岩石学报  2018, Vol. 34 Issue (6): 1581-1598   PDF    
吉南天桥地区基性岩墙与其围岩TTG片麻岩的成因及构造意义
李鹏川1 , 董晓杰1 , 刘正宏1 , 赵庆英1 , 石强1 , 李长海1 , 李天瑜2     
1. 吉林大学地球科学学院, 长春 130061;
2. 核工业二〇八大队, 包头 014010
摘要:吉南地区太古宙基底中发育大量早前寒武纪基性岩墙群,是陆壳伸展的直接证据。对白山市东部天桥太古宙基底出露区内基性岩墙及其围岩进行了锆石U-Pb定年和地球化学分析,以确定该期伸展事件的形成机制及地质意义。天桥地区基性岩墙岩性为斜长角闪岩,侵位于TTG片麻岩中。英云闪长质片麻岩(TN1)中锆石具核-边结构,岩浆核的LA-ICP-MS测年结果为2500±6Ma,指示其形成于新太古代末期。天桥岩墙(TN3)中的锆石内部结构与TN1相同,酸性岩浆核的SHRIMP测年结果为2490±17Ma,与TN1在误差范围内一致,表明这些锆石不是基性岩墙原生锆石,而是岩墙侵位过程中在围岩中捕获的锆石,但根据岩墙仅侵位在太古宙基底中且变质程度高于周围古元古界老岭群,将其侵位年龄大致限制在新太古代末期-古元古代早期。地球化学特征显示,基性岩墙具有低SiO2、Na2O、K2O含量,高CaO、MgO含量,A/CNK=0.56~0.59,属于准铝质的拉斑玄武岩系列岩石,∑REE低、配分曲线平坦,富集LILE(Rb、Ba和K),亏损HFSE(Th、U、Nb和Ta),具有与原始地幔相同的Nb/Ta、Zr/Hf比值及接近地壳的Nb/U、Ta/U比值,指示其岩浆可能来源于地幔且在上升过程中受到地壳混染,形成于板内伸展环境。TTG片麻岩具有中等的SiO2和MgO含量,高Al2O3和Na2O含量以及低CaO含量,A/CNK=1.00~1.14,属弱过铝质的钙碱性系列岩石,∑REE低、具有右倾的REE配分曲线,轻稀土富集、重稀土亏损,富集LILE(Rb、Ba、K和Sr),强烈亏损HFSE(U、Nb、Ta、Sm和Ti),其岩浆可能来源于变质玄武质岩石和极少量沉积岩的部分熔融,结合邻区TTG的研究成果,认为其形成于与俯冲相关的活动大陆边缘环境。前人研究表明,新太古代晚期板块构造体制可能已经启动,结合我们以往研究,认为新太古代晚期华北克拉通东北部可能发生了弧陆碰撞造山运动,天桥岩墙的侵位标志着新太古代末期至古元古代早期之间华北克拉通东北部进入造山后伸展环境,可能是对新太古代造山运动结束的响应。
关键词: 华北克拉通     吉南地区     新太古代末期-古元古代早期     基性岩墙     锆石U-Pb年龄     伸展事件    
Petrogenesis and tectonic implication of the mafic dykes and its host TTG gneisses from Tianqiao area in southern Jilin Province
LI PengChuan1, DONG XiaoJie1, LIU ZhengHong1, ZHAO QingYing1, SHI Qiang1, LI ChangHai1, LI TianYu2     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. No. 208 Geological Party of Nuclear Industry, Baotou 014010, China
Abstract: The Early Precambrian mafic dyke swarms are widely developed in the Archaean basement in southern Jilin Province, representing the extensional events of continental crust. This paper reports zircon U-Pb chronology and geochemistry of the Tianqiao mafic dykes and its host TTG gneisses in order to discuss the tectonic setting and geological implication of this extensional event. Tianqiao mafic dykes are mainly amphibolite which emplaced in the TTG gneisses. LA-ICP-MS zircon U-Pb dating shows the magmatic zircons in the tonalitic gneiss (TN1) which is the host rock of Tianqiao mafic dyke were crystallized at 2500±6Ma, suggesting that it was formed in the Late Neoarchean. The zircons in the Tianqiao mafic dyke (TN3) have the same inner structure as those in sample TN1, SHRIMP zircon U-Pb dating shows these acidic magmatic zircons in sample TN3 were crystallized at 2490±17Ma, which age is consistent with those in sample TN1, indicating these acidic magmatic zircons were captured from the host rocks during mafic dyke emplacement rather than primary zircons of Tianqiao mafic dyke. Nevertheless, the mafic dykes in Tianqiao area were only emplaced in the Archaean basement and have higher metamorphic grade than Palaeoproterozoic Laoling Group, these geological characteristics indicating that the mafic dyke was intruded during the Late Neoarchean to Early Paleoproterozoic. Geochemical characteristics show that the mafic dykes have low SiO2, Na2O, K2O contents and high CaO, MgO contents, with A/CNK ratios of 0.56~0.59, and are classified as metaluminous and tholeiite series rocks. They have lower total REE contents with a flat REE pattern, and are enriched in LILE (Rb, Ba and K), depleted in HFSE (Th, U, Nb and Ta), with Nb/Ta, Zr/Hf ratios and Nb/U, Ta/U ratios which are similar to primitive mantle and crustal rocks, respectively, indicating the magma was derived from the mantle and took place crustal contamination during magma ascent, and formed in intraplate extensional environment. The TTG gneisses in Tianqiao area have moderate SiO2, MgO, high Al2O3, Na2O and low CaO contents, with A/CNK ratios of 1.00~1.14, and are classified as weakly peraluminous and calc-alkaline rocks. They have lower total REE contents and are enriched in LREEs relative to HREEs, enriched in LILE (Rb, Ba, K and Sr), depleted in HFSE (U, Nb, Ta, Sm and Ti), indicating they were derived from partial melting of metabasaltic materials with minor sediments, and combining with the results of TTGs in adjacent regions, we suggest that it was possibly formed in a subduction related active continental margin background. Some previous studies considered that the plate tectonics has been started in the North China Craton (NCC) during the Late Neoarchean. Combining with our previous study, we suggest that an arc-continent collision orogenic process might occur during the Neoarchean in the NE of NCC. The intrusion of Tianqiao mafic dyke represents the tectonic setting was turned into post-orogenic extensional environment in the northeast of the NCC, indicating the end of Neoarchean orogenesis.
Key words: North China Craton     Southern Jilin Province     Late Neoarchean-Early Paleoproterozoic     Mafic dykes     Zircon U-Pb age     Extensional events    

华北克拉通新太古代末-古元古代初岩浆活动广泛发育,伴随大规模陆壳增生(Zhai et al., 2005; Zhao et al., 2005; 耿元生等, 2010; Wan et al., 2015; 万渝生等, 2017),该期岩浆事件主要集中在2.54~2.49Ga(耿元生等, 2010),前人对于该时期动力学机制存在不同认识,主要包括地幔柱模式(Yang et al., 2008; 耿元生等, 2010; 李壮等, 2017; Li and Wei, 2017)和岛弧岩浆作用模式两种观点(伍家善等, 1998; Li et al., 2002; Peng et al., 2015)。华北克拉通太古宙基底岩石主要由TTG片麻岩、壳源花岗岩和表壳岩组成,随着近年测试技术的发展和广泛应用,对其精确定年和同位素组成等方面的研究取得突破性进展,在此基础上,前人对华北克拉通前寒武纪地质问题的研究取得了众多成果(赵国春, 2009; 翟明国, 2012, 2013; 沈其韩和宋会侠, 2015; Wan et al., 2012, 2014, 2016; 万渝生等, 2015, 2017; 陆松年等, 2016; 沈其韩等, 2016)。此外,华北克拉通基底中存在大量早前寒武纪基性岩墙群,是基性岩浆快速侵位到先存的张性破裂系统形成的构造-岩浆组合,为陆壳伸展的直接证据(Halls, 1987)。其中,关于太古宙基性岩墙的报道较少,仅在中部造山带的赞皇地区(Deng et al., 2014)和东部陆块的冀东地区(Li et al., 2010)有所出露,而元古宙基性岩墙在华北克拉通中分布范围很广,它们主要集中在中条山、太行山、吕梁山、恒山、晋冀蒙交界、冀东、鲁西等地区(彭澎等, 2004; 侯贵廷等, 2005, 2009; 胡俊良等, 2007; Peng et al., 2007; 胡国辉等, 2010; 王冲等, 2016),最主要的形成峰期为1.8~1.7Ga(侯贵廷等, 2009)。对于岩墙群的成因,一些学者认为其与大陆裂谷环境或超大陆裂解有关(Qian and Chen, 1987; 李江海等, 2001),也有学者认为与碰撞后伸展环境有关(Zhao et al., 2001; Wang et al., 2004, 2008)。

