从全球范围看,2.7Ga左右的构造热事件是大陆地壳生长的重要时期,使得大量大陆地壳在短期内快速形成,表现为大量太古宙TTG岩系及基性火山岩的发现,如北半球的Superior克拉通(Henry et al., 2000; Polat and Kerrich, 2002; Polat and Münker, 2004)、西加拿大地盾(Sandeman et al., 2006)、波罗的地盾(Bibikova et al., 2005; Samsonov et al., 2005)、西格陵兰克拉通(Friend and Nutman, 2005; Steenfelt et al., 2005; Polat et al., 2008, 2010);南半球的南非和津巴布韦克拉通(Kröner et al., 1999; Horstwood et al., 1999)、西澳大利亚的Pilbara和Yilgarn Cratons等(Bateman et al., 2001; Rasmussen et al., 2005)。
华北克拉通具有漫长的演化历史和复杂的构造记录。与世界上其他几个古老克拉通相比,华北克拉通最显著的特点是~2.5Ga的构造岩浆活动非常强烈。该期岩浆活动不仅在华北克拉通内部辽西、冀东、冀西北、河北阜平-平山-赞皇、山西五台山及中条山、河南登封-鲁山等地大量发育,其西北缘内蒙古固阳地区和东南缘徐淮和蚌埠地区也有记录(杨崇辉等,2004;Wilde et al., 2005;Kröner et al., 2005;田伟等,2005;Diwu et al., 2008, 2011;Yang et al., 2008;Liu et al., 2009;周艳艳等, 2009;Wan et al., 2010;耿元生等, 2010)。有关华北克拉通2.7Ga岩浆作用,早期仅在阜平、鲁西和胶东等局部地区被发现(Jahn et al., 1988;庄育勋等,1997; Guan et al., 2002;杜利林等, 2003, 2010;陆松年等,2008;王伟等,2009;Wan et al., 2011),近年来在胶东、中条、太华、阜平、赞皇等地区陆续发现有2.7Ga岩浆事件存在(Liu et al., 2009;杨崇辉等,2011b;Yang et al., 2013;Zhu et al., 2013;Xie et al., 2014;路增龙等,2014;谢士稳等,2015),越来越多的研究者认识到2.9~2.7Ga是华北克拉通陆壳增生的一个重要阶段(翟明国,2010;Jiang et al., 2010;Geng et al., 2012;万渝生等,2015),这与华北克拉通早前寒武纪岩石的Nd和Hf模式年龄分布峰值相一致(2.9~2.7Ga)(Wan et al., 2014, 2015)。本文将对河北赞皇地区新近发现的2.7Ga TTG片麻岩的岩石化学、锆石U-Pb年龄和锆石Hf同位素进行研究,并对其地质意义进行讨论。
1 地质背景与样品采集赞皇杂岩位于太行山中南段,在构造上属于华北克拉通中部造山带的中南段,该地区出露的一套早前寒武纪变质杂岩,主要由变质变形的TTG片麻岩、二长-钾质花岗岩和少量表壳岩组成。传统的认识是将这套早前寒武纪杂岩全部作为变质地层,命名为赞皇群。近年来,随着研究工作的不断深入,从原赞皇群中解体出来大量TTG片麻岩和钾长-二长花岗质片麻岩及花岗岩(Trap et al., 2009; Xiao et al., 2011; 杨崇辉等, 2011a, b)(图 1)。该区TTG片麻岩可划分为两种类型,一类是条带状TTG片麻岩,其浅色长英质条带非常发育,条带大多平行于片麻理,以英云闪长质片麻岩为主,并有暗色闪长质片麻岩伴生;另一类为不具有条带的片麻岩,主要由英云闪长质片麻岩和花岗闪长质片麻岩构成。本文重点对邢台市内丘县白鹿角村南328省道90.5km和91.4km处出露的、在地质单元上属于赞皇杂岩的4个条带状片麻岩样品进行了研究。ZH39-1和ZH39-2为条带状英云闪长质片麻岩(采样位置:37°21′04.92″N、114°03′46.32″E),该样品野外可见浅色深熔条带,具有片麻理,暗色矿物以黑云母为主,少量角闪石,显微镜下见黑云母定向排列(图 2a, b)。TZ50-1和TZ50-2为条带状奥长花岗质片麻岩岩(采样位置:37°21′21.92″N、114°03′15.66″E),该样品野外可见浅色深熔条带,暗色矿物以黑云母为主,少量角闪石,显微镜下见黑云母定向排列,片麻理较前者弱(图 2c, d)。
锆石单矿物分选由河北省区域地质矿产调查研究所完成。锆石阴极发光显微照相由北京离子探针中心的扫描电镜室完成,工作电压为15kV,电流为4nA。锆石SHRIMP U-Pb定年在北京离子探针中心完成,测试流程详见宋彪等(2002)和宋彪(2015)。
锆石微区原位U-Pb定年和Hf同位素测试在天津地质矿产研究所同位素实验室完成,所用仪器为LA-MC-ICPMS。分析仪器为Thermo Fisher公司制造的Neptune多接收器等离子质谱仪,与等离子体质谱仪配套的进样设备激光器为美国ESI公司生产的UP193-FX ArF准分子激光器,激光波长193nm,脉冲宽度5ns,本次测试所用束斑为35μm,利用193nm激光器对锆石进行剥蚀。采用GJ-1作为外部锆石年龄标准进行U/Pb同位素分馏校正。采用ICP-MS DataCal程序和Ludwig的Isoplot程序进行数据处理,采用204Pb校正法对普通铅进行校正。利用NIST612玻璃标样作为外标计算锆石样品的Th、U、Pb含量(耿建珍等,2012)。Hf同位素测试所用仪器同上,仪器的运行条件及详细的测试流程见耿建珍等(2011)。为消除176Lu和176Yb对176Hf的质量干扰,利用176Lu/175Lu=0.02658和176Yb/173Yb=0.796218进行质量干扰校正。利用179Hf/177Hf=0.7325对Hf同位素比值进行指数归一化质量歧视校正, 采用173Yb/172Yb=1.35274对Yb同位素比值进行指数归一化质量歧视校正。
全岩成分测试在中国地质科学院国家地质实验测试中心实验室完成。首先尽可能挑选新鲜、均匀、未见明显深熔条带的样品。将挑选出的样品粉碎至200目。主量元素分析采用XRF玻璃熔片法完成,分析不确定度为2%~8%,FeO由湿化学法获得,换算后,用XRF法获得的Fe2O3全铁,再减去FeO获得Fe2O3。烧失量是将样品在100℃加热2小时复称测得。全岩微量元素采用ICP-MS溶液法分析。在溶样弹中,用HF+HNO3溶解待测的粉末样品,将加好酸的溶样弹放入钢套,然后放置在烘箱中,温度设置在190℃,加热48h以上。详细的样品溶解过程和ICP测试条件见Qi et al. (2000)。大多数微量元素的精确度和准确度通常优于5%和4%。
3 地球化学特征对4个条带状片麻岩样品ZH39-1、ZH39-2、TZ50-1和TZ50-2进行了全岩成分测试,测试结果及太古宙TTG参考值见表 1。
