岩石学报  2018, Vol. 34 Issue (6): 1775-1791   PDF    
内蒙古西乌旗大石寨组火山岩年代学和地球化学特征及地质意义
张晓飞1,2 , 周毅2 , 刘俊来1 , 李树才2 , 王必任2 , 滕超2 , 曹军2 , 张华川2     
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质调查局国土资源实物地质资料中心, 燕郊 065201
摘要:中亚造山带南缘二叠纪火山岩的成因及形成环境一直存在争议。本文以内蒙古西乌旗罕乌拉地区发育的大石寨组火山岩为研究对象,对其开展了野外地质、岩石学、锆石U-Pb同位素年代学、地球化学研究。大石寨组火山岩为一套中酸性火山熔岩-碎屑岩组合,岩性以流纹岩为主。锆石LA-ICP-MS U-Pb同位素定年结果显示,2件流纹岩样品的206Pb/238U年龄加权平均值分别为276±0.81Ma(MSWD=1.3)和280±0.76Ma(MSWD=0.69),说明大石寨组流纹岩喷发于早二叠世,反映了早二叠世的构造岩浆作用事件。岩石地球化学研究表明,大石寨组火山岩为一套中酸性火山岩,以高硅、富碱为特征,Ti、Mg、Fe、Ca等元素含量较低;微量元素总体含量较高,具有一致的配分曲线,Rb、Th、U、K、LREE等大离子亲石元素相对于Nb、Ta、HREE等高场强元素明显富集;稀土元素总量偏高,具一致的右倾"海鸥式"配分型式。在微量元素原始地幔标准化蛛网图上显示明显的Ba、Sr、P、Eu和Ti的负异常。10000Ga/Al平均值3.6。地球化学特征显示该套火山岩具有岛弧火山岩的属性,类似A型花岗岩的地球化学特征,为高温低压下长英质地壳部分熔融的产物。结合地球化学特征及区域地质资料,大石寨组火山岩最可能形成于弧后扩张环境,是早二叠世古亚洲洋闭合前洋壳俯冲消减作用的产物。
关键词: 中亚造山带     西乌旗     大石寨组     早二叠世     A型     弧后扩张    
Geochronology and geochemistry for volcanic rocks of Dashizhai Formation and its geological significance in Xi U jimqin Banner, Inner Mongolia
ZHANG XiaoFei1,2, ZHOU Yi2, LIU JunLai1, LI ShuCai2, WANG BiRen2, TENG Chao2, CAO Jun2, ZHANG HuaChuan2     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Cores and Samples center of Land and Resources, China Geological Survey, Yanjiao 065201, China
Abstract: The petrogenesis and tectonic environments of the Permian volcanic rocks in southern the Central Asia Orogenic Belt (CAOB) are controversial for a long time. The authors choose the volcanic rocks of Dashizhai Formation, which located in Hanwula of Xi U jimqin Banner, Inner Mongolia, as the studied object, and study detailed on filed geology, petrology, zircon U-Pb isotopic geochronology and geochemistry. The volcanic rocks occur petrologically as a set of intermediate-acid volcanic lava-clastic rocks, and are mainly composed of rhyolite. LA-ICP-MS zircon U-Pb ages of 276±0.81Ma (MSWD=1.3) and 280±0.76Ma (MSWD=0.69) from two rhyolite samples uniformly indicate that these rhyolites of the Dashizhai Formation erupted in the Early Permian, representing a violent tectono-magmatism event. The petrological and geochemical analysis reveal that the intermediate-acid rocks are characterized by enrichment of Si and alkaline, depletion of Ti, Mg, Fe and Ca, and abundance in trace elements and REEs, exhibiting a right-inclined seagull-type distribution pattern. The LILE, e.g. Rb, Th, U, K and LREE are richer than HFSE like Nb, Ta and HREE. The rocks are also featured remarkably by negative anomalies of Ba, Sr, P, Eu and Ti on the primitive mantle-normalized trace element diagram. The average value of 10000Ga/Al is 3.6. All these characteristics suggest that the volcanic rocks were geochemically formed in an island-arc setting, and are similar to geological features of A-type granites originated from the partial melting of felsic crust under high temperature and low pressure conditions. Combined with the geochemistry characteristics and the regional geology data, the rocks were most probably formed in a back-arc spreading environment, and are products of subduction of Paleoasian Oceanic crust before its closure in Early Permian.
Key words: Central Asia Orogenic Belt (CAOB)     Xi U jimqin Banner     Dashizhai Formation     Early Permian     A-type     Back-arc spreading    

分隔西伯利亚板块与华北板块的古亚洲洋最终闭合的时间和位置一直是华北板块北缘地质研究中的热点问题(王荃, 1986; Tang, 1990; 邵济安, 1991; 邵济安等, 2014, 2015a, b; 徐备和陈斌, 1997; 李双林和欧阳自远, 1998; Xiao et al., 2003; 李锦轶等, 2007; Windley et al., 2007; Jian et al., 2010; Eizenhöfer et al., 2015; Song et al., 2015; Liu et al., 2017),这些问题涉及到该区在古亚洲洋闭合前后的构造位置及构造属性等一系列关键科学问题,进而影响在矿产资源勘探方面的突破,具有重要的资源战略意义。内蒙古中东部地区是古亚洲洋最终闭合的关键部位,也是探讨中亚造山带南缘晚古生代构造演化的突破点。

内蒙古地区位于华北板块和西伯利亚板块的对接部位,发育若干条不连续的蛇绿岩带,由南向北可分为:温都尔庙-柯单山(西拉木伦河)蛇绿岩带、索伦山-林西蛇绿岩带、交其尔-锡林浩特蛇绿岩带和二连浩特-贺根山蛇绿岩带(梁日暄, 1994; 黄金香等, 2006; Miao et al., 2008; 李英杰等, 2015)。二连-贺根山蛇绿岩带曾被认为是华北板块与西伯利亚板块的最终缝合位置,但最新研究成果多认为两大板块最终沿索伦缝合带闭合(Tang, 1990; Xiao et al., 2003; Chen et al., 2000, 2009; Jian et al., 2012; 黄波等, 2016)。对于其最终闭合的时限仍没达成共识,一种观点认为华北板块与西伯利亚板块在中、晚泥盆世-早石炭世闭合(洪大卫等, 1994; 徐备和陈斌, 1997; Zhu et al., 2001; 施光海等, 2004; 周志广等, 2010; 方俊钦等, 2014; 邵济安等, 2014, 2015a, b)。主要依据包括:白音乌拉-东乌珠穆沁旗早二叠世碱性花岗岩带,被认为属造山后A型花岗岩,而作为造山作用结束的标志(洪大卫等, 1994);东乌珠穆沁旗满都胡宝拉格地区发现了早-中二叠世地层中富含华夏植物群化石,据此认为两大板块缝合的时间应在早二叠世之前(周志广等, 2010);方俊钦等(2014)对西乌珠穆沁旗中二叠统哲斯组宏体化石及其沉积相分析,认为其以浅海相和滨浅海相为主体,而非深海洋盆。另一种观点认为两大板块的最终碰撞发生在晚二叠-早三叠世(陈斌等, 2001; 任收麦和黄宝春, 2002; Xiao et al., 2003; 尚庆华, 2004; 张拴宏等, 2010; Eizenhöfer et al., 2015; Li et al., 2017b; Liu et al., 2017)。其依据如:苏左旗-西乌旗地区广泛发育晚石炭世至早二叠世岛弧岩浆作用(陈斌等, 2001; 刘建峰等, 2009; 康健丽等, 2016);华北板块北缘毛登、哲斯敖包、西拉木伦河北部地区发现中二叠世放射虫化石(王玉净和樊志勇, 1997; 尚庆华, 2004; 王惠等, 2005)。

存在上述认识分歧的原因,主要是对华北板块北缘在晚古生代与中生代之交的构造属性认识不同。内蒙古中东部地区广泛发育的晚古生代晚期大石寨组火山岩为研究这一问题提供了重要线索。本文在西乌旗罕乌拉地区呼格吉勒图、巴彦华、巴彦布拉格、彦吉嘎庙四个图幅1:5万区域地质填图基础上(面积1464km2),通过罕乌拉地区大石寨组中酸性火山岩的岩石学、地质年代学及岩石地球化学特征,结合野外地质资料,探讨该套岩石的成因、形成背景,希望对中亚造山带南缘二叠纪构造演化提供新的依据。

