由于岩石圈减薄,出现了大量的岩浆活动(吴福元等, 2008; 高山等, 2009),形成了一系列变质核杂岩,如云蒙山变质核杂岩(Davis et al., 1996; 张家声等, 2007)、医巫闾山变质核杂岩(马寅生等, 1999; Darby et al., 2004; 李刚等, 2012)以及楼子店变质核杂岩(李建波等, 2010; 王新社和郑亚东, 2005)等。变质核杂岩是华北克拉通破坏的重要标志,对理解其破坏过程及破坏机制具有重要意义。

中生代以来,华北克拉通由于岩石圈减薄,出现了大量的岩浆活动(吴福元等, 2008; 高山等, 2009),形成了一系列变质核杂岩,如云蒙山变质核杂岩(Davis et al., 1996; 张家声等, 2007)、医巫闾山变质核杂岩(马寅生等, 1999; Darby et al., 2004; 李刚等, 2012)以及楼子店变质核杂岩(李建波等, 2010; 王新社和郑亚东, 2005)等。变质核杂岩是华北克拉通破坏的重要标志,对理解其破坏过程及破坏机制具有重要意义。

对云蒙山变质核杂岩的研究开始于20世纪80年代,研究成果包括核杂岩发育机制(Zheng et al., 1988; Davis et al., 1988; 许继峰等, 1994; 张建新等, 1997; 陈印, 2014; 陈印等, 2014)、岩性与岩石组构描述(白志民, 1991; 许继峰等, 1994; 朱大岗等, 2000; 姬广义等, 2004)、地球化学(刘树文, 1990; 曾令森等, 2006; 赵美涛和汪洋, 2014; 陈印, 2014; 陈印等, 2014)以及年代学(刘翠等, 2004; Shi et al., 2009; 陈印等, 2013; 孙会一等, 2016; 裴磊和刘俊来, 2016)等方面,对岩石韧性变形温度与压力条件的研究(许继峰等, 1994; 张建新等, 1997; 王巧云等, 2006; 陈印, 2014)相对较少。许继峰等(1994)根据黑云母稳定图解及二长石温度计,得到了云蒙山花岗岩变形温度略大于500~600℃,侵位深度为6~7km,属于绿片岩相。张建新等(1997)根据石英组构分析,认为云蒙山剪切带具有高温→中高温→中温→中低温的变形规律。朱大岗等(2000)根据石英和角闪石的X射线岩石组构分析,认为云蒙山经历了中低温-中高温韧性变形。王巧云等(2006)通过黑云母的变形特征和形成环境分析,获得了云蒙山河防口断层带的温度为780~860℃,压力为0.73~0.86GPa,认为其达到了麻粒岩相。陈印(2014)根据岩相学及石英组构分析,获得了四合堂地区剪切带变形温度为400~600℃。以上的结果均存在差异,本文亦基于此对云蒙山糜棱岩韧性变形的具体温度条件以及变化规律进行探讨,以期对该韧性剪切带有进一步认识。

变质作用温度与压力(P-T)条件的估算,一般采用矿物温度与压力计(Koziol and Bohlen, 1992; Nichols et al., 1992; Holdaway, 2000, 2001; Wu et al., 2004; Wu and Chen, 2015a, b; Wu, 2015, 2017)、相平衡模拟(Spear, 1988; Powell et al., 1998; Connolly, 2005; Gaidies et al., 2008)这两种方法。例如,在华北克拉通变质作用研究中,矿物温度与压力计(Jiao and Guo, 2011; 曹晖等, 2013; Lu et al., 2013; Wang et al., 2014; Chen et al., 2015; Meng et al., 2017)、相平衡模拟(Wu et al., 2012; Qian et al., 2013)都发挥了重要作用。但是,韧性剪切带变形作用P-T条件的估算向来是个难题,不仅韧性剪切变形的温度条件难以确定,其压力条件更难以估算。无论是根据糜棱岩中的石英组构(Stipp et al., 2002; 夏浩然和刘俊来, 2011),还是根据动态重结晶石英颗粒分析(王新社等, 2001)或者韧性变形矿物组合(Pennacchioni and Zucchi, 2013)来估算变形作用的P-T条件(向必伟等, 2007),这些方法都还属于半定量方法。近些年来,已有学者采用矿物温度计与压力计(王勇生等, 2004, 2005; Cao et al., 2007; Kohn and Northrup, 2009; Liang et al., 2015)、热力学视剖面图模拟技术(Rossetti et al., 2015; Diener et al., 2016),尝试定量确定韧性变形期间的P-T条件。需要指出的是:(1)先存变质岩、岩浆岩在经受韧性剪切后,可以转变为糜棱岩。此种情况下,需要准确识别哪些矿物组合是原先的变质矿物组合、岩浆矿物组合,哪些才是新生的糜棱岩矿物组合;(2)对于矿物组合简单的糜棱岩,相平衡模拟一般难以约束韧性变形的P-T条件。

云蒙山糜棱岩主要由石英+斜长石+钾长石±黑云母±角闪石等组成,二长石温度计适用于其变形温度的估算。因此,本文选取三个版本的二长石温度计(Fuhrman and Lindsley, 1988; Benisek et al., 2004,2010 )计算糜棱岩变形时的温度条件,采用角闪石全Al压力计(Johnson and Rutherford, 1989)估算糜棱岩韧性变形时期的压力条件,为探讨云蒙山地区构造热演化历史提供科学资料。

