岩石学报  2018, Vol. 34 Issue (5): 1441-1452   PDF    
右江褶皱带东南缘西大明山矿集区燕山期长英质岩浆锆石SHRIMP原位氧同位素组成与地质意义
肖昌浩1,2 , 申玉科1 , 刘欢3 , 韦昌山1 , 乐兴文4 , 傅斌5     
1. 中国地质科学院地质力学研究所动力成岩成矿实验室, 北京 100081;
2. 中国地质大学地球科学与资源学院, 北京 10008;
3. 中国地质科学院矿产资源研究所, 北京 100037;
4. 广西壮族自治区第四地质队, 南宁 530031;
5. 澳大利亚国立大学地球科学学院, 堪培拉 2601
摘要:右江褶皱带晚白垩世岩浆岩的物质来源和成因机制及其相关的大规模Sn-W多金属成矿作用是目前研究的热点和前沿问题之一。本文在已获得锆石U-Pb年龄及Hf同位素基础上,对广西西大明山地区酸性岩浆进行了锆石SHRIMP氧同位素研究。石英斑岩δ18OZrn值为5.31‰~9.31‰(平均值为7.61±2.17‰)、绢英岩化黑云母花岗岩δ18OZrn值为7.11‰~9.79‰(平均值为8.36±1.33‰)、细粒黑云母花岗岩δ18OZrn值为5.06‰~9.27‰(平均值为7.73±2.23‰)、中粒黑云母花岗岩δ18OZrn值为5.06‰~9.27‰(平均值为7.73±2.23‰)二长花岗岩δ18OZrn值为5.48‰~10.99‰(平均值为7.55±2.77‰)。测试结果显示广西西大明山地区酸性岩浆锆石氧同位素普遍具有双峰式分布特征且Hf-O同位素组成构成负相关性,暗示地壳组份和富集地幔两端元混合的特征。Hf-O同位素特征指示酸性岩浆岩源主要来自古老的地壳,并混有部分幔源物质。地幔物质的存在暗示了同时期来自地幔的物质不仅参与右江褶皱带晚白垩世岩浆作用的形成,可能为的地壳部分熔融,花岗岩岩浆的形成提供了热能。西大明山地区酸性岩浆具有高δ18OZrn值和低εHft)值且低Ce(Ⅳ)/Ce(Ⅲ)比值(即低氧逸度),显示出有利于形成大型以Pb-Zn为主的矽卡岩型矿床特征。本文研究结果表明,锆石O-Hf同位素综合研究能限定幔源岩浆参与花岗岩形成中的作用能帮助更加准确的限定岩浆源区。同时锆石氧同位素可以作为成矿规律研究的有效途径之一。
关键词: 锆石氧同位素     SHRIMP     罗维钨锌矿床     右江褶皱带    
Oxygen isotopic compositions and geological significance of zircons from the Yanshanian felsic intrusions in the Xidamingshan cluster, southeastern margin of the Youjiang fold belt, South China: In situ SHRIMP analysis.
XIAO ChangHao1,2, SHEN YuKe1, LIU Huan3, WEI ChangShan1, LE XingWen4, FU Bin5     
1. Laboratory of Dynamic Digenesis and Metallogenesis, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 10008;
3. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. Geological team No.4 of Guangxi Zhuang Autonomic Region, Nanning 530031, China;
5. Research School of Earth Sciences, Australian National University, Canberra 2601, Australian
Abstract: The source and petrogenesis of the Late Cretaceous magmatism and associated Sn-W mineralization in the South China are yet well documented. This paper reports the oxygen isotope compositions of previously analyzed zircons from the Yanshanian felsic intrusions in the Xidamingshan cluster, along the southeastern margin of the Youjiang fold belt, Guangxi, South China. Zircon (Zrn) δ18O for quartz porphyry ranges from 5.31‰ to 9.31‰, VSMOW, averaging at 7.61±2.17‰. δ18OZrn for beresitization biotite granite, fine biotite granite and medium biotite granite range from 7.11‰ to 9.79‰ (average=8.36±1.33‰), from 5.06‰ to 9.27‰ (average=7.73±2.23‰) and from 6.27‰ to 9.77‰ (average=8.04±1.75‰), respectively. Monzonitic granite records a wide range in δ18OZrn (5.48‰~10.99‰) with average of 7.55±2.77‰. The majorities are greater than the "mantle-like" values (δ18O:5.3±0.6‰, 2σ). Except beresitization biotite granite, five samples have bimodal or multi-modal distribution characteristics and Hf-O plots of zircons have a negative correlation, indicating a crust-mantle interaction. Hf-O isotopic compositions suggest that the source of the magma was mainly derived from partial melting of crustal material with input of mantle-derived components. The mantle-derived melts imply that these melts not only provided necessary heat energy for crust partial melting, but also put got involved in the generation of granitic melts. Low oxygen fugacity as indicated by low Ce(Ⅳ)/Ce(Ⅲ) ratios may be responsible for formation of large Pb-Zn-dominated skarn deposits. Our current research illustrates that combination of zircon Hf-O isotope could more accurately trace the source of magma through distinguish juvenile components and parental magmas derived from reworking of pre-existing crustal material. And zircon O isotope is one of the most efficient techniques to study the metallogenetic regularity.
Key words: Zircon oxygen isotope     SHRIMP     Luowei W-Zn deposit     Youjiang fold belt    