1 地质背景 1.1 区域地质背景

内蒙古西乌珠穆沁旗位于华北板块与西伯利亚板块所夹持的中亚造山带东段(兴蒙造山带)中部,大地构造位置上处于北部贺根山蛇绿岩带和南部索伦缝合带之间的白彦宝力道弧岩浆岩带(图 1a)。区域上出露最老的地层单元是锡林郭勒变质杂岩,为一套具角闪岩相-绿片岩相变质和强烈变形岩系,由于变质程度较深,缺乏化石依据,关于该杂岩的时代归属存在较大争议,其从早元古代到早古生代(郝旭和徐备, 1997; Shi et al., 2003; Chen et al., 2009; 葛梦春等, 2011; Li et al., 2017a)。葛梦春等(2011)将锡林浩特地区的“锡林郭勒杂岩”解体为一套表壳岩及晚元古代基性-超基性侵入岩和早古生代酸性侵入岩,并将表壳岩厘定为锡林浩特岩群,形成时代推定为中元古代(周文孝和葛梦春, 2013)。晚石炭世至二叠纪依次发育有本巴图组、阿木山组、寿山沟组、大石寨组、哲斯组海相地层及林西组陆相地层等晚古生代岩石地层单元。区域内岩浆活动频繁,发育晚古生代到新生代侵入岩和火山岩。

图 1 研究区地质简图(a, 据Xiao et al., 2003) 1-第四系;2-中生界火山岩;3-下二叠统大石寨组一段;4-下二叠统大石寨组二段;5-下二叠统寿山沟组一段;6-下二叠统寿山沟组二段;7-中元古界锡林浩特岩群;8-早白垩世碱长花岗岩;9-早白垩世花岗斑岩;10-早中三叠世二长花岗岩;11-早二叠世辉长岩;12-早二叠世辉石闪长岩;13-早二叠世碱长花岗岩;14-角度不整合界线;15-实测断层;16-地质定年样品采集点;17-实测剖面位置 Fig. 1 Geological sketch map of the study area (a, after Xiao et al., 2003)

研究区位于西乌旗东北部罕乌拉地区,区域上出露的地层单元由老至新依次为中元古界锡林浩特岩群,为一套二云(石英)片岩、含石榴石英片岩夹斜长角闪岩,与下二叠统寿山沟组为逆断层接触。二叠系在该区较为发育,地层从下到上依此为下二叠统寿山沟组、大石寨组、中二叠统哲斯组。寿山沟组为一套浅变质海相细碎屑岩组合,与大石寨组为逆断层接触。大石寨组为一套海相火山-沉积岩组合。哲斯组为一套滨浅海相碎屑岩夹碳酸盐岩组合,灰岩中发育较为丰富的珊瑚、腕足、海百合茎、苔藓虫化石。区内岩浆岩主要发育有早二叠世辉长岩、辉石闪长岩及碱长花岗岩侵入体(伊和绍荣复式岩体)、大石寨组火山岩;早、中三叠世花岗闪长岩、二长花岗岩侵入体;早白垩世花岗斑岩、碱长花岗岩,中生代陆相火山岩,其呈不整合覆盖于下伏地层之上。

1.2 大石寨组特征

大石寨组主要分布于研究区的中部,出露面积约44.8km2,地貌上多成凸起的高山,呈近东西向、北东东向带状展布(图 1图 2)。与早期基底地层没有直接接触,与下二叠统寿山沟组为逆断层接触,被二叠纪、三叠纪及早白垩世岩体侵入、中生代火山岩和大面积第四系覆盖。经详细的野外地质调查及室内综合分析,将该地区的大石寨组地层由下至上分为两个岩性段:下段为一套滨浅海碎屑岩石组合,岩性主要包括黑色泥质板岩、砂岩及沉凝灰角砾岩,偶夹结晶灰岩,底部为砂砾岩;上段为一套中酸性火山熔岩-碎屑岩组合,岩性主要包括灰白色流纹岩、流纹质浆屑熔结凝灰岩、流纹质晶屑凝灰岩,局部夹灰绿色英安岩、砂泥岩等。

图 2 罕乌拉地区大石寨组实测剖面图 1-砂砾石;2-凝灰质砾岩;3-泥质细砂岩;4-粉砂岩;5-凝灰质粉砂岩;6-钙质粉砂岩;7-粉砂质泥岩;8-泥岩;9-粉砂质泥质板岩;10-泥质板岩;11-流纹岩;12-流纹质角砾凝灰岩;13-流纹质晶屑凝灰岩;14-碱长花岗岩;15-实测断层;16-地层代号;17-产状;18-地质定年样品采集点 Fig. 2 Geological section of the Dashizhai Formation in Hanwula
2 样品和分析测试

本文选择大石寨组下段的中酸性火山岩为研究对象,本次共采集10件样品进行分析。其中对样品B1709和Pm23B109进行了锆石U-Pb年代学分析,采样点地理坐标分别为N44°46′29″、E118°39′05″;N44°46′29″、E118°54′18″。并对其内9件样品进行了主量和微量元素地球化学分析。

2.1 岩相学特征

野外可见大石寨组下段岩石早期轻微糜棱岩化,晚期叠加脆性变形,碎裂普遍,岩石破碎呈大小不等碎块,位移不明显,局部细碎,裂隙内为玉髓充填,局部铁质充填(图 3a, b)。

图 3 大石寨组火山岩宏观及显微特征 (a、b)研究样品野外照片;(c)流纹构造;(d)显微文象结构;(e、f)斑状结构(卡斯巴双晶);Kf-钾长石;Q-石英 Fig. 3 Field outcrop and microscopic characteristics of volcanic rocks from Dashizhai Formation

流纹岩岩石多呈灰白色、浅灰黄色,具斑状结构、少斑状结构,基质隐嵌晶结构,流纹构造(图 3c)。斑晶占2%~5%,主要由斜长石、钾长石、石英组成,粒径0.5~2.5mm。斜长石:板状,聚片双晶宽窄不一,为钠更长石。钾长石:半自形板柱状,多具卡斯巴双晶,局部可见受后期应力作用形成书斜构造,两侧弱见有暗色矿物应力影(图 3e, f)。石英:普遍眼球状,少数粒状,定向排列,波状消光明显。基质呈霏细粒状,长英质,局部长石和石英共结形成显微文象结构(图 3d),普遍糜棱岩化颗粒界限不清,略呈流动状,其中粘土矿物条纹状断续分布,铁质质点普遍,局部绿泥石不规则集中。

英安岩岩石多呈浅灰黑色、灰色、暗紫红色。岩石具斑状结构,基质隐嵌晶结构,块状构造。斑晶占10%~15%,粒径0.5~4mm,主要为斜长石、辉石。斜长石:板状、聚斑状,聚片双晶、环带结构发育,为中长石。单斜辉石:浅绿色,短柱状、粒状,柱面一组解理,斜消光,少量。基质斑块状,石英或长英质颗粒中嵌布针柱状、粒状长石微晶,无规则排列组成,结构均匀,斑块石英、长英质颗粒大小0.2 mm以下,分布普遍。

2.2 测试方法

经薄片显微镜下鉴定后,选择新鲜样品用于地球化学分析。主量元素和微量元素分析均在河北省区域地质矿产调查研究所实验室完成。主量元素采用X射线荧光光谱仪法,分析精度优于5%;微量元素采用X Serises 2电感耦合等离子体质谱ICP-MS分析方法,精度和准确度优于5%。

锆石单矿物分选由河北省区域地质调查研究所完成。锆石制靶、阴极发光(CL)照相测试由北京锆年领航科技有限公司完成。锆石U-Pb同位素定年在天津地质矿产研究所利用LA-ICP-MS进行分析,ICP-MS为Agilent 7500a。本次实验采用的激光束斑直径为35μm,以氦气作为剥蚀物质的载气。LA-ICP-MS分析的详细方法和流程见袁洪林等(2003)描述。测试数据的计算处理采用ISO-PLOT3.0程序(Ludwig, 2003)。所有数据点年龄值的误差均为1σ,采用206Pb/238U年龄,其加权平均值具95%的置信度(Andersen, 2002; Ludwig, 2003)。

3 分析结果 3.1 锆石年代学

流纹岩(B1709)所选锆石呈黄色、黄粉色,透明,金刚光泽,为自形-半自形,呈柱状、断柱状、短柱状,晶体长介于70~110μm之间,宽介于40~70μm之间,晶体长宽比多介于1:1到2:1之间。在CL图像(图 4a)中,锆石具有典型的岩浆韵律环带和明暗相间的条带结构,表明为岩浆结晶产物(简平等, 2001; 吴元保和郑永飞, 2004)。锆石U-Pb测年结果见表 1,24个点的测试结果显示锆石的Th/U比值介于0.31~0.65之间。综合以上特征可见,所测锆石应属岩浆成因。