华北克拉通的东北部,由北部的龙岗地块、南部的辽南地块(东侧为朝鲜狼林地块)以及辽吉古元古代造山/活动带组成(刘福来等,2015图 1a),龙岗地块吉南地区太古代地质体中存在大量早前寒武纪基性岩墙群(图 1b),依据近年1:25万区调相关成果(吉林省区域地质矿产调查所, 2004a, b; 吉林省地质调查院, 2007),该区基性岩墙岩性多为变质辉绿岩或变质辉长岩,不同地区岩墙走向略有不同,通化县-红石砬子镇一带主要为北东走向,红石砬子镇-露水河镇一带总体为北西走向(图 1b)。多数岩墙形成于古元古代、少数形成于中新太古代,但定年数据十分有限、部分数据不够精确(表 1)。刘大瞻和刘跃文(1994)报道了桦甸市三道溜河地区大朝阳沟变质辉绿岩墙群的全岩Rb-Sr等时线年龄为2766±267Ma,侵入岭东英云闪长质片麻岩(2971Ma,Rb-Sr等时线年龄)并被三道溜河TTG(2537Ma,锆石U-Pb年龄)侵入;五道砬子河变质辉长-辉绿岩墙,岩石中角闪石的K-Ar年龄为2332Ma和2191Ma,侵入唐胡店沟二长花岗岩(2457Ma,锆石U-Pb年龄)。和龙地块北部甲山村、蜂蜜河一带的变质基性-超基性岩,呈脉状侵入太古代变质表壳岩中,蜂蜜河岩墙中斜长角闪岩锆石U-Pb年龄为2556Ma(吉林省区域地质矿产调查所, 2004a)。通化县冰湖沟-赤柏松地区基性岩墙侵入新太古代太阳沟顶二长花岗质片麻岩(2579±18Ma,锆石U-Pb年龄)和雪花山TTG片麻岩(2469±18Ma,锆石U-Pb年龄),赤柏松基性岩墙全岩K-Ar法年龄为2500~2240Ma,锆石U-Pb年龄为2187±8Ma和2136±18Ma,但冰湖沟基性-超基性岩墙全岩Sm-Nd法模式年龄为2983~2699Ma,老于围岩的年龄;新宾县四道堡子超基性岩墙,侵入新太古代网户TTG片麻岩(2535±16Ma~2529±18Ma,锆石U-Pb年龄)和平岭后石英闪长岩(2554±14Ma,锆石U-Pb年龄)、被太阳沟顶二长花岗质片麻岩侵入,但其全岩Sm-Nd等时线年龄却为2862±11Ma;新宾县朴家堡子地区基性岩墙侵入中太古代表壳岩中,被新太古代网户花岗质片麻岩侵入,但岩墙中辉石斜长角闪岩Sm-Nd等时线年龄为2165±147Ma(吉林省区域地质矿产调查所, 2004b)。可见由于早期测试方法原因,部分岩墙及围岩的测年结果误差很大,致使其年龄与野外地质事实不符。吉南地区基性岩墙数量之多,时期之复杂,研究程度相对较低,缺乏系统同位素测年和地球化学研究工作。因此,吉南地区基性岩墙事件期次的准确厘定,以及相应构造岩浆事件的形成机制,尤其是太古宙基性岩墙群的成因,对早期地壳演化和构造体制具有重要意义。在本次研究中,我们以白山市天桥太古宙基底出露区内的基性岩墙及其围岩TTG片麻岩为研究对象,对其野外地质产状、镜下微观特征、地质年代学及地球化学特征进行了系统研究,讨论基性岩墙的成因、侵位时代以及该期构造岩浆事件的成因及其地质意义。

① 吉林省区域地质矿产调查所. 2004a. 1:25万和龙市幅区域地质调查报告

② 吉林省区域地质矿产调查所. 2004b. 1: 25万通化市幅区域地质调查报告

③ 吉林省地质调查院. 2007. 1:25万靖宇县幅、浑江市幅、长白县幅区域地质调查报告

图 1 华北克拉通基底构造单元划分图(a, 据Zhao et al., 2012)和吉南龙岗地块基性岩墙群分布图(b) Fig. 1 Tectonic subdivision of the North China Craton (a, after Zhao et al., 2012) and the distribution map of the mafic dyke swarms of the Longgang Block in southern Jilin Province (b)

表 1 吉南地区早前寒武纪基性岩墙年龄统计 Table 1 Summary on ages of the Early Precambrian mafic dykes in southern Jilin Province
1 地质概况及样品特征

吉林省境内的太古宙岩石主要分布在南部龙岗山脉-延边南岗山脉,整体呈北东东向弧形带状展布(吉林省地质矿产局, 1988)。在白山市西北出露大面积太古宙TTG片麻岩和花岗岩,属龙岗地块结晶基底,多遭受强烈变质变形,局部被深熔作用改造,其中有表壳岩零星分布,形成于2.55Ga的板石沟BIF型铁矿就赋存在板石沟表壳岩中(李鹏川等, 2016)。除北部广泛分布的太古宙基底,在白山市东约20km的天桥村附近,也有小面积太古宙岩石出露,我们称其为天桥太古宙基底出露区(图 1b)。

天桥太古宙基底出露区出露太古宙岩石面积约40km2,主体岩性为TTG片麻岩,片麻理发育且产状稳定,总体倾向南东,倾角较缓(约33°~58°),此外,零星分布于TTG片麻岩中的表壳岩,岩性主要为斜长角闪岩及少量角闪片岩(图 2a)。太古宙基底周围为古元古界老岭群(林家沟组和珍珠门组)、新元古界细河群(钓鱼台组、南芬组和桥头组)和浑江群(万隆组、八道江组和青沟子组)沉积盖层,它们与太古宙基底呈断层接触关系。区内基性岩墙群遭受后期变质,已变质为斜长角闪岩,侵位于太古宙岩石中,元古宙及其后的地质体中未见岩墙发育(图 2a)。天桥地区基性岩墙长约300~600m,宽约10~20m,通过统计基性岩墙群走向并绘制走向玫瑰花图(图 2b),得出其优势走向为北东走向,其次为北西西走向。

图 2 天桥地区太古宙基底出露区地质简图(a)、岩墙走向玫瑰花图(b)和基性 Fig. 2 The geological map of the Archean basement (a), the strike rose diagram of the mafic dykes (b) and the geological section of the mafic dyke (c) in Tianqiao area

我们对一条出露情况较好的基性岩墙进行了大比例尺地质剖面测量(图 2c),该岩墙位于天桥村北东3.2km公路旁,我们将其命名为天桥岩墙(图 2b),岩性为斜长角闪岩,在剖面上出露29m,实际宽度20m,走向北西西向,整体近直立,沿断层侵入新太古代晚期英云闪长质片麻岩中(图 3a)。天桥岩墙边部粒度极细、片理化强烈,片麻理与接触面平行(图 3b),由边部向内部岩石粒度逐渐变粗(图 3c),片麻理产状较边部缓。接触带两侧英云闪长质片麻岩遭受韧性变形改造,形成1~3m宽的糜棱岩化带,条带构造和糜棱叶理发育,这些叶理构造同样与接触面平行(倾向南南西,倾角陡),糜棱岩化带外侧围岩片麻理与区内片麻岩整体产状一致(倾向南东,倾角缓),早期片麻理被后期糜棱叶理切割与改造,二者呈小角度斜交(图 3d)。这些标志证实基性岩墙的侵位时间晚于英云闪长质片麻岩,在侵位过程中使围岩发生韧性变形,先存片麻理受到了强烈改造。