锆石是一种高温、难熔的且化学性质稳定的副矿物,不受后期热液蚀变和高级变质作用的影响,可以记录岩浆原岩特征的信息(Valley et al., 1994, 2005; King et al., 1998; Peck et al., 2001; Zheng et al., 2003)。且通过锆石氧同位素分析,可以知道其原始岩浆时直接来自地幔还是经受过地壳循环,从而更有效地揭示壳幔相互作用(Bindeman and Valley, 2000, 2001; Grimes et al., 2013; Monani and Valley, 2001; Peck et al., 2001; Wei et al., 2008)。因此将锆石氧同位素分析与U-Pb年龄结合起来是近来地球化学动力学研究的重要发展趋势之一(Zheng et al., 2003; Lackey et al., 2005; Hawkesworth and Kemp, 2006; Bindeman et al., 2012; Fu et al., 2015; Gouzinié et al., 2016; Gao et al., 2018)。一般而言,沉积岩具有较高的δ18OZrn值,变质岩其次,火成岩最低(Bindeman, 2008)。地幔岩浆锆石δ18O值为5.3±0.6‰(2σ, Valley et al., 1998; Page et al., 2007);壳源岩浆锆石一般具有较高的δ18O值(δ18O=6‰~10‰)(Bindeman et al., 2004; Bindeman, 2008),假如岩浆锆石具有高的δ18O值一般暗示物源区为沉积岩或岩浆作用过程中有沉积物质加入(Taylor, 1968)。因此,岩浆锆石δ18O值可以作为岩浆源区示踪和反演演化过程的重要手段。此外,一般认为锆石氧同位素扰动主要是与热液蚀变有关(Valley et al., 1994; Valley, 2003; Booth et al., 2005; Davies et al., 2015)。因此,通过研究成矿有关的岩浆锆石微区氧同位素分析技术可为了解岩浆热液类型热液蚀变类型与成矿类型提供桥梁。最近一些学者开始尝试把氧同位素研究与斑岩型矿床、矽卡岩型矿床的成矿差异联系起来,为成矿规律研究提供新的途径(Zhao et al., 2017; Zhang et al., 2017)。

右江褶皱带以两大成矿系列闻名即:产于褶皱带周缘深大断裂附近的锡多金属成矿系列和产于褶皱带内部的低温成矿系列,如广西大厂锡多金属矿床、云南个旧锡矿床、贵州烂泥沟金矿床和贞丰金矿床、广西金牙金矿床等(华仁民等, 1997; 陈懋弘等, 2012)。近年在右江褶皱带东南缘广西西大明山多金属矿集区新发现与深部岩体有关的大中型Zn-W多金属矿床。前人识别出了晚白垩世3种不同岩性的岩浆即:石英斑岩脉、黑云母花岗岩和二长花岗岩(肖昌浩等, 2018)。野外观察显示,石英斑岩与地表W-Bi等高温矿化关系密切而黑云母花岗岩与矽卡岩型Zn-W多金属矿化关系密切。因此,西大明山矿集区是开展锆石氧同位素岩源示踪及探讨岩浆-热液蚀变-成矿等关系的天然实验室。另外,对于华南右江褶皱带晚白垩世岩浆岩成因争议较大,其关键是已蚀变的岩浆岩岩石地球化学数据是否能准确给出母岩性质以及单一锆石Hf同位素也不能准确判定是否具有幔源组分加入。本文对广西西大明山矿集区不同类型岩浆进行SHRIMP锆石O同位素研究,探讨矿集区晚白垩世岩浆岩岩源并试图探索锆石氧同位素组成与成矿作用的关系。

1 地质背景

右江褶皱带地处华南板块西南部,大地构造位置上位于特提斯构造域与太平洋构造域的结合部分(图 1a),其地质构造复杂,演化历史独特以及晚白垩世大规模Sn-W多金属成矿尤为特色,是研究区域岩浆-成矿的理想场所,因此受到国内外大量学者青睐(Charoy and Barbey, 2008; Chen et al., 2011; Deng et al., 2014a, b; Wang et al., 2014; 乔龙, 2016; 肖昌浩等, 2018)。地理位置上,该褶皱带处于桂西-桂西北、黔西南、滇东南及越南东北部交接部位,是重要的Au及Sn多金属富集地。右江褶皱带轮廓上呈菱形,其西南方向为古特提斯洋的分支闭合形成的哀牢山-马江缝合带,西北以师宗-弥勒断裂与康滇古陆相连,西南侧为凭祥-南宁断裂与中生代十万大山前陆盆地相连,东北以南丹-宾阳断裂为界(图 1a)。该区域自晚古生代以来受古特提斯洋俯冲与闭合、峨眉山地幔柱活动、古太平洋板块俯冲及青藏高原隆升等构造复合叠加,存在多期构造-岩浆活动(广西壮族自治区地质矿产局, 1985; Deng et al., 2010; Wang et al., 2010)。燕山期岩浆主要分布于褶皱带东西两侧断裂带附近,少量分布于褶皱带内(陈懋弘等, 2012)。目前较为一致的认识即印支期-燕山期,受古特提斯洋演化影响,成岩成矿是古特提斯洋闭合、碰撞的响应(Deng et al., 2014a, b, 2017; Liu et al., 2017)。进入燕山早期,受太平洋板块俯冲影响,至燕山晚期开始中国东部经历大规模地壳岩石圈伸展减薄,发生大规模成岩成矿作用(Lapierre et al., 1997; 毛景文等, 2004, 2011)。广西西大明山多金属矿集区位于右江褶皱带东南缘西大明山背斜内(图 1b),经历了上述构造岩浆活动。

图 1 广西西大明山矿集区大地构造位置图及地质简图(据陈懋弘等, 2012; 陆建辉, 2015) Fig. 1 Sketch map showing the location of the Youjiang fold belt and the geological sketch map of Xidamingshan cluster, along the southeastern margin of the Youjiang fold belt (after Chen et al., 2012; Lu, 2015)

广西西大明山矿集区整体呈一核部为寒武系、两翼为泥盆系的短轴复式背斜(图 1b)。地层主要为一套浅变质的半深海相砂泥岩复理石建造。西大明山复式背斜由一系列次级的、呈紧密排列的线状背、向斜组成,总体构造线呈近EW向,枢纽向东、西两端倾伏。区内断裂构造以EW向和NNE向为主,并与NE向、SN向和NW向断裂交织,形成错综复杂的断裂网络系统。区内的地表仅有少量零星分布的酸性岩脉及少量岩沿NE向和NW向断裂侵入的辉绿岩脉(图 1b)。

研究区矿产资源较丰富(图 1b),以内生矿产为主,目前已探明大型矿床两处(凤凰山银矿、弄屯铅锌矿),中型矿床两处(长屯铅锌矿、罗维钨锌矿),小型矿床多处(渌井铅锌矿、平何银矿、那佰铅锌矿、小明山铅锌矿等)。

