岩石学报  2018, Vol. 34 Issue (5): 1427-1440   PDF    
滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义
邢凯 , 舒启海 , 赵鹤森 , 徐浩楠     
中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
摘要:滇西普朗斑岩铜矿床位于三江特提斯构造带义敦岛弧南端,是晚三叠世甘孜-理塘洋壳俯冲背景下的成矿作用产物。本文选取普朗矿床含矿石英闪长玢岩和石英二长斑岩中蚀变和未蚀变磷灰石进行研究,以探讨其对成岩、成矿作用的指示意义。结果显示,相比于未蚀变磷灰石,蚀变磷灰石的Na、S、Mn、Ca、Y及REE等元素含量均有不同程度的降低。总体而言,普朗矿床中磷灰石均具有高Sr、δEu,低Y的特征,指示了其母岩浆具似埃达克质特点。本次研究表明磷灰石的卤素、Sr和REE可以用来追踪成矿母岩浆成分、氧化状态和结晶演化过程。与三叠纪不成矿的休瓦促岩体相比,普朗矿床成矿岩体的磷灰石具高δEu、低Mn和δCe的特点,且δEu和δCe总体呈负相关趋势,表明普朗矿床成矿岩体氧逸度相对较高。此外,磷灰石中(La/Sm)N、(La/Yb)N和(Sm/Yb)N比值降低可能是岩浆中独居石结晶或含Cl热液出溶的结果。与邻区的春都矿床、白垩纪休瓦促成矿岩体对比研究表明,普朗斑岩成矿岩浆具有高Cl/F特征,可能形成于典型的大洋俯冲环境。
关键词: 磷灰石     普朗斑岩铜矿床     主微量元素成分     成岩成矿作用    
Geochemical characteristics and geological significance of apatites in the Pulang porphyry copper deposit, NW Yunnan Province.
XING Kai, SHU QiHai, ZHAO HeSen, XU HaoNan     
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Pulang porphyry copper deposit is located at the south segment of the Yidun island arc of the Sanjiang-Tethys Orogen, which is the product of the subduction of the Garze-Litang oceanic plate in Late Triassic. The major and trace elements including Sr and Ga, rare earth elements (REE) and halogens in apatite from the ore-related intrusions have been determined using electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the potential of apatite as a petrogenetic-metallogenic indicator. In this study, both unaltered and altered apatite grains have been selected from the ore-related quartz diorite porphyry and quartz monzonite porphyry. Generally, the altered apatite shows variable but lower Na, S, Mn, Ca, Y and REE concentrations than the unaltered apatite. Most of the apatite analyses are characterized by high Sr, δEu and low Y, indicating that the parental magma has the adakite-like signature. The results from this study show that halogens, Sr and REE in apatite can be used to track parental magma compositions, oxidation states and crystallization process. The apatite in the Pulang deposit shows higher δEu, lower Mn and δCe, and relatively negative correlation between δEu and δCe compared with the Triassic Xiuwacu barren plutons. This indicates that the oxidation state of the ore-bearing porphyries from Pulang is higher. In addition, the decreases in (La/Sm)N, (La/Yb)N and (Sm/Yb)N ratios are likely a result of fractionation of monazite or the exsolution of bearing-Cl hydrothermal fluids. The Cl/F ratios in the Pulang apatite suggest that it might form in a typical subduction condition.
Key words: Apatite     Element compositions     Petrogenesis and mineralization     Pulang porphyry Cu deposit    

磷灰石是岩浆岩中一种常见的副矿物(Watson, 1980),在很多热液矿床中,往往也非常发育(Belousova et al., 2002; Pan and Fleet, 2002; Zhao et al., 2015; Zeng et al., 2016)。许多元素可以通过替代过程进入磷灰石晶格,因此磷灰石含有较高的S、Fe、Mn、F、Cl、Sr、Th和REEs等元素(Rønsbo, 1989; Ding et al., 2015)。磷灰石在很多地质过程和地质环境中保持稳定且不易受变质作用、热液蚀变和表生作用的影响(Ayers and Watson, 1991; Creaser and Gray, 1992; Bouzari et al., 2016),故其在形成后能够较好地记录和保存原始岩浆信息,因此磷灰石是一种指示成岩和成矿物质来源与演化的理想矿物。不过,在强烈热液流体作用下,岩浆成因的磷灰石也会部分或全部发生交代蚀变,从而能有效记录热液蚀变和成矿作用过程的相关地球化学信息(Harlov et al., 2002, 2005; Harlov and Förster, 2003; Chen and Zhou, 2015; Li and Zhou, 2015; Harlov, 2015)。研究表明,磷灰石中的微量元素(包括Mn、Sr、LREE、Th、Y、Eu和Ce等)可以用来指示岩浆的成分、演化过程和氧化状态(Sha and Chappell, 1999; Tepper and Kuehner, 1999; 曹康等, 2012; Cook et al., 2016; Mao et al., 2016; Pan et al., 2016),磷灰石的卤素成分可用来估算相关熔/流体中F、Cl和H2O的含量,而卤素元素比值的变化则可用来推测挥发分的饱和程度(Boudreau and Kruger, 1990; Meurer and Boudreau, 1996; Elkins-Tanton and Grove, 2011; Schisa et al., 2015; Pan et al., 2016; Bao et al., 2016)。因此,对磷灰石成分的研究,对于探讨相关的岩浆活动和成矿作用具有重要的意义。

义敦岛弧是三江特提斯构造带的重要组成部分,分布在金沙江缝合带和甘孜理塘缝合带之间,其构造复杂,岩浆活动强烈(张静等, 2010; Zhang et al., 2014, 2017; Wang et al., 2014a, 2015a, b, 2018; Chen et al., 2017, 2018; Deng et al., 2017a, b)。该岛弧由晚三叠世大规模俯冲造山作用形成,随后受到了侏罗纪碰撞造山运动和晚白垩世后造山伸展以及新生代陆内构造变形的叠加改造(邓军等, 2016; 刘江涛等, 2013),是我国晚三叠世最重要的斑岩型矿集区之一(Li et al., 2011; 邓军等, 2016; Deng et al., 2014a, 2017c; Deng and Wang, 2016)。中甸普朗斑岩铜矿位于义敦-中甸岛弧南段,是迄今亚洲单个矿体储量最大的斑岩铜矿,目前已探获铜资源储量达650万吨,其中主矿体(KT1)已探明铜储量约400万吨,并伴生金、银、钼、铅等金属(杨继清等, 2017)。国内外学者已经对普朗铜矿进行了大量研究,对其地质特征、成矿时代、岩石地球化学、成矿模式、成矿规律及成矿环境等进行了深入研究(刘江涛等, 2013; 曹康等, 2014; 刘欢等, 2015; 杨继清等, 2017; Chen et al., 2008; Li et al., 2011; Pang et al., 2014; Liu et al., 2016)。但前人多采用传统的全岩成分分析手段来约束普朗矿床成矿岩浆的来源与演化过程,然而微弱的蚀变、矿化以及表生作用会给全岩成分带来显著的改变,因此成矿岩体的全岩成分实际上并不能完全代表相应岩浆熔体的组成。磷灰石可以较好地保留母岩浆的成分信息,对于研究岩浆演化及相关的成矿作用具有较好的指示意义。本文选取磷灰石为研究对象,对普朗矿床中与成矿相关的石英二长斑岩和石英闪长玢岩中蚀变和未蚀变磷灰石进行成分分析,进一步探讨其记录的成岩成矿信息。

