岩石学报  2018, Vol. 34 Issue (6): 1758-1774   PDF    
大兴安岭牙克石地区新元古代与晚古生代两类岩石组合的构造属性及其地质意义
董金龙1,2 , 白志达2 , 徐德兵2 , 罗志波3     
1. 北京大学地球与空间科学学院教育部造山带与地壳演化重点实验室, 北京 100871;
2. 中国地质大学(北京)地球科学与资源学院, 北京 10008;
3. 天津市地球物理勘探中心, 天津 300170
摘要:在内蒙牙克石地区发育两种不同构造属性的岩石组合:一类为乌奴耳-头道桥蛇绿混杂岩,另一类为晚古生代弧属性侵入岩。乌奴耳-头道桥蛇绿混杂岩由辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩组成;地球化学特征显示基性岩类属于拉斑玄武岩系列,具有相似的稀土和原始地幔标准化配分模式,与N-MORB的特征类似,不具有Nb-Ta负异常,Nb/Nb*值平均>1;构造环境判别图显示该蛇绿混杂岩可能形成于扩张脊。晚古生代弧属性侵入岩出露于白井山、乌尔其汗,由中基性单元(辉长岩、辉长闪长岩和石英闪长岩)和酸性单元(花岗闪长岩和二长花岗岩)组成;地球化学特征显示中基性单元和酸性单元属于钙碱性岩系列,富集LREEs和LILEs,具有Nb-Ta负异常,高Sr、Sr/Y值,低HREEs和Y,Eu异常不明显;酸性单元显示埃达克质岩的地球化学特征。乌奴耳-头道桥蛇绿混杂岩可能形成于新元古代,与头道桥蓝片岩、吉峰蛇绿混杂岩、新林蛇绿岩构成一条重要的缝合带,暗示本区古洋盆的存在。晚古生代弧属性侵入岩中,辉长岩的结晶年龄为326±1.9Ma,花岗闪长岩的结晶年龄为323.7±1.9Ma;微量元素的组成特征显示,中基性单元和酸性单元的形成与早石炭世洋壳板片的俯冲作用有关,暗示兴安地块和松嫩地块之间洋盆的萎缩。
关键词: 蛇绿混杂岩     扩张脊     弧属性     新元古代     晚古生代     牙克石地区    
Tectonic nature and geological significance for two types of Neoproterozoic and Late Paleozoic rock assemblages in Yakeshi region, Great Hinggan Range
DONG JinLong1,2, BAI ZhiDa2, XU DeBing2, LUO ZhiBo3     
1. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China;
2. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 10008;
3. Tianjin Geophysical Exploration Center, Tianjin 300170, China
Abstract: Two different types of rock assemblages exist in Yakeshi region, Inner Mongolia:one is Wunuer-Toudaoqiao ophiolitic mélange; the other is Late Paleozoic arc-type intrusion. The Wunuer-Toudaoqiao ophiolitic mélange comprises gabbro, gabbro-diabase, allgovite (dyke?), metabasalt and radiolarian siliceous rocks. The geochemical data show that the basic rocks from the Wunuer-Toudaoqiao ophiolitic mélange are tholeiitic series, and have consistent distributed patterns of REE and trace elements, similar to the features of N-MORB. They don't display negative Nb-Ta anomalies with ratios of Nb/Nb*>1. Additionally, tectonic discrimination shows the Wunuer-Toudaoqiao ophiolitic mélange might have been formed in a spreading ridge. The Late Paleozoic arc-type intrusions outcrop in Baijingshan and Wuerqihan, and comprise a medium-basic unit (gabbro, gabbro diorite and quartz diorite) and an acidic unit (granodiorite and monzogranite). The geochemical data show that the medium-basic and acidic units are calc-alkali series, and enriched in LREEs and LILEs; they have negative Nb-Ta anomalies with high Sr concentrations and Sr/Y ratios; they show low HREE contents and Y concentrations without Eu anomalies. In addition, the acidic unit has geochemical features of adakitic rocks. The Wunuer-Toudaoqiao ophiolitic mélange might form in Neoproterozoic, which, together with Toudaoqiao blueschist, Jifeng ophiolite mélange and Xinlin ophiolite, consists of a vital suture zone, suggesting a Paleo-ocean once existed in Yakeshi region. The formation age of the gabbro and granodiorite from the Late Paleozoic arc intrusions is 326±1.9Ma and 323.7±1.9Ma, respectively. In terms of trace elements, we confirmed that the formation of the Late Paleozoic arc-type intrusions was related to Early Carboniferous oceanic slab subduction, suggesting the oceanic basin wither between Xing'an block and Songnen block.
Key words: Ophiolitic mélange     Spreading ridge     Arc affinity     Neoproterozoic     Late Paleozoic     Yakeshi region    

中亚造山带是全球显生宙以来大型的增生造山带之一,其形成和演化与古亚洲洋密切相关。自新元古代之后,古亚洲洋经历了多期次的俯冲消减和构造演化(Windley et al., 2007; Zhang et al., 2008, 2009; Xiao et al., 2009; Xu et al., 2013, 2015; Song et al., 2015),并最终于晚二叠-早三叠世沿温都尔庙-西拉木伦河-长春-延吉一线闭合(孙德有等, 2004; Li, 2006; Li et al., 2014)。

大兴安岭地区位于中亚造山带的东段,从北至南划分为额尔古纳、兴安和松嫩三大地块(图 1),这些地块间碰撞拼合的位置和时间是研究古亚洲洋构造演化的关键。然而,额尔古纳地块与兴安地块的边界属性仍存在争议。一些研究认为德尔布干断裂是额尔古纳地块与兴安地块最终拼合的位置(任纪舜等, 1999; Wu et al., 2003)。而另一些研究则认为这两个陆块最终于早古生代沿头道桥-吉峰-新林闭合(葛文春等, 2007; Zhou and Wilde, 2013; Zhou et al., 2015; Feng et al., 2016)。这些争论存在的关键在于沿这两个块体的“边界”没有连续出露代表洋壳残片的蛇绿岩(蛇绿混杂岩)与(超)高压变质岩。另一方面,虽然一些研究认为大兴安岭北部存在晚泥盆世-石炭纪的俯冲(Li, 2006),但是缺少与俯冲相关的岩浆记录,这在很大程度上制约了地学界对于大兴安岭晚古生代大地构造演化的重建。

图 1 大兴安岭构造简图(据Wu et al., 2002改) Fig. 1 Tectonic sketch map of the Great Hinggan Range (modified after Wu et al., 2002)