图 3 天桥基性岩墙与围岩英云闪长质片麻岩宏观和显微照片 (a)天桥岩墙与围岩接触关系宏观照片;(b)接触关系近照;(c)岩墙中部中细粒斜长角闪岩片麻理发育;(d)英云闪长质片麻岩中后期糜棱叶理与早期片麻理斜交;(e)岩墙边部细粒斜长角闪岩正交偏光照片;(f)岩墙中部中细粒斜长角闪岩正交偏光照片;(g)英云闪长质片麻岩正交偏光照片.Pl-斜长石;Q-石英;Hb-角闪石;Bi-黑云母;Chl-绿泥石 Fig. 3 Macrographs and micrographs of the Tianqiao mafic dyke and the host tonalitic gneiss

镜下特征显示,天桥岩墙岩性为斜长角闪岩,粒状柱状变晶结构,片麻状构造,岩墙边部岩石粒度细,粒径主要集中在0.1~0.3mm,由普通角闪石(55%~60%)和斜长石(40%~45%)组成(图 3e);岩墙中部矿物粒度相对较粗,粒径0.3~0.8mm,主要矿物同样为普通角闪石(50%)和斜长石(50%),出现极少量黑云母,斜长石聚片双晶清晰,黑云母多发生绿泥石化,具有异常干涉色(图 3f),副矿物可见榍石、磁铁矿。天桥岩墙的围岩英云闪长质片麻岩为中细粒花岗结构,片麻状构造,由斜长石(60%~70%)、石英(20%)、普通角闪石(10%~15%)和黑云母(< 5%)组成,其中斜长石为中长石-更长石,聚片双晶发育,部分发生帘石化(图 3g),副矿物有褐帘石、磷灰石等。

在天桥岩墙中部取新鲜测年样品TN3及地球化学样品TN3H1和TN3H2,取样坐标为126°40′40″E、41°59′38″N;另从区内其他北西西走向的基性岩墙中取地球化学样品3件,岩性皆为斜长角闪岩,编号依次为TN3H3~H5。在天桥岩墙的围岩中取英云闪长质片麻岩测年样品TN1,坐标为126°40′17″E、41°59′32″N,并在区内取5件TTG片麻岩地球化学样品,编号依次为TN1H1~H5。

2 测试方法

锆石分选采用常规方法在廊坊市科大岩石矿物分选技术服务有限公司完成。TN3天桥岩墙斜长角闪岩样品的制靶和锆石U-Pb年龄测试在北京离子探针中心完成,测试仪器为高灵敏、高分辨二次离子探针质谱计(SHRIMP Ⅱ),实验过程中一次离子流强度为3~5nA,束斑直径为25~30μm,使用锆石TEM作为外标,每测试3个待测锆石分析1次TEM标样。具体的测年原理及操作流程见Williams (1998)Wan et al. (2005)。实验取得的数据使用SQUID进行处理,并用实测204Pb进行普通铅校正;TN1天桥岩墙的围岩英云闪长质片麻岩样品的制靶和测年在北京燕都中实测试技术有限公司进行,测试仪器为Newwave UP213紫外激光剥蚀系统连接Bruker aurora M90电感耦合等离子体质谱仪,测试过程锆石年龄使用锆石91500作为外标,元素含量使用NIST610作为外标,每隔10个待测锆石分析锆石91500标样2次、NIST610和锆石Plesovice各1次,测年数据使用ICPMSDataCal进行处理(Liu et al., 2010)。测试数据都使用Isoplot(Ludwig, 2001)绘制谐和图,年龄误差为1σ。主量、微量元素分析在广州澳实矿物实验室(ALS Chemex)完成,主量元素采用X荧光光谱法(XRF)分析,对于岩墙样品还采用重铬酸钾滴定法测定了FeO含量,微量元素采用电感耦合等离子体质谱法(ICP-MS)分析。

3 分析结果 3.1 锆石U-Pb年代学

对天桥太古宙基底出露区内天桥岩墙样品TN3(斜长角闪岩)及其围岩样品TN1(英云闪长质片麻岩)进行了锆石U-Pb测年,测试结果见表 2

表 2 天桥基性岩墙及其围岩锆石U-Pb测年数据 Table 2 Zircon U-Pb data of the Tianqiao mafic dyke and its host rock

天桥岩墙样品TN3中挑选出来的锆石较少,形态多为自形-半自形长柱状或短柱状,粒径75~150μm。锆石多具有核-边结构,核部岩浆震荡环带清晰且较为密集,显示酸性岩浆锆石的特征,而锆石边部宽窄不一,与核部界线清晰,呈面状分带、弱分带或无分带结构,可能是在后期变质或深熔作用过程中形成的变质锆石(图 4a)。上述锆石结构特征明显不属于基性岩墙原生基性锆石特征,所以天桥岩墙中挑选出来的锆石可能都为捕获锆石。对这些锆石进行了SHRIMP U-Pb测年,剔除部分严重偏离谐和线及少数跨越核边的测试点(如图 4a中TN3-7.1),剩余12个测试点中,9个核部酸性岩浆锆石测试点的Th/U比值为0.10~1.06,207Pb/206Pb年龄介于2523±7Ma~2466±9Ma,在谐和图上构成一条不一致线(图 4b),上交点年龄为2490±17Ma(MSWD=4.4)。另外3个测试点选在相对较宽的变质边上(TN3-5.2、6.2和9.2),测试点的Th/U比值为0.35~0.61,这与通常认为的变质锆石Th/U & 0.1(Möller et al., 2003)的认识相悖,这种差异与变质流体或熔体成分、变质锆石生长速率等因素有关(Vavra et al., 1999; 吴元保和郑永飞, 2004),这3颗锆石的207Pb/206Pb年龄为2455±10Ma~2441±10Ma,构成的不一致线(图 4b)上交点年龄为2445±16Ma(MSWD=1.3),加权平均年龄为2446±12Ma(MSWD=0.59),可能代表变质或深熔作用发生的时间。

图 4 天桥基性岩墙及围岩锆石阴极发光图(a、c)和锆石U-Pb谐和图(b、d) 图 4b中实线和灰色充填测试点分别代表酸性岩浆锆石和变质增生锆石 Fig. 4 CL images (a, c) and U-Pb concordia diagrams (b, d) of zircons from the Tiaoqiao mafic dyke and its host rock

英云闪长质片麻岩样品TN1中的锆石类型单一,多呈自形-半自形短柱状,粒度集中在90~140μm之间。CL图上显示锆石多具有核-边结构,核部可见清晰震荡环带,指示其为岩浆成因,边部宽度5~30μm不等,呈无分带或弱分带结构、发光强度略强于核部(图 4c),应为后期变质或深熔过程中形成的变质锆石。30个测试点中有27个选在锆石核部、3个选在边部,但LA-ICP-MS方法的激光较SHRIMP方法的离子探针剥蚀深度深,使变质边测试点的信号乱、获得了混合年龄,且谐和图上测试点严重偏离谐和线(已删除)。27个核部锆石的Th/U比值为0.18~0.62,指示其岩浆成因,207Pb/206Pb年龄介于2519±6Ma和2481±12Ma之间,谐和图上(图 4d)构成的不一致线上交点年龄为2500±4Ma(MSWD=0.64),10颗位于谐和线上的锆石加权平均年龄为2500±6Ma(MSWD=0.56),与上交点年龄相同,表明天桥岩墙的围岩英云闪长质片麻岩侵位于新太古代末期。

3.2 地球化学

天桥地区基性岩墙和TTG片麻岩的主量、微量元素分析结果见表 3。其中,样品TN3H1和TN3H2取自天桥岩墙,样品TN3H3~H5取自区内其他北西西向基性岩墙,样品TN1H1~H5为区内不同类型TTG片麻岩。

表 3 天桥地区基性岩墙及TTG片麻岩主量元素(wt%)、稀土和微量元素(×10-6)组成 Table 3 Major (wt%) and trace (×10-6) elements of the mafic dykes and TTG gneisses in Tianqiao area