1 地质背景

普朗斑岩铜矿位于云南省香格里拉县的格咱乡境内(图 1a)。义敦-中甸岛弧带南段的格咱岛弧是三江特提斯成矿域最重要的斑岩-矽卡岩型铜多金属矿产地之一,其东部和南部是甘孜-理塘板块结合带,西部是格咱断裂。义敦-中甸岛弧是晚三叠世甘孜-理塘洋壳向中咱地块俯冲的产物,甘孜-理塘洋盆在二叠纪末期打开,早三叠强烈扩张,在晚三叠世向西俯冲消减于中咱-中甸微陆块之下,形成了一系列岛弧岩浆岩(李文昌等, 2010; 邓军等, 2016; 毛景文等, 2012; Hou et al., 2007; Deng et al., 2014a, b, 2017c; Wang et al., 2014b)(图 1b)。格咱岛弧是西南三江构造岩浆岩带的重要组成部分,区域内构造活动频繁,不同方向上的断裂控制着印支期不同的岩体,岩浆岩发育且热液蚀变较强烈,发育了一系列大中型以上规模斑岩型铜矿床,如普朗、雪鸡坪、红山、烂泥塘、春都、热林、松诺等(刘学龙, 2013; 杨立强等, 2015; Mao et al., 2014; Peng et al., 2016; Deng et al., 2017c; Yang et al., 2017)(图 1c)。

图 1 中国大陆板块构造格局(a)、三江地区构造格架(b)和中甸弧地质构造简图(c)(据曹康等, 2014; Leng et al., 2012; Wang et al., 2016, 2017修改) Fig. 1 Tectonic outline of China (a), tectonic outline of Sanjiang region (b) and simplified geological map of Zhongdian arc belt (c) (modified after Cao et al., 2014; Leng et al., 2012; Wang et al., 2016, 2017)

普朗矿区内主要出露的地层自下而上为中三叠统尼汝庄组二段(T2n2)、上三叠统图姆沟组(T3t)及第四系(Q),其中尼汝组二段(T2n2)属一套碳酸盐岩,图姆沟组(T3t)总体属火山-碎屑岩建造(杨继清, 2017; Li et al., 2011),图姆沟组岩性主要为板岩、粉砂质板岩夹安山岩、变质砂岩等。图姆沟组(T3t)层内构造活动强烈,裂隙、断层及褶皱等发育,NW-SE向黑水塘断裂和E-W向全干力达断裂控制了斑岩体的产出(范玉华和李文昌, 2006)(图 2a)。

图 2 普朗斑岩铜矿床矿区地质图(a, 据李文昌等, 2013; 曹康等, 2014修改)和4号勘探线剖面图(b, 据Li et al., 2011; 曹康等, 2014修改) Fig. 2 Geological map (a, modified after Li et al., 2013; Cao et al., 2014) and geological section alone No.4 exploration line (b, modified after Li et al., 2011; Cao et al., 2014) of the Pulang porphyry copper deposit

普朗矿床成矿作用发生在普朗复式斑岩体内,该复式岩体侵入于图姆沟组(T3t)的砂板岩和安山岩中,呈不规则产出,NW-SE向展布。普朗复式岩体由5个单岩体组成,总面积达8.9km2,其中成矿岩体约1.27km2。含矿岩石主要为石英闪长玢岩、石英二长斑岩以及花岗闪长斑岩(图 2a, b),成矿主要发生在印支期,年龄为216~213Ma(Li et al., 2011)。普朗铜矿区斑岩体蚀变强烈,具有典型的斑岩蚀变分带特征,由中心向边缘主要的蚀变带为钾硅化带、绢英岩化与青磐岩化带。普朗矿床的主要成矿元素是Cu,伴生有Mo、Au、Ag、Pt、Pd等元素,矿化主要发生在绢英岩化带和钾硅化带中。矿化类型主要有:(1)细脉浸染状矿化,主要为钾硅化带中的黄铜矿化;(2)隐爆角砾岩矿化;(3)脉状Pb-Zn矿化(李文昌等, 2009, 2011; 刘江涛等, 2013; 曹康等, 2014; 石洪召等, 2014; 刘欢等, 2015; Li et al., 2011; Liu et al., 2016)。

2 岩石学特征

普朗复式岩体是多期岩浆作用的产物,普朗矿床含矿岩石主要为石英闪长玢岩、石英二长斑岩以及花岗闪长斑岩。其中石英闪长玢岩为最早一期侵入体,占据整个复式岩体出露面积的80%,之后为复式岩体中心的石英二长斑岩以及少量的花岗闪长斑岩,最后还有闪长岩的的侵位(曹康等, 2014; Pang et al., 2014)(图 2a)。本文研究的样品主要来自普朗矿床矿化的石英闪长玢岩和石英二长斑岩。

石英闪长玢岩呈灰色和灰黑色,斑状结构,基质具半自形粒状结构。斑晶成分主要为斜长石(约20%)、石英(约15%)和角闪石(约5%),有少量黑云母(约2%)和钾长石,粒径平均5~12mm,最大达25mm(图 3a)。基质成分主要为斜长石(约50%),石英(约8%),并包含磷灰石,锆石等副矿物(图 3c, d)。矿化的石英闪长玢岩体中主要金属矿物为黄铜矿和黄铁矿,呈浸染状、脉状产出(图 3a)。

图 3 普朗石英闪长玢岩和石英二长斑岩手标本及镜下照片 (a)石英闪长玢岩手标本照片;(b)石英二长斑岩手标本照片;(c、d)石英闪长玢岩镜下照片.Ccp-黄铜矿;Pl-斜长石;Ap-磷灰石;Bt-黑云母;Qtz-石英 Fig. 3 The hand specimen and microscopic characteristics of the Pulang quartz diorite porphyrite and Quartz monzonite porphyry (a) hand specimen of quartz diorite porphyrite; (b) hand specimen of Quartz monzonite porphyry; (c, d) microscopic characteristics of quartz diorite porphyrite. Abbreviations: Ccp-chalcopyrite; Pl-plagioclase; Ap-apatite; Bt-biotite; Qtz-quartz

石英二长斑岩呈灰色,似斑状结构,微晶粒状。斑晶成分主要为斜长石(约15%)、钾长石(约10%)和石英(约8%),有少量黑云母(约2%),粒径平均为3~10mm,最大可达25mm;基质成分主要为钠钙长石(约25%),钾长石(约20%),石英(约15%),黑云母(约5%),并包含磁铁矿,磷灰石,锆石等副矿物(图 3b)。岩石蚀变以钾化、绢英岩化、硅化为主,局部有绿泥石化。主要金属矿物为黄铜矿,呈微细浸染状分布。