1 区域地质

云蒙山位于华北克拉通北部,燕山山脉西段。区内出露主要岩石单元为太古代变质基底、中-新元古界沉积岩盖层,以及侵入其中的云蒙山花岗岩基、石城闪长岩体。花岗岩基呈SSW-NNE向展布,呈不规则的椭圆形,长约25km,宽约12km(图 1)。云蒙山岩基主体为晚侏罗世-早白垩世花岗岩、闪长岩以及花岗闪长岩。锆石U-Pb年龄表明该岩基形成于145~141Ma之间(Davis et al., 1996; 刘翠等, 2004; Wang et al., 2012; 陈印等, 2014)。云蒙山岩基之东、西北为太古代变质基底,主要为四合堂群和密云群,分布在密云、怀柔一带。四合堂群主要由英云闪长质片麻岩、黑云斜长片麻岩以及斜长角闪岩等组成。密云群主要为黑云斜长片麻岩、二辉麻粒岩、石榴辉石岩、石英岩等。云蒙山中-新元古界盖层主要为长城系、蓟县系和青白口系的碳酸盐岩和碎屑岩。下古生界主要为寒武系灰岩,之上为中生界侏罗系安山质火山岩和火山碎屑岩。

云蒙山岩基北部发育逆冲型韧性剪切带,即四合堂韧性剪切带。剪切带上盘为太古代变质基底和中-新元古界盖层,下盘为云蒙山花岗岩及石城闪长岩体。云蒙山岩基东南部发育大水峪韧性剪切带,整体呈NE-NNE向展布,倾向SE,为一条伸展型韧性剪切带。该韧性剪切带被晚白垩世河防口脆性正断层切割,与太古代变质基底、中-新元古界及下古生界盖层呈断层接触。前人已测得大水峪剪切带糜棱岩中角闪石40Ar/39Ar年龄为125Ma(Wang et al., 2012; 陈印, 2014),黑云母K-Ar年龄为120~106Ma(王玉芳等, 1989;Wang et al., 2012),钾长石40Ar/39Ar年龄为118~114Ma(Davis et al., 1996; Wang et al., 2012),说明至少在早白垩世晚期该剪切带就已经开始活动。

图 1 云蒙山地质简图(据张建新等, 1997) 1-花岗岩;2-花岗闪长岩;3-闪长岩;4-糜棱岩带(韧性剪切带);5-太古代片麻岩;6-中元古代碳酸盐岩及碎屑岩;7-中侏罗世火山岩及火山碎屑岩;8-片麻岩;9-片理;10-拉伸线理;11-正断层;12-走滑断层 Fig. 1 Geological sketch map of Mt. Yunmeng (after Zhang et al., 1997) 1-granite; 2-granodiortie; 3-diorite; 4-mylonite zone (ductile shear zone); 5-Archean schist/gneiss; 6-Pt2+3 carbonate rock and clastic rock; 7-J2 volcanic rock and volcaniclastic rock; 8-gneiss; 9-schistosity and gneissosity; 10-stretching lineation; 11-normal fault; 12-strike-slip fault
2 岩石样品特征 2.1 野外地质特征

云蒙山岩基边部发生了韧性变形,形成了宽约1000m的糜棱岩带。随着与岩基距离的增加,花岗质糜棱岩逐渐减少,闪长质糜棱岩逐渐增多。岩石均呈明显的糜棱构造,可见眼球状、卵圆状以及透镜状残斑。残斑主要为斜长石、钾长石及角闪石,基质主要为细粒的石英、长石、黑云母以及角闪石等,呈条带状绕过残斑。糜棱岩带中有后期未变形伟晶岩脉和石榴子石花岗岩脉沿糜棱面理侵入。

样品采集于云蒙山东部的云蒙峡剖面(图 1中A-B、图 2),从花岗岩基开始,自西向东采样。剖面控制了云蒙山岩基及其边部的大水峪韧性剪切带,共采集5个花岗质-闪长质糜棱岩样品(间距约200m,样品编号分别为16Y01、16Y02、16Y04、16Y05、16Y06)。

2.2 显微岩相特征

花岗-闪长质糜棱岩中的主要矿物为石英+斜长石+钾长石±角闪石±黑云母,副矿物主要有绿帘石、绿泥石、磷灰石、榍石、锆石以及磁铁矿等。花岗质糜棱岩中的残斑主要为斜长石和钾长石,闪长质糜棱岩中的残斑为角闪石。两种糜棱岩中的基质主要为细粒的斜长石、钾长石、石英以及条带状的角闪石、黑云母、石英等(图 3)。本文采用沈其韩(2009)推荐的矿物代码。

斜长石  作为残斑和基质在各个样品中均大量存在,部分斜长石颗粒核部发生了绢云母化。斜长石残斑常具有聚片双晶,部分斜长石发育明显的环带结构(图 3a)。斜长石残斑在糜棱岩化过程中受到改造,边部细粒化明显,有些斜长石颗粒破碎为多个消光性不统一的亚颗粒集合体。斜长石基质颗粒边缘可见钠长石围绕斜长石生长(图 3b)。斜长石残斑中通常包裹有角闪石、黑云母、榍石、磁铁矿、磷灰石等矿物颗粒(图 3c)。

  样品16Y01、16Y02与16Y05中钾长石以残斑和基质形式出现,其余样品中钾长石只以基质形式出现。部分钾长石可见卡式双晶。可见钾长石残斑核部包裹斜长石的现象(图 3d)。核部的斜长石包裹体通常由多个细粒的斜长石颗粒组成,具有波状消光现象。正交偏光下可见少数钾长石残斑边部部分转变为“蠕英石”(细小斜长石、石英)的现象(图 3e)。

石英  通常为细粒的基质,具有明显的波状消光特征。部分石英呈压扁拉长的多晶条带,围绕斜长石和钾长石残斑生长。

角闪石  在各个样品中含量差异较大。样品16Y01与16Y05中无角闪石,样品16Y02、16Y04中角闪石含量较少,16Y06中角闪石含量较高(图 3f)。角闪石残斑具有黄绿色-蓝绿色多色性,可见典型的角闪石式解理。部分角闪石被绿帘石等矿物取代。角闪石基质定向排列。残斑角闪石形成角闪石鱼。角闪石残斑边部细粒化不明显。