本文基于详细的野外地质填图工作,在大兴安岭牙克石地区识别和填绘出乌奴耳-头道桥蛇绿混杂岩与晚古生代弧型岩浆岩,并对其进行了较为详细的岩石学和地球化学研究。该蛇绿混杂岩位于乌奴耳-头道桥一带(图 1),前人将其作为华力西早期的辉长-闪长岩组和奥陶系、泥盆系。晚古生代弧属性的侵入岩出露于混杂岩带北侧的白井山和乌尔其汗(图 1),前人将其作为华力西早期的辉长-闪长岩组。牙克石地区这两类岩石构造组合的确认,将为大兴安岭晚古生代之前大地构造格架和构造演化的研究提供依据。

1 地质背景及野外地质特征

研究区位于大兴安岭中北段的牙克石地区,构造上属于额尔古纳地块,南与兴安地块相邻(图 1)。额尔古纳地块是一个含有前寒武纪结晶基底的古老微陆块,其结晶基底主要为角闪岩相变质的兴华渡口岩群和绿片岩相变质的佳疙疸组(Zhou et al., 2011; Ge et al., 2015),并以出露新元古代的岩浆岩和发育大面积中生代的花岗岩与火山岩为特征(Wu et al., 2011; Tang et al., 2014)。兴安地块主要由早古生代的辉长岩和花岗岩、古生代地层、中生代-新生代地层和火山岩组成(黑龙江省地质矿产局, 1993; 葛文春等, 2007; Wu et al., 2003, 2011)。

研究区内的地层普遍缺失志留系,奥陶系、泥盆系发育。奥陶系的地层具有岛弧-弧后盆地火山沉积建造的特征(苏养正等, 1996),泥盆系和下石炭统以海相沉积环境为特征(赵芝等, 2010)。区内的岩浆岩以出露大面积晚古生代的花岗岩和中生代的火山岩为特征。这些晚古生代的花岗岩主要为花岗闪长岩和二长花岗岩组合,属于高钾钙碱性系列(Wu et al., 2011);火山岩以高钾钙碱性的中、酸性熔岩和火山碎屑岩为主。

1.1 乌奴耳-头道桥蛇绿混杂岩

乌奴耳-头道桥蛇绿混杂岩出露于六十四米桥-乌奴耳-扎敦河林场一带,呈NE-SW向展布,带宽约12.6km,断续延伸约69km(图 2)。该蛇绿混杂岩的岩性主要为辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩,以残留体或者断块的形式产出,与围岩多呈断层接触。围岩多为奥陶系、泥盆系和石炭系,各地层产状混乱,相互间呈断层接触。由于受后期强烈的改造作用,已经使本区的蛇绿混杂岩破碎肢解,因而相对于一些典型的蛇绿岩剖面(Steinmann, 1927; Hess, 1955),本区的蛇绿混杂岩剖面(图 3)缺失地幔岩部分,后被晚侏罗世花岗斑岩侵入。

图 2 乌奴耳-头道桥一带地质简图 1-古生代花岗岩;2-古生代闪长岩;3-古生代基性侵入岩;4-构造绿片岩;5-蛇绿混杂岩;6-蓝片岩;7-早古生代地层;8-断层;9-地质界线;10-地质剖面 Fig. 2 Geological sketch map of Wunuer-Toudaoqiao area 1-Paleozoic granite; 2-Paleozoic diorite; 3-Paleozoic basic intrusion; 4-structural green schist; 5-ophiolitic mélange; 6-blueschist; 7-Early Paleozoic strata; 8-fault; 9-geological boundary; 10-geological section

图 3 乌川蛇绿混杂岩实测剖面图 1-侏罗纪流纹质熔结凝灰岩;2-变玄武岩;3-侏罗纪花岗斑岩;4-放射虫硅质岩;5-辉绿玢岩(岩墙?);6-辉绿辉长岩;7-辉长岩;8-侵入界限;9-渐变界限;10-实测断层;11-推测断层 Fig. 3 Measured section of the Wuchuan ophiolitic mélange 1-Jurassic rhyolitic ignimbrite; 2-metabasalt; 3-Jurassic granite porphyry; 4-radiolarian silicalite; 5-sillite (diabase dyke-); 6-diabase gabbro; 7-gabbro; 8-intrusive boundary; 9-gradual boundary; 10-measured fault; 11-speculative fault
1.2 晚古生代弧属性的侵入岩

研究区晚古生代弧属性的侵入岩分布于白井山、乌尔其汗,位于乌奴耳-头道桥一带的北侧(图 1),呈NEE向展布(图 4),由辉长岩、辉长闪长岩、石英闪长岩、花岗闪长岩、二长花岗岩等组成,呈岩株、岩滴产出,最大出露面积可达44km2,最小不足1km2。这类侵入岩多侵入到泥盆纪泥鳅河组(D1-2n)和大民山组(D2-3d)中,与晚泥盆世弧火山岩(赵芝等, 2010)在区内一起出露。

图 4 牙克石地区晚古生代弧属性侵入岩地质简图 1-中生代、新生代地层;2-大民山组(D2-3d);3-泥鳅河组(D1-2n);4-花岗斑岩(J3γπ);5-中细粒二长花岗岩(Pηγ2);6-中粗粒二长花岗岩(Pηγ1);7-中细粒正长花岗岩(Cξγ);8-中粗粒二长花岗岩(Cηγ);9-花岗闪长岩(Cγδ);10-英云闪长岩(Cγo);11-石英闪长岩(Cδo);12-辉长闪长岩(Cvδ);13-辉长岩(Cv);14-断层;15-采样位置 Fig. 4 Geological sketch map of the Late Paleozoic arc-type intrusive rocks in Yakeshi region 1-Mesozoic and Cenozoic strata; 2-Damingshan Formation (D2-3d); 3-Niqiuhe Formation (D1-2n); 4-granite porphyry (J3γπ); 5-medium to fine-grained monzonitic granite (Pηγ2); 6-medium to coarse-grained monzonitic granite (Pηγ1); 7-medium to fine-grained syenogranite (Cξγ); 8-medium to coarse-grained monzonitic granite (Cηγ); 9-granodiorite (Cγδ); 10-tonalite (Cγo); 11-quartz diorite (Cδo); 12-gabbro-diorite (Cvδ); 13-gabbro (Cv); 14-fault; 15-sampling location
2 岩石学特征 2.1 乌奴耳-头道桥蛇绿混杂岩