基性岩墙地球化学样品的SiO2含量为47.99%~48.41%,属基性岩范畴,Na2O含量为2.48%~2.81%,K2O含量为0.55%~0.71%,Na2O/K2O=3.75~4.51,Al2O3含量为13.63%~14.14%,CaO含量为10.05%~10.80%,A/CNK=0.56~0.59,MgO含量为6.26%~6.98%,Mg#=45.6~49.6,FeO含量为9.96%~10.40%,Fe2O3含量为2.83%~3.44%。TAS图解上样品落入辉长岩区域(图 5a),为亚碱性系列,AFM图解确定为拉斑玄武岩系列(图 5b),A/CNK-A/NK图解中样品落入准铝质系列(图 5c)。岩墙样品稀土元素总量(∑REE)为71.11×10-6~94.82×10-6,轻重稀土比值(LREE/HREE)为3.77~4.29,(La/Yb)N比值为3.04~4.14。在稀土元素球粒陨石标准化配分图上(图 6a),曲线呈平坦型,略富集轻稀土元素,未见Eu和Ce异常(δEu=1.01~1.06,δCe=0.97~1.07)。微量元素亏损高场强元素(HFSE)Th、U、Nb、Ta和P,相对富集大离子亲石元素(LILE)Rb、Ba和K(图 6b)。

图 5 天桥地区基性岩墙及TTG片麻岩的TAS图解(a, 据Middlemost, 1994)、AFM图解(b, 据Irvine and Baragar, 1971)和A/CNK-A/NK图解(c, 据Maniar and Piccoli, 1989) 图中靖宇-夹皮沟地区花岗闪长质片麻岩数据引自Guo et al., 2017a, 图 6 Fig. 5 TAS diagram (a, after Middlemost, 1994), AFM diagram (b, after Irvine and Baragar, 1971) and A/CNK vs. A/NK diagram (c, after Maniar and Piccoli, 1989) of the mafic dykes and TTG gneisses in Tianqiao area

图 6 天桥地区基性岩墙及TTG片麻岩的球粒陨石标准化稀土元素配分图(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) of the mafic dykes and TTG gneisses in Tianqiao area

TTG片麻岩样品的SiO2含量为66.68%~70.22%,为酸性岩,Na2O含量为3.60%~5.35%,K2O为含量1.57%~2.99%,Na2O/K2O=1.20~3.16,Al2O3含量为14.14%~17.67%,CaO含量为1.91%~3.93%,A/CNK=1.00~1.14,MgO含量为0.53%~1.44%,Mg#=34.6~45.6。TAS图解上样品落入花岗岩-花岗闪长岩区域(图 5a),为亚碱性系列,使用AFM图解确定为钙碱性系列(图 5b),A/CNK-A/NK图解中落入弱过铝质系列(图 5c)。样品的∑REE为72.77×10-6~161.6×10-6,LREE/HREE比值为17.1~55.0,(La/Yb)N比值为20.8~100,Eu呈无异常或正异常(δEu=0.86~1.73),REE配分图上曲线呈右倾趋势,轻稀土富集、重稀土亏损(图 6a),微量元素强烈亏损HFSE(U、Nb、Ta、Sm、Ti和P),富集LILE(Rb、Ba、K和Sr)(图 6b)。

4 讨论 4.1 天桥岩墙的侵位时代

天桥地区基性岩墙主要侵位于新太古代TTG片麻岩中,周围大面积古元古代及新元古代地层中未见基性岩墙出露,并且天桥岩墙中斜长角闪岩的矿物组合为角闪石+斜长石±黑云母,变质程度达到角闪岩相,而研究区内古元古界老岭群的变质程度主要为低-高绿片岩相,基性岩墙的变质程度高于老岭群,这些野外地质特征将天桥岩墙的侵位时间限制在TTG片麻岩侵位之后,且在古元古界老岭群的沉积之前。

基性岩墙中多数锆石都是从围岩中捕获的,只有很少的原生基性锆石的年龄才是基性岩墙的侵位年龄(侯贵廷等,2005)。通过对天桥岩墙中挑选出的锆石进行分析,发现其中的锆石在形态和内部结构上与岩墙围岩英云闪长质片麻岩中的锆石相似,且核部岩浆锆石构成的不一致线上交点年龄2490±17Ma,也与围岩的侵位年龄2500±6Ma在误差范围内一致,而锆石变质边获得的变质年龄2446±12Ma,可能代表了围岩TTG片麻岩遭受后期变质或深熔事件的时间,因此,天桥岩墙中的锆石实际上全部为岩墙在侵位过程中从围岩中捕获的,不能代表岩墙的侵位时代。目前仅能根据野外地质事实,将侵位时间大致限制在新太古代末期(2500Ma)至古元古代早期,对于天桥岩墙及天桥太古宙基底出露区内众多基性岩墙的精确定年,需要进一步大量系统的取样研究,本文主要讨论天桥岩墙及其围岩TTG的成因及构造意义。

4.2 元素活动性评估

天桥地区基性岩墙和TTG的岩相学特征显示岩石在侵位后遭受了后期蚀变和变质作用,因此在使用地球化学数据进行岩石成因和构造背景讨论之前,有必要对变质过程中元素的活动性进行评价。天桥岩墙和TTG样品具有极低的烧失量(分别为0.52%~0.78%和0.51%~0.89%),且未见明显的Ce异常(δCe分别为0.97~1.07和1.00~1.13),表明岩石的地球化学属性在蚀变和变质过程中未发生明显变化(Polat and Hofmann, 2003)。另外,天桥岩墙样品中的P2O5、Cr、La、Y、Th、Ti、Nb元素以及TTG样品中的SiO2、Al2O3、Fe2O3T、MgO、CaO、La、Yb元素,在对Zr元素的相关性图解中都表现出线性相关特征,指示这些元素在变质过程中基本未活动,可以用于讨论岩石成因及构造判别。

4.3 天桥地区基性岩墙和TTG片麻岩的物质来源和形成环境 4.3.1 天桥岩墙

天桥地区基性岩墙总体具有低SiO2、Na2O和K2O含量以及高CaO和MgO含量,∑REE较低,轻重稀土分馏程度低,具平坦的配分曲线,富集LILE(Rb、Ba和K),亏损HFSE(Th、U、Nb和Ta)。Nb/Ta比值在岩浆体系中基本保持恒定,是判别源区物质的重要指标(Green, 1995; Hofmann, 1998),天桥地区基性岩墙的Nb/Ta=16.0~20.3,平均17.5,与原始地幔的Nb/Ta比值(17.5; Sun and McDonough, 1989)一致,同时,样品的Zr/Hf比值(35.6~38.0, 平均37.1)也与原始地幔相同(37; Sun and McDonough, 1989),以上特征指示岩墙岩浆应来源于地幔。此外,Nb和Ta的亏损通常与富高场强元素矿物(如金红石)在源区的残留(Ionov et al., 1999)或岩浆上升过程中受到地壳混染(Jahn et al., 1999)有关,但岩墙样品中其他高场强元素如Zr、Hf并不亏损,排除富HFSE矿物在源区残留的情况,而样品具有相当高的Nb/U(26.1~28.9)、Ta/U(26.1~28.9)比值,与地壳岩石特征相似(Rudnick and Fountain, 1995),表明岩浆可能受到地壳混染,这被岩石中含有较多捕获锆石所证实。综上,我们认为天桥地区基性岩墙的岩浆来源于地幔,并在上升过程中受到了地壳物质混染。

利用地球化学性质稳定的微量元素玄武岩构造判别图解对天桥岩墙形成的构造背景进行了判别,在Ti/100-Zr-3×Y图解中(图 7a),基性岩墙样品都投入了板内玄武岩区域,在Zr-Zr/Y图解中(图 7b),样品同样落入板内玄武岩区域。孙书勤等(2007)通过对国内外大陆板内玄武岩的综合研究,提出了区分大陆板内不同构造环境(大陆裂谷区、大陆拉张区和陆-陆碰撞带)玄武岩的方法,本文天桥地区基性岩墙的Th/Nb=0.17~0.18、Nb/Zr=0.06,符合其划分的大陆裂谷玄武岩的特征,在Nb/Zr-Th/Zr图解上(图 7c),样品落入陆内裂谷及陆缘裂谷拉斑玄武岩区,以上特征表明天桥地区基性岩墙形成于板内裂谷环境。