黑云母  黑云母主要见于花岗闪长质糜棱岩中。黑云母具有黄褐色-红褐色多色性,晶体弯曲变形明显,具有波状消光,定向排列(图 3c)。

图 2 云蒙峡实测剖面图 Fig. 2 Geological cross section of the Yunmengxia Gorge

图 3 云蒙峡糜棱岩显微岩相 (a)斜长石环带结构及边部细粒化;(b)斜长石边部钠长石;(c)斜长石内部包裹体;(d)钾长石的“核幔”结构;(e)钾长石边部的蠕虫状石英;(f)角闪石残斑和基质 Fig. 3 Micropetrographs of the Yunmengxia Gorge mylonite (a) plagioclase zonal texture and its fine-grained edge; (b) albite in the edge of plagioclase; (c) inclusions in plagioclase; (d) the "core-mantle" structure of the K-feldspar; (e) vermicular quartz in the edge of K-feldspar; (f) hornblende porphyroclast and matrix

图 4 糜棱岩BSE图像及长石成分的测试剖面及其方向 Fig. 4 BSE maps of the mylonite and the EPMA analytical transverse and direction of compositional profile of feldspar
3 矿物化学成分

矿物化学成分的电子探针测试在合肥工业大学资源与环境学院JOEL JXA 8230型电子探针仪上完成。实验条件为加速电压15kV,测试电流20nA,电子束斑直径一般为5μm,较小的颗粒采用3μm束斑。数据检测时间为10~20s,实验误差为±2%。使用天然矿物作为标样。共计测试了5个岩石样品。每1个样品中的每一种基质矿物(斜长石、钾长石、角闪石),至少测试3个颗粒,每个矿物颗粒一般测试3~4个探针点。对每个样品中代表性斜长石、钾长石残斑,也进行了电子探针成分剖面分析(图 3图 4,图中箭头为成分剖面测试方向)。代表性矿物的化学成分数据列于表 1中。

表 1 云蒙峡地区糜棱岩代表性矿物化学成分(wt%) Table 1 Chemical compositions of the representative minerals in the mylonite of the Yunmengxia area (wt%)

斜长石  斜长石残斑以更长石为主,斜长石基质主要为更长石和中长石。大部分斜长石残斑发育弱的成分环带,个别颗粒具有明显的成分环带,边部具有扩散环带(图 5a-e)。斜长石基质An值变化范围较大,分为两类:(1)An值与残斑相同的斜长石基质,很可能是糜棱岩化过程中残斑脆性破裂剥离下来的,成分未受到韧性剪切作用的改造;(2)An值明显高于残斑的斜长石基质,经历了动态重结晶,成分发生了改变。以样品16Y01为例,该样品中斜长石残斑An值为0.12~0.19,斜长石基质An值为0.07~0.28。其中,一类斜长石基质An值为0.07~0.19,与残斑An值类似,为残斑脆性破碎的产物,未经历重结晶;另一类斜长石基质An值为0.20~0.27,明显高于斜长石残斑An值,是韧性剪切过程中动态重结晶改造所致。样品16Y04及16Y05中均存在类似现象(图 6a)。样品16Y02及16Y06中斜长石残斑和基质成分区分不明显。

钾长石  钾长石残斑成分较均匀,具有微弱的成分环带,边部发育扩散环带(图 5f-h)。钾长石基质与残斑成分差异较小,钾长石基质Or值整体上高于钾长石残斑Or值。Or值较低的钾长石基质为残斑机械破碎所致,未经历重结晶。Or值高的钾长石基质经历了韧性剪切期间的动态重结晶,化学成分有所改变。以样品16Y01为例。该样品中钾长石残斑Or值为0.89~0.96,主要集中在0.90~0.93;钾长石基质Or值为0.91~0.97,主要集中在0.95~0.96,整体高于钾长石残斑Or值(图 6b)。样品16Y02与16Y05具有同样的规律,样品16Y04与16Y06未见明显的钾长石残斑,含有少量的钾长石基质,其Or值为0.97~1.0。

图 5 斜长石(a-e)和钾长石(f-h)残斑成分剖面 Fig. 5 Chemical compositional profiles of the plagioclase (a-e) and K-feldspar (f-h) porphyroclasts

图 6 糜棱岩中斜长石(a)、钾长石(b)和角闪石(c)基质成分及分类图 Fig. 6 Composition and classification of the fine-grained plagioclase (a), K-feldspar (b) and hornblende (c) in the matrix of the mylonite

角闪石 不同样品中角闪石成分具有一定差异,根据Leake et al. (1997)的划分方案,对各样品的角闪石进行了成分区分(图 6c)。样品16Y02中角闪石以基质形式出现,主要为镁角闪石和铁角闪石。样品16Y04中角闪石也呈基质形式出现,为铁钙镁闪石质角闪石。样品16Y06中同时含有角闪石残斑和基质,其中角闪石基质为钙镁闪石质角闪石,角闪石残斑为镁角闪石和钙镁闪石质角闪石,角闪石残斑的XMg明显高于基质。

4 韧性剪切作用的温度与压力条件估算

脆性破碎的斜长石、钾长石基质来自残斑的机械破碎,成分未达到热力学平衡,故不能用来计算变形的温度条件。只有发生动态重结晶的基质矿物,才能用来计算糜棱岩韧性变形时的温度条件。因此,我们选择邻近的重结晶斜长石、钾长石基质颗粒(尽量选取An值较高的斜长石基质、Or值较高的钾长石基质),进行温度计算。同理,只有基质角闪石才能记录糜棱岩韧性变形时的压力条件。

如果岩石中的斜长石和钾长石保持了热力学平衡态的化学成分,那么两种长石中的An、Ab、Or三个端元相的化学势分别相等,理论上应该记录相同的温度,即TAn=TAb=TOr,这就是二长石温度计的理论基础。目前,二长石温度计已经有多种版本(Ghiorso, 1984; Fuhrman and Lindsley, 1988; Elkins and Grove, 1990; Benisek et al., 2004,2010 )。由于不同版本的温度计采用的热力学参数、活度模型不同,因此对同一斜长石-钾长石矿物对的计算结果会有一定差异。Fuhrman and Lindsley (1988)Benisek et al. (2004,2010)的二长石温度计采用了非对称的三元非理想固溶体混合模型,考虑了Al不相容规则和Al-Si交换对平衡温度的影响,得到了广泛的应用(Jiao and Guo, 2011; Nadin et al., 2016; Zou et al., 2017)。