这4个样品的SiO2含量在66.4%~74.3%之间,其主量元素具有高铝(14.0%~15.9%)、富钠(4.13%~5.20%)、贫钾(1.17%~2.54%)和低K2O/Na2O比值(0.25~0.62)特征,MgO含量较低(0.68%~2.12%),具有太古宙TTG的主量元素特征。在标准化An-Ab-Or图上,ZH39-1和ZH39-2位于英云闪长岩区(Tn),TZ50-1和TZ50-2位于奥长花岗岩区(Tr)(图 3)。
样品的稀土元素具有以下特征:稀土含量总量较低,变化范围是47.6×10-6~120×10-6;轻、重稀土分馏程度中等至较强,(La/Yb)N比值变化范围是16.4~56.5;ZH39-1具有较强的正Eu异常,其δEu为2.03,其它样品基本无Eu异常;在球粒陨石标准化配分图解上显示为右倾曲线,稀土元素总体特征同太古宙TTG岩石(图 4a)。
样品的微量元素具有以下特征:富集Ba、Sr等大离子亲石元素和Zr、Hf、Th等高场强元素,亏损Nb、Nd、Ti等高场强元素,微量元素配分曲线同太古宙TTG岩石(图 4b)。
4 锆石U-Pb年龄定年样品ZH39-1为英云闪长质片麻岩。锆石呈粒状或短柱状自形晶,长度100~200μm,锆石的伸长系数在1.5~3之间,大部分具有明显的震荡环带,具有典型的岩浆锆石的特征(图 5a)。利用LA-ICP-MS对其中30个锆石颗粒的测年结果显示,其中24颗岩浆锆石的207Pb/206Pb年龄在2725~2665Ma之间,其年龄加权平均值为2702±13Ma(表 2、图 6),代表了该片麻岩原岩的形成年龄。另外5颗锆石的年龄在2623~2486Ma之间,其中最年轻的1颗锆石30.1年龄为2486±34Ma,该测点位于锆石边部CL图像较亮的部位,其Th/U比值为0.03,明显低于其他锆石,该年龄可能为新生锆石的年龄,因为具有一定程度的铅丢失,其真实年龄应大于该年龄。编号为11.1的锆石年龄为2531±34Ma,测点位于锆石中心,其Th/U比值为0.19,也明显低于其他锆石,该年龄应为变质年龄。其他3颗锆石年龄为2623~2572Ma,可能为混合年龄。
样品TZ50-2为奥长花岗质片麻岩,绝大部分锆石为具有震荡环带的岩浆锆石(图 5b)。利用SHRIMP对其中20颗锆石进行了U-Pb定年(表 3),其中有18颗锆石的207Pb/206Pb年龄集中在2730~2656Ma之间,它们的年龄加权平均值为2690±10Ma(图 7),代表了片麻岩原岩的结晶年龄。另外2颗锆石(7.1和14.1)的207Pb/206Pb年龄分别为2540Ma和2637Ma,前者反映了变质事件的年龄,后者可能为混合年龄,无地质意义。
对样品ZH39-1中30颗进行了U-Pb定年的锆石在原位进行了Hf同位素测试,测试数据见表 4,表中年龄一栏为该锆石对应的207Pb/206Pb年龄。该样品的176Lu/177Hf和176Hf/177Hf变化范围分别为0.000295~0.001028和0.281130~0.281242,176Hf/177Hf平均值为0.281202,25颗2.7Ga左右的锆石与5颗较年轻的锆石在该数据上没有差异。锆石的εHf(t)值,除2颗较年轻锆石28.1和30.1分别为-0.48和-0.64外,其余均为正值,变化范围是1.52~5.59,平均值为3.85。锆石的tDM1(Hf)变化范围是2900~2779Ma,加权平均是2829Ma,tDM2(Hf)变化范围是2984~2801Ma,加权平均是2874Ma,25颗年老锆石的加权平均tDM1(Hf)和tDM2(Hf)与5颗年轻锆石基本无差别。锆石的U-Pb年龄与εHf(t)的变化关系见图 8。
本文对英云闪长质片麻岩样品ZH39-1中的30颗锆石进行了U-Pb定年,其中24颗锆石具有2.7Ga左右的207Pb/206Pb年龄,加权平均结果为2702±13Ma,这些锆石具有明显的岩浆锆石的特征,可以代表样品的原岩结晶年龄。年龄最小的2颗锆石30.1和11.1的年龄分别为2486Ma和2531Ma,其Th/U比值仅0.03和0.19,从阴极发光图像和测年部位看,前者可能是锆石在变质过程中新生出来的部分,后者可能为变质改造的锆石,反映了岩石受到新太古代晚期构造-热事件的影响。另外3颗锆石,阴极发光图像具有振荡环带,Th/U比值也未见异常,所测得年龄可能是混合年龄。
同时对1个奥长花岗质片麻岩样品TZ50-2中的20颗锆石进行了SHRIMP U-Pb定年,其中有17颗锆石具有接近2.7Ga的207Pb/206Pb年龄,其加权平均值为2690±10Ma,代表了该奥长花岗质片麻岩原岩的结晶年龄。该样品中2颗年轻锆石(7.1和14.1)的207Pb/206Pb年龄分别为2540Ma和2637Ma,前者可能是锆石经受变质改造的年龄,后者可能是混合年龄。
这是在本区郝庄-孟家庄一带发现2692~2677Ma的英云闪长质片麻岩(Yang et al., 2013)之后再次在赞皇杂岩南部发现~2.7Ga的TTG岩石。近年来华北克拉通早前寒武纪研究的重要进展之一是在许多地区有新太古代早期TTG岩石被陆续识别出来,包括阴山、中条、恒山、阜平、赞皇、冀东、鲁西、霍邱、辽南、胶东等地,它们的形成时代主要在2.75~2.6Ga之间(万渝生等,2017)。赞皇杂岩南部2702±13Ma的英云闪长质片麻岩和2690±10Ma的奥长花岗质片麻岩的发现再次证明了2.7Ga的岩浆事件在华北克拉通是一次影响广泛的地质事件。其不被广泛发现的主要原因一是由于壳内再循环导致~2.7Ga岩石大部分被消耗,其二是由于新太古代晚期构造热事件非常强烈,导致2.7Ga岩石普遍遭受了强烈的变质变形和深熔,致使部分岩石的年龄被2.5Ga的岩浆事件掩盖而不能反映其原岩年龄,同时具有复杂的变质年龄。
6.2 英云闪长质片麻岩和奥长花岗质片麻岩的成因及意义依据TTG岩石的岩石地球化学特征,Barker and Arth(1976)、Barker et al. (1976)、Barker(1979)和Halla et al. (2009)将其分为高铝系列和低铝系列,低铝系列重稀土含量高并具有负Eu异常,高铝系列重稀土含量较低,Eu具有正异常或无异常。测试的2个英云闪长质片麻岩和2个奥长花岗质片麻岩的主量元素均具有高铝、富钠、贫钾的特征,稀土和微量元素具有稀土元素总含量较低,轻重稀土分馏较强或中等,富集大离子亲石元素Ba、Sr,亏损高场强元素Nb、Ti。整体上与太古宙高铝TTG具有一致的岩石化学特征。
目前,研究者对TTG的成因已有较为统一的认识,即认为TTG岩石是由含水的变玄武岩在角闪岩相、榴辉岩相部分熔融而成(Condie and Lo, 1971;Condie, 1981, 1986; Martin, 1986, 1987, 1993;Rapp et al., 1991;Bickle et al., 1993;Foley et al., 2002;Condie et al., 2005;Martin et al., 2005;Smithies et al., 2009;Moyen,2011;Moyen and Martin, 2012)。Martin (1987)对TTG岩石的形成过程提出了三阶段的成因模式,即第一阶段是地幔部分熔融产生大量拉斑玄武质岩浆;第二阶段是这些拉斑玄武质岩石部分熔融,在残留角闪石和石榴子石及少量单斜辉石和斜长石的情况下形成长英质岩浆;第三阶段为分离结晶,由于长英质岩浆较为粘稠阻止了大规模的矿物分离,一般分离结晶不超过30%。这一成因模式可以很好的解释TTG岩石的地球化学特征,已被研究者普遍接受。存在分歧之处为第二阶段基性岩石部分熔融的动力学过程,一部分研究者支持板块模式,认为是板块俯冲导致俯冲板片的部分熔融形成了TTG质岩浆,即太古代热的新生洋壳俯冲并部分熔融形成了TTG质岩浆(Martin, 1994, 1999; Defant et al., 2002);一部分研究者认为是在地幔柱的作用下导致基性岩浆底侵,使得下地壳加厚并发生部分熔融形成TTG质岩浆(Arndt and Goldstein, 1989; Kröner and Layer, 1992)。