辉长岩、辉长辉绿岩  呈墨绿色、暗灰绿色,含长结构、辉长结构,块状构造,局部可见“递变层”及条带状的构造(图 5a, b)。递变层(图 5a)表现为辉长岩的粒度从底部向上由中粒逐渐变为细粒;条带状的构造(图 5b)出现在辉长岩的底部。辉长岩平均含斜长石40%,单斜辉石35%,橄榄石10%,角闪石5%,磁铁矿、钛铁矿5%~8%。斜长石为主要的堆晶矿物,呈中-粗粒自形板状,弱定向排列(图 5c)。单斜辉石呈自形短柱状或他形粒状,部分自形短柱状的单斜辉石与斜长石共同构成堆晶(图 5c)。

图 5 乌奴耳-头道桥蛇绿混杂岩野外和镜下照片 (a)辉长岩野外照片,具递变层,从左到右逐渐变粗;(b)辉长岩野外照片,发育条带;(c)辉长岩镜下照片(+);(d)辉绿玢岩(岩墙?)野外照片;(e)变玄武岩镜下照片(+);(f)变玄武岩野外照片,具枕状构造;(g)硅质岩野外照片,发育纹层;(h)硅质岩镜下照片(+),含放射虫 Fig. 5 Field photographs and microphotographs of the Wunuer-Toudaoqiao ophiolitic mélange (a) field photo of gabbro, showing that graded bed and granularity gradually increases from left to right; (b) field photo of gabbro showing banded structure; (c) photomicrograph of gabbro (+); (d) field photo of allgovite (diabase dyke-); (e) photomicrograph of metabasalt (+); (f) field photo of metabasalt, showing pillow structure; (g) Field photo of radiolarian silicalite having lamina; (h) photomicrograph of radiolarian siliceous rocks (+) containing radiolarian

辉绿玢岩(岩墙?)  呈灰绿色,斑状结构、辉绿结构,在地貌上多呈石砬子。主要组成矿物为斜长石(45%)和单斜辉石(40%)。斜长石呈半自形板状(0.5~1mm),构成似三角架状,绿泥石化、黝帘石化;单斜辉石呈他形粒状(0.5~1mm),填隙状分布于斜长石的颗粒间。该带内的辉绿玢岩(岩墙?)具有斜长石的斑晶由少变多的特征(图 5d)。

变玄武岩  呈灰黑色,斑状、少斑结构;斑晶0.5~2mm,基质为间粒结构,具块状、杏仁状构造。斑晶为斜长石;杏仁体(5%±)呈圆状、椭圆状和不规则状(图 5e),星散状杂乱分布,成分为绿泥石、绿帘石和方解石。变玄武岩局部发育枕状构造(图 5f)和淬碎的角砾岩。

放射虫硅质岩  在地貌上多呈陡砍、断块,呈灰白色、灰黄色,致密块状构造,发育硅质纹层(图 5g),由硅质、放射虫和粘土质组成。硅质为隐晶-微晶的石英(>75%);放射虫呈圆形或者椭圆形(图 5h),星散状分布,1%~5%左右,成分为硅质,重结晶发育;粘土质(< 20%)具有定向的特征,隐晶-微晶状。

2.2 晚古生代弧属性的侵入岩

通过野外系统的调查和室内详细分析,将区内晚古生代弧属性侵入岩划分为两个组成单元:(1)中基性单元,包括辉长岩、辉长闪长岩和石英闪长岩;(2)酸性单元,主体为花岗闪长岩和二长花岗岩。这些组成单元中各岩石类型之间的接触界线截然。中基性单元的研究程度相对较低,前人只是将其划入华力西早期的辉长-闪长岩组。酸性单元只有乌尔其汗做过详细的研究工作(赵芝等, 2010)。

辉长岩  主要分布于白井山(图 4),呈深灰至灰绿色,中-细粒半自形粒状结构,块状构造,主要组成矿物为斜长石(60%~65%)、角闪石(20%±)和单斜辉石(15%±)。

辉长闪长岩  呈深灰色,细粒半自形粒状结构,块状构造,主要组成矿物为斜长石(70%~75%)、角闪石(10%~15%)和单斜辉石(10%±)。斜长石呈半自形板状;角闪石呈半自形柱状,定向排列;单斜辉石呈半自形短柱状,蚀变强烈。

花岗闪长岩  呈浅灰色,中-细粒花岗结构,块状构造。主要矿物成分为斜长石(45%~55%)、钾长石(15%~25%)、石英(20%~25%),暗色矿物含量约15%,主要为角闪石(10%±)和黑云母(1%~5%)。

二长花岗岩  呈灰-深灰色,中细粒花岗结构,块状构造。主要组成矿物为斜长石(40%~45%)、钾长石(25%~35%)、石英(25%±)和黑云母(5%~15%)。斜长石呈板状,发育环带,局部可见蠕英结构;钾长石呈半自形板状,高岭土化强烈。

3 分析方法

本次研究对区内出露的蛇绿混杂岩进行了系统的取样工作,样品主要取自完整的蛇绿混杂岩剖面处,所取样品蚀变弱、较为新鲜。蛇绿混杂岩样品由于形成年代久远,测试结果显示LOI偏大;部分变玄武岩的样品含有杏仁体,在测试过程中尽量选择剔除。对于晚古生代弧属性的侵入岩,本次研究对中基性单元和酸性单元均选取样品分析测试。样品的主量元素在河北省区域地质矿产调查研究所实验室采用湿化学法测定,分析精度优于0.3%,FeO的精度优于0.5%。稀土和微量元素在中国地质科学院地球物理地球化学勘查研究所采用等离子体质谱仪(ICP-MS)测定,仪器型号为美国热电公司生产的POE MS Ⅲ电感耦合等离子体光质谱仪,测试过程中使用的标准样品为AGV-2、GSR-3和GSR-5,分析精度一般优于5%。蛇绿混杂岩、晚古生代弧属性侵入岩的主量元素、稀土和微量元素分析结果分别见表 1表 2

表 1 乌奴耳-头道桥蛇绿混杂岩主量元素(wt%)、稀土和微量元素(×10-6)分析结果 Table 1 The analyzed data of major (wt%), rare earth and trace elements (×10-6) of the Wunuer-Toudaoqiao ophiolitic mélange

表 2 晚古生代弧属性侵入岩主量元素(wt%)、稀土和微量元素(×10-6)分析结果 Table 2 The analyzed data of major (wt%), rare earth and trace elements (×10-6) of the Late Paleozoic arc-type intrusive rocks