图 4 大石寨组流纹岩锆石阴极发光图像和U-Pb谐和图 Fig. 4 CL images and concordian U-Pb diagrams of zircons from the rhyolites of the Dashizhai Formation

表 1 大石寨组流纹岩锆石LA-ICP-MS U-Pb年龄分析结果 Table 1 Zircons LA-ICP-MS U-Pb data from the rhyolites of Dashizhai Formation

在锆石U-Pb年龄谐和图中(图 4c),24粒锆石测试结果都分布在谐和线及附近,其206Pb/238U表面年龄集中于272~279Ma,加权平均年龄为276±0.81Ma(MSWD=1.3)。

流纹岩(Pm23B109)所选锆石呈浅褐色、黄粉色,透明,金刚光泽,为自形-半自形,呈柱状、断柱状、短柱状,晶体长介于100~170μm之间,宽介于70~100μm之间,晶体长宽比多介于1:1到2:1之间。在CL图像(图 4b)中,锆石具有典型的岩浆韵律环带和明暗相间的条带结构,表明为岩浆结晶产物,部分锆石可见有明显的被交代溶蚀的现象。锆石U-Pb测年结果见表 1,16个点的测试结果显示锆石的Th/U比值介于0.44~0.65之间。综合以上特征可见,所测锆石应属岩浆成因。

在锆石U-Pb年龄谐和图中(图 4d),16粒锆石测试结果都分布在谐和线及附近,其206Pb/238U表面年龄集中于276~282Ma,加权平均年龄为280±0.76Ma(MSWD=0.69)。

3.2 主量元素特征

大石寨组火山岩主量元素分析结果见表 2。数据显示,岩石样品的烧失量处于0.79%~2.40%之间,说明测试样品几乎未遭受强烈蚀变的影响,其元素地球化学特征基本上可以反映其岩石成因。从表 2可知,大石寨组火山岩SiO2含量介于69.92%~80.53%、Al2O3含量介于10.66%~14.37%、富碱Na2O+K2O(5.10%~9.36%),K2O>Na2O,K2O/Na2O=1.10~4.61;MgO、CaO、TiO2、MnO含量偏低,A/CNK多约1.09~1.46 (1件样品B1738为1.84),多>1.1,属过铝质系列。在Zr/TiO2-Nb/Y微量元素分类图解中,样品位于流纹岩、英安岩区域(图 5a)。在K2O-SiO2图解中,样品位于高钾系列区域(图 5b)。在AFM图、FeOT-FeOT/MgO图中(图略),均位于钙碱性岩石系列区域。从主量元素分析结果可以看出,罕乌拉地区大石寨组火山岩属高钾钙碱性系列。

表 2 大石寨组火山岩地球化学分析结果(主量元素:wt%;稀土和微量元素:×10-6) Table 2 Geochemical composition of volcanic rocks from Dashizhai Formation (major elements: wt%; trace elements: ×10-6)

图 5 大石寨组火山岩Zr/TiO2-Nb/Y图解(a, 据Winchester and Floyd, 1977)和K2O-SiO2图解(b, 据Rickwood, 1989) Fig. 5 Zr/TiO2 vs. Nb/Y (a, after Winchester and Floyd, 1977) and K2O vs. SiO2 (b, after Rickwood, 1989) diagrams of volcanic rocks from Dashizhai Formation
3.3 微量元素特征

微量元素分析结果(表 2)及原始地幔标准化配分曲线(图 6a)显示:微量元素总体含量较高,岩石具有相似的微量分配曲线,具有一致的微量元素特征,相对富集Th、U、K、Nd、Zr、Hf,亏损Ba、Nb、Ta、Sr、P、Ti等元素,总体富集大离子亲石元素,亏损高场强元素,表现为略右倾形式。Sr、Eu亏损表明在酸性岩浆中斜长石的分离结晶起主导作用。

图 6 大石寨组火山岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized REE patterns (b) of volcanic rocks from Dashizhai Formation (normalization values after Sun and McDonough, 1989)
3.4 稀土元素特征

稀土元素分析结果(表 2)及球粒陨石标准化配分曲线(图 6b)显示,稀土元素总量偏高,除Pm25B139较低外,其余样品∑REE=122.9×10-6~256.2×10-6;LREE=76.86×10-6~177.9×10-6,HREE=17.71×10-6~42.57×10-6,LREE/HREE=3.05~6.69;(La/Yb)N=1.54~5.62,为富轻稀土型;(La/Sm)N=1.53~3.02,轻稀土为中等程度分异;(Gd/Yb)N=0.75~1.40,重稀土分布相对平缓;具一致的稀土配分型式,呈典型的“海鸥式”配分曲线,类似于岛弧型火山岩。δEu=0.16~0.57,显示明显的铕负异常,这与斜长石的分离结晶作用有关。本区所有样品的稀土元素分布型式非常一致,表明它们具有相同的成因、来源及演化历史。

4 讨论 4.1 形成时代

前人对大石寨组不同岩石类型进行了年代学测试(表 3图 7),其年龄从440Ma到242Ma,主要集中在287~270Ma,时代从早志留世到早三叠世,主要集中在早二叠世(汪润洁, 1987; 高德臻和蒋干清, 1998; Zhu et al., 2001; Zhang et al., 2008; 郭峰等, 2009; 程天赦等, 2013; 陈彦等, 2014; 梅可辰等, 2015; 关庆彬等, 2016; 张晓飞等, 2016; Yu et al., 2017)。大石寨组火山岩年龄跨度较大,其主要原因是大石寨组火山岩在不同地区的岩石组合存在较大差异;前人在基性-超基性岩石组合中挑选的锆石成因相对复杂,可能多为捕获锆石,难以反映其成岩年龄;采用传统的K-Ar、Rb-Sr等方法获得的等时线年龄年龄精度偏低,可能并不反映其成岩年龄。本文基于区域地质调查工作,对西乌旗罕乌拉地区大石寨组流纹岩进行LA-ICP-MS锆石U-Pb定年,2件样品中的锆石均呈自形-半自形,内部结构清晰,生长震荡环带发育,Th/U值较高,表明锆石为岩浆成因,获得其年龄分别为276±0.81Ma和280±0.76Ma,应代表流纹岩的成岩年龄,时代为早二叠世。

表 3 大石寨组火山岩前人测年数据 Table 3 Summary of the published isotope dating from Dashizhai Formation

图 7 大石寨组火山岩分布简图(据李红英, 2016; Yu et al., 2017修改) Fig. 7 The sketch map for the distribution of the volcanic rocks from the Dashizhai Formation (modified after Li, 2016; Yu et al., 2017)

区域上早二叠世岩浆活动极为发育。火山岩主要为大石寨组火山岩。侵入岩见有:西乌旗前进场和达青岩体黑云母二长花岗岩(280.8±3.6Ma、281.5±0.5Ma)(鲍庆中等, 2007b)、扎鲁特旗巴雅尔吐胡硕辉长岩(275.4±1.7Ma、274.3±1.5Ma)(刘建峰, 2009)、锡林浩特市南部晶洞A型花岗岩(276±2Ma)(施光海等, 2004)、满都拉胡吉尔特-查干哈达庙一带辉长岩(278.5±3Ma)、玄武岩(273.7±1Ma)(晨辰等, 2012)。研究区内出露具双峰式特征的伊和绍荣复式岩体,其形成时代介于274~280Ma(张晓飞等, 2018),与大石寨组火山岩的形成时代一致,反映两者应为同一构造岩浆作用事件的产物。

4.2 岩石成因

大石寨组火山岩地球化学特征显示:具有较高的SiO2、K2O+Na2O、FeOT/MgO,低Al2O3、CaO和MgO,同时富集Th、Nb、Ta、Zr、Hf、Ga和Y等HFSE,表现在稀土配分图上为呈Eu亏损的燕式分布,在微量元素标准化图上显示出Ba、Nb、Ta、Sr、P和Ti的亏损,10000Ga/Al值高(2.9~4.7,平均3.6),与A型花岗岩具有相似的地球化学特征(张旗和李承东, 2012; 张旗等, 2012)。所有样品在10000Ga/Al-(Na2O+K2O)和10000Ga/Al-Y图解图上均落在A型花岗岩区(图 8),同样说明这套火山岩具有A型花岗岩的特征。相对于A型花岗岩,高分异Ⅰ型花岗岩具有较低的FeOT含量(<1.00%)和较高的Rb含量(>270×10-6),而大石寨组火山岩具有较高的FeOT含量(平均为2.15%)和较低的Rb含量(平均为150.2×10-6),区别于高分异Ⅰ型花岗岩(Whalen et al., 1987)。据Watson and Harrison (1983)的公式,用岩石主要元素和Zr含量计算样品的锆石饱和温度在798~938℃(平均884℃),较高的成岩温度同样不支持它们为高分异Ⅰ型花岗岩(均值764℃; King et al., 1997),而与A型花岗岩形成于高温条件这一特征相吻合。