通常情况下,由加厚下地壳部分熔融形成的熔体会有钾的富集且容易保存老地壳的年龄信息。样品ZH39-1和TZ50-2均具有贫钾和未发现老的残留锆石的特征,这一特征不支持该片麻岩来自于加厚下地壳的部分熔融这一观点。Moyen(2011)进一步将太古宙TTG划分为高压、中压、低压三个亚组。高压亚组具有高La/Yb比值(平均值=49)和低Yb含量,认为起源于金红石相榴辉岩,其形成环境与板片俯冲有关;低压TTG具有低La/Yb比值和高Yb含量,其原岩可能为含斜长石的石榴角闪岩,其可能形成于大洋高原根部的部分熔融;中压TTG的原岩可能为贫斜长石的石榴角闪岩,其形成环境较难判断,可能与非常热的俯冲或高压变质岩的折返熔融有关(Moyen, 2011; Moyen and Martin, 2012)。所研究的4个片麻岩样品均具有高La/Yb比值和低Yb含量,特征同Moyen的高压亚组TTG,这一特征支持赞皇杂岩中2.7Ga TTG片麻岩形成于俯冲板片的部分熔融这一模式。
Foley et al.(2002)、Condie et al.(2005)、Martin et al.(2005)、Smithies et al.(2009)、Moyen(2011)和Moyen and Martin(2012)通过对TTG岩石的实验岩石学和地球化学研究,认为TTG岩石是由含水的变玄武岩在角闪岩相、榴辉岩相部分熔融而成,因其熔融温压条件不同致使源区残留矿物相不容,从而导致熔体具有不同的地球化学特征。石榴子石能强烈富集重稀土元素,当以石榴子石为主要残留相时,熔体中会出现轻重稀土的强烈分馏,所研究的4个TTG片麻岩样品轻重稀土分异较强,Y/Yb均大于10,指示了源区存在石榴子石的残留。而斜长石能强烈富集Eu元素,样品ZH39-1较强的Eu正异常显示了斜长石已大量熔融进入熔体,由此判断其残留相为榴辉岩或不含斜长石的石榴角闪岩,也进一步证明本区TTG形成于高压环境,可能与板片俯冲有关。
对于锆石的Hf模式年龄,其两阶段模式年龄更能反映真实的壳幔分异时代(吴福元等,2007)。对条带状英云闪长岩(样品ZH39-1)的30颗锆石Hf同位素分析,εHf(t)位于亏损地幔线和球粒陨石均一库之间,对应的两阶段Hf模式年龄(tDM2)变化范围在2984~2801Ma之间。表明该英云闪长质片麻岩的原岩来自于新生地壳,进一步证实华北克拉通中太古代晚期-新太古代早期发生了大规模的陆壳增生。
7 结论赞皇杂岩中条带状英云闪长质片麻岩,具有典型的太古宙高铝TTG岩石的特征,形成于2702±13Ma,成因可能与俯冲板片的部分熔融有关,其原岩为2870Ma左右从亏损地幔分异出来的基性岩石。该地区同时存在2690±10Ma的奥长花岗质片麻岩。部分变质锆石记录了TTG片麻岩在新太古代晚期经受了变质改造,该变质事件可与华北地区普遍发育的~2.5Ga的构造-热事件对应。
本文英云闪长质片麻岩和奥长花岗质片麻岩时代及成因的厘定,再次证明了~2.7Ga是华北克拉通一个重要的陆壳增生期,~2.7Ga的岩浆事件在华北克拉通内部及边缘广泛存在,其不被广泛发现的主要原因其一是由于壳内再循环导致~2.7Ga岩石大部分被消耗,其二是由于新太古代晚期构造热事件非常强烈,导致2.7Ga岩石普遍遭受了强烈的变质变形和深熔,致使部分岩石的年龄被2.5Ga的岩浆-变质事件重置,而不能反映其原岩的形成年龄。
致谢 三位审稿人对本文提出了宝贵的意见和建议;北京离子探针中心、天津地质调查中心和国家地质实验测试中心给本文提供了定年和岩石化学分析;深表感谢。在沈其韩院士九十六华诞之际,敬祝先生及家人健康、平安、快乐。
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255. DOI:10.1038/20426 |
Arndt NT and Goldstein SL. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics, 161(3-4): 201-212. DOI:10.1016/0040-1951(89)90154-6 |
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600. DOI:10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 |
Barker F, Arth JG, Peterman ZE and Friedman I. 1976. The 1.7- to 1.8-b.y. -old trondhjemites of southwestern Colorado and northern New Mexico: Geochemistry and depths of genesis. Geological Society of America Bulletin, 87(2): 189-198. DOI:10.1130/0016-7606(1976)87<189:TTBTOS>2.0.CO;2 |
Barker F. 1979. Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier: 1-659.
|
Bateman R, Costa S, Swe T and Lambert D. 2001. Archaean mafic magmatism in the Kalgoorlie area of the Yilgarn Craton, Western Australia: A geochemical and Nd isotopic study of the petrogenetic and tectonic evolution of a greenstone belt. Precambrian Research, 108(1-2): 75-112. DOI:10.1016/S0301-9268(00)00148-0 |
Bibikova EV, Petrova A and Claesson S. 2005. The temporal evolution of sanukitoids in the Karelian Craton, Baltic Shield: An ion microprobe U-Th-Pb isotopic study of zircons. Lithos, 79(1-2): 129-145. DOI:10.1016/j.lithos.2004.05.005 |
Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH and De Laeter JR. 1993. Origin of the 3500~3300Ma calc-alkaline rocks in the Pilbara Archaean: Isotopic and geochemical constraints from the Shaw Batholith. Precambrian Research, 60(1-4): 117-149. DOI:10.1016/0301-9268(93)90047-6 |
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258. DOI:10.1016/S0012-821X(97)00040-X |
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
|
Condie KC and Lo HH. 1971. Trace element geochemistry of the Louis lake batholith of Early Precambrian age, Wyoming. Geochimica et Cosmochimica Acta, 35(11): 1099-1119. DOI:10.1016/0016-7037(71)90028-7 |
Condie KC. 1981. Archaean Greenstone Belts. Amsterdam: Elsevier Science Ltd: 1-434.
|
Condie KC. 1986. Origin and early growth rate of continents. Precambrian Research, 32(4): 261-278. DOI:10.1016/0301-9268(86)90032-X |
Condie KC, Beyer E, Belousova E, Griffin WL and O'Reilly SY. 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1-2): 42-100. DOI:10.1016/j.precamres.2005.04.006 |
Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142. |
Diwu CR, Sun Y, Yuan HL, Wang HL, Zhong XP and Liu XM. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin, 53(18): 2828-2839. |
Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at ~2.5Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. DOI:10.1016/j.gr.2011.01.011 |
Du LL, Zhuang YX, Yang CH, Wan YS, Wang XS, Wang SJ and Zhang LF. 2003. Characters of zircons in the Mengjiatun Formation in Xintai of Shandong and their chronological significance. Acta Geologica Sinica, 77(3): 359-366. |
Du LL, Yang CH, Zhuang YX, Wei RZ, Wan YS, Ren LD and Hou KJ. 2010. Hf isotopic compositions of zircons from 2.7Ga metasedimentary rocks and biotite-plagioclase gneiss in the Mengjiatun Formation complex, western Shandong Province. Acta Geologica Sinica, 84(7): 991-1001. |
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840. DOI:10.1038/nature00799 |
Friend CRL and Nutman AP. 2005. Complex 3670~3500Ma orogenic episodes superimposed on juvenile crust accreted between 3850 and 3690Ma, Itsaq Gneiss Complex, Southern West Greenland. The Journal of Geology, 113(4): 375-397. DOI:10.1086/430239 |
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513. |
Geng JZ, Zhang J, Li HK, Li HM, Zhang YQ and Hao S. 2012. Ten-micron-sized Zircon U-Pb Dating Using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 877-884. |
Geng YS, Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945-1966. |
Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529. DOI:10.1016/j.gr.2011.07.006 |
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. DOI:10.1016/S0016-7037(99)00343-9 |
Guan H, Sun M, Wilde SA, Zhou XH and Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping complex: Implications for formation and assembly of the North China craton. Precambrian Research, 113(1-2): 1-18. DOI:10.1016/S0301-9268(01)00197-8 |