本次研究采集的测年样品重5~8kg左右,样品的破碎、分选和制靶在河北廊坊区域地质调查研究所完成,锆石的阴极发光图像(CL)在北京领航科技有限公司完成。锆石U-Th-Pb的测试工作在天津地质调查中心采用激光剥蚀多接收器电感耦合等离子体质谱仪LA-ICP-MS完成。该系统包括Thermo Fisher公司生产的Neptune多接收器电感耦合等离子质谱仪和ESI公司生产的NEW WAVE193nm FX ArF准分子激光器,测试过程中使用的标准样品为GJ-1、91500和人工合成的硅酸盐玻璃NIST SRM610,分析误差为1σ。同位素测定时,普通Pb校正采用Andersen (2002)的方法,锆石的谐和曲线和加权平均年龄采用Ludwig (2003)的Isoplot3.0版本软件绘制和计算。所获得的锆石U-Pb年代学数据见表 3

表 3 晚古生代弧属性侵入岩(040GS和2529GS2)LA-ICP-MS锆石分析结果 Table 3 LA-ICP-MS zircon dating data of the Late Paleozoic arc-type intrusive rocks (040GS and 2529GS2)
4 岩石化学特征 4.1 主量元素特征 4.1.1 乌奴耳-头道桥蛇绿混杂岩

蛇绿混杂岩从辉长岩至变玄武岩SiO2的含量普遍较低(46.03%~49.97%),变化范围小;MgO的含量为5.40%~9.16%,变化范围大;Al2O3的含量为13.12%~19.65%;CaO的含量为4.83%~11.12%,变化范围大;明显具有低K2O(0.08%~0.60%)、富Na2O(2.55%~4.93%)及Na2O-2>K2O的特征;TiO2的含量低(为1.11%~2.75%),变化范围小,与洋脊玄武岩(MORB)TiO2的含量(平均1.5%, Pearce, 1983)接近。变玄武岩TiO2的含量(1.42%~2.10%)大于岛弧拉斑玄武岩(IAT)的TiO2含量(0.8%, Sun, 1980)。Mg#(43~62)小于Frey et al. (1978)定义的原始岩浆Mg#值(68~75),暗示基性岩类是由经过一定程度演化的玄武质岩浆形成。

在FAM图解(图 6a)中,变玄武岩具有富铁的趋势,呈曲线演化,说明其属于拉斑玄武岩系列。在ACM图解(图 6b)中,绝大多数的辉长岩和辉绿玢岩(岩墙?)样品投影在镁铁质堆晶岩的范围内。在Nb/Y-Zr/P2O5图解(图略)和P2O5-Zr图解(图略)中,变玄武岩样品均投影在拉斑玄武岩区。

图 6 乌奴耳-头道桥蛇绿混杂岩的FAM图解(a, 据Irvine and Baragar, 1971)和ACM图解(b, 据Coleman, 1977) TH-拉斑系列;CA-钙碱性系列;MC-镁铁质堆晶岩;UC-超镁铁质堆晶岩 Fig. 6 FAM (a, after Irvine and Baragar, 1971) and ACM (b, after Coleman, 1977) diagrams of the Wunuer-Toudaoqiao ophiolitic mélange TH-tholeiitic series; CA-calcalkaline series; MC-mafic cumulate; UC-ultramafic cumulate
4.1.2 晚古生代弧属性的侵入岩

晚古生代弧属性侵入岩的中基性单元SiO2较低(52.34%~54.56%),具有高CaO(5.54%~8.27%)、贫钾富钠(K2O=0.91%~1.11%,Na2O=3.41%~6.27%,Na2O/K2O为3.76~5.56)的特征。酸性单元具有富硅(SiO2=63.40%~68.43%)、高碱(Na2O+K2O=4.78%~6.45%)、低钛、铁、镁和磷(TiO2=0.35%~0.58%,FeOT=2.71%~4.28%,MgO=1.29%~2.60%,P2O5=0.094%~0.16%)的特点。在SiO2-AR图解(图略)中,样品投影在钙碱性岩的范围内;在FAM图解(图 7a)中,样品不具有富铁的趋势,呈直线演化。这些特征表明晚古生代弧属性的侵入岩属于钙碱性系列。两者的A/CNK值(0.78~1.01,平均0.96)在1左右变化;酸性单元计算的标准矿物中刚玉的含量小于1%,说明酸性单元为准铝质-铝质花岗岩类(图 7b)。

图 7 牙克石地区晚古生代弧属性侵入岩的FAM图解(a, 据Irvine and Baragar, 1971)和A/CNK-A/NK图解(b) Fig. 7 FAM (a, after Irvine and Baragar, 1971) and A/CNK-A/NK (b) diagrams of the Late Paleozoic arc-type intrusive rocks in Yakeshi region
4.2 微量元素特征 4.2.1 乌奴耳-头道桥蛇绿混杂岩

蛇绿混杂岩的∑REE(38.30×10-6~99.13×10-6)变化范围较大,大约相当于N-MORB的0.98~2.53倍,相当于E-MORB的0.78~2.02倍,明显低于OIB(MORB和OIB的值引自Sun and McDonough, 1989)。从辉长岩到变玄武岩,REE球粒陨石配分型式(图 8a, c)基本一致,近于平坦。样品的(La/Yb)N值为0.80~1.35,LREE从La至Eu呈微弱的左倾,HREE从Gd至Lu近于平坦,类似于N-MORB。辉长岩到辉绿玢岩(岩墙-)样品具有较为明显的正Eu异常(δEu=1.07~1.21),这与斜长石的堆晶作用有关。

图 8 牙克石地区新元古代与晚古生代两类岩石组合的球粒陨石标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) 经典弧岩浆岩数据引自Rogers and Hawkesworth (1989) Fig. 8 Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagrams for two types of Neoproterozoic and Late Paleozoic rock assemblage in Yakeshi region (normalization values after Sun and McDonough, 1989) Typical arc magma data are from Rogers and Hawkesworth (1989)