值得说明的是,在岩浆结晶晚期、变质峰期之后的冷却过程中,如果冷却速率慢的话,K+、Na+离子之间可能发生离子的再交换(扩散),从而破坏原来达到热力学平衡状态的两种长石的化学成分,使得二长石温度计的三个表达式计算结果不一致(Kroll et al., 1993)。Ca2+离子的半径、电价与K+、Na+离子有较大差异,不容易与K+、Na+发生再交换。因此,对此种情况的斜长石和钾长石矿物对,采取保持An值不变的办法,对Ab、Or值进行适当校正,可使校正后的三个温度计算值达到基本一致(TAn=TAb=TOr),这时得到的温度就是斜长石-钾长石的平衡温度(Benisek et al., 2004,2010)。

本文使用Fuhrman and Lindsley (1988)Benisek et al. (2004,2010)这三个版本的温度计,采用Benisek制作的Excel计算表格及其中的规划求解功能,估算五个花岗质-闪长质糜棱岩的变形温度。当二长石温度计计算出的三个温度方差值趋近于0时(varT→0),校正温度接近平衡温度。钾长石中Ca2+含量通常很低(云蒙峡糜棱岩中钾长石的An值同样很低),其An值对TAn影响较大(Fuhrman and Lindsley, 1988),因此通过适当调整An值的办法,使TAnTAbTOr达到基本一致。本文在应用二长石温度计时,采用邻近的发生过动态重结晶的斜长石-钾长石基质对的化学成分,并对钾长石的An值进行了调整。钾长石An值调整方法为,在探针数据计算所得平均An值的基础上,将An值人为增加0.001~0.002,这样引起的温度误差为10~20℃。同一样品中,不同的二长石矿物对记录的平衡温度有所差异,以其平均温度作为糜棱岩变形温度。此外,根据角闪石全Al压力计,根据三个含角闪石糜棱岩的角闪石基质颗粒,估算出变形作用的压力条件为0.43~0.69GPa。研究区三个样品(样品16Y02、16Y04、16Y06)中含有角闪石基质,采用角闪石全Al压力计(Johnson and Rutherford, 1989)估算的韧性变形最低压力为0.43GPa,最高压力为0.69GPa,差异较大。在这短短的1km剖面内,较大的压力差(0.26GPa)表明该压力计用于此处是有问题的。实际上,角闪石全Al压力计适用于估算含有角闪石+斜长石+钾长石+黑云母+石英组合的花岗闪长质岩浆中角闪石的结晶压力(Ague, 1997)。不过,考虑到压力误差对二长石温度计计算误差影响甚小(压力误差±0.1GPa,传导的温度误差 < ±5℃),因此温度的计算中假设压力为0.5GPa是合适的(表 2)。温度与压力计算结果见表 2

表 2 云蒙峡糜棱岩韧性变形的温度与压力条件 Table 2 Temperature and pressure conditions of the mylonite of the Yunmengxia area

图 7 云蒙峡糜棱岩剖面中的变形温度 图中空心符号表示样品16Y02中斜长石基质未经历动态重结晶 Fig. 7 Temperature of mylonitization of the Yunmengxia Gorge mylonite Empty symbols depict that sample 16Y02 did not experience dynamic recrystallization

自西向东,云蒙峡糜棱岩剖面的韧性变形温度条件为:Fuhrman and Lindsley (1988)的温度计得到的最低温度为447℃,最高温度为562℃;Benisek et al. (2004)的温度计得到的最低温度为488℃,最高温度为589℃;Benisek et al. (2010)的温度计得到的最低温度为577℃,最高温度为629℃。Benisek et al. (2010)温度计计算温度最高,比Fuhrman and Lindsley (1988)温度计计算结果高出150℃左右,比Benisek et al. (2004)温度计计算温度高100℃左右。实际应用也发现,Benisek et al. (2010)基于高温量热法测定热力学数据所建立的二长石温度计,计算结果普遍偏高(Jiao and Guo, 2011)。根据岩相学观察及前人对显微组构分析(张建新等, 1997; 朱大岗等, 2000; 陈印等, 2014),Fuhrman and Lindsley (1988)Benisek et al. (2004)的计算结果可能比较客观反映了云蒙山糜棱岩的变形温度。虽然三种二长石温度计的计算温度有差异,但其计算结果具有一致的规律性:沿着远离岩基的方向(自西向东),糜棱岩变形温度逐渐降低(图 7)。其中,样品16Y02中斜长石基质成分与其残斑成分一致,可能不是重结晶的斜长石,因此计算的结果偏离了趋势线。

5 讨论

根据前人研究,云蒙山岩基的锆石U-Pb年龄为145~141Ma(Davis et al., 1996; 刘翠等, 2004; Wang et al., 2012; 陈印等, 2014);变形云蒙山岩基中热液锆石年龄为135Ma(陈印等, 2014);大水峪韧性剪切带糜棱岩中角闪石40Ar/39Ar年龄为125Ma(Wang et al., 2012; 陈印等, 2014);黑云母40Ar/39Ar年龄为120~116Ma(Wang et al., 2012; 陈印等, 2014),K-Ar年龄为118~114Ma(Davis et al., 1996; Wang et al., 2012);钾长石40Ar/39Ar年龄为118~114Ma(Davis et al., 1996; Wang et al., 2012)。陈印等(2014)认为大水峪剪切带强烈活动时间为135~126Ma,核杂岩快速隆升时间为125~114Ma。锆石同位素体系封闭温度>900℃(Lee et al., 1997; Cherniak and Watson, 2001);角闪石同位素体系的封闭温度为500±50℃(Hacker and Wang, 1995);黑云母同位素体系的封闭温度为300±50℃(Dunlap, 1997);钾长石同位素体系的封闭温度为150±30℃(Harrison and McDougall, 1982; 柴田贤和王春宏, 1994)。二长石温度计给出的糜棱岩变形温度在450~620℃,与角闪石的同位素封闭温度一致,高于黑云母和钾长石的同位素体系封闭温度。因此,糜棱岩中角闪石40Ar/39Ar年龄接近其变形年龄,黑云母和钾长石年龄为冷却年龄。