3 样品采集和分析

本次研究所选取的2块岩石样品分别为普朗矿床中具代表性且矿化明显的石英闪长玢岩和石英二长斑岩,样品都具有一定程度的蚀变。本次所挑选的磷灰石颗粒为半自形-自形,包括未蚀变颗粒、蚀变颗粒以及边缘局部蚀变颗粒。磷灰石颗粒多以矿物包裹体的形式存在于岩体的黑云母或基质中(图 3c, d),这些信息表明磷灰石未蚀变部分可能保留了成矿斑岩的初始岩浆信息。未蚀变磷灰石表面干净透明,而蚀变颗粒表面较脏,含较多的流体包裹体(图 4a);背散射(BSE)图像中,未蚀变颗粒的成分相对均一和明亮,有些颗粒核-边结构明显(图 4b),蚀变的部分相对较暗,且具有不平整的表面、大小不一的孔洞、裂隙和以及矿物(如独居石)或流体包裹体(图 4c, d)。

图 4 普朗磷灰石镜下照片 (a)磷灰石单偏光下照片;(b)具核-边结构自形未蚀变磷灰石BSE照片;(c、d)蚀变磷灰石BSE照片. Ap-磷灰石;Mnz-独居石;BSE-背散射照片 Fig. 4 The microscopic images of apatites in the Pulang deposit (a) transmitted microscopic photos of apatites; (b) euhedra and unaltered apatite crystal has core-rim structrue under BSE imaging; (c, d) altered apatite crystal under BSE imaging. Abbreviations: Ap-apatite; Mnz-monazite; BSE-back scattered Electron Imaging

磷灰石单矿物颗粒的挑选在廊坊地科有限公司进行,单颗粒制靶和阴极反光(CL)照相在北京锆年领航有限公司进行。通过前期显微观察(图 4a)分别挑选出自形无蚀变和蚀变明显的不同类型颗粒进行磷灰石电子探针分析和微量元素LA-ICP-MS分析,其中电子探针测试53点,包括未蚀变颗粒25点和蚀变颗粒28点;在相对应的电子探针分析点附近进行了LA-ICP-MS微量元素分析,共计45点,包括未蚀变颗粒24点和蚀变颗粒21点。

(1) 磷灰石电子探针分析

磷灰石电子分析在合肥工业大学资源与环境工程学院电子探针实验室完成,仪器型号为JEOL JXA-8230,其加速电压为15kV,电流为10nA,束斑直径5μm,背景驻留时间除La、Ce、Sr、Ba(60s)外均为30s,峰位驻留时间除La、Ce、Sr、Ba(120s)外均为60s。分析元素为Al、Mg、Ca、Y、S、Ti、Sr、F、Na、Si、P、Cl、Fe、Ce以及Mn,各元素平均检测限为0.01%,采用的标样为美国SPI标样组。

(2) 磷灰石的LA-ICP-MS微量元素分析

磷灰石LA-ICP-MS原位微量元素含量分析在合肥工业大学资源与环境工程学院矿床成因与勘查技术研究中心(OEDC)矿物微区分析实验室完成。ICP-MS为Agilent 7900,激光剥蚀系统CetacAnalyte HE。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。分辨分析数据包括空白信号40s和样品信号40s。对数据离线处理采用ICPMSDataCal软件,详细的仪器操作条件和数据处理方法可参见宁思远等(2017)汪方跃等(2017)

4 测试结果 4.1 磷灰石主量成分

本次电子探针数据显示磷灰石的蚀变颗粒和未蚀变颗粒差别不明显,整体含量变化不大,CaO含量52.46%~54.94%,P2O5含量40.34%~42.96%。Al2O3、MgO含量全部低于0.04%,多数测试点的TiO2、Na2O含量低于检出线,SrO全部低于检出线,TiO2含量都低于0.08%,Na2O含量都低于0.07%。典型的磷灰石探针数据参见表 1(完整数据见电子版附表 1)。

表 1 普朗矿床磷灰石部分主量成分(wt%) Table 1 Partial major-element compositions of the apatites from Pulang deposit (wt%)

附表 1 普朗磷灰石主量成分(wt%) Appendix1 Major-element compositions of the apatites from Pulang deposit (wt%)
4.1.1 卤素成分

普朗矿床磷灰石具有富F(含量基本大于2.5%)而低Cl(含量全部小于0.6%)的特征,所有颗粒F含量2%~4.7%,Cl含量0.17%~0.59%,F和Cl平均含量分别为3.45%(0.92pfu),0.239%(0.034pfu)。其中未蚀变颗粒F、Cl平均含量分别为3.32%(0.89pfu)、0.278%(0.04pfu);蚀变颗粒F、Cl平均含量分别为3.57%(0.95pfu)、0.204%(0.029pfu),差别不明显(表 1图 5)。

图 5 普朗矿床未蚀变和蚀变磷灰石主量成分图解 Fig. 5 Major elements composition of unaltered and altered apatites in the Pulang deposit
4.1.2 Mn、Na、S和Ca元素

普朗斑岩体中磷灰石的MnO的含量几乎全部低于0.131%(除1个点为0.161%),平均含量0.067%(0.0048pfu),其中未蚀变颗粒平均含量0.069%(0.005pfu),蚀变颗粒平均含量0.065%(0.0046pfu)(表 1)。Na2O含量都低于0.07%,平均含量0.009%(0.0015pfu),且较多探针点低于检测线(表 1),其中未蚀变颗粒平均含量0.01%(0.0016pfu),蚀变颗粒平均含量0.008%(0.0013pfu)。SO3含量均在0.57%以下,平均含量0.164%(0.0105pfu),蚀变和未蚀变磷灰石SO3成分差别较明显,其中未蚀变颗粒平均含量0.19%(0.0123pfu),而蚀变颗粒平均含量0.13%(0.0088pfu)(表 1)。CaO是磷灰石最主要的成分之一,含量在52.46~54.94%,平均含量54.25%(4.93pfu),其中未蚀变颗粒平均含量54.21%(4.92pfu),蚀变颗粒平均含量54.29%(4.93pfu)(表 1图 5)。

4.2 磷灰石微量成分 4.2.1 REE成分

普朗矿床磷灰石中∑REE范围为1995×10-6~6990×10-6,平均含量4546×10-6。其中未蚀变稀土含量在2699×10-6~6990×10-6,平均含量5230×10-6;蚀变稀土含量在1995×10-6~6300×10-6,平均含量3766×10-6(表 2)。总体而言,未蚀变颗粒磷灰石REE成分明显高于蚀变颗粒,在球粒陨石标准化的配分图中(图 6),可以看磷灰石所有颗粒都具有轻稀土富集,重稀土亏损的特点,REE曲线整体右倾且都具有不同程度的Eu负异常。未蚀变磷灰石REE含量整体都高于蚀变颗粒,且LREE分布范围和差别较大,HREE相对集中。磷灰石在强烈热液蚀变中,Nd和Ce等稀土元素有出现了亏损(图 7)。测试结果显示,未蚀变颗粒Nd、Ce平均含量分别972×10-6、2142×10-6;而蚀变颗粒Nd、Ce平均含量为739×10-6、1602×10-6。典型的磷灰石微量数据参见表 2(完整数据见电子版附表 2)。