蛇绿混杂岩样品在原始地幔蛛网图(图 8b, d)中具有较为一致的蛛网图型式,呈LILEs略微亏损、HFSEs近于平坦的特征。与N-MORB、E-MORB、OIB的原始地幔蛛网图相比,除过个别元素的异常,蛇绿混杂岩与MORB的蛛网图接近。与N-MORB相比,蛇绿混杂岩样品的LILEs(如K、Rb、U等)出现微弱的异常,可能与岩石和海水长期的相互作用有关(Hart and Staudigel, 1989; Bach et al., 2001)。从辉长岩到变玄武岩,Nd、Ta、Hf的含量远高于岛弧拉斑玄武岩(IAT),显示与IAT不同的特征。此外,该区的蛇绿混杂岩样品在原始地幔蛛网图(图 8b, d)中,均不显示Ti的负异常,暗示蛇绿混杂岩在就位过程中没有陆壳物质加入(Rudnick and Gao, 2003),说明扩张脊已初具规模。地球化学的特征表明乌奴耳-头道桥蛇绿混杂岩与N-MORB相似。

4.2.2 晚古生代弧属性的侵入岩

晚古生代弧属性侵入岩的∑REE(45.97×10-6~100.6×10-6)变化范围较大,大约相当于C1球粒陨石的18~40倍(C1=2.54×10-6, 据Sun and McDonough, 1989)。样品的REE球粒陨石配分型式较为一致(图 8e),均呈右倾型,相对富集LREEs,LREE/HREE=5.90~7.86。LREEs从La至Eu强烈分馏,HREEs从Ho至Lu近于平坦,显示与经典岛弧岩浆岩不同的稀土元素特征(图 8e)。

此外,本区晚古生代弧属性的侵入岩具有高Sr(>400×10-6)、低Y(< 18×10-6)、低Yb(< 1.9×10-6)的特征。在原始地幔蛛网图(图 8f)中,样品的蛛网图高度一致:总体右倾,富集LILEs,亏损HFSEs;并显示Nb-Ta的负异常;Y、Yb、Lu整体出现负异常。这些特征暗示本区晚古生代弧属性侵入岩的岩浆源区含有残余的石榴子石,其形成与板片的俯冲作用有关。酸性单元具有与埃达克质岩相似的地球化学特征(Kay, 1978; Defant and Drummond, 1990)。

5 年代学特征

本次研究对乌奴耳-头道桥蛇绿混杂岩没有获得精确的同位素年代学证据,还需进一步的工作。但在乌奴耳,该蛇绿混杂岩明显被志留纪基性侵入岩侵入(未发表资料),因此本文认为其应形成于志留纪之前。Feng et al. (2016)对NE向展布的吉峰蛇绿混杂岩中的辉长岩进行了锆石LA-ICP-MS定年(图 1),测定结果为647±5.3Ma(MSWD=0.45),确定吉峰蛇绿岩形成于新元古代。依据头道桥蓝片岩和吉峰蛇绿混杂岩展布的空间特征,本文认为吉峰蛇绿混杂岩是乌奴耳-头道桥蛇绿混杂岩的北延部分,两者的形成时代较为接近。另一方面,Zhou et al. (2015)给出的头道桥杂岩原岩的形成年龄大于500Ma。这些证据说明乌奴耳-头道桥蛇绿混杂岩的形成时代至少大于500Ma,可能形成于新元古代。

040GS号样品为辉长岩,采自白井山,锆石的CL图像和谐和图分别见图 9a, b。该样品在谐和图(图 9b)上有三组年龄:第一组仅有一颗锆石,年龄为714±20Ma;第二组有两颗锆石,年龄分别为619±18Ma、619±25Ma;第三组锆石较多,加权平均年龄为326±1.9Ma(MSWD=1.4,n=10)。该样品的锆石CL图像(图 9a)显示,年龄值大的三颗锆石呈浑圆状,长宽比近于1:1,可能为捕获锆石。而第三组年龄的锆石大多呈柱状,晶型较好,长宽比为2:1~4:1,发育岩浆环带,Th/U值高(3.24~5.35),暗示岩浆成因,这组年龄代表基性单元的结晶年龄。

图 9 晚古生代弧属性侵入岩的锆石CL图像和LA-ICP-MS U-Pb谐和图 Fig. 9 CL images and zircon LA-ICP-MS U-Pb concordant diagrams for the Late Paleozoic arc-type intrusive rocks

2529GS2号样品为花岗闪长岩,采自白井山,锆石的CL图像和谐和图分别见图 9c, d。该样品在谐和图(图 9d)上只有一组年龄,加权平均年龄为323.7±1.9Ma(MSWD=0.0013,n=21)。该样品的锆石CL图像(图 9c)显示,锆石呈柱状,长宽比为1.2:1~3:1,发育典型的岩浆环带,Th/U值高(为0.32~0.69),暗示岩浆成因,代表酸性单元的结晶年龄。

本次研究获得的中基性单元与酸性单元的年龄分别为326.8±1.9Ma和323.7±1.9Ma,与赵芝等(2010)在乌尔其汗得到的花岗闪长岩年龄(331.2±3.7Ma)一致,均为早石炭世。

6 岩石成因及构造环境 6.1 乌奴耳-头道桥蛇绿混杂岩

蛇绿岩(蛇绿混杂岩)代表洋壳残片,能形成于威尔逊旋回的各个阶段,最终可能残存在造山带中。因而,蛇绿岩(蛇绿混杂岩)对复原板块拼合过程、造山带演化以及建立区域构造格架具有重要的地质意义(张旗和周国庆, 2001)。

依据上述岩石学、地球化学的特征,乌奴耳-头道桥蛇绿混杂岩从辉长岩到变玄武岩显示低钾拉斑玄武岩的特征,具有相似的稀土元素和微量元素配分型式,与N-MORB类似,不同于IAT和OIB。从辉长岩到变玄武岩,Ce/Pb值(1.1~6.9)小于壳相(壳相为10, Taylor and McLennan, 1985);Zr/Nb值为8.7~45.8,平均28,远高于大陆地壳(Zr/Nb为16, Saunders et al., 1988)和OIB(Zr/Nb为3.2~11.3, Saunders et al., 1988),而与MORB的Zr/Nb值(为30, Weaver, 1991)接近;Th/Nb值为0.02~0.88,平均0.22,与亏损地幔玄武岩(Th/Nb为0.05, Hofmann, 1988)接近;运用Fitton et al. (1997)提出的Nb判别法,计算得到δNb < 0(平均-0.15)。这些特征暗示乌奴耳-头道桥蛇绿混杂岩起源于亏损地幔。