Halla J, Van Hunen J, Heilimo E and Hölttä P. 2009. Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174(1-2): 155-162. DOI:10.1016/j.precamres.2009.07.008 |
Henry P, Stevenson RK, Larbi Y and Gariépy C. 2000. Nd isotopic evidence for Early to Late Archean (3.4~2.7Ga) crustal growth in the western Superior Province (Ontario, Canada). Tectonophysics, 322(1-2): 135-151. DOI:10.1016/S0040-1951(00)00060-3 |
Horstwood MSA, Nesbitt RW, Noble SR and Wilson JF. 1999. U-Pb zircon evidence for an extensive Early Archean craton in Zimbabwe: A reassessment of the timing of craton formation, stabilization, and growth. Geology, 27(8): 707-710. DOI:10.1130/0091-7613(1999)027<0707:UPZEFA>2.3.CO;2 |
Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Cornichet J and Mace J. 1988. Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38(4): 381-403. DOI:10.1016/0301-9268(88)90035-6 |
Jiang N, Guo JH, Zhai MG and Zhang SQ. 2010. ~2.7Ga crust growth in the North China craton. Precambrian Research, 179(1-4): 37-49. DOI:10.1016/j.precamres.2010.02.010 |
Kröner A and Layer PW. 1992. Crust formation and plate motion in the Early Archean. Science, 256(5062): 1405-1411. DOI:10.1126/science.256.5062.1405 |
Kröner A, Jaeckel P, Brandl G, Nemchin AA and Pidgeon RT. 1999. Single zircon ages for granitoid gneisses in the central zone of the Limpopo belt, Southern Africa and geodynamic significance. Precambrian Research, 93(4): 299-337. DOI:10.1016/S0301-9268(98)00102-8 |
Kröner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595. DOI:10.1016/j.jseaes.2004.01.001 |
Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CX, Zhang YX and Gao LZ. 2009. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1-2): 140-154. DOI:10.1016/j.chemgeo.2008.10.041 |
Lu SN, Chen ZH and Xiang ZQ. 2008. Geochronological Framework of Ancient Intrusions in Taishan Geopark, China. Beijing: Geological Publishing House: 1-90.
|
Lu ZL, Song HX, Du LL, Ren LD, Geng YS and Yang CH. 2014. Delineation of the ca. 2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance. Acta Petrologica Sinica, 30(10): 2872-2884. |
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756. DOI:10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 |
Martin H. 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology, 28(5): 921-953. DOI:10.1093/petrology/28.5.921 |
Martin H. 1993. The mechanisms of petrogenesis of the Archaean continental crust: Comparison with modern processes. Lithos, 30(3-4): 373-388. DOI:10.1016/0024-4937(93)90046-F |
Martin H. 1994. Archean grey gneisses and the genesis of the continental crust. In: Condie KC (ed. ). Archean Crustal Evolution. Amsterdam: Elsevier, 205-259
|
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429. DOI:10.1016/S0024-4937(98)00076-0 |
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.048 |
Moyen JF. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123(1-4): 21-36. DOI:10.1016/j.lithos.2010.09.015 |
Moyen JF and Martin H. 2012. Forty years of TTG research. Lithos, 148: 312-336. DOI:10.1016/j.lithos.2012.06.010 |