图 6 普朗矿床未蚀变和蚀变磷灰石球粒陨石标准化稀土元素配分图 Fig. 6 Chondrite-normalized REE distribution patterns of unaltered and altered apatites from Pulang deposit in normal scale

图 7 普朗矿床未蚀变和蚀变磷灰石中Ce、Y和Nd含量 Fig. 7 Ce, Y and Nd concentration in unaltered and altered apatite from Pulang deposit

表 2 普朗矿床部分磷灰石微量成分(×10-6) Table 2 Partial trace-element compositions of the apatites from Pulang deposit (×10-6)

附表 2 普朗磷灰石微量成分(×10-6) Appendix2 Trace-element compositions of the apatites from Pulang deposit (×10-6)
4.2.2 Sr、Ga和Y元素

普朗矿床磷灰石中Sr含量范围为308×10-6~1046×10-6,平均含量617×10-6。其中未蚀变Sr含量为317×10-6~946×10-6,平均含量488×10-6;蚀变Sr含量在308×10-6~1046×10-6,平均含量764×10-6(表 2)。Ga含量范围在3.7×10-6~14.3×10-6,平均含量8.7×10-6。其中未蚀变Ga含量4.5×10-6~14.3×10-6,平均含量10×10-6;蚀变Ga含量为3.7×10-6~12.3×10-6,平均含量7.2×10-6。此外,磷灰石中还富集Y元素,Y含量总体比较分散,范围为195×10-6~1258×10-6,平均含量512×10-6。其中未蚀变Y含量195×10-6~1258×10-6,平均含量643×10-6;蚀变Y含量为289×10-6~519×10-6,平均含量362×10-6。蚀变磷灰石的Y也出现较明显的亏损趋势(图 7)。

5 讨论 5.1 成矿岩体特征

埃达克质岩浆相对于其它长英质岩浆而言,具有高Sr,低Y、Yb且缺少Eu负异常等特点(Defant and Drummond, 1990; Castillo, 2006),Sr和Y都可以替代Ca2+而进入磷灰石晶格(Pan and Fleet, 2002),因此在埃达克质岩浆中结晶的磷灰石通常具有相对较高的Sr/Y比值(Pan et al., 2016)。同理,埃达克质岩浆中通常也具有较高的δEu值(Pan et al., 2016)。本文研究表明,普朗矿床所有未蚀变磷灰石都在分布在似埃达克岩区域(Defant and Drummond, 1990; Drummond and Defant, 1990),具有高Sr/Y,高δEu的特点,且Sr/Y和δEu存在正相关关系(图 8)。未蚀变磷灰石较好的记录了初始岩浆信息,因此,普朗斑岩矿床成矿岩体可能起源于埃达克质岩浆。Li et al. (2011)通过对普朗含矿斑岩全岩分析结果也判其属于大洋板片俯冲形成的埃达克质岩体。通过磷灰石判别母岩浆是否具有似埃达克质特征,对那些没有保留初始Sr/Y比值的高度蚀变和分化的岩石而言具有较大优势,因为在长英质岩石中,Sr和Eu主要赋存在易蚀变的长石中,而磷灰石相对于长石不易蚀变(Pan et al., 2016)。

图 8 普朗矿床未蚀变磷灰石Sr/Y-δEu图(分类方法根据Defiant and Drummond, 1990; Drummond and Defant, 1990) Fig. 8 Plots of δEu vs. Sr/Y in unaltered apatites from Pulang deposit (after Defiant and Drummond, 1990; Drummond and Defant, 1990)
5.2 岩浆结晶过程

磷灰石微量成分变化可能由于岩浆中其他矿物结晶导致岩浆成分的变化而产生。例如,长石的结晶往往会导致残余岩浆中Sr含量的下降,因而晚于斜长石结晶的磷灰石中Sr的含量将低于先结晶的磷灰石Sr含量。因此,岩体中磷灰石Sr的成分变化可以用来追踪岩浆在这个过程中演化。同时,岩浆中富REE的矿物结晶将会分馏岩浆中的稀土元素,磷灰石从中结晶也会达到相同的效果。因此磷灰石中稀土元素成分及比值,如(La/Sm)N、(La/Yb)N、(Sm/Yb)N比值和Sr成分可以用来反演岩体的结晶过程(Pan et al., 2016)。

本次研究结果中,蚀变磷灰石的Sr含量较高,达764×10-6,而未蚀变磷灰石含量较低,为488×10-6(图 9)。尽管相关研究表明,强烈热液蚀变会导致Sr含量的降低(Zeng et al., 2016), 本次研究中蚀变磷灰石可能比长石结晶要早并受到了后期热液蚀变的影响,而未蚀变磷灰石可能在长石大量结晶之后结晶,故而具较低的Sr含量。未蚀变磷灰石具强烈Eu负异常,而蚀变磷灰石Eu负异常较弱也可以证实这一点(图 6)。在图 9中,普朗矿床的蚀变磷灰石和部分未蚀变磷灰石(La/Sm)N、(La/Yb)N、(Sm/Yb)N比值与Sr含量都呈正相关分布,这种相关关系指示了长石结晶对岩浆分异作用具有重要作用。结合前人全岩成分分析结果(曹康等, 2014),普朗含矿斑岩中Eu也具有明显的负异常,其与长石的分离结晶密切相关,同时长石结晶降低了岩浆中Sr含量,较好的解释了母岩浆Sr含量相对于典型的埃达克质岩浆较低的问题,与磷灰石数据吻合。而较多长石结晶后生成的未蚀变磷灰石Sr含量几乎未改变,只表现为(La/Sm)N、(La/Yb)N以及(Sm/Yb)N比值的降低,指示了未蚀变磷灰石的REE可能受到其他因素的控制。一方面,磷灰石中(La/Sm)N、(La/Yb)N和(Sm/Yb)N比值的快速降低可能是由于褐帘石、独居石等富LREE矿物的分离结晶造成,本次研究中磷灰石中可以看到少量独居石矿物(图 4c);另一方面,实验结果(Flynn and Burnham, 1978; Keppler, 1996)表明,含Cl热液流体的出溶将会从熔体中带走更多的LREE,残余熔体中结晶出的磷灰石的(La/Sm)N、(La/Yb)N和(Sm/Yb)N比值也将会降低。

图 9 普朗磷灰石(La/Sm)N、(La/Yb)N和(Sm/Yb)N与Sr成分图解 Fig. 9 Plots of (La/Sm)N, (La/Yb)N and (Sm/Yb)N vs. Sr contents in apatites from Pulang deposit
5.3 岩浆氧化状态