图 8 大石寨组火山岩10000Ga/Al-(Na2O+K2O)和10000Ga/Al-Y图解(据Whalen et al., 1987) Fig. 8 10000Ga/Al vs. Na2O+K2O and 10000Ga/Al vs. Y diagrams of volcanic rocks from Dashizhai Formation (after Whalen et al., 1987)

A型花岗岩不仅包括碱过饱和的碱性A型花岗岩,还包括准铝、弱过铝、甚至强过铝的铝质A型花岗岩(King et al., 1997; 付建明等, 2005)。碱性花岗岩为相对“干”的幔源镁铁质岩浆分异的产物,而铝质A型花岗岩则源于具正常水含量的长英质地壳的部分熔融(King et al., 1997)。研究区大石寨组火山岩具铝质A型花岗岩的特征,而Nb、Ta、P和Ti等高场强元素的亏损也表明岩浆为地壳来源。较低的Al2O3含量(多 < 13%,1个样品为14.37%)、强烈亏损的Sr、Eu,较高的Yb及平坦的HREE分布特征(图 6b)指示岩浆形成于富集斜长石且无石榴石残留的浅部低压地区(Defant and Drummond, 1990; Rapp and Watson, 1995; Xiong et al., 2005)。

4.3 构造环境探讨

前人关于华北板块北缘的构造背景及其与中亚造山带及古亚洲洋构造演化的关系一直存在有较大争议。部分学者认为古亚洲洋在中晚泥盆世-早石炭世闭合(唐克东和张允平, 1991; 徐备和陈斌, 1997; 邵济安等, 2014, 2015a, b),石炭纪-二叠纪为裂谷环境(唐克东, 1989),但大陆裂谷火成岩通常具有较高的TiO2含量及Nb、Ta正异常,这与本区火山岩的地球化学特征不一致。A型花岗岩的初始定义限定其形成于非造山构造环境,Bonin (2007)提出了A型花岗岩可以形成于从陆内到大陆边缘的各种动力学背景。A型花岗岩不一定指示非造山或裂谷环境,伸展环境才是控制A型花岗岩的关键。锡林浩特-西乌旗地区发育270~285Ma双峰式火山岩及A型花岗岩,被认为是研究区早二叠世进入造山后伸展阶段的主要证据(施光海等, 2004; 鲍庆中等, 2007b; Zhang et al., 2008; 陈彦等, 2014; 李红英等, 2016)。本区早二叠世具A型花岗岩特征的火山岩及其双峰式侵入体的存在(张晓飞等, 2018),也说明研究区处于典型的伸展构造背景(钱青和王焰, 1999; 王焰等, 2000),但是这样的伸展构造背景可以包括大陆裂谷带、大陆减薄区、碰撞后伸展环境、与俯冲有关的洋内岛弧、活动陆缘和弧后盆地等多种环境(Hochstaedter et al., 1990; 王焰等, 2000)。

Eby (1992)将A型花岗岩分为与洋岛玄武岩(OIB)类似具有很低Y/Nb,Yb/Ta比值的A1型,与类似于岛弧玄武岩(IAB)具有高Y/Nb,Yb/Ta比值的A2型。本文火山岩的Y/Nb介于2.38~6.99,平均4.09;Yb/Ta介于3.93~7.88,平均5.81,都明显>1,显示为岛弧玄武岩亲缘性。在Nb-Y-3Ga和Nb-Y-Ce图上(图 9)均落在A2型花岗岩区。微量元素显示其相对富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),Nb、Ta具有明显的负异常,显示与岛弧火山岩类似的特征。在Rb-(Y+Nb)图解中(图 10a),样品数据点主要落入火山弧花岗岩区域内及其附近。在Logτ-Logσ图解中(图 10b),均落入B区,即造山带(岛弧及活动大陆边缘)火山岩,代表岛弧靠大陆一侧的构造背景,可见大石寨组火山岩的成因与岛弧岩浆作用有关。

图 9 大石寨组火山岩的Nb-Y-3Ga (a)和Nb-Y-Ce (b)三角图解(据Eby, 1992) Fig. 9 Nb-Y-3Ga (a) and Nb-Y-Ce (b) triangle diagrams of volcanic rocks from Dashizhai Formation (after Eby, 1992)

图 10 大石寨组火山岩Rb-(Y+Nb) (a)和Logτ-Logσ (b)构造环境判别图(据Pearce et al., 1984; Rittmann, 1973) VAG-火山弧花岗岩;WPG-板内花岗岩;Syn-COLG-同碰撞花岗岩;ORG-洋中脊花岗岩;A-非造山带火山岩;B-造山带火山岩;C-为A、B区派生的碱性、偏碱性火山岩 Fig. 10 Rb vs. (Y+Nb) (a) and Logτ vs. Logσ (b) discrimination diagram of volcanic rocks from Dashizhai Formation (after Pearce et al., 1984; Rittmann, 1973)

兴蒙造山带贺根山-黑河一线产出有大量晚古生代A型花岗岩,形成于晚石炭世-二叠纪(325~260Ma),该带被认为形成于弧后伸展环境(张磊等, 2013)。同时中国东南沿海地区A型花岗岩(王德滋等, 1995; 胡建等, 2005)、扬子板块西缘石棉县A型花岗岩(Zhao et al., 2008)、青藏高原羌塘中部A型花岗岩(胡培远等, 2016)以及土耳其东北部Pontides地区A型花岗岩(Karsli et al., 2012)都被认为形成于活动大陆边缘弧后伸展环境,与俯冲洋壳有关。本文所研究的具有A2型特征的火山岩与张磊等(2013)报道的贺根山-黑河一带A型花岗岩具有相似的地球化学特征。

4.4 构造演化

区域研究表明,苏左旗、锡林浩特和西乌旗地区均发育晚石炭世至早二叠世强烈的岛弧岩浆作用,形成了广泛的岛弧型花岗岩。如苏左旗白音宝力道岩体(309Ma)(陈斌等, 2001);锡林浩特水库地区Ⅰ型花岗岩(317.0±4.0Ma)(范中林等, 2012);西乌旗达其浑迪、金星石英闪长岩(325±3Ma、322±3Ma)(刘建峰等, 2009);白音高勒石英闪长岩(313~323Ma)(鲍庆中等, 2007a)。锡林浩特地区早石炭世变质基性火山岩(334.5±3.5Ma、323.4±2.4Ma)是一般岛弧环境岩浆活动的产物,还未到成熟岛弧的程度(康健丽等, 2016)。西乌旗地区梅劳特乌拉蛇绿岩形成于晚石炭世(308.5±2.2Ma),岩石组合显示了SSZ构造背景下形成的岩浆岩特征(李英杰等, 2015)。在西乌旗达青牧场地区存在一套晚石炭世-早二叠世早期的俯冲增生杂岩,表明至少在晚石炭世古亚洲洋的俯冲仍在继续(Liu et al., 2013)。强烈的岛弧岩浆活动暗示古亚洲洋大洋板块俯冲活动在该时期达到高潮,但并未到碰撞造山的阶段。

华北板块北缘毛登、哲斯敖包、西拉木伦河北部地区发现中二叠世放射虫化石(王玉净和樊志勇, 1997; 尚庆华, 2004; 王惠等, 2005),说明中二叠世华北板块北缘仍存在深海环境。克什克腾旗境内的柯单山蛇绿岩片的堆晶辉长岩内获得单颗粒锆石年龄为276Ma(叶栩松等, 2011)。区域上,大石寨组后形成稳定的哲斯组和林西组,内蒙古东北地区和林西、索伦及好仁地区哲斯组砂岩的物源区研究表明,其物源区的构造背景为大陆岛弧环境(董策和周建波, 2012; 江小燕等, 2011)。哲斯组碎屑锆石中不包含华北板块基底年龄信息(宋卫卫等, 2012),而直到上二叠统林西组陆相地层中才开始含有华北板块基底年龄信息(Han et al., 2012)。陈斌等(2009)认为锡林浩特杂岩和混杂带中蓝片岩块的变质变形作用可能发生在晚二叠,与索伦缝合带强烈的弧陆碰撞有关,暗示索伦缝合带的碰撞缝合时间在晚二叠世。古地磁研究表明泥盆纪至晚二叠世,西伯利亚板块基本保持稳定,而华北板块在此时的运动明显的北向漂移,说明二者在晚二叠世仍没有对接(任收麦和黄宝春, 2002)。以上均表明在晚古生代中期古亚洲洋并未完全关闭,在晚石炭世-早二叠世时仍然存在洋壳的俯冲消减事件。