Polat A and Kerrich R. 2002. Nd-isotope systematics of ~2.7Ga adakites, magnesian andesites, and arc basalts, Superior Province: Evidence for shallow crustal recycling at Archean subduction zones. Earth and Planetary Science Letters, 202(2): 345-360. DOI:10.1016/S0012-821X(02)00806-3 |
Polat A and Münker C. 2004. Hf-Nd isotope evidence for contemporaneous subduction processes in the source of Late Archean arc lavas from the Superior Province, Canada. Chemical Geology, 213(4): 403-429. DOI:10.1016/j.chemgeo.2004.08.016 |
Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordóñez-Calderón JC and Yang Z. 2008. The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075Ma Ivisaartoq greenstone belt, SW Greenland. Lithos, 100(1-4): 293-321. DOI:10.1016/j.lithos.2007.06.021 |
Polat A, Frei R, Scherstén A and Appel PWU. 2010. New age (ca. 2970Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland. Chemical Geology, 277(1-2): 1-20. DOI:10.1016/j.chemgeo.2010.06.016 |
Qi L, Hu J and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513. DOI:10.1016/S0039-9140(99)00318-5 |
Rapp RP, Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25. DOI:10.1016/0301-9268(91)90092-O |
Rasmussen B, Blake TS and Fletcher LR. 2005. U-Pb zircon age constraints on the Hamersley spherule beds: Evidence for a single 2.63Ga Jeerinah-Carawine impact ejecta layer. Geology, 33(9): 725-728. |
Samsonov AV, Bogina MM, Bibikova EV, Petrova AY and Shchipansky AA. 2005. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: Implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos, 79(1-2): 83-106. DOI:10.1016/j.lithos.2004.04.051 |
Sandeman HA, Hanmer S, Tella S, Armitage AA, Davis WJ and Ryan JJ. 2006. Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt: A back-arc setting for the northwestern Hearne subdomain, western Churchill Province, Canada. Precambrian Research, 144(1-2): 140-165. DOI:10.1016/j.precamres.2005.11.001 |
Smithies RH, Champion DC and Van Kranendonk MJ. 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters, 281(3-4): 298-306. DOI:10.1016/j.epsl.2009.03.003 |
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.1): 26-30. |
Song B. 2015. SHRIMP zircon U-Pb age measurement: Sample preparation, measurement, data processing and explanation. Geological Bulletin of China, 34(10): 1777-1788. |
Steenfelt A, Garde AA and Moyen JF. 2005. Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in west Greenland. Lithos, 79(1-2): 207-228. DOI:10.1016/j.lithos.2004.04.054 |
Taylor SR and McClennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications: 57-72.
|
Tian W, Liu SW, Liu CH, Yu SQ, Li QG and Wang YR. 2005. Zircon SHRIMP geochronology and geochemical of TTG rocks in Shushui Complex from Zhongtiao Mountains with its geological implication. Progress in Natural Science, 15(12): 1476-1484. |
Trap P, Faure M, Lin W, Monié P, Meffre S and Melleton J. 2009. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1-2): 80-98. DOI:10.1016/j.precamres.2009.03.011 |