2 样品和分析方法

本次工作在前期岩石学和年代学基础上,对罗维矿床成矿密切相关的黑云母花岗岩从深度和蚀变上进一步细化,共采集5件样品。石英斑岩脉(NN02)采自西大明山主峰北侧,岩脉呈近NS向侵入于寒武系下统小内冲组碎屑岩中。岩脉整体氧化强烈,大部分斑晶流失留下孔洞,石英斑晶保存完整,石英斑晶可见,大小约0.1~1.5cm的含量不等,晶形较好,呈透明无杂质,石英斑晶达15%以上(肖昌浩等, 2018)。3件黑云母花岗岩(ZK004、ZK003B、ZK003A)采自钻孔ZK31901,钻孔中可见细粒黑云母花岗岩与围岩接触带附近角岩化强烈。细粒黑云母花岗岩上部局部黄铁绢英岩化强烈。ZK004孔深为595m,岩石整体绢英岩化较强(图 2a);ZK003B孔深为602m,蚀变较弱,为细粒黑云母花岗岩;ZK003A孔深为603m,为中粒黑云母花岗岩,蚀变较明显,被一条黄铁矿细脉穿切。二长花岗岩(ZK015)采自钻孔ZK40004,孔深995.8m,蚀变较弱(图 2b)。该钻孔岩体之上寒武系小内冲组钙质粉砂岩中矽卡岩化、角岩化和矿化较强,局部可见强烈的绢英岩化(图 2b)。

图 2 钻孔局部素描图及采样位置 Fig. 2 Samples and drill core profile

本次测试前部分锆石前期已开展了LA-ICP-MS U-Pb定年和LA-MC-ICP-MS Hf同位素分析,对锆石破坏很大,对已打Hf的锆石选点尽量选择已打Hf点附近或另选同一环带较宽处,而未做Hf同位素分析的锆石,O同位素分析位置与U-Pb定年位置基本相同,典型锆石阴极发光照片及测试点位见图 3。锆石U-Pb年龄及Hf同位素详见肖昌浩等(2018)

图 3 西大明山矿集区燕山期侵入岩代表性锆石阴极发光图像及测点位置、δ18O值、U-Pb年龄和εHf(t)值 Fig. 3 Cathodoluminescence (CL) images of representative zircons of the Yanshanian intrusions in the Xidamingshan cluster, southeastern margin of the Youjiang fold belt, South China with analytical numbers, δ18O, U-Pb ages and εHf(t)

锆石氧同位素在澳大利亚国立大学地球科学学院SHRIMP Ⅱ上完成,仪器工作原理、O同位素分析方法和条件详见Ickert et al. (2008)Fu et al. (2015)。本次实验选定了2个锆石标样判断仪器工作稳定状况和校正仪器质量分馏。本次实验使用标样为Temora-2(δ18OV-SMOW=8.20±0.02‰, 2σ, n=3; Valley, 2003; Black et al., 2004)和FC-1(δ18OV-SMOW=5.61±0.14‰, 2σ, n=6; Fu et al., 2015)。测试过程中仪器状态稳定,标准锆石分析的误差为0.48~0.53(2σ)。50颗Temora-2锆石标准分析,δ18O平均值为8.20±0.53‰(2σ)。

3 O同位素分析结果

本次锆石氧同位素分析结果见表 1图 4图 5,共计124个锆石氧同位素数据。大部分锆石δ18O值高于典型地幔锆石氧同位素值,显示高δ18O岩浆特征。石英斑岩脉样品NN02中,28颗岩浆锆石δ18O变化范围为1.64‰~9.31‰,δ18O平均值为7.19±3.74‰(2σ)(图 4a),该值明显高于地幔岩浆锆石δ18O值为5.3±0.6‰(2σ, Valley et al., 1998; Page et al., 2007)。若除去NN02@3.1(1.74‰)和NN02@3.2(1.64‰)外,其它值变化范围为5.31‰~9.31‰,δ18O平均值为7.61±2.17‰(2σ)(图 4b)。从图 4b可见,样品NN02显示双峰特征,在7.8‰~9.2‰有一个明显的主峰值(8.42‰);在5.3‰~6.6‰有一个次峰值(6.34‰)。绢英岩化的细粒黑云母花岗岩样品ZK004中,26颗锆石δ18O变化范围为7.11‰~9.79‰,δ18O平均值为8.36±1.33‰(2σ),其变化范围较小呈单峰(8.04‰)正态分布(图 4c)。蚀变不明显的细粒黑云母花岗岩样品ZK003B中,24颗锆石δ18O变化范围为5.06‰~9.27‰,δ18O平均值为7.73±2.23‰(2σ)(图 4d)。7‰~9‰之间有明显的双峰特征(8.62‰和7.62‰),4.6‰~5.4‰有一个明显的次峰(5.11‰),该峰值与地幔岩浆锆石δ18O值基本一致(图 4d)。中粒黑云母花岗岩样品ZK003A中,26颗锆石δ18O变化范围为6.27‰~9.77‰,显示出明显双峰特征(8.56‰和7.51‰),δ18O平均值为8.04±1.75‰(2σ)(图 4e)。新鲜的中粒和细粒黑云母花岗岩显示极为相似的双峰式特征。二长花岗岩样品ZK015中,22颗锆石δ18O变化范围为5.48‰~10.99‰,显示出多峰的特征(6.01‰、7.76‰、9.50‰、11.02‰),δ18O加权平均值为7.55±2.77‰(2σ)(图 4f)。

表 1 西大明山地区燕山期岩浆岩的锆石氧同位素组成 Table 1 Oxygen isotope compositions of zircons from the Yanshanian intrusions in the Xidamingshan cluster, along the southeastern margin of the Youjiang fold belt, South China

图 4 西大明山矿集区燕山期花岗岩锆石氧同位素频率直方图 Fig. 4 Frequency histogram for zircon oxygen isotopes of the Yanshanian intrusions in the Xidamingshan cluster, along the southeastern margin of the Youjiang fold belt, South China