综合上述资料,大水峪剪切带发展的图景可能是:145~141Ma云蒙山花岗岩基侵位,随后形成四合堂韧性剪切带。大水峪剪切带形成于135~126Ma,在125~114Ma剪切带随岩基隆升,岩体逐渐冷却。113~100Ma缓慢抬升至剥露地表,大水峪剪切带温度格局稳定下来。

张建新等(1997)对大水峪剪切带糜棱岩石英组构的研究发现,垂直剪切带走向方向,由下到上(自西向东)石英由高温<c>滑移组构变为低温<a>滑移组构,揭示了温度逐渐降低的规律。本文的二长石温度计计算结果也显示,发现向着背离岩基的方向(自西向东),糜棱岩变形时的温度逐渐降低。这两种分别基于物理学方法、热力学方法得出的结论是一致的。其原因似乎有两个。其一,韧性变形温度条件的递降,可能与云蒙山花岗岩基有关,即岩基向剪切带传递的热量自西而东递降。如果是这样的话,岩基就需要冷却至少~15Ma,这方面还缺少实例论证。其二,短短1km的糜棱岩剖面内,温度递降~100℃,似乎暗示该糜棱岩带内部发育多条次级断裂,导致不同温度条件的构造岩片被叠置在一起。但是,这个现象也还难以识别。因此,剪切带自西而东变形温度递降现象的原因,目前尚难以弄清。

6 初步结论

(1) 北京云蒙山变质核杂岩东侧大水峪剪切带中的云蒙峡糜棱岩形成过程中,部分基质颗粒经历了动态重结晶,另一部分只发生了脆性碎裂;

(2)根据重结晶的斜长石和钾长石基质成分,采用二长石温度计,估算出云蒙峡糜棱岩变形温度条件为450~630℃。随着远离岩基的方向,自西而东糜棱岩变形的温度逐渐降低,与前人通过石英显微组构分析得到的结果一致。