区域上大石寨组火山岩和同期侵入岩显示与俯冲有关的岛弧或活动大陆边缘弧火山岩的特征(高德臻和将干清, 1998; 陶继雄等, 2003)。地球化学特征显示大石寨组火山岩具有南北方向上的成分极性,从拉斑系列-钙碱性系列过渡到钙碱性系列(赵芝, 2008)。在北部锡林浩特-西乌旗地区,火山岩具有类似双峰式的地球化学特征(刘建峰, 2009)。本区A型火山岩及其双峰式岩石组合(伊和绍荣复式岩体)的存在,进一步表明这一时期应处于伸展构造体制。结合区域资料,该区岩石最可能形成于弧后扩张环境。石炭纪至二叠纪古亚洲洋主要向北俯冲,西伯利亚板块南缘属活动大陆边缘环境(康健丽等, 2016)。大洋板片以高角度快速俯冲,诱发地幔物质对流上涌,在到达岩石圈底部向南北两侧分流,即提供了本文具A型花岗岩特征的火山岩产出的伸展构造环境,又为下地壳熔融提供了条件(何建坤和刘福田, 1998; Zhao et al., 2008; Karsli et al., 2012)。上涌的地幔物质与地壳接触,促使地壳部分熔融形成该区火山岩(解洪晶等, 2012; 张磊等, 2013)。

随着碰撞闭合西乌旗、锡林浩特、苏尼特左旗等地发育大面积三叠纪具同碰撞花岗岩特征的过铝质花岗岩(Chen et al., 2000; 李锦轶等, 2007; 叶栩生等, 2011; 刘建峰等, 2014)及与碰撞造山后的岩石圈伸展作用有关的A型花岗岩(张晓晖等, 2006; 石玉若等, 2007),进一步证实古亚洲洋闭合时限最有可能在晚二叠世-早三叠世。

5 结论

(1) 内蒙古西乌旗罕乌拉地区大石寨组流纹岩LA-ICP-MS锆石U-Pb年龄为276±0.81Ma和280±0.76Ma,表明其形成时代为早二叠世。

(2) 大石寨组火山岩属于岛弧高钾钙碱性系列。具有较高的SiO2、K2O+Na2O、FeOT/MgO,低Al2O3、CaO和MgO,稀土配分曲线呈Eu亏损的燕式分布,微量元素标准化图上显示出Ba、Nb、Ta、Sr、P和Ti的亏损,Ga/Al值高,具有A型花岗岩地球化学特征。