Wan YS, Miao PS, Liu DY, Yang CH, Wang W, Wang HC, Wang ZJ, Dong CY, Du LL and Zhou HY. 2010. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons: Resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(13): 1278-1284. DOI:10.1007/s11434-009-0615-3 |
Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH and Diwu CR. 2011. ~2.7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research, 186(1-4): 169-180. DOI:10.1016/j.precamres.2011.01.015 |
Wan YS, Xie SW, Yang CH, Kröner K, Ma MZ, Dong CY, Du LL, Xie HQ and Liu DY. 2014. Early Neoarchean (~2.7Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Research, 247: 45-63. DOI:10.1016/j.precamres.2014.03.019 |
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai MG (ed. ). Precambrian Geology of China. Berlin, Heidelberg: Springer, 59-136
|
Wan YS, Dong CY, Xie HQ, Liu SJ, Ma MZ, Xie SW, Ren P, Sun HY and Liu DY. 2015. Some progress in the study of Archean basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700. |
Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW and Liu DY. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis. Acta Petrologica Sinica, 33(5): 1405-1419. |
Wang W, Yang EX, Wang SJ, Du LL, Xie HQ, Dong CY and Wan YS. 2009. Petrography of the metamorphic pillow basalt and SHRIMP U-Pb dating of zircons from the intruding trondhjemite in Archean Taishan "Group", western Shandong. Geological Review, 55(5): 737-744. |
Wilde SA, Cawood PA, Wang KY and Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613. DOI:10.1016/j.jseaes.2003.11.006 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220. |
Xiao LL, Wu CM, Zhao GC, Guo JH and Ren LD. 2011. Metamorphic P-T paths of the Zanhuang amphibolites and metapelites: Constraints on the tectonic evolution of the Paleoproterozoic Trans-North China Orogen. International Journal of Earth Sciences, 100(4): 717-739. DOI:10.1007/s00531-010-0522-5 |
Xie SW, Xie HQ, Wang SJ, Kröner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY and Wan YS. 2014. Ca. 2.9Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Research, 255: 538-562. DOI:10.1016/j.precamres.2014.09.006 |
Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Ren P and Liu DY. 2015. Petrogenesis of ca. 2.7Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications. Acta Petrologica Sinica, 31(10): 2974-2990. |
Yang CH, Du LL, Wan YS and Liu ZX. 2004. SHRIMP Zircon U-Pb chronology of Tonalitic gneiss in Banqiaogou area, Pingshan County, Hebei Province. Geological Journal of China Universities, 10(4): 514-522. |
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Liu ZX. 2011a. The age and petrogenesis of the Xuting granite in the Zanhuang Complex, Hebei Province: Constraints on the structural evolution of the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 27(4): 1003-1016. |
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Liu ZX. 2011b. Petrogenesis and geodynamic setting of Jiandeng potassic granite at the end of the Neoarchean in Zanhuang complex, North China Craton. Earth Science Frontiers, 18(2): 62-78. |