图 7 天桥地区基性岩墙的Ti/100-Zr-3×Y(a, 据Pearce and Cann, 1973)、Zr-Zr/Y(b, 据Pearce and Cann, 1973)和Nb/Zr-Th/Zr图解(c, 据孙书勤等, 2007) WPB-板内玄武岩;IAT-岛弧拉斑玄武岩;CAB-岛弧钙碱性玄武岩;MORB-洋中脊玄武岩;IAB-岛弧玄武岩.图 7c中:Ⅰ-大洋板块发散边缘N-MORB区;Ⅱ-板块汇聚边缘(Ⅱ1-大洋岛弧玄武岩区;Ⅱ2-陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ-大洋板内(洋岛、海山玄武岩区、T-MORB、E-MORB区);Ⅳ-大陆板内(Ⅳ1-陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2-大陆拉张带或初始裂谷玄武岩区;Ⅳ3-陆-陆碰撞带玄武岩区);Ⅴ-地幔热柱玄武岩区 Fig. 7 Ti/100-Zr-3×Y (a, after Pearce and Cann, 1973), Zr vs. Zr/Y diagram (b, after Pearce and Cann, 1973) and Nb/Zr vs. Th/Zr diagram (c, after Sun et al., 2007) of the mafic dykes in Tianqiao area
4.3.2 TTG片麻岩

TTG岩石成因及其形成的构造背景一直是TTG研究的重点,关于TTG的成因多数学者认为其形成于变质基性岩的部分熔融,但变质程度达到榴辉岩相或石榴角闪岩相还存在分歧(Arth and Hanson, 1975; Martin, 1986; Foley et al., 2002; Rapp et al., 2003; Condie and Hunter, 1976; Xiong et al., 2009; 魏春景等, 2017)。而关于TTG形成的构造背景,有学者据其与埃达克质岩石地球化学特征的相似性,推测其形成与俯冲板片的部分熔融相关(Martin, 1999; Foley et al., 2002),也有学者认为其形成于洋内加厚地壳的部分熔融(Smithies, 2000; Smithies et al., 2009)或在类似洋底高原的板内环境中由地壳物质部分熔融形成(Bédard, 2006),但需注意不应仅根据地球化学成分的相似性将太古宙TTG与显生宙特定构造环境简单对应(魏春景等, 2017)。

天桥地区TTG片麻岩具有中等的SiO2和MgO含量,较高的Al2O3和Na2O含量,以及低CaO含量,A/CNK为1.00~1.14,具有弱过铝质系列和钙碱性系列岩石特征。轻重稀土中等分馏、富集LREE亏损HREE(LREE/HREE=17.1~55.0,(La/Yb)N=20.8~100),Eu异常不明显或有轻微正异常,具有高Sr、低Nb和Ta含量,表明残留相中主要为石榴石,可能有少量金红石,地球化学特征与Moyen (2011)划分的高压TTG相符(图 8a)。在SiO2-Mg#图解中(图 8b),样品落入变质玄武岩及榴辉岩实验熔融区,在SiO2-MgO图解中(图 8c),落入变质玄武质岩石的实验部分熔融和高硅埃达克岩的重叠区,在CFM-AFM图解中(图 8d),样品主要分布在变质玄武岩和变质英云闪长岩部分熔融区,少数分布在变质杂砂岩部分熔融区,以上特征表明天桥地区2.5Ga的TTG岩浆可能主要来源于变质玄武质岩石和极少量杂砂岩的部分熔融。

图 8 天桥地区TTG片麻岩的YbN-(La/Yb)N图解(a, 据Moyen, 2011)、SiO2-Mg#图解(b, 岩石范围据Rapp et al., 1999; Smithies and Champion, 2000; Guo et al., 2017a)、SiO2-MgO图解(c, 据Martin et al., 2005)和CFM-AFM图解(d, 据Altherr et al., 2000) Fig. 8 YbN vs. (La/Yb)N diagram (a, after Moyen, 2011), SiO2 vs. Mg# diagram (b, fields after Rapp et al., 1999; Smithies and Champion, 2000; Guo et al., 2017a), SiO2 vs. MgO diagram (c, after Martin et al., 2005) and CFM vs. AFM diagram (d, after Altherr et al., 2000) of the TTG gneisses in Tianqiao area

吉南地区新太古代晚期TTG片麻岩分布广泛,夹皮沟地区南山和北山斜长片麻岩分别获得了2509±7Ma和2510±5Ma的结晶年龄,地球化学特征显示其原岩TTG形成于俯冲环境(宋健, 2017)。靖宇-夹皮沟地区英云闪长质-奥长花岗质片麻岩侵位于2576~2574Ma,花岗闪长质片麻岩形成于2546~2541Ma,石英闪长质片麻岩侵位于2536~2524Ma(Guo et al., 2017a)。其中,花岗闪长质片麻岩具有中等的SiO2和Na2O含量、低的CaO含量和较高的MgO含量,A/CNK为0.99~1.12,为准铝质-弱过铝质、中-高钾钙碱性系列岩石,稀土元素总量较低(∑REE=73×10-6~169×10-6),轻重稀土分馏程度中等((La/Yb)N=11~68),具有轻微Eu正异常(δEu=1.02~1.27)以及Nb、Ta和Ti的负异常,同时富集Zr、Hf、Ba、Rb和K(Guo et al., 2017a)。虽然花岗闪长质片麻岩形成时代早于天桥地区的TTG片麻岩,但它们的地球化学组成非常相似(图 5图 6),表明它们可能具有相似的岩浆成因。Guo et al. (2017a)对2个花岗闪长质片麻岩的Hf同位素分析显示其εHf(t)值分别为+4.5~+7.7和+5.3~+7.2,tDM(Hf)分别为2682~2558Ma和2645~2571Ma,认为岩浆来源于俯冲大洋板片和少量沉积岩的部分熔融,形成于活动大陆边缘背景下。据此,结合我们之前的讨论,认为天桥地区新太古代末期TTG片麻岩的岩浆来源于变质玄武质岩石和极少沉积岩的部分熔融,形成于与俯冲相关的活动大陆边缘环境。

4.4 新太古代晚期的地球动力学机制

地球早期动力学机制是地质学研究的关键问题,地幔柱构造与板块构造是早期大陆地壳形成和演化的两个最主要构造体制。太古宙地热梯度较现今高许多(Moyen and Martin, 2012),因此太古宙的地幔柱和板块构造机制都与现今相应机制存在差异(Gerya, 2014; Sizova et al., 2010; 李壮等, 2017; Li and Wei, 2017)。

最近,刘树文等(2015)对早前寒武纪地球动力学机制的演变进行了研究,指出冥古宙到古太古代时期地幔柱构造体制起主导作用;列举了十个证据证实中太古代到新太古代已存在板片俯冲体制,认为该时期壳幔作用体制和地壳生长方式发生改变,是地幔柱主导向板块构造体制主导的转化阶段;中太古代晚期和新太古代初期形成了以榴辉岩为标志的类现代板片俯冲的构造体制,新太古代晚期板块构造体制起主导作用,地幔柱构造体制仅在局部起作用。关于板块构造体制启动的时间分歧很大,前人的不同观点达八种之多,时间跨度从距今44亿年的冥古宙至6亿年的新元古代(李三忠等,2015a)。李三忠(2015b)认为初始板块构造诞生于2.56Ga左右并成熟于2.2Ga左右,该时期已满足板块体制出现的必要条件:俯冲作用、对流循环和刚性块体。万渝生等(2017)通过对华北克拉通太古宙TTG岩石的时空分布、物质组成的系统总结研究,得出新太古代晚期板块构造已起作用的结论。虽然前人对板块构造启动时间认识不完全相同,但总体来看,新太古代晚期板块构造俨然成为主导该时期地球动力学的重要机制。