图 5 西大明山地区酸性岩浆锆石年龄-δ18O (a)和εHf(t)-δ18O (b)图解 点线为地幔和表壳沉积岩来源岩浆的二元混合趋势线,Hfpm/Hfc代表幔源岩浆与表壳沉积岩来源岩浆的Hf浓度比,线上空心圆圈表示混合比例(10%间隔).地幔端元锆石的εHf(t)=+12和δ18O=5.3‰(Valley et al., 1998);表壳沉积岩端元的锆石εHf(t)=-12和δ18O=10‰(Li et al., 2009).云南薄竹山岩体锆石Hf-O同位素数据来自Chen et al., 2015.越南东北部Nà Giao岩体锆石Hf-O同位素数据来之Chen et al., 2014 Fig. 5 Zircon age vs. δ18O (a) and εHf(t) vs. δ18O (b) diagram of the Yanshanian intrusions in the Xidamingshan cluster, along the southeastern margin of the Youjiang fold belt, South China
4 讨论 4.1 岩浆物质来源及岩石成因

西大明山酸性岩浆岩的锆石U-Pb年龄与右江褶皱带及其周缘出露的晚白垩世岩浆岩的形成年龄基本一直,尤其与大厂笼箱盖岩体、大厂地区老君山岩体、薄竹山岩体几乎一致(蔡明海等, 2006; 谭俊等, 2008; Cheng and Mao, 2010; 梁婷等, 2011; 王东升等, 2011; 陈懋弘等, 2012; Chen et al., 2015; Cheng et al., 2016; 乔龙, 2016; 肖昌浩等, 2018)。已有的文献显示右江褶皱带的岩浆岩在物质组成和同位素组成上具有较为相似的特征,局部存在差异,如个旧地区花岗岩相比较其它地方岩浆岩Hf同位素组成具有更明显幔源组份(Cheng et al., 2013; 刘艳宾等, 2014; Chen et al., 2014; Xu et al., 2015; 黄文龙等, 2016; 肖昌浩等, 2018)。对于这些同时期大规模岩浆活动的产生原因,目前主流的观点认为与燕山期太平洋板块西向俯冲有关(Lapierre et al., 1997; Cheng et al., 2013, 2016; Chen et al., 2015)、华南板块岩石圈大规模伸展所致(毛景文等, 2004; Cheng and Mao, 2010; Yan et al., 2006)及与特提斯洋演化有关(Cai and Zhang, 2009; Romer and Kroner, 2016; 肖昌浩等, 2018)。目前对右江褶皱带晚白垩世酸性岩浆来源存在几种主要的解释:一是壳幔混合的岩浆结晶分异作用(Cheng and Mao, 2010);二是古老地壳物质部分熔融(刘艳宾等, 2014; 肖昌浩等, 2018);三是碰撞后伸展形成的陆壳重熔型花岗岩即S型花岗岩(华仁民等, 2003; 王东升等, 2011);四是古太平洋板块高角度俯冲导致弧后伸展形成A型花岗岩(谭俊等, 2008; Chen et al., 2015)。出现不同成因解释的原因的关键问题在于是否有幔源物质的参与。幔源基性岩浆在花岗岩形成中的作用主要表现在热和物质两个方面,因此作者认为制约区内花岗岩成因问题讨论有2个方面的原因:一是岩石地球化学方面,目前通过已发表论文中岩石显微照片可见,右江褶皱带晚白垩世岩浆都具有较强的绢云母化或绢英岩化(Cheng and Mao, 2010; 王东升等, 2011; 李进文等, 2013; Xu et al., 2015),对于已经发生热液蚀变的岩浆岩开展岩石地球化学和Sr-Nd同位素研究而探讨岩浆岩类型及其成因可信度值得商榷。而且,多数情况下基性和酸性岩浆混合过程中Sr-Nd同位素组成趋向于达到均一化。另一方面,野外地质证据在许多情况下难以对幔源岩浆是否参与花岗岩形成提供明确的约束(Li et al., 2009)。例如,野外一般是通过花岗岩及其中暗色微粒包体(MEE)的元素和Sr-Nd同位素组成来判别二者物源,这个方法的前提是两者在地球化学和同位素方面具有较大差异。二是,从Hf同位素的角度来说,目前右江褶皱带内除个旧地区花岗岩和大厂笼箱盖岩体Hf同位素组成具有明显幔源组份以外,其它矿区岩体Hf同位素组成无明显幔源组成,因此很难限定其岩浆原岩是否有幔源物质加入。如薄竹山岩体εHf(t)值变化于-9.5~-6.1,平均值为-7.7(Chen et al., 2015)、老君山岩体εHf(t)值变化于-9.94~-5.01,平均值为-7.29(刘艳宾等, 2014)、西大明山酸性岩浆εHf(t)值变化于-18.4~+0.3,平均值为-6.0(肖昌浩等, 2018)等。尽管锆石Lu-Hf同位素体系具有较高的封闭温度,能有效地揭示岩浆演化过程和源区性质。但由于不同地幔储库的Hf同位素组成变化范围很大,例如现今洋中脊下的极度亏损软流圈地幔的εHf值可高达+20,而古老克拉通地区的岩石圈地幔εHf值可低至-30,因此,仅用Hf同位素组成有时不能有效限定地幔岩浆是否参与了花岗岩的形成(Li et al., 2009; Scherer et al., 2000; Griffin et al., 2000; Belousova et al., 2006)。而锆石对O有非常好的封闭性,O同位素的研究在鉴别幔源岩浆在花岗岩形成过程中的作用提供了更多有效的制约。因此,锆石O-Hf同位素综合研究能更加有效的判别幔源岩浆对花岗岩形成的贡献。

由于西大明山地区酸性岩浆仅出露那宁山顶石英斑岩脉,且石英斑岩脉氧化较强,无法开展岩石地球化学研究。尽管近来,在罗维矿集区通过深部钻孔揭露了罗维隐伏岩体的存在,但通过岩矿鉴定显示钻孔已揭露的岩体基本已全部绢云母化局部具有强烈的黄铁绢英岩化(图 2a),因此隐伏岩体也不适合开展岩石地球化学及Sr-Nd同位素研究。