磷灰石中的的Mn、Ga、Eu和Ce等元素可以用来评估岩浆的氧化状态(Drake, 1975; Peng et al., 1997; Streck and Dilles, 1998; Sha and Chappell, 1999; Imai, 2002, 2004; Cao et al., 2012; Miles et al., 2014; Pan et al., 2016)。Mn、Ga、Eu、Ce元素都是变价元素,具有不同的化合价态:Mn2+/Mn4+、Ga2+/Ga3+、Eu2+/Eu3+和Ce3+/Ce4+,Mn2+、Ga2+、Eu3+、Ce3+为亲磷灰石元素价态,因为它们更易替代磷灰石中的Ca2+。在高氧逸度岩浆环境中,熔体中的Mn、Ga、Eu、Ce元素被氧化成高价态Mn4+、Ga3+、Eu3+和Ce4+,而Mn2+、Ga2+、Eu3+和Ce3+更倾向于进入磷灰石(Shannon, 1976; Belousova et al., 2002; Sha and Chappell, 1999)。因此当岩浆中这些元素的浓度相同,那么高氧逸度岩浆中结晶的磷灰石相比于低氧逸度岩浆形成的磷灰石具有更低的Mn、Ga、Ce含量和较高的Eu含量,而当岩浆氧逸度较低的时候则情况刚好相反。

但是磷灰石中单一的元素不能用来评判岩浆氧化状态,因为岩浆的氧化状态可能受到很多因素的影响。例如,岩浆结晶过程中Mn的含量可能变化较大(Belousova et al., 2002; Chu et al., 2009),而岩浆中Eu含量的减少也可能是由于长石的分离(Ballard et al., 2002; Bi et al., 2002; Buick et al., 2007)。因此,Ce和Eu这两个具有相反的配分行为的磷灰石元素,对说明母岩浆氧化状态具有重要意义。根据本次测试结果和Pan et al. (2016)中普朗矿床附近的中甸三叠纪不成矿休瓦促黑云母花岗岩岩体(图 1c)数据对比,普朗矿床成矿岩体中磷灰石相对于休瓦促未成矿岩体具有较高δEu值和较低的δCe值,整体呈现负相关趋势(图 10a)。此外,普朗矿床成矿岩体中磷灰石具有较低的Ga含量(图 10b),这些都说明在普朗矿床成矿岩浆具有更高的氧逸度。岩浆高氧化状态下,可以在部分熔融时从硫酸盐中熔出更多的硫,在成矿源区释放更多的亲硫元素(Sun et al., 2004),且岩浆具氧化性硫会以硫酸盐形式存在(Carroll and Rutherford, 1985; Jugo et al., 2005),这种高氧化状态、高硫的环境对形成斑岩矿床十分有利(Halter et al., 2005; Shu et al., 2015)。普朗矿床未蚀变磷灰石的Eu和Ce的值整体呈负相关,而蚀变颗粒和休瓦促未成矿岩体没有这种趋势(图 10a),普朗矿床磷灰石和休瓦促未成矿岩体的δEu值与Ga都具有较明显的负相关关系(图 10b),而它们的δEu值和MnO相关性不明显(图 10c),这些结果表明,岩浆系统中氧化状态可能不是唯一控制这些元素含量的因素。

图 10 普朗矿床和三叠纪休瓦促岩体磷灰石δEu与δCe (a)、Ga (b)和MnO (c)成分图解 三叠纪休瓦促岩体数据据Pan et al., 2016 Fig. 10 Plots of δEu vs. δCe (a), Ga (b) and MnO (c) in apatites from Pulang deposit and Triassic Xiuwacu pluton
5.4 磷灰石卤素特征与成矿大地构造背景

卤素元素可以在高温(>500℃)条件下置换进入磷灰石,而磷灰石不易受亚固相线卤素交换的影响(Piccoli and Candela, 1994; Roegge et al., 1974; Tacker and Stormer, 1989),所以未蚀变磷灰石中Cl/F比值很大程度上可以反映其初始结晶系统中的Cl/F比值特征。因此,磷灰石中卤素成分可用来指示初始岩浆熔体中的挥发分成分,进而评估岩浆-热液系统的成矿潜力以及指示母岩浆的源区特征,并进一步推测成岩、成矿作用的大地构造环境。

磷灰石中Cl-通过替代F-或OH-而存在(Pan and Fleet, 2002)。普朗斑岩铜矿的F,Cl含量整体呈近似负相关性,而蚀变颗粒与未蚀变颗粒差别不明显(图 5)。F和Cl之间的负相关性主要被H2O置换F和Cl影响。本次研究结果显示,普朗矿床的Cl/F比值0.0040~0.2625,平均含量0.075,其中未蚀变的Cl/F平均值0.0903,蚀变Cl/F平均值0.0613,蚀变磷灰石Cl/F稍有降低(表 1)。普朗磷灰石中Cl/F比值相比于中甸地区春都矿床成矿岩体中的磷灰石的Cl/F比值较低(0.37~0.60, 平均0.50;王晨光等, 2017; 图 11),而相对于白垩纪休瓦促成矿黑云母花岗岩中磷灰石的Cl/F比值较高(全部低于0.01; Pan et al., 2016; 图 11)。花岗质岩石的母岩浆不同的Cl/F比值可能对应了不同的源区特征:普朗、春都矿床母岩浆中较高的Cl/F值可能是岩浆来源控制,母岩浆可能与板片流体交代有关(孟健寅, 2014; 曾普胜等, 2006);而白垩纪休瓦促成矿岩体中极低的Cl/F指示其母岩浆可能来源于地壳的部分熔融(Wang et al., 2014c)。此外,岩浆中Cl和F的分配差异也有可能受不同程度的岩浆去气作用控制(Boudreau and Kruger, 1990; Candela, 1986; Warner et al., 1998)。

图 11 普朗、春都和白垩纪休瓦促岩体磷灰石Cl/F比值和Cl成分图解 春都数据王晨光等, 2017; 白垩纪休瓦促岩体数据引自Pan et al., 2016 Fig. 11 Plots of Cl/F vs. Cl in apatites from Pulang, Chundu and Cretaceous Xiuwacu pluton

根据卤素分配行为,俯冲带流体的具有高Cl/F比值特点。晚三叠世甘孜-理塘洋壳向西俯形成了具高Cl/F,高Sr/Y特点的长英质弧岩浆(Deng et al., 2014a, 2017c)。所以普朗、春都矿床中成矿岩体磷灰石中较高的Cl/F比值反映了成矿母岩浆中可能有俯冲带流体的加入。

6 结论

(1) 磷灰石的REE、卤素、Sr、Ga、Y等元素可以用来指示母岩浆相应元素含量和变化、岩浆的氧化状态以及结晶分异过程。普朗斑岩铜矿床成矿岩体中的未蚀变和蚀变的磷灰石对比研究显示,遭受过热液蚀变的磷灰石明显亏损REE、Nd、Ce、Y、Na、S等元素。