由于LILEs活动性强,易受海水、后期变质作用等因素影响。因而,本文选择活动性弱的元素(如Nb、Zr、Ti、Th)、HREEs等判断乌奴耳-头道桥蛇绿混杂岩形成的构造环境。在TiO2-Zr图解中(图 10a),样品投影在MORB区,远离VAB区;在Zr/Y-Zr图解中(图 10b),样品投影点远离IAB区和WPB区,而靠近MORB区;在Ti/100-Zr-3Y图解中(图 10c),样品全部投影在MORB区;在2Nb-Zr/4-Y图解中(图 10d),样品主要投影在N-MORB区,少数落在E-MORB区。这些特征暗示乌奴耳-头道桥蛇绿混杂岩可能形成于扩张脊(MORB)。

图 10 乌奴耳-头道桥蛇绿混杂岩的TiO2-Zr图解(a, 据Pearce, 1982)、Zr/Y-Zr图解(b, 据Pearce and Norry, 1979)、Ti/100-Zr-3Y图解(c, 据Pearce and Cann, 1973)和2Nb-Zr/4-Y图解(d, 据Meschede, 1986) Fig. 10 Diagrams of TiO2 vs. Zr (a, after Pearce, 1982), Zr/Y vs. Zr (b, after Pearce and Norry, 1979), Ti/100-Zr-3Y (c, after Pearce and Cann, 1973), 2Nb-Zr/4-Y (d, after Meschede, 1986) for the Wunuer-Toudaoqiao ophiolitic mélange

Dilek (2003)Dilek and Robinson (2003)Dilek and Furnes (2011)对蛇绿岩重新定义之后,将蛇绿岩分为与俯冲有关和与俯冲无关两大类。因而,本文需进一步讨论本区蛇绿混杂岩形成与俯冲作用的关系。本区蛇绿混杂岩的微量元素不具明显的Zr、P、Ti、Y和HREEs的亏损,暗示乌奴耳-头道桥蛇绿混杂岩可能为“与俯冲无关”的一类蛇绿岩。

已有研究表明(Pearce and Deng, 1983; 张旗和周国庆, 2001; Eisele et al., 2002; 赖绍聪和刘池洋, 2003; 朱弟成等, 2008),Nb的负异常在一定程度上反映地幔源区是否含有弧火山岩的组分,这与典型的洋脊玄武岩(N-MORB)有很大差异。Th、La与Nb有相似的不相容性,与U、K相比,活动性更低。因而,本文参考Eisele et al. (2002)提出的判别法确定Nb是否具有负异常,计算公式如下:

Nb/Nb*=NbPM/(ThPM×LaPM)1/2

上式PM表示原始地幔标准化(标准化值据Sun and McDonough, 1989)。计算结果显示多数样品的Nb/Nb*值>1(平均1.31),表明乌奴耳-头道桥蛇绿混杂岩不含岛弧的组分。以上这些特征暗示牙克石地区存在古洋盆,蛇绿混杂岩形成于扩张脊(MORB)。

6.2 晚古生代弧属性的侵入岩

依据岩石学和地球化学的特征,本区晚古生代弧属性的侵入岩属于钙碱性岩系列,具有高Sr(>400×10-6)、低Y(< 18×10-6)、低Yb(< 1.9×10-6)的特征,并具有岛弧岩浆岩所特有的Nb、Ta、Ti、P负异常。其中,中基性单元具有很高的Al2O3含量(17.27%~21.85%)和Mg#(平均66),不具有Eu异常。而酸性单元具有Al2O3>15%、MgO < 3%、K2O/Na2O < 0.5的特征,不具有Eu异常,显示埃达克质岩的地球化学特征。在Sr-Yb图解中(图 11a),绝大多数样品投影在高Sr低Y区;在Sr/Y-Y图解中(图 11b),大多数样品投影在埃达克(质)岩的范围内,呈MORB部分熔融曲线演化,而与典型的岛弧火山岩不同。但酸性单元中2529GS2号样品投影于岛弧火山岩区(图 11b)。

图 11 牙克石地区晚古生代弧属性侵入岩的Sr-Yb图解(a)和Sr/Y-Y图解(b, 据Defant et al., 2002) Fig. 11 Diagrams of Sr vs. Yb (a) and Sr/Y vs. Y (b, after Defant et al., 2002) for the Late Paleozoic arc-type intrusive rocks in Yakeshi region

研究表明,不仅俯冲的大洋板片熔融能够产生埃达克质熔体(Kay and Kay, 2002; Martin et al., 2005),岛弧或者活动陆缘区加厚的下地壳也能产生埃达克质熔体(Wang et al., 2005; Stevenson et al., 2006; Qin et al., 2015)。但前者具有更低的K2O/Na2O值(< 0.5, 张旗等, 2004),并不显示明显的Eu异常。与典型的埃达克岩相比,本区晚古生代弧属性的侵入岩总体上具有与其相似的地球化学特征(如Al2O3>15%,MgO < 3%,K2O/Na2O < 0.5,高Sr,低Yb、Y),这表明本区晚古生代弧属性的侵入岩应源于洋壳的部分熔融(图 11b),代表洋壳的俯冲消减。在整个过程中,洋壳熔融产生的基性岩浆向上运移,一部分直接结晶形成基性侵入岩,基性岩浆在运移过程中可能受到陆壳的混染。而另一部分基性岩浆将与地壳相互作用,形成中性和酸性的侵入岩,显示埃达克质岩和岛弧岩石的特征,相似的例子可在天山见到(Wang et al., 2007)。

7 地质意义 7.1 乌奴耳-头道桥蛇绿混杂岩

牙克石地区出露的乌奴耳-头道桥蛇绿混杂岩对大兴安岭地区古生代之前的大地构造演化提供了重要的岩石学证据。该蛇绿混杂岩证实本区新元古代洋盆的存在,它与头道桥蓝片岩、吉峰蛇绿混杂岩和新林蛇绿岩构成一条很重要的缝合带。这条缝合带能够作为额尔古纳地块与兴安地块最终的拼合位置,而不是之前认为的德尔布干断裂(任纪舜等, 1999; Wu et al., 2003)。

Feng et al. (2016)对吉峰蛇绿混杂岩进行了详细的地球化学和年代学研究,获得吉峰蛇绿混杂岩中辉长岩锆石的LA-ICP-MS年龄数据为647±5.3Ma,并依此确定额尔古纳地块和兴安地块之间存在新元古代的洋盆。Zhou et al. (2015)认为头道桥蓝片岩的高压变质时限为早古生代(510~490Ma)。这些证据证实在额尔古纳地块和兴安地块之间存在新元古代的洋盆,并最终于早古生代之前沿头道桥-乌奴耳-吉峰-新林一线闭合。