致谢 焦淑娟副研究员在二长石温度计应用方面给予了作者切实指导。李旭平教授、张建新研究员、焦淑娟副研究员提出了宝贵的修改建议。作者谨向他们致以诚挚的谢意。
参考文献
Ague JJ. 1997. Thermodynamic calculation of emplacement pressures for batholithic rocks, California: Implications for the aluminum-in-hornblende barometer. Geology, 25(6): 563-566. DOI:10.1130/0091-7613(1997)025<0563:TCOEPF>2.3.CO;2
Bai ZM. 1991. The characteristics and genesis re-recognized of Yunmeng Mountain complex. Beijing Geology, 3(3): 1-11.
Benisek A, Kroll H and Cemič L. 2004. New developments in two-feldspar thermometry. American Mineralogist, 89(10): 1496-1504. DOI:10.2138/am-2004-1018
Benisek A, Dachs E and Kroll H. 2010. A ternary feldspar-mixing model based on calorimetric data: Development and application. Contributions to Mineralogy and Petrology, 160(3): 327-337. DOI:10.1007/s00410-009-0480-8
Cao H, Li SR, Jiang W, Li Q, Hai DJ and Wang Z. 2013. Research on the petrographic characteristics of the potash feldspathized rock of the Jinqingding gold deposit in the eastern Shandong Province and its forming temperature. Earth Science Frontiers, 20(3): 94-103.
Cao SY, Liu JL and Hu L. 2007. Micro- and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende: Case study of high-grade mylonites from Diancangshan, western Yunnan. Science in China (Series D), 50(10): 1459-1470. DOI:10.1007/s11430-007-0063-3
Chai TX and Wang CH. 1994. The K-Ar dating age and closure temperature of K-feldspar. Geology-Geochemistry, 22(5): 44-49, 16.
Chen HX, Wang J, Wang H, Wang GD, Peng T, Shi YH, Zhang Q and Wu CM. 2015. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Research, 264: 156-178. DOI:10.1016/j.precamres.2015.04.013
Chen Y, Zhu G, Jiang DZ and Zhang BL. 2013. Timing determination of phase B of the Yanshanian Movement in the eastern North China Craton: Evidence from dating of a ductile shear zone in Sihetang, northeastern Beijing. Acta Geologica Sinica, 87(3): 295-310.
Chen Y. 2014. Tectonic evolution for the Yunmengshan metamorphic core complex and the relationship with the destruction of the North China Craton. Ph. D. Dissertation. Hefei: Hefei University of Technology (in Chinese with English summary)
Chen Y, Zhu G, Jiang DZ and Lin SZ. 2014. Deformation characteristics and formation mechanism of the Yunmengshan metamorphic core complex. Chinese Science Bulletin, 59(20): 2419-2438. DOI:10.1007/s11434-014-0167-z
Cherniak DJ and Watson EB. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5-24. DOI:10.1016/S0009-2541(00)00233-3
Connolly JAD. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2): 524-541. DOI:10.1016/j.epsl.2005.04.033
Dale J, Holland T and Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3): 353-362. DOI:10.1007/s004100000187
Darby BJ, Davis GA, Zhang XH, Wu FY, Wilde S and Yang JH. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulü Shan, western Liaoning Province, Northwest China. Earth Science Frontiers, 11(3): 145-155.
Davis GA, Qian XL, Zheng YD, Tong H, Yu H, Gehrels GE, Shafiqullah M and Fryxell J. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan: A metamorphic core complex north of Beijing, China. In: Yin A and Harrison TM (eds. ). The Tectonic Evolution of Asia. London: Cambridge University Press, 253-279
Diener JFA, Fagereng Å and Thomas SAJ. 2016. Mid-crustal shear zone development under retrograde conditions: Pressure-temperature-fluid constraints from the Kuckaus Mylonite Zone, Namibia. Solid Earth, 7(5): 1331-1347. DOI:10.5194/se-7-1331-2016
Dunlap WJ. 1997. Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chemical Geology, 143(3-4): 181-203. DOI:10.1016/S0009-2541(97)00113-7
Elkins LT and Grove TL. 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist, 75(5-6): 544-559.
Fuhrman ML and Lindsley DH. 1988. Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3-4): 201-215.
Gaidies F, de Capitani C and Abart R. 2008. THERIA_G: A software program to numerically model prograde garnet growth. Contributions to Mineralogy and Petrology, 155(5): 657-671. DOI:10.1007/s00410-007-0263-z
Gao S, Zhang JF, Xu WL and Liu YS. 2009. Delamination and destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378.
Ghiorso MS. 1984. Activity/composition relations in the ternary feldspars. Contributions to Mineralogy and Petrology, 87(3): 282-296. DOI:10.1007/BF00373061
Hacker BR and Wang QC. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14(4): 994-1006. DOI:10.1029/95TC00932
Harrison TM and McDougall I. 1982. The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar-39Ar age spectrum results. Geochimica et Cosmochimica Acta, 46(10): 1811-1820. DOI:10.1016/0016-7037(82)90120-X
Holdaway MJ. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85(7-8): 881-892. DOI:10.2138/am-2000-0701
Holdaway MJ. 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10): 1117-1129. DOI:10.2138/am-2001-1001
Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447. DOI:10.1007/BF00310910
Ji GY, Wang Y and Sun YH. 2004. Petrological characteristics and structural deformation of Yunmengshan magmatic complex, Beijing. Beijing Geology, 16(3): 1-11.
Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China Craton and its implications. American Mineralogist, 96(2-3): 250-260. DOI:10.2138/am.2011.3500
Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837-841. DOI:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Kohn MJ and Northrup CJ. 2009. Taking mylonites' temperatures. Geology, 37(1): 47-50. DOI:10.1130/G25081A.1
Koziol AM and Bohlen SR. 1992. Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments. American Mineralogist, 77(7-8): 765-773.