(2) 蚀变磷灰石比未蚀变具较高的Sr成分及更轻微的Eu亏损,且(La/Sm)N、(La/Yb)N和(Sm/Yb)N与Sr含量呈现良好的正相关关系,表明蚀变磷灰石在长石大量结晶之前结晶,而未蚀变磷灰石则在之后,且长石结晶对岩浆的分异具有重要的意义。未蚀变磷灰石中(La/Sm)N、(La/Yb)N和(Sm/Yb)N比值突然降低可能是独居石结晶和含Cl热液出溶的结果。

(3) 普朗矿床成矿岩体中的磷灰石具有较高的Sr/Y和δEu值,表明成矿岩体具有埃达克质岩石特征。与同区域休瓦促三叠纪不成矿岩体相比,普朗矿床成矿岩体中的磷灰石具有较高的δEu值,较低的Mn和δCe值,表明普朗矿床成矿岩浆具有较高的氧逸度,这是形成斑岩铜矿床的必要条件之一。而磷灰石中较高的Cl/F值,暗示了普朗矿床形成于典型的俯冲环境。

致谢 邓军教授和王庆飞教授对论文的构思和成文提供了指导和帮助;合肥工业大学资源与环境工程学院电子探针实验室的王娟博士和成因与勘查技术研究中心(OEDC)矿物微区分析实验室汪方跃老师对本研究相关的测试分析和数据处理提供了指导;徐容博士和袁盛睿硕士在实验测试、数据和图件处理等方面提供了有益的协助;两位匿名审稿人对论文提出了的宝贵的修改意见;在此一并致以谢意。
参考文献
Ayers JC and Watson EB. 1991. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 335(1638): 365-375. DOI:10.1098/rsta.1991.0052
Ballard JR, Palin JM and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. DOI:10.1007/s00410-002-0402-5
Bao B, Webster JD, Zhang DH, Goldoff BA and Zhang RZ. 2016. Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China:Implications for the behavior of halogens in mineralized porphyry systems. Ore Geology Reviews, 79: 443-462. DOI:10.1016/j.oregeorev.2016.05.024
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Apatite as an indicator mineral for mineral exploration:Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45-69. DOI:10.1016/S0375-6742(02)00204-2
Bi XW, Cornell DH and Hu RZ. 2002. REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China. Ore Geology Reviews, 19(1-2): 69-78. DOI:10.1016/S0169-1368(01)00034-8
Boudreau AE and Kruger FJ. 1990. Variation in the composition of apatite through the Merensky cyclic unit in the Western Bushveld complex. Economic Geology, 85(4): 737-745. DOI:10.2113/gsecongeo.85.4.737
Bouzari F, Hart CJR, Bissig T and Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry:A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397-1410. DOI:10.2113/econgeo.111.6.1397
Buick IS, Hermann J, Maas R and Gibson RL. 2007. The timing of sub-solidus hydrothermal alteration in the central zone, Limpopo Belt (South Africa):Constraints from titanite U-Pb geochronology and REE partitioning. Lithos, 98(1-4): 97-117.
Candela PA. 1986. Toward a thermodynamic model for the halogens in magmatic systems:An application to melt-vapor-apatite equilibria. Chemical Geology, 57(3-4): 289-301. DOI:10.1016/0009-2541(86)90055-0
Cao K, Xu JF, Chen JL, Huang XX and Ren JB. 2014. Origin of porphyry intrusions hosting superlarge Pulang porphyry copper deposit in Yunnan Province:Implications for metallogenesis. Mineral Deposits, 33(2): 307-322.
Cao MJ, Li GM, Qin KZ, Seitmuratova EY and Liu YS. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization. Resource Geology, 62: 63-83. DOI:10.1111/rge.2012.62.issue-1
Carroll MR and Rutherford MJ. 1985. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research, 90(S2): C601-C612.
Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258-268.
Chen FC, Deng J, Shu QH, Li GJ, Cui XL, Zhao F and Wang QF. 2017. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China. Ore Geology Reviews, 90: 913-927. DOI:10.1016/j.oregeorev.2016.10.013
Chen FC, Deng J, Wang QF, Li GJ, Shu QH, Yang CH, Liu JY and Xu R. 2018. The source an evolution of ore fluids in the Heiniuwa gold deposit, Baoshan block, Sanjiang region:Constraints from sulfide trace element, fluid inclusion and stable isotope studies. Ore Geology Reviews, 95: 725-745. DOI:10.1016/j.oregeorev.2018.03.013
Chen WT and Zhou MF. 2015. Mineralogical and geochemical constraints on mobilization and mineralization of rare Earth elements in the Lala Fe-Cu-(Mo, REE) deposit, SW China. American Journal of Science, 315(7): 671-711. DOI:10.2475/07.2015.03
Chen YQ, Huang JN and Liang Z. 2008. Geochemical characteristics and zonation of primary halos of Pulang porphyry copper deposit, northwestern Yunnan Province, southwestern China. Journal of China University of Geosciences, 19(4): 371-377. DOI:10.1016/S1002-0705(08)60070-9
Chu MF, Wang KL, Griffin WL, Chung SL, O'Reilly SY, Pearson NJ and Iizuka Y. 2009. Apatite composition:Tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology, 50(10): 1829-1855. DOI:10.1093/petrology/egp054
Cook N, Ciobanu CL, George L, Zhu ZY, Wade B and Ehrig K. 2016. Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry:Approaches and opportunities. Minerals, 6(4): 111. DOI:10.3390/min6040111
Creaser RA and Gray CM. 1992. Preserved initial 87Sr86Sr in apatite from altered felsic igneous rocks:A case study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 56(7): 2789-2795.
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437. DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
Deng J and Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219-274. DOI:10.1016/j.gr.2015.10.003
Deng J, Wang QF and Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225-2247.
Deng J, Wang CM, Bagas L, Selvaraja V, Jeon H, Wu B and Yang LF. 2017a. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China:Evidence from Zn and in-situ S isotopes. Ore Geology Reviews, 90: 943-957. DOI:10.1016/j.oregeorev.2016.10.036
Deng J, Wang CM, Zi JW, Xia R and Li Q. 2017b. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Research. DOI:10.1016/j.gr.2017.10.008
Deng J, Wang QF and Li GJ. 2017c. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research, 50: 216-266. DOI:10.1016/j.gr.2017.02.005
Ding T, Ma DS, Lu JJ and Zhang RQ. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China:Implications for petrogenesis and metallogenesis. Ore Geology Reviews, 69: 104-117. DOI:10.1016/j.oregeorev.2015.02.004
Drake MJ. 1975. The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochimica Acta, 39(1): 55-64. DOI:10.1016/0016-7037(75)90184-2
Drummond MS and Defant MJ. 1990. A mode for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to Modern comparisons. Journal of Geophysical Research, 95(B13): 21503-21521. DOI:10.1029/JB095iB13p21503
Elkins-Tanton LT and Grove TL. 2011. Water (hydrogen) in the lunar mantle:Results from petrology and magma ocean modeling. Earth and Planetary Science Letters, 307(1-2): 173-179. DOI:10.1016/j.epsl.2011.04.027
Fan YH and Li WC. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan. Geology in China, 33(2): 352-362.
Flynn RT and Burnham CW. 1978. An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochimica et Cosmochimica Acta, 42(6): 685-701. DOI:10.1016/0016-7037(78)90087-X