(3) 西乌旗罕乌拉地区早二叠世处于伸展构造背景,该区大石寨组火山岩形成于弧后扩张环境,是对早二叠世古亚洲洋闭合前洋壳俯冲消减作用的岩浆响应。

致谢 感谢项目组成员在工作中的大力支持;论文撰写过程中,中国石化石油勘探开发研究院冯建赟博士、南阳理工学院陈国超博士提出了宝贵意见、给予了帮助;审稿专家对本文进行了认真的审查并提出了宝贵的修改意见;在此一并致以衷心的感谢。
参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Bao QZ, Zhang CJ, Wu ZL, Wang H, Li W, Sang JH and Liu YS. 2007a. SHRIMP U-Pb zircon geochronology of a Carboniferous quartz-diorite in Baiyingaole area, Inner Mongolia and its implications. Journal of Jilin University (Earth Science Edition), 37(1): 15-23.
Bao QZ, Zhang CJ, Wu ZL, Wang H, Li W, Sang JH and Liu YS. 2007b. Zircon SHRIMP U-Pb dating of granitoids in a Late Paleozoic rift area, southeastern Inner Mongolia, and its implications. Geology in China, 34(5): 790-798.
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29. DOI:10.1016/j.lithos.2006.12.007
Chen B, Jahn BM, Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182. DOI:10.1016/S0040-1951(00)00182-7
Chen B, Zhao GC and Wilde S. 2001. Subduction- and collision-related granitoids from southern Sonidzuoqi, Inner Mongolia: Isotopic ages and tectonic implications. Geological Review, 47(4): 361-367.
Chen B, Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257. DOI:10.1016/j.jseaes.2008.05.007
Chen B, Ma XH, Liu AK and Muhetaer Z. 2009. Zircon U-Pb ages of the Xilinhot metamorphic complex and blueschist, and implications for tectonic evolution of the Solonker suture. Acta Petrologica Sinica, 25(12): 3123-3129.
Chen C, Zhang ZC, Guo ZJ, Li JF, Feng ZS and Tang WH. 2012. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia. Science China (Earth Sciences), 55(1): 39-52. DOI:10.1007/s11430-011-4277-z
Chen Y, Zhang ZC, Li K, Luo ZW, Tang WH and Li QG. 2014. Geochronology, geochemistry and geological significance of the Permian bimodal volcanic rocks in Xi Ujimqin Banner, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(5): 843-858.
Cheng TS, Yang WJ and Wang DH. 2013. Zircon U-Pb age of the spilite-keratophyre sequence of the Dashizhai Formation in Maodeng of Xilinhaote, Inner Mongolia and its geological significance. Geoscience, 27(3): 525-536.
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Dong C and Zhou JB. 2012. Geochemical characteristics analysis and provenance tracing of sandstone in Middle Permian Zhesi Formation, Northeast Inner Mongolia. Acta Petrologica et Mineralogica, 31(5): 663-673.
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Eizenhöfer PR, Zhao GC, Sun M, Zhang J, Han YG and Hou WZ. 2015. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geological Society of America Bulletin, 127(9-10): 1422-1436. DOI:10.1130/B31175.1
Fan HY, Li MC, Zhang Q, Huang M, Zhang XF and Li JJ. 2014. Age and geochemical characteristics of the Dashizai Formation volcanic rocks in Xi Ujimqin Banner, Inner Mongolia. Geological Bulletin of China, 33(9): 1284-1292.
Fan ZL, Ke YF, Chen W, Yang WW and Sun XF. 2012. Age and its tectonic significance of Ⅰ-type granite in Xilinhot, Inner Mongolia. Resources Survey & Environment, 33(3): 191-197.
Fang JQ, Zhao P, Xu B, Shao J and Wang Y. 2014. Sedimentary facies analyses and discovery of gastropods from Zhesi Formation in the south of West Ujimqin, Inner Mongolia and their significances. Acta Petrologica Sinica, 30(7): 1889-1898.
Fu JM, Ma CQ, Xie CF, Zhang YM and Peng SB. 2005. Ascertainment of the Jinjiling aluminous A-type granite, Hunan Province and its tectonic settings. Geochimica, 34(3): 215-226.
Gao DZ and Jiang GQ. 1998. Revision of the stratigraphic division of the Permian and tectonic evolution in the Sonid left Banner, Inner Mongolia. Regional Geology of China, 17(4): 401-411.
Ge MC, Zhou WX, Yu Y, Sun JJ, Bao JQ and Wang SH. 2011. Dissolution and supracrustal rocks dating of Xilin Gol Complex, Inner Mongolia, China. Earth Science Frontiers, 18(5): 182-195.
Guan QB, Liu ZH, Bai XH, Li PC, Wan L and Li SC. 2016. Age and tectonic setting of volcanic rocks of the Dashizhai Formation from Xinkaiba, Balinyouqi area, Inner Mongolia. Acta Petrologica Sinica, 32(7): 2029-2040.
Guo F, Fan WM, Li CW, Miao LC and Zhao L. 2009. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D), 52(7): 940-951. DOI:10.1007/s11430-009-0083-2
Han GQ, Liu YJ, Neubauer F, Jin W, Genser J, Ren SM, Li W, Wen QB, Zhao YL and Liang CY. 2012. LA-ICP-MS U-Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing'an Mountains, NE China: New evidence for the eastern extension of the Erenhot-Hegenshan suture zone. Journal of Asian Earth Sciences, 49: 249-271. DOI:10.1016/j.jseaes.2011.11.011
Hao X and Xu B. 1997. Sm-Nd, Rb-Sr isotopic geochronology of the Xilin Gol complex, Inner Mongolia, China. Geological Review, 43(1): 101-105.
He JK and Liu FT. 1998. Relationship between the morphology of subducted slabs and the tectonic evolution in the active continental margins. Progress in Geophysics, 13(2): 16-26.
Hochstaedter AG, Gill JB, Kusakabe M, Newman S, Pringle M, Taylor B and Fryer P. 1990. Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth and Planetary Science Letters, 100(1-3): 179-194.
Hong DW, Huang HZ, Xiao YJ, Xu HM and Jin MY. 1994. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica, 68(3): 219-230.
Hu J, Qiu JS, Wang DZ, Wang RC and Zhang XL. 2005. Comparative investigations of A-type granites in the coastal and the Nanling inland areas of SE China, and their tectonic significances. Geological Journal of China Universities, 11(3): 404-414.
Hu PY, Li C, Wu YW, Xie CM, Wang M and Li J. 2016. A back-arc extensional environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau: Evidences from A-type granites. Acta Petrologica Sinica, 32(4): 1219-1231.
Huang B, Fu D, Li SC, Ge MC and Zhou WX. 2016. The age and tectonic implications of the Hegenshan ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176.
Huang JX, Zhao ZD, Zhang HF, Hou QY, Chen YL, Zhang BR and Depaolo DJ. 2006. Elemental and Sr-Nd-Pb isotopic geochemistry of the Wenduermiao and Bayanaobao-Jiaoqier ophiolites, Inner Mongolia: Constraints for the characteristics of the mantle domain of eastern Paleo-Asian Ocean. Acta Petrologica Sinica, 22(12): 2889-2900.
Jian P, Cheng YQ and Liu DY. 2001. Petrographical study of metamorphic zircon: Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, 8(3): 183-191.
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190. DOI:10.1016/j.lithos.2010.04.014
Jian P, Kröner A, Windley BF, Shi YR, Zhang W, Zhang LQ and Yang WR. 2012. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite". Lithos, 142-143: 48-66. DOI:10.1016/j.lithos.2012.03.007
Jiang XY, Liu YJ, Zhou B, Xing ZW, Han GQ and Zhao YL. 2011. A provenance analysis of Permian sandstones in southern Da Hinggan Mountains-Inner Mongolia steppe zone. Geological Bulletin of China, 30(7): 1085-1098.
Kang JL, Xiao ZB, Wang HC, Chu H, Ren YW, Liu H, Gao ZR and Sun YW. 2016. Late Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the meta-basic volcanics of Xilinhot, Inner Mongolia. Acta Geologica Sinica, 90(2): 383-397.
Karsli O, Caran Ş, Dokuz A, Çoban H, Chen B and Kandemir R. 2012. A-type granitoids from the eastern Pontides, NE turkey: Records for generation of hybrid A-type rocks in a subduction-related environment. Tectonophysics, 530-531: 208-224. DOI:10.1016/j.tecto.2011.12.030
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Li HY. 2016. Late Palaeozoic extensional event and its evolution history in the middle part of Xing'an Mongolian Orogenic Belt. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-184 (in Chinese with English summary)
Li HY, Zhou ZG, Li PJ, Zhang D, Liu CF, Chen C, Chen LZ and Gu CN. 2016. A Late Carboniferous-Early Permian extensional event in Xi Ujimqin Qi, Inner Mongolia: Evidence from volcanic rocks of Dashizhai Formation. Geotectonica et Metallogenia, 40(5): 996-1013.
Li JY, Gao LM, Sun GH, Li YP and Wang YB. 2007. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565-582.
Li SL and Ouyang ZY. 1998. Tectonic framework and evolution of Xing'anling Mongolian Orogenic Belt (XMOB) and its adjacent region. Marine Geology & Quaternary Geology, 18(3): 45-54.
Li YJ, Wang JF, Li HY and Dong PP. 2015. Recognition of Meilaotewula ophiolite in Xi U jimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 31(5): 1461-1470.
Li YL, Brouwer FM, Xiao WJ and Zheng JP. 2017a. A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: Petrology, geochemistry and zircon U-Pb-Hf isotopic composition of paragneisses from the Xilingol Complex in Inner Mongolia, China. Gondwana Research, 47: 323-341. DOI:10.1016/j.gr.2017.02.004