Kroll H, Evangelakakis C and Voll G. 1993. Two-feldspar geothermometry: A review and revision for slowly cooled rocks. Contributions to Mineralogy and Petrology, 114(4): 510-518. DOI:10.1007/BF00321755
Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo YZ. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246.
Lee JKW, Williams IS and Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656): 159-162. DOI:10.1038/36554
Li G, Liu ZH, Liu JL, Li YF, Xu ZY and Dong XJ. 2012. Formation and timing of the extensional ductile shear zones in Yiwulü Mountain area, western Liaoning Province, North China. Science China (Earth Sciences), 55(5): 733-746. DOI:10.1007/s11430-012-4397-0
Li JB, Wang T and Ouyang ZX. 2010. Strain and kinematic vorticity analysis of the Louzidian low-angle ductile shear detachment zone in Chifeng, Inner Mongolia, China. Science China (Earth Sciences), 53(11): 1611-1624. DOI:10.1007/s11430-010-4041-9
Liang CY, Liu YJ, Neubauer F, Bernroider M, Jin W, Li WM, Zeng ZX, Wen QB and Zhao YL. 2015. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton. Journal of Structural Geology, 78: 27-51. DOI:10.1016/j.jsg.2015.06.007
Liu C, Deng JF, Su SG, Xiao QH, Luo ZH, Wang QH and Xu LQ. 2004. Zircon SHRIMP dating of Yunmengshan gneissic granite and its geological significance. Acta Petrologica et Mineralogica, 23(2): 141-146.
Liu SW. 1990. The two different evolutional trends of Sihetang granitoid complex, Beijing. Journal of Changchun University of Earth Science, 20(2): 147-156.
Lu JS, Wang GD, Wang H, Chen HX and Wu CM. 2013. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research, 238: 61-77. DOI:10.1016/j.precamres.2013.09.019
Ma YS, Cui SQ, Wu GG, Wu ZH, Zhu DG, Li X and Feng XY. 1999. The structural feature of metamorphic core complex in Yiwulüshan mountains, West Liaoning. Acta Geoscientia Sinica, 20(4): 385-391.
Meng J, Peng T, Liu JH, Zhang HCG, Wang GD, Lu JS, Chen HX, Wang HYC, Zhang QWL and Wu CM. 2017. Metamorphic evolution and SIMS zircon U-Pb geochronology of mafic granulite and amphibolite enclaves of the Pingyang trondhjemitic pluton, Fuping terrane, North China. Precambrian Research, 303: 75-90. DOI:10.1016/j.precamres.2017.02.014
Nadin ES, Saleeby J and Wong M. 2016. Thermal evolution of the Sierra Nevada batholith, California, and implications for strain localization. Geosphere, 12(2): 377-399. DOI:10.1130/GES01224.1
Nichols GT, Berry RF and Green DH. 1992. Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: Geothermobarometry and applications. Contributions to Mineralogy and Petrology, 111(3): 362-377. DOI:10.1007/BF00311197
Pei L and Liu JL. 2016. Structural deformation characteristics and geochronological constraints on the early deformation of Sihetang ductile thrust shear zone in Yunmengshan, northern Beijing. Acta Petrologica Sinica, 32(9): 2723-2738.
Pennacchioni G and Zucchi E. 2013. High temperature fracturing and ductile deformation during cooling of a pluton: The Lake Edison granodiorite (Sierra Nevada batholith, California). Journal of Structural Geology, 50: 54-81. DOI:10.1016/j.jsg.2012.06.001
Powell R, Holland T and Worley B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4): 577-588. DOI:10.1111/j.1525-1314.1998.00157.x
Qian JH, Wei CJ, Zhou XW and Zhang YH. 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. DOI:10.1016/j.precamres.2013.05.012
Rossetti F, Glodny J, Theye T and Maggi M. 2015. Pressure-temperature-deformation-time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse. Lithos, 218-219: 99-116
Shen QH. 2009. The recommendation of a systematic list of mineral abbreviations. Acta Petrologica et Mineralogica, 28(5): 495-500.
Shi YR, Zhao XT, Ma YS, Hu DG, Liu QS, Wu ZH, Zhao YY and Liu DY. 2009. Late Jurassic-Early cretaceous plutonism in the northern part of the Precambrian North China Craton: SHRIMP zircon U-Pb dating of diorites and granites from the Yunmengshan Geopark, Beijing. Acta Geologica Sinica, 83(2): 310-320. DOI:10.1111/acgs.2009.83.issue-2
Spear FS. 1988. The Gibbs method and Duhem's theorem: The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems. Contributions to Mineralogy and Petrology, 99(2): 249-256. DOI:10.1007/BF00371465
Stipp M, Stünitz H, Heilbronner R and Schmid SM. 2002. The eastern Tonale fault zone: A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884. DOI:10.1016/S0191-8141(02)00035-4
Sun HY, Shi YR, Zhao XT, Hu DG, Ma YS and Liu DY. 2016. SHRIMP zircon U-Pb ages of Early Cretaceous granites in Miyun area of Beijing and their geological significance. Journal of Earth Sciences and Environment, 38(1): 43-54.
Wang GD, Wang H, Chen HX, Lu JS and Wu CM. 2014. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: Insights into the Palaeoproterozoic amalgamation of the North China Craton. Precambrian Research, 235: 100-114.
Wang QY, Yan DP, Su BX, Zhou M and Hu RZ. 2006. Tectono-thermal evolution of the detachment fault along the southeastern margin of the Yunmeng Shan metamorphic core complex in the northern part of Beijing. Geological Bulletin of China, 25(4): 448-453.
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345. DOI:10.1016/j.lithos.2012.07.020
Wang XS, Zheng YD, Yang CH and Hou GT. 2001. Determination of the deformation temperature and strain rate by the fractal shape of dynamically recrystallized quartz grains. Acta Petrologica et Mineralogica, 20(1): 36-41.
Wang XS and Zheng YD. 2005. 40Ar/39Ar age constraints on the ductile deformation of the detachment system of the Louzidian core complex, southern Chifeng, China. Geological Review, 51(5): 574-582.
Wang YF, Hu ZD and Zheng YD. 1989. K-Ar Age and Characteristics of Clay Mineral from Fault Gouges in Yunmengshan Area, Beijing. Beijing: Peking University Press (in Chinese)