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Geng YS. 2013. Delineation of the ca.7Ga TTG gneisses in the Zanhuang complex, North China Craton and its geological implications. Journal of Asian Earth Sciences, 72: 178-189. DOI:10.1016/j.jseaes.2012.09.031 |
Yang JH, Wu FY, Wilde SA and Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167(1-2): 125-149. DOI:10.1016/j.precamres.2008.07.004 |
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 29-36. |
Zhou YY, Zhao TP, Xue LW, Wang SY and Gao JF. 2009. Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area, North China Craton. Acta Petrologica Sinica, 25(2): 331-347. |
Zhu XY, Zhai MG, Chen FK, Lyu B, Wang W, Peng P and Hu B. 2013. ~2.7Ga crustal growth in the North China craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui complex in the Zhongtiao terrane. The Journal of Geology, 121(3): 239-254. DOI:10.1086/669977 |
Zhuang YX, Wang XS, Xu HL, Ren ZK, Zhang FZ and Zhang XM. 1997. Main geological events and crustal evolution in Early Precambrian of Taishan region. Acta Petrologica Sinica, 13(3): 313-330. |
杜利林, 庄育勋, 杨崇辉, 万渝生, 王新社, 王世进, 张连峰. 2003. 山东新泰孟家屯岩组锆石特征及其年代学意义. 地质学报, 77(3): 359-366. |
杜利林, 杨崇辉, 庄育勋, 韦汝征, 万渝生, 任留东, 侯可军. 2010. 鲁西新泰孟家屯2.7Ga变质沉积岩与黑云斜长片麻岩锆石Hf同位素特征. 地质学报, 84(7): 991-1001. |
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. DOI:10.3969/j.issn.1671-2552.2011.10.004 |
耿建珍, 张健, 李怀坤, 李惠民, 张永清, 郝爽. 2012. 10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定. 地球学报, 33(6): 877-884. DOI:10.3975/cagsb.2012.06.05 |
耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 26(7): 1945-1966. |
陆松年, 陈志宏, 相振群. 2008. 泰山世界地质公园:古老侵入岩系年代格架. 北京: 地质出版社.
|
路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉. 2014. 华北克拉通阜平杂岩中~2.7Ga TTG片麻岩的厘定及其地质意义. 岩石学报, 30(10): 2872-2884. |
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增1): 26-30. |
宋彪. 2015. 用SHRIMP测定锆石U-Pb年龄的工作方法. 地质通报, 34(10): 1777-1788. DOI:10.3969/j.issn.1671-2552.2015.10.002 |
田伟, 刘树文, 刘超辉, 余盛强, 李秋根, 王月然. 2005. 中条山涑水杂岩中TTG系列岩石的锆石SHRIMP年代学和地球化学及其地质意义. 自然科学进展, 15(12): 1476-1484. DOI:10.3321/j.issn:1002-008X.2005.12.010 |
万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 谢士稳, 任鹏, 孙会一, 刘敦一. 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700. DOI:10.3975/cagsb.2015.06.01 |
万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢士稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述. 岩石学报, 33(5): 1405-1419. |
王伟, 杨恩秀, 王世进, 杜利林, 颉颃强, 董春艳, 万渝生. 2009. 鲁西泰山岩群变质枕状玄武岩岩相学和侵入的奥长花岗岩SHRIMP锆石U-Pb年代学. 地质论评, 55(5): 737-744. |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 任鹏, 刘敦一. 2015. 华北克拉通胶东地区~2.7Ga TTG岩石的成因及地质意义. 岩石学报, 31(10): 2974-2990. |
杨崇辉, 杜利林, 万渝生, 刘增校. 2004. 河北平山英云闪长质片麻岩锆石SHRIMP年代学. 高校地质学报, 10(4): 514-522. |
杨崇辉, 杜利林, 任留东, 宋会侠, 万渝生, 颉颃强, 刘增校. 2011a. 河北赞皇地区许亭花岗岩的时代及成因:对华北克拉通中部带构造演化的制约. 岩石学报, 27(4): 1003-1016. |
杨崇辉, 杜利林, 任留东, 宋会侠, 万渝生, 颉颃强, 刘增校. 2011b. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景. 地学前缘, 18(2): 62-78. |
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36. |
周艳艳, 赵太平, 薛良伟, 王世炎, 高剑峰. 2009. 河南嵩山地区新太古代TTG质片麻岩的成因及其地质意义:来自岩石学、地球化学及同位素年代学的制约. 岩石学报, 25(2): 331-347. |
庄育勋, 王新社, 徐洪林, 任志康, 张富中, 张锡明. 1997. 泰山地区早前寒武纪主要地质事件与陆壳演化. 岩石学报, 13(3): 313-330. |