本次讨论部分选取了锆石U-Pb年龄谐和度>90%的100颗锆石及39对Hf-O同位素比值进行讨论。由图 4图 5a可见,西大明山地区酸性岩浆的锆石氧同位素组成除个别点外组成较为均匀,集中6‰~10‰之间,显示出高δ18O值特征,但也有少量锆石氧同位素显示地幔岩浆锆石特征。由表 1可见,寄生锆石δ18O值也显示出2组分异的特征,总体以锆石年龄越老,δ18O值越低的趋势。晚白垩世酸性岩浆锆石εHf(t)值变化于-18.4~+0.3,平均值为-6.0;两阶段模式年龄(tDM2)变化于1139~2385Ma,峰值为1500Ma左右,指示其岩源可能主要来源于中元古代末期增生的地壳组分与少量古元古代基底组分的共同熔融(肖昌浩等, 2018)。那么西大明山地区岩浆岩形成过程中是否幔源物质参与?为探讨该问题,本次借鉴前人二端元混合模式计算幔源岩浆参与的比例(Li et al., 2009),其中两个端元为:地幔端元锆石εHf(t)=12、δ18O=5.48‰(King et al., 1998; Valley et al., 1998)和表壳沉积来源的岩浆锆石εHf(t)=-12、δ18O=10‰(Kemp et al., 2007; Li et al., 2009)。西大明山晚白垩世酸性岩浆岩锆石最低的δ18O=5.06‰,与地幔锆石氧同位素一致;最高的εHf(t)值=+0.3与球粒陨石线接近,显示出壳幔岩浆混合的证据。通过图 5b明显可见,除部分点外,绝大部分点介于表壳沉积岩源与地幔岩源之间靠近表壳沉积岩源一侧,表明西大明山酸性岩浆岩源主要来自古老的地壳基底和部分幔源物质(8%~30%)参与。对比图 5可见,西大明山矿集区晚白垩世酸性侵入岩混入幔源物质的比例要高于右江褶皱带西缘越南Nà Giao岩体和云南薄竹山岩体,略低于东侧大瑶山地区白垩世成矿花岗闪长岩(Chen et al., 2014, 2015; Dang et al., 2018),暗示了从东往西右江褶皱带及周缘晚白垩世花岗岩幔源物质混入比例呈降低的趋势。需要指出的是,上述混合模式计算假设所有的地壳物质都来源于表壳沉积岩的重熔(没有壳内火成岩的参与),因此计算获得的幔源岩浆比例是最大估计值(Li et al., 2009)。综上,西大明山矿集区白垩世石英斑岩、黑云母花岗岩和二长花岗岩形成时间相同,空间分布及Hf-O同位素较为一致,反映它们可能有相同的源区物质。Cheng et al. (2013)研究认为个旧碱性岩具有均一的Sr-Nd同位素特征(初始87Sr/86Sr=0.7097~0.7099,εNd=-6.6~-6.4),表明碱性岩中地壳物质的混入有限。黄文龙等(2016)通过大厂个旧地区辉长岩-闪长岩类元素地球化学特征认为岩浆源区具有幔源物质的特征。一般大范围分布的花岗质岩基的形成除了通过部分熔融作用来提供岩源的主要物质外,还需要大量的热能供给,因此幔源物质的供给是提供所需热能的最佳契机。因此,地幔物质的存在暗示了同时期来自地幔的物质不仅参与右江褶皱带晚白垩世岩浆作用的形成,可能更重要的是为地壳部分熔融和花岗岩岩浆的形成提供了热能。

4.2 锆石O同位素对成矿的指示

由于氧在锆石中的扩散速率极低(Watson and Cherniak, 1997; Zheng and Fu, 1998),热液蚀变过程中锆石颗粒氧同位素的保存能力取决与温度和时间。不过,热液蚀变通常发生在亚固相线条件下,即一般温度要低于600℃(Zheng et al., 2003)。一般来说,低温热液蚀变(< 200℃)引起岩石δ18O值升高,而高温(>400℃)热液蚀变引起δ18O值降低(Rumble and Yui, 1998; Zheng et al., 1999; Fu et al., 1999)。通过图 4表 1,后期热液很难以对锆石氧同位素造成影响或影响不明显,同一钻孔由浅部至深部锆石δ18O值有轻微的降低趋势,究其原因到底热液蚀变有关还是岩浆形成过程中幔源物质混入导致很难区分。因此,锆石的氧同位素可能无法直接判别成矿期热液蚀变对锆石的影响。但是锆石的Hf-O同位素特征和锆石Ce(Ⅳ)/Ce(Ⅲ)比值相结合,可以判断母岩浆氧化状态和氧同位素特征,从而可以尝试对比含矿岩体与不含矿岩体直接的差异性,从而指导找矿规律的认识。

前人通过对南岭地区及钦杭地区,白垩世含矿岩体及不含矿岩体对比研究显示,幔源物质的加入对成矿作用影响大(Cheng and Mao, 2010; 赵希林等, 2013; Chen et al., 2014, 2015; Zhao et al., 2017)。例如,在闽西南地区发育一些小型的高演化的花岗质岩体,如大洋岩体等,这些岩体形成过程中幔源的物质不明显或较少,其矿床规模较小;而四方和萝卜岭岩体属于壳幔混源型花岗岩其成矿规模较大(赵希林等, 2013)。Zhao et al. (2017)通过对钦杭斑岩型-矽卡岩型Cu多金属成矿带中成矿岩体开展锆石Hf-O同位素研究显示δ18O值与矿床Cu储量/(Cu+Pb+Zn)储量成正比;εHf(t)值与Cu储量成正比,即:具有低δ18O值和高εHf(t)值的岩体利于形成大型斑岩型同矿床,而具有高δ18O值和低εHf(t)值的岩体利于形成大型以Pb-Zn为主的矽卡岩型矿床。通过本次研究,西大明山地区酸性岩浆锆石具有高δ18O值和低εHf(t)值特征,显示有8%~30%的富集地幔物质的混入,暗示其可能不利于形成大型斑岩型铜矿床而有利于形成大型以Pb-Zn为主的矽卡岩型矿床。该认识与本区地质事实目前基本符合,即:罗维矿床为大-中型矽卡岩型Zn-W多金属矿床。另外,西大明山地区酸性岩浆锆石Ce(Ⅳ)/Ce(Ⅲ)比值介于8.26~104.60(平均值为33.76),总体都表现出低氧逸度的特征(肖昌浩等, 2018)。该比值也显示西大明山地区不具有形成大型斑岩型Cu矿床的潜力(斑岩型矿床Ce4+/Ce3+>300; Ballard et al., 2002),该结论也进一步佐证了成矿岩体锆石Hf-O同位素认识。