Wang YS, Zhu G, Wang DX, Liu GS and Song CZ. 2004. Relation between P-T contitions of two phases of Tanlu strike-slip shear zones and delamination of the orogenic belts on the eastern margin of the Dabie mountains. Geotectonica et Metallogenia, 28(3): 228-238.
Wang YS, Zhu G, Wang DX, Song CZ and Liu GS. 2005. An attempt to apply three geothermometers in the interpretation of low-temperature mylonites in the southern segment of the Tanlu fault zone. Geology in China, 32(4): 625-633.
Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology, 45(9): 1907-1921. DOI:10.1093/petrology/egh038
Wu CM. 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2): 167-176. DOI:10.1111/jmg.12115
Wu CM and Chen HX. 2015a. Calibration of a Ti-in-muscovite geothermometer for ilmenite- and Al2SiO5-bearing metapelites. Lithos, 212-215: 122-127
Wu CM and Chen HX. 2015b. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Science Bulletin, 60(1): 116-121. DOI:10.1007/s11434-014-0674-y
Wu CM. 2017. Calibration of the garnet-biotite-Al2SiO5-quartz geobarometer for metapelites. Journal of Metamorphic Geology, 35(9): 983-998. DOI:10.1111/jmg.2017.35.issue-9
Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174.
Wu ML, Zhao GC, Sun M, Yin CQ, Li SZ and Tam PY. 2012. Petrology and P-T path of the Yishui mafic granulites: Implications for tectonothermal evolution of the western Shandong complex in the Eastern Block of the North China Craton. Precambrian Research, 222-223: 312-324
Xia HR and Liu JL. 2011. The crystallographic preferred orientation of quartz and its applications. Geological Bulletin of China, 30(1): 58-70.
Xiang BW, Zhu G, Wang YS, Xie CL and Hu ZQ. 2007. Mineral deformation thermometer for mylonitization. Advances in Earth Science, 22(2): 126-135.
Xu JF, Wang RJ and Yang SR. 1994. Rock deformation and genesis of Yunmengshan granitic batholith. Earth Science (Journal of China University of Geosciences), 19(6): 806-814.
Zeng LS, Zhang JX, Xu ZQ and Qiu XP. 2006. Geochemical characteristics of leucogranitic dikes and sheared granites in the Yunmeng Mountains, northeastern Beijing. Acta Petrologica et Mineralogica, 25(3): 203-209.
Zhang JS, Passchier CW, Konopasek J, Niu XL and Huang XN. 2007. Evidence for coalescing of extensional detachment and magma diapirism during uplift of the Yunmengshan metamorphic core complex. Earth Science Frontiers, 14(4): 26-39.
Zhang JX, Zeng LS and Qiu XP. 1997. Granite dome and extensional tectonics in the Yunmeng mountains, Beijing. Geological Review, 43(3): 232-240.
Zhao MT and Wang Y. 2014. Geochemical characteristics and petrogenesis of the Shicheng diorite and Yunmengshan granite in Beijing area. Journal of Mineralogy and Petrology, 34(3): 60-69.
Zheng Y, Wang Y, Liu R and Shao J. 1988. Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beijing, China. Journal of Structural Geology, 10(2): 135-144. DOI:10.1016/0191-8141(88)90111-3
Zhu DG, Cui SQ, Wu ZH, Ma YS and Feng XY. 2000. Tectonic features of the compressional-extensional system and dynamic analysis of rock fabric in Yunmengshan area, Beijing. Acta Geoscientia Sinica, 21(4): 337-344.
Zou Y, Zhai MG, Santosh M, Zhou LG, Zhao L, Lu JS and Shan HX. 2017. High-pressure pelitic granulites from the Jiao-Liao-Ji Belt, North China Craton: A complete P-T path and its tectonic implications. Journal of Asian Earth Sciences, 134: 103-121. DOI:10.1016/j.jseaes.2016.10.015
白志民. 1991. 云蒙山杂岩体的特征及成因再认识. 北京地质, (3): 1-11.
曹晖, 李胜荣, 姜文, 李青, 海东婧, 王真. 2013. 胶东金青顶金矿钾长石化岩相学特征及形成温度的估算. 地学前缘, 20(3): 94-103.
柴田贤, 王春宏. 1994. 钾长石的K-Ar年龄和封闭温度. 地质地球化学, 22(5): 44-49, 16.
陈印, 朱光, 姜大志, 张必龙. 2013. 四合堂剪切带活动时代及其对燕山运动B幕时间的限定. 地质学报, 87(3): 295-310.
陈印. 2014. 云蒙山变质核杂岩的演化及其与华北克拉通破坏的关系. 博士学位论文. 合肥: 合肥工业大学
陈印, 朱光, 姜大志, 林少泽. 2014. 云蒙山变质核杂岩的变形规律与发育机制. 科学通报, 59(16): 1525-1541.
高山, 章军峰, 许文良, 刘勇胜. 2009. 拆沉作用与华北克拉通破坏. 科学通报, 54(14): 1962-1973.
姬广义, 汪洋, 孙永华. 2004. 北京云蒙山岩浆杂岩体的岩石学和构造变形特征. 北京地质, 16(3): 1-11.
李刚, 刘正宏, 刘俊来, 李永飞, 徐仲元, 董晓杰. 2012. 医巫闾山伸展型韧性剪切带的形成过程及年代学证据. 中国科学(地球科学), 42(6): 879-892.
李建波, 王涛, 欧阳志侠. 2010. 内蒙古赤峰楼子店低角韧性剪切拆离带的应变与运动学涡度分析. 中国科学(地球科学), 40(7): 840-854.
刘翠, 邓晋福, 苏尚国, 肖庆辉, 罗照华, 王启航, 许立权. 2004. 北京云蒙山片麻状花岗岩锆石SHRIMP定年及其地质意义. 矿物岩石学杂志, 23(2): 141-146.
刘树文. 1990. 北京四合堂花岗质杂岩的两种演化趋势. 长春地质学院学报, 20(2): 147-156.
马寅生, 崔盛芹, 吴淦国, 吴珍汉, 朱大岗, 李晓, 冯向阳. 1999. 医巫闾山变质核杂岩构造特征. 地球学报, 20(4): 385-391.
裴磊, 刘俊来. 2016. 京北云蒙山地区四合堂韧性逆冲型剪切带的变形特征及早期变形时限约束. 岩石学报, 32(9): 2723-2738.
沈其韩. 2009. 推荐一个系统的矿物缩写表. 岩石矿物学杂志, 28(5): 495-500.
孙会一, 石玉若, 赵希涛, 胡道功, 马寅生, 刘敦一. 2016. 北京密云地区早白垩世花岗岩SHRIMP锆石U-Pb年龄及其地质意义. 地球科学与环境学报, 38(1): 43-54.
王巧云, 严丹平, 苏本勋, 周密, 胡瑞忠. 2006. 京北云蒙山变质核杂岩南东侧剥离断层带的构造热演化. 地质通报, 25(4): 448-453.
王新社, 郑亚东, 杨崇辉, 侯贵廷. 2001. 用动态重结晶石英颗粒的分形确定变形温度及应变速率. 矿物岩石学杂志, 20(1): 36-41.
王新社, 郑亚东. 2005. 楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束. 地质论评, 51(5): 574-582.
王玉芳, 胡振铎, 郑亚东. 1989. 北京云蒙山区断层泥中黏土矿物特征及钾氩年龄的地质意义. 见: 岩石圈地质科学. 北京: 北京大学出版社
王勇生, 朱光, 王道轩, 刘国生, 宋传中. 2004. 大别山东缘郯庐两期走滑剪切带形成的温压条件与造山带折返的关系. 大地构造与成矿学, 28(3): 228-238.
王勇生, 朱光, 王道轩, 宋传中, 刘国生. 2005. 地质温度计在郯庐断裂带南段低温糜棱岩中的尝试. 中国地质, 32(4): 625-633.
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70.
向必伟, 朱光, 王勇生, 谢成龙, 胡召齐. 2007. 糜棱岩化过程中矿物变形温度计. 地球科学进展, 22(2): 126-135.
许继峰, 王人镜, 杨淑荣. 1994. 北京云蒙山花岗岩基的岩石变形及其成因. 地球科学—中国地质大学学报, 19(6): 806-814.
曾令森, 张建新, 许志琴, 邱小平. 2006. 北京云蒙山浅色花岗岩脉及韧性剪切变形的地球化学特征. 岩石矿物学杂志, 25(3): 203-209.
张家声, Passchier CW, Konopasek J, 牛向龙, 黄雄南. 2007. 云蒙山变质核杂岩抬升过程中伸展拆离和岩浆底辟联合作用的证据. 地学前缘, 14(4): 26-39.
张建新, 曾令森, 邱小平. 1997. 北京云蒙山地区花岗岩穹隆及伸展构造的探讨. 地质论评, 43(3): 232-240.
赵美涛, 汪洋. 2014. 北京石城闪长岩和云蒙山花岗岩岩石地球化学特征及成因. 矿物岩石, 34(3): 60-69.
朱大岗, 崔盛芹, 吴珍汉, 马寅生, 冯向阳. 2000. 北京云蒙山地区挤压-伸展体系构造特征及其岩石组构的动力学分析. 地球学报, 21(4): 337-344.