4.5 天桥地区基性岩墙群形成机制及地质意义

新太古代末期-古元古代初期(2570~2490Ma)是华北克拉通东部陆块重要的岩浆活动和地壳生长期,近年许多学者根据该时期岩浆类型、岩石组合和空间分布以及构造特征认为它们是岛弧岩浆作用的产物(Kusky, 2011; Nutman et al., 2011; Liu et al., 2012; Wang et al., 2013, 2016; Guo et al., 2015, 2017a, b; Peng et al., 2015; Fu et al., 2016, 2017),并据此推断华北克拉通东部陆块新太古代可能发生了弧陆碰撞造山作用。万渝生等(2005a, b)提出华北克拉通太古宙晚期可能存在弧陆碰撞增生造山带(吉-辽-冀造山带),划分出东部古陆块、南部古陆块和中部古陆块三个老于2.6Ga的古陆块(Wan et al., 2015),且在东部古陆块西缘从鞍本经冀东到鲁西,识别出2.5Ga巨型壳源花岗岩带,推测东部古陆块外侧存在2.5Ga巨型TTG岩带(万渝生等, 2017)。刘树文等(2015)依据冀东-辽西地区不同类型太古宙岩石组合的分带特征,识别出新太古代晚期岛弧-弧后构造体系,并认为东部陆块北缘存在一条延伸800余千米的大洋岛弧带。Wang et al. (2015)王伟等(2015)在总结华北克拉通基底岩石年代学研究成果基础上,划分了年代学和时空分布格架,认为新太古代末期主要受到侧向洋内俯冲及弧陆增生控制。朱凯(2016)通过统计华北克拉通东部陆块和中部造山带花岗-绿岩带中花岗质岩石和绿岩带的分布规律和岩石组合,将这些花岗-绿岩带划分为西部的岛弧带、中部微陆块带和东部的弧后盆地-陆缘带,认为在2.60~2.53Ga期间发生了洋壳俯冲,在东部陆块西缘形成了岛弧和弧后盆地。李鹏川等(2016)杜传业等(2017)通过对吉南板石沟地区新太古代表壳岩、花岗岩、TTG片麻岩和基性深成侵入岩的研究,认为其构成了洋壳俯冲-弧陆碰撞的岩石组合,并推断新太古代可能存在弧陆碰撞造山带。

综上所述,前文对板块构造体制启动时间的论述,表明新太古代晚期很可能已经存在板块构造,给弧陆碰撞的发生提供了基础,本文报道的天桥太古宙基底出露区内英云闪长质片麻岩形成于新太古代末期与俯冲相关的活动大陆边缘环境,而侵位于TTG片麻岩中的天桥基性岩墙可能形成于新太古代末期-古元古代早期的板内伸展环境,结合前人和我们以往我们的研究成果,认为华北克拉通东北部在新太古代末期-古元古代早期之间发生了构造环境的转变,天桥岩墙的侵位可能与新太古代晚期发生的弧陆碰撞造山作用相关,标志着碰撞造山作用的结束,形成于造山后伸展环境。

5 结论

(1) 吉南天桥太古宙基底出露区内英云闪长质片麻岩形成于2500±6Ma,天桥基性岩墙中锆石皆为捕获自围岩的捕获锆石,其精确定年需要进一步大量取样研究,但野外地质证据表明天桥岩墙大致侵位于新太古代末期-古元古代早期,代表该时期地壳伸展事件。

(2) 地球化学特征显示,天桥岩墙属于准铝质的拉斑玄武岩系列岩石,岩浆来源于地幔并受到地壳混染;天桥地区TTG片麻岩属弱过铝质的钙碱性系列岩石,其岩浆可能来源于变质玄武质岩石和极少量沉积岩的部分熔融。

(3) 天桥地区新太古代末期TTG片麻岩形成于与俯冲相关的活动大陆边缘环境,而天桥岩墙形成于板内环境,结合以往研究,认为新太古代晚期板块构造已经启动,天桥岩墙的侵位可能标志着新太古代末期-古元古代早期之间碰撞造山作用的结束。