7.2 晚古生代弧属性的侵入岩

Wu et al. (2011)的研究表明,大兴安岭地区分布有较少的古生代花岗岩,这些古生代的花岗岩主要分布于漠河和塔河一带。葛文春等(2005)的研究表明,塔河地区分布的这些古生代花岗岩属于后造山花岗岩,标志着额尔古纳地块和兴安地块于早古生代(~490Ma)完成了碰撞拼贴。这些证据暗示牙克石地区晚古生代弧属性侵入岩的形成与额尔古纳地块和兴安地块的碰撞拼贴无关。

依据年代学的证据,兴安地块北部分布的I型花岗岩(340~300Ma, Wu et al., 2011)与牙克石地区的弧属性侵入岩均形成于石炭纪,空间上也接近。而这些晚古生代I型花岗岩被认为是古亚洲洋演化过程中俯冲成因的产物(张彦龙等, 2010; Wu et al., 2011)。而牙克石地区分布的晚古生代弧属性侵入岩(331~323Ma)代表洋壳板片的俯冲消减,暗示松嫩地块与兴安地块之间洋盆的萎缩,应与古亚洲洋的演化密切相关。而兴安地块南部290~260Ma的A型花岗岩(Wu et al., 2011)代表造山作用的结束。这些证据暗示松嫩地块与兴安地块之间的洋盆开始消亡至少是在早石炭世,碰撞造山应在晚石炭世之后。

8 结论

(1) 牙克石地区出露有两类不同构造属性的岩石组合:一类为乌奴耳-头道桥蛇绿混杂岩;另一类为晚古生代弧属性的侵入岩,分布于白井山、乌尔其汗。

(2) 乌奴耳-头道桥蛇绿混杂岩由辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩组成;辉长岩到变玄武岩具有N-MORB的特征,形成于扩张脊,代表洋壳残片;蛇绿混杂岩的形成时代可能为新元古代,暗示牙克石地区古洋盆的存在。

(3) 晚古生代弧属性的侵入岩由中基性单元(326±1.9Ma)和酸性单元(323.7±1.9Ma~331.2±3.7Ma)组成,其中的酸性单元具有埃达克质岩的地球化学特征,两者的形成与早石炭世洋壳板片的俯冲作用有关,暗示松嫩地块与兴安地块之间洋盆的萎缩。

(4) 乌奴耳-头道桥蛇绿混杂岩与头道桥蓝片岩、吉峰蛇绿混杂岩、新林蛇绿岩构成一条重要的缝合带,额尔古纳地块与兴安地块最终沿该缝合带于早古生代之前完成闭合;牙克石地区发育的晚古生代弧岩浆岩可能与古亚洲洋的俯冲消减过程密切相关。