Halter WE, Heinrich CA and Pettke T. 2005. Magma evolution and the formation of porphyry Cu-Au ore fluids:Evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 39(8): 845-863. DOI:10.1007/s00126-004-0457-5
Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P and Broman C. 2002. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology, 191(1-3): 47-72. DOI:10.1016/S0009-2541(02)00148-1
Harlov DE and Förster HJ. 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite:Nature and experiment.Part Ⅱ. Fluorapatite. American Mineralogist, 88(8-9): 1209-1229.
Harlov DE, Wirth R and Förster H. 2005. An experimental study of dissolution-reprecipitation in fluorapatite:Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150(3): 268-286. DOI:10.1007/s00410-005-0017-8
Harlov DE. 2015. Apatite:A fingerprint for metasomatic processes. Elements, 11(3): 171-176. DOI:10.2113/gselements.11.3.171
Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang Tethyan metallogenesis in S.W. China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48-87. DOI:10.1016/j.oregeorev.2004.12.007
Imai A. 2002. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines:K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks. Resource Geology, 52(2): 147-161. DOI:10.1111/rge.2002.52.issue-2
Imai A. 2004. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs:Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resource Geology, 54(3): 357-372. DOI:10.1111/rge.2004.54.issue-3
Jugo PJ, Luth RW and Richards JP. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta, 69(2): 497-503. DOI:10.1016/j.gca.2004.07.011
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237-240. DOI:10.1038/380237a0
Li WC, Yin GH, Lu YX, Liu XL, Xu D, Zhang SQ and Zhang N. 2009. The evolution and 40Ar-39Ar isotopic evidence of the Pulang complex in Zhongdian. Acta Geologica Sinica, 83(10): 1421-1429.
Li WC, Pan GT, Hou ZQ, Mo XX, Wang LQ, Ding J and Xu Q. 2010. Archipelagic-Basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House.
Li WC, Zeng PS, Hou ZQ and White NC. 2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China. Economic Geology, 106(1): 79-92. DOI:10.2113/econgeo.106.1.79
Li WC, Yin GH, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552.
Li XC and Zhou MF. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166: 53-73. DOI:10.1016/j.gca.2015.06.008
Liu H, Zhang CQ, Jia FD, Zhou YM and Lou DB. 2015. Mineral and geochemical evidences of magma-mixing from Pulang porphyry copper deposit in SW Sanjiang, China. Acta Petrologica Sinica, 31(11): 3189-3202.
Liu H, Wang QF, Zhang CQ, Lou DB, Zhou YM and He ZH. 2016. Spatial pattern and dynamic control for mineralization in the Pulang porphyry copper deposit, Yunnan, SW China:Perspective from fractal analysis. Journal of Geochemical Exploration, 164: 42-53. DOI:10.1016/j.gexplo.2015.07.001
Liu JT, Yang LQ and Lü L. 2013. Pulang reduced porphyry copper deposit in the Zhongdian area, Southwest China:Constrains by the mineral assemblages and the ore-forming fluid compositions. Acta Petrologica Sinica, 29(11): 3914-3924.
Liu XL, Li WC, Yi GH and Zhang N. 2013. The geochronology, mineralogy and geochemistry study of the Pulang porphyry copper deposits in Geza arc of Yunnan Province. Acta Petrologica Sinica, 29(9): 3049-3064.
Mao JW, Zhou ZH, Feng CY, Wang YT, Zhang CQ, Peng HJ and Yu M. 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geology in China, 39(6): 1437-1471.
Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-784. DOI:10.1016/j.jseaes.2013.09.002
Mao M, Rukhlov AS, Rowins SM, Spence J and Coogan LA. 2016. Apatite trace element compositions:A robust new tool for mineral exploration. Economic Geology, 111(5): 1187-1222. DOI:10.2113/econgeo.111.5.1187
Meng JY. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan: Magmatism and mineralization. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese)
Meurer WP and Boudreau AE. 1996. An evaluation of models of apatite compositional variability using apatite from the middle banded series of the Stillwater Complex, Montana. Contributions to Mineralogy and Petrology, 125(2-3): 225-236. DOI:10.1007/s004100050218
Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW, Bromiley GD and Emmac. 2014. Apatite:A new redox proxy for silicic magmas?. Geochimica et Cosmochimica Acta, 132: 101-119. DOI:10.1016/j.gca.2014.01.040
Ning SY, Wang FY, Xue WD and Zhou TF. 2017. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt. Geochimica, 46(5): 397-412.
Pan LC, Hu RZ, Wang XS, Bi XW, Zhu JJ and Li CS. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators:Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118-130. DOI:10.1016/j.lithos.2016.03.010
Pan YM and Fleet ME. 2002. Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48(1): 13-49. DOI:10.2138/rmg.2002.48.2
Pang ZS, Du YS, Gao Y, Gao FP, Wang GW and Dong Q. 2014. Geochemistry and zircon U-Pb geochronology of the Pulang complex, Yunnan Province, China. Journal of Earth System Science, 123(4): 875-885. DOI:10.1007/s12040-014-0429-9
Peng GY, Luhr JF and McGee JJ. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82(11-12): 1210-1224. DOI:10.2138/am-1997-11-1217
Peng HJ, Mao JW, Hou L, Shu QH, Zhang CQ, Liu H and Zhou YM. 2016. Stable isotope and fluid inclusion constraints on the source and evolution of ore fluids in the Hongniu-Hongshan Cu skarn deposit, Yunnan Province, China. Economic Geology, 111(6): 1369-1396. DOI:10.2113/econgeo.111.6.1369
Piccoli P and Candela P. 1994. Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada batholith) magmas. American Journal of Science, 294(1): 92-135. DOI:10.2475/ajs.294.1.92
Roegge JS, Logsdon MJ, Young HS, Barr HB, Borcsik M and Holland HD. 1974. Halogens in apatites from the Providencia area, Mexico. Economic Geology, 69(2): 229-240. DOI:10.2113/gsecongeo.69.2.229
Rønsbo JG. 1989. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74(7-8): 896-901.
Schisa P, Boudreau A, Djon L, Tchalikian A and Corkery J. 2015. The Lac Des Iles Palladium deposit, Ontario, Canada.Part Ⅱ. Halogen variations in apatite. Mineralium Deposita, 50(3): 339-355. DOI:10.1007/s00126-014-0541-4
Sha LK and Chappell BW. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. DOI:10.1016/S0016-7037(99)00210-0
Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32: 751-767. DOI:10.1107/S0567739476001551
Shi HZ, Fan WY, Wang XF and Tan GL. 2014. Superposed mineralization in Pulang porphyry copper polymetallic deposit:Evidences from geology. Mineral Deposits, 33(Suppl.1): 29-30.
Shu QH, Lai Y, Zhou YT, Xu JJ and Wu HY. 2015. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China. Lithos, 238: 64-75. DOI:10.1016/j.lithos.2015.09.014
Streck MJ and Dilles JH. 1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology, 26(6): 523-526. DOI:10.1130/0091-7613(1998)026<0523:SEOOAM>2.3.CO;2
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978. DOI:10.1038/nature02972
Tacker RC and Stormer JC Jr. 1989. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74(7): 877-888.
Tepper JH and Kuehner SM. 1999. Complex zoning in apatite from the Idaho batholith:A record of magma mixing and intracrystalline trace element diffusion. American Mineralogist, 84(4): 581-595. DOI:10.2138/am-1999-0412
Wang CG, Yang LQ and He WY. 2017. Apatite trace element and halogen compositions from the Beiya gold deposit, in western Yunnan and geological significance. Acta Petrologica Sinica, 33(7): 2213-2224.
Wang CM, Deng J, Carranza EJM and Santosh M. 2014a. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576-593. DOI:10.1016/j.gr.2013.05.005
Wang CM, Deng J, Santosh M, Lu YJ, McCuaig TC, Carranza EJM and Wang QF. 2015a. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Science, 113: 656-676. DOI:10.1016/j.jseaes.2015.05.001
Wang CM, Deng J, Lu YJ, Bagas L, Kemp AIS and McCuaig TC. 2015b. Age, nature, and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution. International Geology Review, 57(15): 1922-1939. DOI:10.1080/00206814.2015.1043358
Wang CM, Bagas L, Chen JY, Yang LF, Zhang D, Du B and Shi KX. 2018. The genesis of the Liancheng Cu-Mo deposit in the Lanping Basin of SW China:Constraints from geology, fluid inclusions, and Cu-S-H-O isotopes. Ore Geology Reviews, 92: 113-128. DOI:10.1016/j.oregeorev.2017.11.012
Wang FY, Ge C, Ning SY, Nie LQ, Zhong GX and White NC. 2017. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrologica Sinica, 33(11): 3422-3436.
Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014b. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448. DOI:10.1016/j.gr.2013.10.002
Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ and Chen YW. 2014c. Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202-219. DOI:10.1016/j.lithos.2014.08.016
Warner S, Martin RF, Abdel-Rahman AFM and Doig R. 1998. Apatite as a monitor of fractionation, degassing, and metamorphism in the Sudbury igneous complex, Ontario. The Canadian Mineralogist, 36(4): 981-999.
Watson EB. 1980. Apatite and phosphorus in mantle source regions:An experimental study of apatite/melt equilibria at pressures to 25kbar. Earth and Planetary Science Letters, 51(2): 322-335. DOI:10.1016/0012-821X(80)90214-9
Yang JQ, Luo RZ, Zhang XS, Zhang R and Liu WZ. 2017. Mineralization type and ore genesis of Pulang copper-polymetallic deposit in Yunnan Province. Nonferrous Metals Engineering, 7(2): 81-86, 98.
Yang LQ, Gao X and He WY. 2015. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China. Acta Petrologica Sinica, 31(11): 3155-3170.
Yang LQ, Gao X and Shu QH. 2017. Multiple Mesozoic porphyry-skarn Cu (Mo-W) systems in Yidun Terrane, East Tethys:Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 90: 813-826. DOI:10.1016/j.oregeorev.2017.01.030
Zeng LP, Zhao XF, Li XC, Hu H and McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, eastern China:Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468-2483. DOI:10.2138/am-2016-5743
Zeng PS, Li WC, Wang HP and Li H. 2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:Petrology and chronology. Acta Petrologica Sinica, 22(4): 989-1000.
Zhang J, Deng J, Li SH, Yan N, Yang LQ, Ma N, Wang QF and Gong QJ. 2010. Petrological characteristics of magmatites and their relationship with gold mineralization in the Chang'an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrologica Sinica, 26(6): 1740-1750.
Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2): 557-575. DOI:10.1016/j.gr.2013.11.003
Zhang J, Wang H, Li SH and Li TJ. 2017. Paleogene magmatism and gold metallogeny of the Jinping terrane in the Ailaoshan ore belt, Sanjiang Tethyan Orogen (SW China):Geology, deposit type and tectonic setting. Ore Geology Reviews, 91: 620-637. DOI:10.1016/j.oregeorev.2017.08.032
Zhao XF, Zhou MF, Gao JF, Li XC and Li JW. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS:Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871-884. DOI:10.1007/s00126-015-0578-z
曹康, 许继峰, 陈建林, 黄肖潇, 任江波. 2014. 云南普朗超大型斑岩铜矿床含矿斑岩成因及其成矿意义. 矿床地质, 33(2): 307-322.
邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225-2247.
范玉华, 李文昌. 2006. 云南普朗斑岩铜矿床地质特征. 中国地质, 33(2): 352-362.
李文昌, 尹光候, 卢映祥, 刘学龙, 许东, 张世权, 张娜. 2009. 中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据. 地质学报, 83(10): 1421-1429. DOI:10.3321/j.issn:0001-5717.2009.10.006
李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全, 丁俊, 徐强. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社.
李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552.
刘欢, 张长青, 贾福东, 周云满, 娄德波. 2015. 西南三江普朗铜矿岩浆混合作用:矿物学和地球化学证据. 岩石学报, 31(11): 3189-3202.
刘江涛, 杨立强, 吕亮. 2013. 中甸普朗还原性斑岩型铜矿床:矿物组合与流体组成约束. 岩石学报, 29(11): 3914-3924.
刘学龙, 李文昌, 伊光侯, 张娜. 2013. 云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究. 岩石学报, 29(9): 3049-3064.
毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437-1471.
孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统. 博士学位论文. 北京: 中国地质大学(北京)
宁思远, 汪方跃, 薛纬栋, 周涛发. 2017. 长江中下游铜陵地区宝山岩体地球化学研究. 地球化学, 46(5): 397-412.
石洪召, 范文玉, 王显峰, 谭耕莉. 2014. 普朗特大型斑岩铜矿床叠加成矿作用的地质证据. 矿床地质, 33(增1): 29-30.
王晨光, 杨立强, 和文言. 2017. 滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义. 岩石学报, 33(7): 2213-2224.
汪方跃, 葛粲, 宁思远, 聂利青, 钟国雄, White NC. 2017. 一个新的矿物面扫描分析方法开发和地质学应用. 岩石学报, 33(11): 3422-3436.
杨继清, 罗荣章, 张修硕, 张瑞, 刘文治. 2017. 云南普朗铜多金属矿床矿化类型及成因探讨. 有色金属工程, 7(2): 81-86, 98.
杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统. 岩石学报, 31(11): 3155-3170.
曾普胜, 李文昌, 王海平, 李红. 2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报, 22(4): 989-1000.
张静, 邓军, 李士辉, 燕旎, 杨立强, 马楠, 王庆飞, 龚庆杰. 2010. 哀牢山南段长安金矿床岩浆岩的岩石学特征及其与成矿关系探讨. 岩石学报, 26(6): 1740-1750.