致谢 感谢吉林省区域地质矿产调查所周晓东总工程师在野外地质调查和资料收集过程中的大力帮助;感谢中国地质科学院地质研究所万渝生研究员、董春艳研究员在SHRIMP锆石定年方面的支持;同时感谢审稿专家对本文的详细指导!
参考文献
Altherr R, Holl A, Hegner E, Langer C and Kreuzer H. 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. DOI:10.1016/S0024-4937(99)00052-3
Arth JG and Hanson GN. 1975. Geochemistry and origin of the Early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta, 39(3): 325-362. DOI:10.1016/0016-7037(75)90200-8
Bédard JH. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. DOI:10.1016/j.gca.2005.11.008
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114. DOI:10.1016/B978-0-444-42148-7.50008-3
Bureau of Geology Mineral Resources of Jilin Province. 1988. Regional Geology of Jilin Province. Beijing: Geological Publishing House: 5-8.
Condie KC and Hunter DR. 1976. Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa. Earth and Planetary Science Letters, 29(2): 389-400. DOI:10.1016/0012-821X(76)90144-8
Deng H, Kusky T, Polat A, Wang JP, Wang L, Fu JM, Wang ZS and Yuan Y. 2014. Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 205: 359-378. DOI:10.1016/j.lithos.2014.07.011
Du CY, Liu ZH, Li PC, Guan QB and Chen X. 2017. LA-ICP-MS zircon U-Pb dating, geochemical characteristics and geological significance of tonalitic gneisses from Banshigou area of southern Jilin. Global Geology, 36(3): 734-750.
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840. DOI:10.1038/nature00799
Fu JH, Liu SW, Chen X, Bai X, Guo RR and Wang W. 2016. Petrogenesis of taxitic dioritic-tonalitic gneisses and Neoarchean crustal growth in eastern Hebei, North China Craton. Precambrian Research, 284: 64-87. DOI:10.1016/j.precamres.2016.08.002
Fu JH, Liu SW, Wang MJ, Chen X, Guo BR and Hu FY. 2017. Late Neoarchean monzogranitic-syenogranitic gneisses in the eastern Hebei-western Liaoning provinces, North China Craton: Petrogenesis and implications for tectonic setting. Precambrian Research, 303: 392-413. DOI:10.1016/j.precamres.2017.05.002
Geng YS, Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945-1966.
Gerya T. 2014. Precambrian geodynamics: Concepts and models. Gondwana Research, 25(2): 442-463. DOI:10.1016/j.gr.2012.11.008
Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359. DOI:10.1016/0009-2541(94)00145-X
Guo BR, Liu SW, Zhang J and Yan M. 2015. Zircon U-Pb-Hf isotope systematics and geochemistry of Helong granite-greenstone belt in southern Jilin Province, China: Implications for Neoarchean crustal evolution of the northeastern margin of North China Craton. Precambrian Research, 271: 254-277. DOI:10.1016/j.precamres.2015.10.009
Guo BR, Liu SW, Santosh M and Wang W. 2017a. Neoarchean arc magmatism and crustal growth in the north-eastern North China Craton: Evidence from granitoid gneisses in the Southern Jilin Province. Precambrian Research, 303: 30-53. DOI:10.1016/j.precamres.2016.12.009
Guo RR, Liu SW, Gong EP, Wang W, Wang MJ, Fu JH and Qin T. 2017b. Arc-generated metavolcanic rocks in the Anshan-Benxi greenstone belt, North China Craton: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics. Precambrian Research, 303: 228-250. DOI:10.1016/j.precamres.2017.03.028
Halls HC. 1987. Dyke swarms and continental rifting: Some concluding remarks. In: Halls HC and Fahrig WF (eds. ). Mafic Dyke Swarms. Ottawa: Geological Association of Canada, 34: 5-24
Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. DOI:10.1016/0012-821X(88)90132-X
Hou GT, Liu YL, Li JH and Jin AW. 2005. The SHRIMP U-Pb chronology of mafic dyke swarms: A case study of Laiwu diabase dykes in western Shandong. Acta Petrologica et Mineralogica, 24(3): 179-185.
Hou GT, Halls H, Davis D, Huang BL, Yang MH and Wang CC. 2009. Paleomagnetic poles of mafic dyke swarms from the North China Craton and their relevance to the reconstruction of the supercontinent Columbia. Acta Petrologica Sinica, 25(3): 650-658.
Hu GH, Hu JL, Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1.78Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563-1576.
Hu JL, Zhao TP, Chen W and Peng P. 2007. Characteristics and research progress of the 1.75Ga mafic dyke swarms in the North China Craton: A review. Geotectonica et Metallogenia, 31(4): 457-470.
Ionov DA, Grégoire M and Prikhod'ko VS. 1999. Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters, 165: 37-44. DOI:10.1016/S0012-821X(98)00253-2
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. DOI:10.1139/e71-055
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157: 119-146. DOI:10.1016/S0009-2541(98)00197-1
Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35. DOI:10.1016/j.gr.2011.01.004
Li JH, Hou GT, Qian XL, Halls HC and Davis D. 2001. Single-zircon U-Pb age of the initial Mesoproterozoic basic dike swarms in Hengshan Mountain and its implication for the tectonic evolution of the North China Craton. Geological Review, 47(3): 234-238.
Li JH, Kusky TM and Huang XN. 2002. Archean podiform chromitites and mantle tectonites in ophiolitic mélange, North China Craton: A record of early oceanic mantle processes. GSA Today, 12(7): 4-11.
Li PC, Guo W, Guan QB and Liu JX. 2016. Late Neoarchean crustal growth in the northeast of the North China Craton: Evidence from the geochronology and Hf isotope composition of Banshigou supracrustal rocks. Acta Petrologica Sinica, 32(9): 2839-2855.
Li SZ, Guo LL, Dai LM, Zhang Z, Zhao SJ, Zhao GC and Zhang GW. 2015a. Precambrian geodynamics (Ⅴ): Origin of plate tectonics. Earth Science Frontiers, 22(6): 65-76.
Li SZ, Li XY, Dai LM, Liu X, Zhang Z, Zhao SJ, Guo LL, Zhao GC and Zhang GW. 2015b. Precambrian geodynamics (Ⅵ): Formation of North China Craton. Earth Science Frontiers, 22(6): 77-96.
Li TS, Zhai MG, Peng P, Chen L and Guo JH. 2010. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in eastern Hebei: Implications for cratonization of the North China Craton.. Precambrian Research, 180(3-4): 143-155. DOI:10.1016/j.precamres.2010.04.001
Li Z and Wei CJ. 2017. Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 292: 175-193. DOI:10.1016/j.precamres.2017.01.014
Li Z, Wei CJ and Chen B. 2017. Petrology and geochemistry of Archean greenstone belts: A case study and discussion. Chinese Journal of Geology, 52(4): 1241-1262.
Liu DZ and Liu YW. 1994. The Archean magma-tectonic event of the Sandaoliuhe area. Jilin Geology, 13(3): 46-54.
Liu F, Guo JH, Peng P and Qian Q. 2012. Zircon U-Pb ages and geochemistry of the Huai'an TTG gneisses terrane: Petrogenesis and implications for ~2.5Ga crustal growth in the North China Craton. Precambrian Research, 212.
Liu FL, Liu PH, Wang F, Liu CH and Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816-2846.
Liu SW, Wang W, Bai X, Guo RR, Guo BR, Hu FY, Fu JH and Wang MJ. 2015. Precambrian geodynamics (Ⅶ): Formation and evolution of early continental crust. Earth Science Frontiers, 22(6): 97-108.
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4
Lu SN, Hao GJ and Xiang ZQ. 2016. Precambrian major geological events. Earth Science Frontiers, 23(6): 140-155.
Ludwig KR. 2001. User's Manual for Isoplot/EX Rev.2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication: 1-55.
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101(5): 635-643.
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756.
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429. DOI:10.1016/S0024-4937(98)00076-0
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.048
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224. DOI:10.1016/0012-8252(94)90029-9
Möller A, O'Brien PJ, Kennedy A and Kröner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance D, Müller W and Villa IM (ed.). Geochronology: Linking the Isotopic Record with Petrology and Textures. Geological Society, London, Special Publication, 5: 65-82
Moyen JF. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123(1-4): 21-36. DOI:10.1016/j.lithos.2010.09.015
Moyen JF and Martin H. 2012. Forty years of TTG research. Lithos, 148: 312-336. DOI:10.1016/j.lithos.2012.06.010
Nutman AP, Wan YS, Du LL, Friend CRL, Dong CY, Xie HQ, Wang W, Sun HY and Liu DY. 2011. Multistage Late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43-65. DOI:10.1016/j.precamres.2011.04.005
Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300. DOI:10.1016/0012-821X(73)90129-5
Peng P, Zhai MG, Zhang HF, Zhao TP and Ni ZY. 2004. Geochemistry and geological significance of the 1.8Ga mafic dyke swarms in the North China Carton: An example from the juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrologica Sinica, 20(3): 439-456.
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1-2): 29-46.
Peng P, Wang C, Wang XP and Yang SY. 2015. Qingyuan high-grade granite-greenstone terrain in the Eastern North China Craton: Root of a Neoarchaean arc. Tectonophysics, 662: 7-21. DOI:10.1016/j.tecto.2015.04.013
Polat A and Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7~3.8Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3-4): 197-218.
Qian XL and Chen YP. 1987. Late Precambrian mafic dyke swarms of the North China craton. In: Halls HC and Fahrig WF (eds.). Mafic Dyke Swarms. Geology Association of Canada, Special Paper, 34: 385-391
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0