致谢 感谢课题组其他成员在野外工作中给予的帮助。感谢天津地质调查中心的同行在锆石测试过程中给予的帮助。感谢审稿专家对本文提出的宝贵意见,使本文增色不少。
参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Bach W, Alt JC, Niu YL, Humphris SE, Erzinger J and Dick HJB. 2001. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta, 65(19): 3267-3287. DOI:10.1016/S0016-7037(01)00677-9
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House: 1-734.
Coleman RG. 1977. Ophiolites: Ancient Oceanic Lithosphere?. New York: Springer-Verlag: 1-229.
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142.
Dilek Y. 2003. Ophiolite concept and its evolution. In: Dilek Y and Newcomb S (eds. ). Ophiolite Concept and the Evolution of Geological Thought. Boulder, Colorado: Geological Society of America, 1-16 https://www.researchgate.net/publication/228797240_Ophiolite_concept_and_its_evolution
Dilek Y and Robinson PT. 2003. Ophiolites in earth history: Introduction. In: Dilek Y and Robinson PT (eds. ). Ophiolites in Earth History. Geological Society, London, Special Publications, 218(1): 1-8 https://www.researchgate.net/publication/249551225_Ophiolites_in_Earth_history_Introduction
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411. DOI:10.1130/B30446.1
Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW and Hofmann AW. 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 196(3-4): 197-212. DOI:10.1016/S0012-821X(01)00601-X
Feng ZQ, Liu YJ, Liu BQ, Wen QB, Li WM and Liu Q. 2016. Timing and nature of the Xinlin-Xiguitu Ocean: Constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(2): 491-505. DOI:10.1007/s00531-015-1185-z
Fitton JG, Saunders AD, Norry MJ, Hardarson BS and Taylor RN. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153(3-4): 197-208. DOI:10.1016/S0012-821X(97)00170-2
Frey FA, Green DH and Roy SD. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513. DOI:10.1093/petrology/19.3.463
Ge WC, Wu FY, Zhou CY and Rahman AAA. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105. DOI:10.1360/982005-207
Ge WC, Sui ZM, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China. Acta Petrologica Sinica, 23(2): 423-440.
Ge WC, Chen JS, Yang H, Zhao GC, Zhang YL and Tian DX. 2015. Tectonic implications of new zircon U-Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 106: 169-185. DOI:10.1016/j.jseaes.2015.03.011
Hart SR and Staudigel H. 1989. Isotopic characterization and identification of recycled components. In: Hart SR and Gülen L (eds. ). Crust/Mantle Recycling at Convergence Zones. Dordrecht: Springer, 15-28 https://link.springer.com/chapter/10.1007%2F978-94-009-0895-6_2
Hess HH. 1955. Serpentines, orogeny, and epeirogeny. In: Poldervaart AW (ed.). Crust of the Earth. Special Papers, Geological Society of America. Baltimore: Waverly Press, 62: 391-408
Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. DOI:10.1016/0012-821X(88)90132-X
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. DOI:10.1139/e71-055
Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132. DOI:10.1016/0377-0273(78)90032-X
Kay RW and Kay SM. 2002. Andean adakites: Three ways to make them. Acta Petrologica Sinica, 18(3): 303-311.
Lai SC and Liu CY. 2003. Geochemistry and genesis of the island-arc ophiolite in Anduo area, Tibetan Plateau. Acta Petrologica Sinica, 19(4): 675-682.
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. DOI:10.1016/j.jseaes.2005.09.001
Li YL, Zhou HW, Brouwer FM, Xiao WJ, Wijbrans JR and Zhong ZQ. 2014. Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: Insights from zircon U-Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos, 205: 84-111. DOI:10.1016/j.lithos.2014.06.017
Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, Calif: Berkeley Geochronology Center.
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.048
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218. DOI:10.1016/0009-2541(86)90004-5
Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300. DOI:10.1016/0012-821X(73)90129-5
Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. DOI:10.1007/BF00375192
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed. ). Andesites. New York: John Wiley and Sons, 525-548 https://www.researchgate.net/publication/304749002_Trace_Element_Characteristics_of_Lavas_from_Destructive_Plate_Boundaries
Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds. ). Continental Basalts and Mantle Xenoliths. Nantwich: Shiva, 230-249 https://www.researchgate.net/publication/247434731_Role_of_the_sub-continental_lithosphere_in_magma_genesis_at_active_continental_margin
Pearce JA and Deng WM. 1983. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). In: Chang C et al. (eds. ). The Geological Evolution of Tibet. London: The Royal Society, 215-238
Qin ZW, Wu YB, Siebel W, Gao S, Wang H, Abdallsamed MIM, Zhang WX and Yang SH. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 238: 1-12. DOI:10.1016/j.lithos.2015.09.017
Ren JS, Niu BG and Liu ZG. 1999. Soft collision, superposition orogeny and polycyclic suturing. Earth Science Frontiers, 6(3): 85-93.
Rogers G and Hawkesworth CJ. 1989. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91(3-4): 271-285. DOI:10.1016/0012-821X(89)90003-4
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 1-64
Saunders AD, Norry MJ and Tarney J. 1988. Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. Journal of Petrology, (1): 415-445.
Song SG, Wang MM, Xu X, Wang C, Niu YL, Allen MB and Su L. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics, 34(10): 2221-2245. DOI:10.1002/2015TC003948
Steinmann G. 1927. Die ophiolitischen Zonen in den Mediterranean Kettengebirgen: Compte Rendu, XIVe Congres Géologique International, 1926. Madrid, Graficas Reunidas, 2: 637-667.
Stevenson RK, David J and Parent M. 2006. Crustal evolution of the western Minto Block, northern Superior Province, Canada. Precambrian Research, 145(3-4): 229-242. DOI:10.1016/j.precamres.2005.12.004
Su YZ. 1996. Paleozoic stratigraphy of Hinggan stratigraphical province. Jilin Geology, 15(3-4): 23-24.
Sun DY, Wu FY, Zhang YB and Gao S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181.
Sun SS. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 297(1431): 409-445. DOI:10.1098/rsta.1980.0224
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tang J, Xu WL, Wang F, Wang W, Xu MJ and Zhang YH. 2014. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1-16. DOI:10.1016/j.lithos.2013.10.024
Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwells Scientific: 1-312.
Wang Q, McDermott F, Xu JF, Bellon H and Zhu YT. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 33(6): 465-468. DOI:10.1130/G21522.1
Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF and Chu ZY. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2): 42-64. DOI:10.1016/j.chemgeo.2006.08.013
Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. DOI:10.1016/0012-821X(91)90217-6
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173. DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionatedⅠ-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273. DOI:10.1016/S0024-4937(02)00222-0
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. DOI:10.1007/s00531-008-0407-z
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. DOI:10.1016/j.gr.2012.05.015
Xu B, Zhao P, Wang YY, Liao W, Luo ZW, Bao QZ and Zhou YH. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China. Journal of Asian Earth Sciences, 97: 183-196. DOI:10.1016/j.jseaes.2014.07.020
Zhang Q and Zhou GQ. 2001. Ophiolite of China. Beijing: Science Press: 1-200.
Zhang Q, Xu JF, Wang Y, Xiao L, Liu HT and Wang YL. 2004. Diversity of adakite. Geological Bulletin of China, 23(9-10): 959-965.
Zhang YL, Ge WC, Gao Y, Chen JS and Zhao L. 2010. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implications. Acta Petrologica Sinica, 26(4): 1059-1073.
Zhang ZC, Mao JW, Cai JH, Kusky TM, Zhou G, Yan SH and Zhao L. 2008. Geochemistry of picrites and associated lavas of a Devonian island arc in the Northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3-4): 379-395. DOI:10.1016/j.lithos.2008.05.013
Zhang ZC, Zhou G, Kusky TM, Yan SH, Chen BL. and Zhao L. 2009. Late Paleozoic volcanic record of the eastern Junggar Terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201-215. DOI:10.1016/j.gr.2009.03.004
Zhao Z, Chi XG, Liu JF, Wang TF and Hu ZC. 2010. Late Paleozoic arc-related magmatism in Yakeshi region, Inner Mongolia: Chronological and geochemical evidence. Acta Petrologica Sinica, 26(11): 3245-3258.
Zhou JB, Wilde SA, Zhang XZ, Ren SM and Zheng CQ. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics, 499(1-4): 105-117. DOI:10.1016/j.tecto.2010.12.009
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. DOI:10.1016/j.gr.2012.05.012
Zhou JB, Wang B, Wilde SA, Zhao GC, Cao JL, Zheng CQ and Zeng WS. 2015. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great Xing'an Range, Northeast China, and tectonic implications. Journal of Asian Earth Sciences, 97: 197-210. DOI:10.1016/j.jseaes.2014.07.011
Zhu DC, Mo XX, Wang LQ, Zhao ZD and Liao ZL. 2008. Hotspot-ridge interaction for the evolution of Neo-Tethys: Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet. Acta Petrologica Sinica, 24(2): 225-237.
葛文春, 吴福元, 周长勇, Rahman AAA. 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247. DOI:10.3321/j.issn:0023-074X.2005.12.015
葛文春, 隋振民, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社: 1-734.
赖绍聪, 刘池阳. 2003. 青藏高原安多岛弧型蛇绿岩地球化学及成因. 岩石学报, 19(4): 675-682.
任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93.
苏养正. 1996. 兴安地层区的古生代地层. 吉林地质, 15(3-4): 23-24.
孙德有, 吴福元, 张艳斌, 高山. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181.
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社: 1-200.
张旗, 许继峰, 王焰, 肖龙, 刘红涛, 王元龙. 2004. 埃达克岩的多样性. 地质通报, 23(9-10): 959-965.
张彦龙, 葛文春, 高妍, 陈井胜, 赵磊. 2010. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义. 岩石学报, 26(4): 1059-1073.
赵芝, 迟效国, 刘建峰, 王铁夫, 胡兆初. 2010. 内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据. 岩石学报, 26(11): 3245-3258.
朱弟成, 莫宣学, 王立全, 赵志丹, 廖忠礼. 2008. 新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论. 岩石学报, 24(2): 225-237.