5 结论

(1) 西大明山矿集区石英斑岩、黑云母花岗岩和二长花岗岩锆石氧同位素普遍具有双峰式分布特征,δ18O值分别为:5.31‰~9.31‰、5.06‰~9.79‰和5.48‰~10.99‰。Hf-O同位素组成构成负相关性暗示地壳组份和富集地幔两端元混合的特征。Hf-O同位素特征指示酸性岩浆岩源主要来自古老的地壳物质,并混有少量幔源物质(8%~30%)。

(2) 西大明山地区酸性岩浆具有高δ18O值和低εHf(t)值且低Ce(Ⅳ)/Ce(Ⅲ)比值,显示出有利于形成大型以Pb-Zn为主的矽卡岩型矿床特征。

致谢 广西壮族自治区第四地质队区调分队岳小军和硕士研究生张亮、田杰鹏、李扬、苏晓凯参与了野外工作,在此表示感谢。
参考文献
Ballard JR, Palin MJ and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. DOI:10.1007/s00410-002-0402-5
Belousova EA, Griffin WL and O'Reilly SY. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:Examples from eastern Australian granitoids. Journal of Petrology, 47(2): 329-353. DOI:10.1093/petrology/egi077
Bindeman IN and Valley JW. 2000. Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology, 28(8): 719-722. DOI:10.1130/0091-7613(2000)28<719:FOLRAC>2.0.CO;2
Bindeman IN and Valley JW. 2001. Low-δ18O rhyolites from Yellowstone:Magmatic evolution based on analyses of zircons and individual phenocrysts. Journal of Petrology, 42(8): 1491-1517. DOI:10.1093/petrology/42.8.1491
Bindeman IN, Ponomareva VV, Bailey JC and Valley JW. 2004. Volcanic arc of Kamchatka:A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochimica et Cosmochimica Acta, 68(4): 841-865. DOI:10.1016/j.gca.2003.07.009
Bindeman IN. 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. DOI:10.2138/rmg.2008.69.12
Bindeman IN, Gurenko A, Carley T, Miller C, Martin E and Sigmarsson O. 2012. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova, 24(3): 227-232. DOI:10.1111/ter.2012.24.issue-3
Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS and Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect:SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2): 115-140. DOI:10.1016/j.chemgeo.2004.01.003
Booth AL, Kolodny Y, Chamberlain CP, McWilliams M, Schmitt AK and Wooden J. 2005. Oxygen isotopic composition and U-Pb discordance in zircon. Geochimica et Cosmochimica Acta, 69(20): 4895-4905. DOI:10.1016/j.gca.2005.05.013
Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. 1985. Regional Geology of the Guangxi Zhuang Autonomous Region. Beijing: Geological Publishing House: 1-853.
Cai JX and Zhang KJ. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43. DOI:10.1016/j.tecto.2008.12.003
Cai MH, He LQ, Liu GQ, Wu DC and Huang HM. 2006. SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin-polymetallic ore field, Guangxi and their geological significance. Geological Review, 52(3): 409-414.
Charoy B and Barbey P. 2008. Ferromagnesian silicate association in S-type granites:The Darongshan granitic complex (Guangxi, South China). Bulletin de la Société Géologique de France, 179(1): 13-27. DOI:10.2113/gssgfbull.179.1.13
Chen CH, Hsieh PS, Lee CY and Zhou HW. 2011. Two episodes of the Indosinian thermal event on the South China Block:Constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Research, 19(4): 1008-1023. DOI:10.1016/j.gr.2010.10.009
Chen MH, Lu G and Li XH. 2012. Muscovite 40Ar/39Ar dating of the quartz porphyry veins from Northwest Guangxi, China, and its geological significance. Geological Journal of China Universities, 18(1): 106-116.
Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH and Zhu JJ. 2015. Zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes of the Bozhushan granite, Yunnan province, SW China:Constraints on petrogenesis and tectonic setting. Journal of Asian Earth Sciences, 99: 57-71. DOI:10.1016/j.jseaes.2014.12.012
Chen ZC, Lin W, Faure M, Lepvier C, van Vuong N and van Tich V. 2014. Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block. Journal of Asian Earth Sciences, 86: 131-150. DOI:10.1016/j.jseaes.2013.07.039
Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China:Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4): 258-276. DOI:10.1016/j.lithos.2010.08.013
Cheng YB, Mao JW and Spandler C. 2013. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos, 175-176: 213-229. DOI:10.1016/j.lithos.2013.04.002
Cheng YB, Mao JW and Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sciences, 1(3): 79-88. DOI:10.1016/j.sesci.2016.12.001
Dang Y, Chen MH, Fu B, Mao JW, Fanning CM and Li ZY. 2018. Petrogenesis of the Yupo W-bearing and Dali Mo-bearing granitoids in the Dayaoshan area, South China:Constraints of geochronology and geochemistry. Ore Geology Reviews, 92: 643-655. DOI:10.1016/j.oregeorev.2017.10.022
Davies JHFL, Stern RA, Heaman LM, Rojas X and Walton EL. 2015. Resolving oxygen isotopic disturbance in zircon:A case study from the low δ18O Scourie dikes, NW Scotland. American Mineralogist, 100(8-9): 1952-1966. DOI:10.2138/am-2015-5221
Deng J, Wang QF, Yang SJ, Liu XF, Zhang QZ, Yang LQ and Yang YH. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in western Guangxi, China:Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 412-424. DOI:10.1016/j.jseaes.2009.10.005
Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 168-299.
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437. DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF and Li GJ. 2017. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research, 50: 216-266. DOI:10.1016/j.gr.2017.02.005
Fu B, Zheng YF, Wang ZR, Xiao YL, Gong B and Li SG. 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology, 134(1): 52-66. DOI:10.1007/s004100050468