Li YL, Brouwer FM, Xiao WJ and Zheng JP. 2017b. Late Devonian to Early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian Orogenic Belt. Geological Society of America Bulletin, 129(5-6): 677-697. DOI:10.1130/B31511.1
Liang RX. 1994. The Features of ophiolites in the gentral sector of Inner Mongolia and its geological significance. Regional Geology of China, (1): 37-45.
Liu JF. 2009. Late Paleozoic magmatism and its constraints on regional tectonic evolution in Linxi-Dongwuqi area, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University, 1-142 (in Chinese with English summary)
Liu JF, Chi XG, Zhang XZ, Ma ZH, Zhao Z, Wang TF, Hu ZC and Zhao XY. 2009. Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance. Acta Geologica Sinica, 83(3): 365-376.
Liu JF, Li JY, Chi XG, Qu JF, Hu ZC, Fang S and Zhang Z. 2013. A Late-Carboniferous to early Early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin. Lithos, 177: 285-296. DOI:10.1016/j.lithos.2013.07.008
Liu JF, Li JY, Chi XG, Qu JF, Hu ZC and Guo CL. 2014. Petrological and Geochemical characteristics of the Early Triassic granite belt in southeastern Inner Mongolia and its tectonic setting. Acta Geologica Sinica, 88(9): 1677-1690.
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. DOI:10.1016/j.gr.2016.03.013
Ludwig KR. 2003. User's Manual for Isoplot/Ex Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Geochronology Centre Special Publication: 1-70.
Lü ZC, Duan GZ, Hao LB, Li DC, Pan J and Dong GH. 2002. The petrological and geochemical characteristics and petrogenesis significance of spilite from Lower Permian Dashizai Formation in the middle section of Da Hinggan Mountains. Acta Petrologica Sinica, 18(2): 212-222.
Mei KC, Li QG, Wang ZQ, Xu XY, Chen JL, Li ZP and Chen X. 2015. SHRIMP zircon U-Pb age, geochemistry and tectonic significance of the Dashizhai Formation rhyolites in Sunid Left Banner, middle part of Inner Mongolia. Geological Bulletin of China, 34(12): 2181-2194.
Miao LC, Fan WM, Liu DY, Zhang FQ, Shi YR and Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. DOI:10.1016/j.jseaes.2007.11.005
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Qian Q and Wang Y. 1999. Geochemical characteristics of bimodal volcanic suites from different tectonic settings. Geology-Geochemistry, 27(4): 29-32.
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Ren SM and Huang BC. 2002. Preliminary study on post Late Paleozoic kinematics of the main blocks of the Paleo-Asian ocean. Progress in Geophysics, 17(1): 113-120.
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263. DOI:10.1016/0024-4937(89)90028-5
Rittmann A. 1973. Stable Mineral Assemblages of Igneous Rocks: A Method of Calculation. Heidelberg: Springer: 1-262.
Shang QH. 2004. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen. Chinese Science Bulletin, 49(24): 2613-2619. DOI:10.1360/04wd0069
Shao JA. 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Peking University Press.
Shao JA, Tang KD and He GQ. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866.
Shao JA, He GQ and Tang KD. 2015a. The evolution of Permian continental crust in northern part of North China. Acta Petrologica Sinica, 31(1): 47-55.
Shao JA, Tian W, Tang KD and Wang Y. 2015b. Petrogenesis and tectonic settings of the Late Carboniferous high Mg basalts of Inner Mongolia. Earth Science Frontiers, 22(5): 171-181.
Shi GH, Liu DY, Zhang FQ, Jian P, Miao LC, Shi YR and Tao H. 2003. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin, 48(24): 2742-2748. DOI:10.1007/BF02901768
Shi GH, Miao LC, Zhang FQ, Jian P, Fan WM and Liu DY. 2004. Theage and regional tectonic significance of A-type granite in Xilinhot, Inner Mongolia. Chinese Science Bulletin, 49(7): 723-729. DOI:10.1007/BF03184272
Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC and Zhang LQ. 2007. SHRIMP U-Pb zircon dating of Triassic A-type granites in Sonid Zuoqi, central Inner Mongolia, China and its tectonic implications. Geological Bulletin of China, 26(2): 183-189.
Song SG, Wang MM, Xu X, Wang C, Niu YL, Allen MB and Su L. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 34(10): 2221-2248. DOI:10.1002/2015TC003948
Song WW, Zhou JB, Guo XD and Li YK. 2012. Geotectonic setting of Songliao block: Reatriction from Paleozoic detrital zircon U-Pb dating. Global Geology, 31(3): 522-535.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tang KD. 1989. On tectonic development of the fold belts in the north margin of Sino-Korean Platform. Geoscience, 3(2): 195-204.
Tang KD. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260. DOI:10.1029/TC009i002p00249
Tang KD and Zhang YP. 1991. Tectonic evolution of the Inner Mongolia suture. In: Xiao XC and Tang YQ (eds. ). Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megsuture. Beijing: Scientific and Technical Publishing House, 30-54 (in Chinese)
Tao JX, Bai LB, Bao JWLJ, Zheng WJ and Su MR. 2003. Rock record of Permian subducting orogenic process in Mandula, Inner Mongolia. Geological Survey and Research, 26(4): 241-249.
Wang DZ, Zhao GT and Qiu JS. 1995. The tectonic constraint on the Late Mesozoic A -type granitoids in eastern China. Geological Journal of China Universities, 1(2): 13-21.
Wang H, Wang YJ, Chen ZY, Li YX, Su MR and Bai LB. 2005. Discovery of the Permian radiolarians from the Bayanaobao area, Inner Mongolia. Journal of Stratigraphy, 29(4): 368-371.
Wang Q. 1986. Recognition of the suture between the Sino-Korean and Siberian Paleoplates in the middle part of Inner Mongolia. Acta Geologica Sinica, 60(1): 31-43.
Wang RJ. 1987. A discussion of K-Ar ages of the Lower Permian Dashizhai Formation in the south segment of the Daxinganling. Acta Petrologica Sinica, 3(2): 80-91.
Wang Y, Qian Q, Liu L and Zhang Q. 2000. Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments. Acta Petrologica Sinica, 16(2): 169-173.
Wang YJ and Fan ZY. 1997. Discovery of Permian radiolarians in ophiolite belt on northern side of Xar Moron river, Nei Monggol and its geological significance. Acta Palaeontologica Sinica, 36(1): 58-69.
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Whalen JB, Currie KL and Chappell BA. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. DOI:10.1016/0009-2541(77)90057-2
Windley BF, Alexeiev D, Xiao WJ, Kroöner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. DOI:10.1007/BF03184122
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069.
Xie HJ, Wu G, Zhu MT, Liu J and Zhang LC. 2012. Geochronology and geochemistry of the Daolanghuduge A-type granite in Inner Mongolia, and its geological significance. Acta Petrologica Sinica, 28(2): 483-494.
Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359. DOI:10.1016/j.chemgeo.2005.01.014
Xu B and Chen B. 1997. Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia. Science in China (Series D), 40(5): 463-469. DOI:10.1007/BF02877610
Ye XS, Liao QA and Ge MC. 2011. Petrogenesis and tectonic significance of Triassic peraluminous granitoids in Xilinhaote and Linxi area, Inner Mongolia. Geological Science and Technology Information, 30(3): 57-64.
Yu Q, Ge WC, Zhang J, Zhao GC, Zhang YL and Yang H. 2017. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Research, 43: 164-177. DOI:10.1016/j.gr.2016.01.010
Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421.
Zeng WS, Zhou JB, Zhang XZ and Qiu HJ. 2011. LA-ICP-MS zircon U-Pb age of the volcanic rocks from the Dashizhai Formation in Keyouqianqi, Inner Mongolia, China and its tectonic setting. Geological Bulletin of China, 30(2-3): 270-277.
Zhang L, Lü XB, Liu G, Chen J, Chen C, Gao Q and Liu H. 2013. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt. Geology in China, 40(3): 869-884.
Zhang Q and Li CD. 2012. Granites: Implications for Continental Geodynamics. Beijing: Ocean Press: 5-12.
Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence?. Acta Petrologica et Mineralogica, 31(4): 621-626.
Zhang SH, Zhao Y, Liu JM, Hu JM, Song B, Liu J and Wu H. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824-842.
Zhang XF, Liu JL, Feng JL, Zhou Y, Teng C, Zhang HC, Cao J and Wang BR. 2016. Geochronological and geochemical features of volcanic rocks of Dashizhai Formation in Ural Sutai of Xilin Hot, Inner Mongolia, and their geological significance. Geological Bulletin of China, 35(5): 766-775.