Rapp RP, Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605-609. DOI:10.1038/nature02031
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309. DOI:10.1029/95RG01302
Shen QH and Song HX. 2015. Progress, prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton. Acta Petrologica Sinica, 31(10): 2795-2815.
Shen QH, Geng YS and Song HX. 2016. Constituents and evolution of the metamorphic basement of the North China Craton. Acta Geoscientica Sinica, 37(4): 387-406.
Sizova E, Gerya T, Brown M and Perchuk LL. 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116(3-4): 209-229. DOI:10.1016/j.lithos.2009.05.028
Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1): 115-125. DOI:10.1016/S0012-821X(00)00236-3
Smithies RH and Champion DC. 2000. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. Journal of Petrology, 41(12): 1653-1671. DOI:10.1093/petrology/41.12.1653
Smithies RH, Champion DC and Van Kranendonk MJ. 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters, 281(3-4): 298-306. DOI:10.1016/j.epsl.2009.03.003
Song J. 2017. The significance of the Jiapigou complex to the Archean evolution in the southern area of Jilin Province. Master Degree Thesis. Changchun: Jilin University, 15.
Sun SQ, Zhang CJ and Zhao SJ. 2007. Identification of the tectonic settings for continental intraplate by trace elements. Geotectonica et Metalbgenia, 31(1): 104-109.
Sun SS and Mcdonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. DOI:10.1007/s004100050492
Wan YS, Li RW, Wilde SA, Liu DY, Chen ZY, Yan L, Song TR and Yin XY. 2005. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochimica et Cosmochimica Acta, 69(17): 4333-4348. DOI:10.1016/j.gca.2005.03.055
Wan YS, Song B, Yang C and Liu DY. 2005a. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica, 79(1): 78-87.
Wan YS, Song B, Geng YS and Liu DY. 2005b. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, northern Liaoning Province and its geological significance. Geological Review, 51(2): 128-137.
Wan YS, Dong CY, Liu YD, Kröner A, Yang CH, Wang W, Du LL, Xie HQ and Ma MZ. 2012. Zircon ages and geochemistry of Late Neoarchean syenogranites in the North China Craton: A review. Precambrian Research, 222-223: 265-289. DOI:10.1016/j.precamres.2011.05.001
Wan YS, Xie SW, Yang CH, Kröner K, Ma MZ, Dong CY, Du LL, Xie HQ and Liu DY. 2014. Early Neoarchean (~2.7Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Research, 247: 45-63.
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai MG (ed. ). Precambrian Geology of China. Berlin, Heidelberg: Springer, 59-136
Wan YS, Dong CY, Xie HQ, Liu SJ, Ma MZ, Xie SW, Ren P, Sun HY and Liu DY. 2015. Some progress in the study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700.
Wan YS, Liu DY, Xie HQ, Kröner A, Ren P, Liu SJ, Xie SW, Dong CY and Ma MZ. 2016. Formation ages and environments of Early Precambrian banded iron formation in the North China Craton. In: Zhai MG, Zhao Y and Zhao TP (eds. ). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 65-83
Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW and Liu DY. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis. Acta Petrologica Sinica, 33(5): 1405-1419.
Wang C, Peng P, Wang XP, Li QL, Xu XY and Yang SY. 2016. The generations and U-Pb dating of baddeleyites from the Taihang dyke swarm in North China and their implications for magmatic evolution. Acta Petrologica Sinica, 32(3): 646-658.
Wang JP, Kusky T, Polat A, Wang L, Deng H and Wang SJ. 2013. A Late Archean tectonic mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929-946. DOI:10.1016/j.tecto.2013.07.025
Wang MJ, Liu SW, Wang W, Wang K, Yan M, Guo BR, Bai X and Guo RR. 2016. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China. Journal of Asian Earth Sciences, 131: 12-39. DOI:10.1016/j.jseaes.2016.09.012
Wang W, Liu SW, Santosh M, Wang GH, Bai X and Guo RR. 2015. Neoarchean intra-oceanic arc system in the western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329-364. DOI:10.1016/j.earscirev.2015.08.002
Wang W, Liu SW, Bai X and Guo RR. 2015. Precambrian geodynamics (Ⅷ): Late Archean crustal growth models recorded in the North China Craton. Earth Science Frontiers, 22(6): 109-124.
Wang W, Yang H and Ji L. 2017. The identification of the Neoarchean 2.52~2.46Ga tectono-thermal events from the Liaonan terrain and its geological significance. Acta Petrologica Sinica, 33(9): 2775-2784.
Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF and Peng TP. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca.1800Ma event of the North China Craton. Precambrian Research, 135(1-2): 55-77.
Wang YJ, Zhao GC, Cawood PA, Fan WM, Peng TP and Sun LH. 2008. Geochemistry of Paleoproterozoic (~1770Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Science, 33(1-2): 61-77. DOI:10.1016/j.jseaes.2007.10.018
Wei CJ, Guan X and Dong J. 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs. Acta Petrologica Sinica, 33(5): 1381-1404.
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: Mckibben MA, Shanks Ⅲ WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35
Wu JS, Geng YS, Shen QH, Wan YS, Liu DY and Song B. 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Beijing: Geological Publishing House: 1-212.
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. DOI:10.1007/BF03184122
Xiong XL, Keppler H, Audétat A, Gudfinnsson G, Sun WD, Song MS, Xiao WS and Li Y. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 94(8-9): 1175-1186. DOI:10.2138/am.2009.3158
Yang JH, Wu FY, Wilde SA and Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167(1-2): 125-149. DOI:10.1016/j.precamres.2008.07.004
Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547-561. DOI:10.1016/j.jseaes.2004.01.018
Zhai MG. 2012. Evolution of the North China Craton and early plate tectonics. Acta Geologica Sinica, 86(9): 1335-1349.
Zhai MG. 2013. Secular changes of metallogenic systems link with continental evolving of the North China Craton. Acta Petrologica Sinica, 29(5): 1759-1773.
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T, path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. DOI:10.1016/S0301-9268(00)00154-6
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792.
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016
Zhu K. 2016. The formation and evolution of the Archaean greenstone belt in the Anshan-Benxi area.Ph. D. Dissertation. Changchun: Jilin University: 129-133.
杜传业, 刘正宏, 李鹏川, 关庆彬, 陈旭. 2017. 吉南板石沟地区英云闪长质片麻岩LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义. 世界地质, 36(3): 734-750.
耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 26(7): 1945-1966.
侯贵廷, 刘玉琳, 李江海, 金爱文. 2005. 关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨——以鲁西莱芜辉绿岩岩墙为例. 岩石矿物学杂志, 24(3): 179-185.
侯贵廷, Halls H, Davis D, 黄宝玲, 杨默函, 王传成. 2009. 华北基性岩墙群的古地磁极及其哥伦比亚超大陆重建意义. 岩石学报, 25(3): 650-658.
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563-1576.
胡俊良, 赵太平, 陈伟, 彭澎. 2007. 华北克拉通1.75Ga基性岩墙群特征及其研究进展. 大地构造与成矿学, 31(4): 457-470.
吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社: 5-8.
李江海, 侯贵廷, 钱祥麟, Halls HC, Davis D. 2001. 恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb年龄及其克拉通构造演化意义. 地质论评, 47(3): 234-238.
李鹏川, 郭巍, 关庆彬, 刘杰勋. 2016. 华北克拉通东北部新太古代晚期地壳生长:来自板石沟表壳岩年代学和Hf同位素的证据. 岩石学报, 32(9): 2839-2855.
李三忠, 郭玲莉, 戴黎明, 张臻, 赵淑娟, 赵国春, 张国伟. 2015a. 前寒武纪地球动力学(Ⅴ):板块构造起源. 地学前缘, 22(6): 65-76.
李三忠, 李玺瑶, 戴黎明, 刘鑫, 张臻, 赵淑娟, 郭玲莉, 赵国春, 张国伟. 2015b. 前寒武纪地球动力学(Ⅵ):华北克拉通形成. 地学前缘, 22(6): 77-96.
李壮, 魏春景, 陈斌. 2017. 太古宙绿岩带岩石学和地球化学:实例与探讨. 地质科学, 52(4): 1241-1262.
刘大瞻, 刘跃文. 1994. 三道溜河地区太古宙岩浆-构造事件. 吉林地质, 13(3): 46-54.
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846.
刘树文, 王伟, 白翔, 郭荣荣, 郭博然, 胡方泱, 付敬浩, 王茂江. 2015. 前寒武纪地球动力学(Ⅶ):早期大陆地壳的形成与演化. 地学前缘, 22(6): 97-108.
陆松年, 郝国杰, 相振群. 2016. 前寒武纪重大地质事件. 地学前缘, 23(6): 140-155.
彭澎, 翟明国, 张华锋, 赵太平, 倪志耀. 2004. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例. 岩石学报, 20(3): 439-456.
沈其韩, 宋会侠. 2015. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题. 岩石学报, 31(10): 2795-2815.
沈其韩, 耿元生, 宋会侠. 2016. 华北克拉通的组成及其变质演化. 地球学报, 37(4): 387-406.
宋健. 2017. 夹皮沟片麻杂岩对吉南地区太古宙演化的意义. 硕士学位论文. 长春: 吉林大学, 15-37
孙书勤, 张成江, 赵松江. 2007. 大陆板内构造环境的微量元素判别. 大地构造与成矿学, 31(1): 104-109.
万渝生, 宋彪, 杨淳, 刘敦一. 2005a. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义. 地质学报, 79(1): 78-87.
万渝生, 宋彪, 耿元生, 刘敦一. 2005b. 辽北抚顺-清原地区太古宙基底地球化学组成特征及其地质意义. 地质论评, 51(2): 128-137.
万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 谢士稳, 任鹏, 孙会一, 刘敦一. 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700. DOI:10.3975/cagsb.2015.06.01
万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢士稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述. 岩石学报, 33(5): 1405-1419.
王冲, 彭澎, 王欣平, 李秋立, 徐希阳, 杨书艳. 2016. 华北太行岩墙群斜锆石生长世代和U-Pb年龄及其对岩浆演化的启示. 岩石学报, 32(3): 646-658.
王伟, 刘树文, 白翔, 郭荣荣. 2015. 前寒武纪地球动力学(Ⅷ):华北克拉通太古宙末期地壳生长方式. 地学前缘, 22(6): 109-124.
王伟, 杨红, 冀磊. 2017. 辽南地块新太古代2.52~2.46Ga构造-热事件的识别及地质意义. 岩石学报, 33(9): 2775-2784.
魏春景, 关晓, 董杰. 2017. 基性岩高温-超高温变质作用与TTG质岩成因. 岩石学报, 33(5): 1381-1404.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1335-1349.
翟明国. 2013. 华北前寒武纪成矿系统与重大地质事件的联系. 岩石学报, 29(5): 1759-1773.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
朱凯. 2016. 鞍山-本溪地区太古宙绿岩带的形成及演化. 博士学位论文. 长春: 吉林大学, 129-133