Fu B, Bröcker M, Ireland T, Holden P and Kinsley LPJ. 2015. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece. International Journal of Earth Sciences, 104(1): 75-87. DOI:10.1007/s00531-014-1064-z
Gao P, Zheng YF, Chen YX, Zhao ZF and Xia XP. 2018. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China. Lithos, 300-301: 261-277. DOI:10.1016/j.lithos.2017.11.036
Gouzinié S, Laurent O, Moyen JF, Zeh A, Bouilhol P and Villaros A. 2016. Post-collisional magmatism:Crustal growth not identified by zircon Hf-O isotopes. Earth and Planetary Science Letters, 456: 182-195. DOI:10.1016/j.epsl.2016.09.033
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. DOI:10.1016/S0016-7037(99)00343-9
Grimes CB, Ushikubo T, Kozdon R and Valley JW. 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos, 179: 48-66. DOI:10.1016/j.lithos.2013.07.026
Hawkesworth CJ and Kemp AIS. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3-4): 144-162. DOI:10.1016/j.chemgeo.2005.09.018
Hua RM, Zhu JC, Zhao YJ, Zhou JP, Wu YY and Chen XD. 1997. Preliminary study on metallogenetic series of nonferrous metal deposits in Youjiang fold belt. Geological Journal of China Universities, 3(2): 183-191.
Hua RM, Chen PR, Zhang WL, Liu XD, Lu JJ, Lin JF, Yao JM, Qi HW, Zhang ZS and Gu MY. 2003. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China. Science in China (Series D), 46(8): 816-829. DOI:10.1007/BF02879525
Huang WL, Xu JF, Chen JL, Huang F, Zeng YC, Pi QH, Cai YF and Jiang XZ. 2016. Geochronology and geochemistry of the Gejiu complex in the Yunnan Province, SW China:Petrogenesis and contributions of mantle-derived melts to tin mineralization. Acta Petrologica Sinica, 32(8): 2330-2346.
Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schram N, Foster JJ and Clement SW. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ:Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1-2): 114-128. DOI:10.1016/j.chemgeo.2008.08.024
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983. DOI:10.1126/science.1136154
King EM, Valley JW, Davis DW and Edwards GR. 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province:Indicator of magmatic source. Precambrian Research, 92(4): 365-387. DOI:10.1016/S0301-9268(98)00082-5
Lackey JS, Valley JW and Saleeby JB. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith:Evidence from high-δ18O zircon. Earth and Planetary Science Letters, 235(1-2): 315-330. DOI:10.1016/j.epsl.2005.04.003
Lapierre H, Jahn BM, Charvet J and Yu YW. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern china. Tectonophysics, 274(4): 321-338. DOI:10.1016/S0040-1951(97)00009-7
Li JW, Pei RF, Wang YL, She HQ, Feng CY, Guo ZJ, Wang HL and Xu K. 2013. Isotopic chronological studies of Dulong tin-zinc deposit in Yunnan Province. Mineral Deposits, 32(4): 767-782.
Li XH, Li WX, Wang XC, Li QL, Liu Y and Tang GQ. 2009. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China:In situ zircon Hf-O isotopic constraints. Science in China (Series D), 52(9): 1262-1278. DOI:10.1007/s11430-009-0117-9
Liang T, Wang DH, Hou KJ, Li HQ, Huang HM, Cai MH and Wang DM. 2011. LA-MC-ICP-MS zircon U-Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance. Acta Petrologica Sinica, 27(6): 1624-1636.
Liu XF, Wang QF, Zhang QZ, Yang SJ, Zhang Y, Liang YY and Qing C. 2017. Transformation from Permian to Quaternary bauxite in southwestern South China Block driven by superimposed orogeny:A case study from Sanhe ore deposit. Ore Geology Reviews, 90: 998-1017. DOI:10.1016/j.oregeorev.2016.12.027
Liu YB, Mo XX, Zhang D, Que CY, Di YJ, Pu XM, Cheng GS and Ma HH. 2014. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province. Acta Petrologica Sinica, 30(11): 3271-3286.
Lu JH. 2015. Geological characteristics, metallogenic regularity and metallogenic model of Xidamingshan Ag-Pb-Zn-Au-W-Bi deposit. Mineral Resources and Geology, 29(5): 560-567.
Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-55.
Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658.
Monani S and Valley JW. 2001. Oxygen isotope ratios of zircon:Magma genesis of low δ18O granites from the British Tertiary igneous province, western Scotland. Earth and Planetary Science Letters, 184(2): 377-392. DOI:10.1016/S0012-821X(00)00328-9
Page FZ, Ushikubo T, Kita NY, Riciputi LR and Valley JW. 2007. High-precision oxygen isotope analysis of picogram samples reveals 2μm gradients and slow diffusion in zircon. American Mineralogist, 92(10): 1772-1775. DOI:10.2138/am.2007.2697
Peck WH, Valley JW, Wilde SA and Graham CM. 2001. Oxygen Isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons:Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta, 65(22): 4215-4229. DOI:10.1016/S0016-7037(01)00711-6
Qiao L. 2016. Tectonic evolution and bauxite metallogenesis in the Youjiang basin and adjacent area. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-165 (in Chinese with English summary)
Romer RL and Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60-95. DOI:10.1016/j.gr.2015.11.002
Rumble D and Yui TF. 1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 62(19-20): 3307-3321. DOI:10.1016/S0016-7037(98)00239-7