Zhang XF, Zhou Y, Cao J, Teng C, Wang BR, Zhang HC, Feng JL and Liu JL. 2018. Geochronological and geochemical features of bimodal intrusive rocks in Hanwula of Xi U jimqin Banner, Inner Mongolia: Constraints on the closure of the Paleo-Asian Ocean. Acta Geologica Sinica, 92(4): 665-686.
Zhang XH, Zhang HF, Tang YJ and Liu JM. 2006. Early Triassic A-type felsic volcanism in the Xilinhaote-Xiwuqi, central Inner Mongolia: Age, geochemistry and tectonic implications. Acta Petrologica Sinica, 22(11): 2769-2780.
Zhang XH, Zhang HF, Tang YJ, Wilde SA and Hu ZC. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281. DOI:10.1016/j.chemgeo.2008.01.005
Zhao XF, Zhou MF, Li JW and Wu FY. 2008. Association of Neoproterozoic A-and Ⅰ-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257(1-2): 1-15. DOI:10.1016/j.chemgeo.2008.07.018
Zhao Z. 008. Geochemistry and tectonic setting of the volcanic rocks of Early Permian Dashizhai Formation in Dashizhai area, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University, 1-49 (in Chinese with English summary)
Zhou WX and Ge MC. 2013. Redefinition and significance of metamorphism Xilinhot Group in Xilinhot area, Inner Mongolia, China. Earth Science (Journal of China University of Geosciences), 38(4): 715-724. DOI:10.3799/dqkx.2013.070
Zhou ZG, Gu YC, Liu CF, Yu YS, Zhang B, Tian ZJ, He FB and Wang BR. 2010. Discovery of Early-Middle Permian Cathaysian flora in Manduhubaolage area, Dong Ujimqin Qi, Inner Mongolia, China and its geological significance. Geological Bulletin of China, 29(1): 21-25.
Zhu YF, Sun SH, Gu LB, Ogasawara Y, Jiang N and Honma H. 2001. Permian volcanism in the Mongolian orogenic zone, Northeast China: Geochemistry, magma sources and petrogenesis. Geological Magazine, 138(2): 101-115.
鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 桑家和, 刘永生. 2007a. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义. 吉林大学学报(地球科学版), 37(1): 15-23.
鲍庆中, 张长捷, 吴之理, 王宏, 李伟, 桑家和, 刘永生. 2007b. 内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义. 中国地质, 34(5): 790-798.
陈斌, 赵国春, Wilde S. 2001. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义. 地质论评, 47(4): 361-367.
陈斌, 马星华, 刘安坤, 木合塔尔·扎日. 2009. 锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索仑缝合带演化的意义. 岩石学报, 25(12): 3123-3129.
晨辰, 张志诚, 郭召杰, 李建锋, 冯志硕, 汤文豪. 2012. 内蒙古达茂旗满都拉地区早二叠世基性岩的年代学、地球化学及其地质意义. 中国科学(地球科学), 42(3): 343-358.
陈彦, 张志诚, 李可, 罗志文, 汤文豪, 李秋根. 2014. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义. 北京大学学报(自然科学版), 50(5): 843-858.
程天赦, 杨文静, 王登红. 2013. 内蒙古锡林浩特毛登牧场大石寨组细碧-角斑岩系地球化学特征、锆石U-Pb年龄及地质意义. 现代地质, 27(3): 525-536.
董策, 周建波. 2012. 内蒙古东北部中二叠统哲斯组砂岩地球化学特征分析及物源区示踪. 岩石矿物学杂志, 31(5): 663-673.
樊航宇, 李明辰, 张全, 黄猛, 张晓飞, 李继军. 2014. 内蒙古西乌旗地区大石寨组火山岩时代及地球化学特征. 地质通报, 33(9): 1284-1292.
范中林, 柯于富, 陈文, 杨伟卫, 孙孝峰. 2012. 内蒙古锡林浩特Ⅰ型花岗岩的时代及构造意义. 资源调查与环境, 33(3): 191-197.
方俊钦, 赵盼, 徐备, 邵军, 汪岩. 2014. 内蒙古西乌珠穆沁旗哲斯组宏体化石新发现和沉积相分析. 岩石学报, 30(7): 1889-1898.
付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215-226.
高德臻, 蒋干清. 1998. 内蒙古苏尼特左旗二叠系的重新厘定及大地构造演化分析. 中国区域地质, 17(4): 403-411.
葛梦春, 周文孝, 于洋, 孙俊俊, 鲍建泉, 王世海. 2011. 内蒙古锡林郭勒杂岩解体及表壳岩系年代确定. 地学前缘, 18(5): 182-195.
关庆彬, 刘正宏, 白新会, 李鹏川, 万乐, 李世超. 2016. 内蒙古巴林右旗新开坝地区大石寨组火山岩形成时代及构造背景. 岩石学报, 32(7): 2029-2040.
郭锋, 范蔚茗, 李超文, 苗来成, 赵亮. 2009. 早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑), 39(5): 569-579.
郝旭, 徐备. 1997. 内蒙古锡林浩特锡林郭勒杂岩的原岩年代和变质年代. 地质论评, 43(1): 101-105.
何建坤, 刘福田. 1998. 俯冲板片形貌特征和活动大陆边缘演化体制的关系. 地球物理学进展, 13(2): 16-26.
洪大卫, 黄怀曾, 肖宜君, 徐海明, 靳满元. 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义. 地质学报, 68(3): 219-230.
胡建, 邱检生, 王德滋, 王汝成, 张晓琳. 2005. 中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义. 高校地质学报, 11(3): 404-414.
胡培远, 李才, 吴彦旺, 解超明, 王明, 李娇. 2016. 青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据. 岩石学报, 32(4): 1219-1231.
黄波, 付冬, 李树才, 葛梦春, 周文孝. 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176.
黄金香, 赵志丹, 张宏飞, 侯青叶, 陈岳龙, 张本仁, Depaolo DJ. 2006. 内蒙古温都尔庙和巴彦敖包-交其尔蛇绿岩的元素与同位素地球化学:对古亚洲洋东部地幔域特征的限制. 岩石学报, 22(12): 2889-2900.
简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地学前缘, 8(3): 183-191.
江小燕, 刘永江, 周冰, 邢占伟, 韩国卿, 赵英利. 2011. 大兴安岭南段兴-蒙草原区二叠纪砂岩物源分析. 地质通报, 30(7): 1085-1098.
康健丽, 肖志斌, 王惠初, 初航, 任云伟, 刘欢, 高知睿, 孙义伟. 2016. 内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据. 地质学报, 90(2): 383-397.
李红英. 2016. 兴蒙造山带中部晚古生代晚期伸展演化. 博士学位论文. 北京: 中国地质大学, 1-184 http://cdmd.cnki.com.cn/Article/CDMD-11415-1016184049.htm
李红英, 周志广, 李鹏举, 张达, 柳长峰, 陈诚, 陈利贞, 谷丛楠. 2016. 内蒙古西乌旗晚石炭世-早二叠世伸展事件——来自大石寨组火山岩的证据. 大地构造与成矿学, 40(5): 996-1013.
李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582.
李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 18(3): 45-54.
李英杰, 王金芳, 李红阳, 董培培. 2015. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别. 岩石学报, 31(5): 1461-1470.
梁日暄. 1994. 内蒙古中段蛇绿岩特征及地质意义. 中国区域地质, (1): 37-45.
刘建峰. 2009. 内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约. 博士学位论文. 长春: 吉林大学, 1-142 http://cdmd.cnki.com.cn/Article/CDMD-10183-2009093598.htm
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义. 地质学报, 83(3): 365-376.
刘建峰, 李锦轶, 迟效国, 曲军峰, 胡兆初, 郭春丽. 2014. 内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境. 地质学报, 88(9): 1677-1690.
吕志成, 段国正, 郝立波, 李殿超, 潘军, 董广华. 2002. 大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨. 岩石学报, 18(2): 212-222.
梅可辰, 李秋根, 王宗起, 徐学义, 陈隽璐, 李智佩, 陈旭. 2015. 内蒙古中部苏尼特左旗大石寨组流纹岩SHRIMP锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 34(12): 2181-2194. DOI:10.3969/j.issn.1671-2552.2015.12.005
钱青, 王焰. 1999. 不同构造环境中双峰式火山岩的地球化学特征. 地质地球化学, 27(4): 29-32.
任收麦, 黄宝春. 2002. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探. 地球物理学进展, 17(1): 113-120.
尚庆华. 2004. 北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义. 科学通报, 49(24): 2574-2579. DOI:10.3321/j.issn:0023-074X.2004.24.014
邵济安. 1991. 中朝板块北缘中段地壳演化. 北京: 北京大学出版社.
邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866.
邵济安, 何国琦, 唐克东. 2015a. 华北北部二叠纪陆壳演化. 岩石学报, 31(1): 47-55.
邵济安, 田伟, 唐克东, 王友. 2015b. 内蒙古晚石炭世高镁玄武岩的成因和构造背景. 地学前缘, 22(5): 171-181.
施光海, 苗来成, 张福勤, 简平, 范蔚茗, 刘敦一. 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389.
石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 张履桥. 2007. 内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义. 地质通报, 26(2): 183-189.
宋卫卫, 周建波, 郭晓丹, 李雨柯. 2012. 松辽地块大地构造属性:古生界碎屑锆石年代学的制约. 世界地质, 31(3): 522-535.
唐克东. 1989. 中朝陆台北侧褶皱带构造发展的几个问题. 现代地质, 3(2): 195-204.
唐克东, 张允平. 1991. 内蒙古缝合带的构造演化. 见: 肖序常, 汤耀庆编. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社, 30-54
陶继雄, 白立兵, 宝音乌力吉, 郑武军, 苏茂荣. 2003. 内蒙古满都拉地区二叠纪俯冲造山过程的岩石记录. 地质调查与研究, 26(4): 241-249.
王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1(2): 13-21.
王惠, 王玉净, 陈志勇, 李玉玺, 苏茂荣, 白立兵. 2005. 内蒙古巴彦敖包二叠纪放射虫化石的发现. 地层学杂志, 29(4): 368-371.
王荃. 1986. 内蒙古中部中朝与西伯利亚古板块间缝合线的确定. 地质学报, 60(1): 31-43.
汪润洁. 1987. 大兴安岭南段下二叠统大石寨组K-Ar法同位素年龄的讨论. 岩石学报, 3(2): 80-91.
王焰, 钱青, 刘良, 张旗. 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16(2): 169-173.
王玉净, 樊志勇. 1997. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义. 古生物学报, 36(1): 58-69.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
解洪晶, 武广, 朱明田, 刘军, 张连昌. 2012. 内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义. 岩石学报, 28(2): 483-494.
徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学(D辑), 27(3): 227-232.
叶栩松, 廖群安, 葛梦春. 2011. 内蒙古锡林浩特、林西地区三叠纪过铝质花岗岩的成因及构造意义. 地质科技情报, 30(3): 57-64.
袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. DOI:10.3321/j.issn:0023-074X.2003.14.008
曾维顺, 周建波, 张兴洲, 邱海峻. 2011. 内蒙古科右前旗大石寨组火山岩锆石LA-ICP-MSU-Pb年龄及其形成背景. 地质通报, 30(2-3): 270-277.
张磊, 吕新彪, 刘阁, 陈俊, 陈超, 高奇, 刘洪. 2013. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因. 中国地质, 40(3): 869-884.
张旗, 李承东. 2012. 花岗岩:地球动力学意义. 北京: 海洋出版社: 5-12.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626.
张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842.
张晓飞, 刘俊来, 冯俊岭, 周毅, 滕超, 张华川, 曹军, 王必任. 2016. 内蒙古锡林浩特乌拉苏太大石寨组火山岩年代学、地球化学特征及其地质意义. 地质通报, 35(5): 766-775.
张晓飞, 周毅, 曹军, 滕超, 王必任, 张华川, 冯俊岭, 刘俊来. 2018. 内蒙古西乌旗罕乌拉地区双峰式侵入体年代学、地球化学特征及其对古亚洲洋闭合时限的制约. 地质学报, 92(4): 665-686.
张晓晖, 张宏福, 汤艳杰, 刘建明. 2006. 内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义. 岩石学报, 22(11): 2769-2780.
赵芝. 2008. 内蒙古大石寨地区早二叠世大石寨组火山岩的地球化学特征及其构造环境. 硕士学位论文. 长春: 吉林大学, 1-49 http://cdmd.cnki.com.cn/Article/CDMD-10183-2008062482.htm
周文孝, 葛梦春. 2013. 内蒙古锡林浩特地区中元古代锡林浩特岩群的厘定及其意义. 地球科学—中国地质大学学报, 38(4): 715-724.
周志广, 谷永昌, 柳长峰, 於炀森, 张冰, 田志君, 何付兵, 王必任. 2010. 内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义. 地质通报, 29(1): 21-25.