Scherer EE, Camerson KL and Blichert-Toft J. 2000. Lu-Hf garnet geochronology:Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. DOI:10.1016/S0016-7037(00)00440-3
Tan J, Wei JH, Li SR, Wang ZM, Fu LB and Zhang KQ. 2008. Geochemical characteristics and tectonic significance of Kunlunguan A-type granite, Guangxi. Earth Science (Journal of China University of Geosciences), 33(6): 743-754. DOI:10.3799/dqkx.2008.090
Taylor Jr HP. 1968. The oxygen isotope geochemistry of igneous rocks. Contributions to Mineralogy and Petrology, 19(1): 1-71. DOI:10.1007/BF00371729
Valley JW, Chiarenzelli JR and McLelland JM. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4): 187-206. DOI:10.1016/0012-821X(94)90106-6
Valley JW, Kinny PD, Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen Isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11. DOI:10.1007/s004100050432
Valley JW. 2003. Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 343-385. DOI:10.2113/0530343
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation:Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. DOI:10.1007/s00410-005-0025-8
Wang DS, Liu JL, Tran M, Ngyuen Q, Guo Q, Wu WB, Zhang ZC and Zhao ZD. 2011. Geochronology, geochemistry and tectonic significance of granites in the Tĩnh Túc W-Sn ore deposits, Northeast Vietnam. Acta Petrologica Sinica, 27(9): 2795-2808.
Wang QF, Deng J, Liu XF, Zhang QZ, Sun SL, Jiang CZ and Zhou F. 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701-712. DOI:10.1016/j.jseaes.2010.05.005
Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448. DOI:10.1016/j.gr.2013.10.002
Watson EB and Cherniak DJ. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148(3-4): 527-544. DOI:10.1016/S0012-821X(97)00057-5
Wei CS, Zhao ZF and Spicuzza MJ. 2008. Zircon oxygen isotopic constraint on the sources of Late Mesozoic A-type granites in eastern China. Chemical Geology, 250(1-4): 1-15. DOI:10.1016/j.chemgeo.2008.01.004
Xiao CH, Shen YK, Wei CS, Su XK, Le XW and Zhang L. 2018. LA-ICP-MS zircon U-Pb dating, Hf isotopic composition and Ce4+/Ce3+ characteristics of the Yanshanian acid magma in the Xidamingshan cluster, southeastern margin of the Youjiang fold belt, Guangxi. Geoscience, 32(2): 289-304.
Xu B, Jiang SY, Wang R, Ma L, Zhao KD and Yan X. 2015. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos, 218-219: 54-72. DOI:10.1016/j.lithos.2015.01.004
Yan DP, Zhou MF, Wang CY and Xia B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4-6): 332-353. DOI:10.1016/j.jseaes.2005.10.011
Zhang Y, Yang JH, Chen JY, Wang H and Xiang YX. 2017. Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China:Evidence from whole-rock geochemistry and zircon U-Pb and Hf-O isotopes. Lithos, 278-281: 166-180. DOI:10.1016/j.lithos.2017.01.018
Zhao PL, Yuan SD, Mao JW, Santosh M and Zhang DL. 2017. Zircon U-Pb and Hf-O isotopes trace the architecture of polymetallic deposits:A case study of the Jurassic ore-forming porphyries in the Qin-Hang metallogenic belt, China. Lithos, 292-293: 132-145. DOI:10.1016/j.lithos.2017.08.016
Zhao XL, Liu K, Mao JR, Ye HM and Yu SY. 2013. The differences of geochemical characteristics and relative with ore-forming processes of two types Early-Cretaceous granites in southwestern Fujian Province. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 87-96.
Zheng YF and Fu B. 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochemical Journal, 32(2): 71-89. DOI:10.2343/geochemj.32.71
Zheng YF, Fu B, Xiao YL, Li YL and Gong B. 1999. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains. Lithos, 46(4): 677-693. DOI:10.1016/S0024-4937(98)00090-5
Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161. DOI:10.1016/S0012-8252(02)00133-2
蔡明海, 何龙清, 刘国庆, 吴德成, 黄惠明. 2006. 广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义. 地质论评, 52(3): 409-414.
陈懋弘, 陆刚, 李新华. 2012. 桂西北地区石英斑岩脉白云母40Ar/39Ar年龄及其地质意义. 高校地质学报, 18(1): 106-116.
广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社: 1-853.
华仁民, 朱金初, 赵一英, 周建平, 吴燕玉, 陈晓东. 1997. 右江褶皱带有色金属矿床成矿系列初步研究. 高校地质学报, 3(2): 183-191.
华仁民, 陈培荣, 张文兰, 刘晓东, 陆建军, 林锦富, 姚军明, 戚华文, 张展适, 顾晟彦. 2003. 华南中、新生代与花岗岩类有关的成矿系统. 中国科学(D辑), 33(4): 335-343.
黄文龙, 许继峰, 陈建林, 黄丰, 曾云川, 皮桥辉, 蔡永丰, 蒋兴洲. 2016. 云南个旧杂岩体年代学与地球化学:岩石成因和幔源岩浆对锡成矿贡献. 岩石学报, 32(8): 2330-2346.
李进文, 裴荣富, 王永磊, 佘宏全, 丰成友, 郭志军, 王浩琳, 徐可. 2013. 云南都龙锡锌矿区同位素年代学研究. 矿床地质, 32(4): 767-782.
梁婷, 王登红, 侯可军, 李华芹, 黄惠明, 蔡明海, 王东明. 2011. 广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 岩石学报, 27(6): 1624-1636.
刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因. 岩石学报, 30(11): 3271-3286.
陆建辉. 2015. 西大明山银铅锌金钨铋矿地质特征、成矿规律及成矿模式. 矿产与地质, 29(5): 560-567.
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55.
毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658.
乔龙. 2016. 右江盆地及其周缘地区构造演化及铝土矿成矿作用. 博士学位论文. 北京: 中国地质大学(北京), 1-165
谭俊, 魏俊浩, 李水如, 王忠铭, 付乐兵, 张可清. 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学-中国地质大学学报, 33(6): 743-754.
王东升, 刘俊来, Tran M, Ngyuen Q, 郭强, 吴文彬, 张招崇, 赵志丹. 2011. 越南东北部静足(Tĩnh Túc)钨锡矿区花岗岩年代学、地球化学与区域构造意义. 岩石学报, 27(9): 2795-2808.
肖昌浩, 申玉科, 韦昌山, 苏晓凯, 乐兴文, 张亮. 2018. 广西右江褶皱带东南缘西大明山矿集区燕山期酸性岩浆锆石U-Pb年龄、Hf同位素和Ce(Ⅳ)/Ce(Ⅲ)特征. 现代地质, 32(2): 289-304.
赵希林, 刘凯, 毛建仁, 叶海敏, 于胜尧. 2013. 闽西南地区早白垩世两类花岗质岩体地球化学异同及其与成矿作用关系. 矿物岩石地球化学通报, 32(1): 87-96.