岩石学报  2018, Vol. 34 Issue (5): 1413-1426   PDF    
跨越中甸弧到扬子地块西缘的~80Ma中酸性火成岩成因及其对碰撞后成矿的意义
谈荣钰1,2 , 陈建林1,3 , 许继峰1,3,4 , 黄文龙1,2 , 唐婉丽1,2     
1. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室, 广州 510640;
2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101;
4. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
摘要:热林钼铜矿床和铜厂沟钼多金属矿床位于西南三江特提斯构造域义敦弧南部的中甸弧。热林含矿二长花岗岩和铜厂沟含矿花岗闪长斑岩,锆石U-Pb年龄分别为79.0±1.4Ma和81.3±1.1Ma。岩石地球化学显示热林岩体和铜厂沟岩体具有高的SiO2(>65%)、Al2O3(13.74%~14.91%)和低的MgO(0.86%~1.49%)含量和Mg#值(36.3~47.3),同时也具有高的Sr(326×10-6~1174×10-6)、低的Yb(1.00×10-6~1.51×10-6)和Y(10.2×10-6~15.6×10-6)含量以及较高的Sr/Y(22~86)、La/Yb(30~70)比值,并富集大离子亲石元素和亏损高场强元素。这些特征表明热林和铜厂沟岩体具有明显的埃达克质岩特征,很可能是以石榴石为稳定相的加厚下地壳部分熔融的结果。位于扬子西缘的大理花岗岩,锆石U-Pb年龄为76.4±2.3Ma,首次在扬子西缘证实有晚白垩世岩浆活动,表明晚白垩世中酸性岩浆侵入活动已经跨越了中甸弧进入了扬子地块西缘。对比中甸弧及保山地块发育于晚白垩世的岩浆作用及其构造背景,初步认为在燕山晚期,扬子西缘很可能处于与中甸弧类似的伸展构造背景。
关键词: 中甸弧     扬子地块西缘     锆石U-Pb年龄     地球化学     晚白垩世    
Petrogenesis of the ca. 80Ma felsic-intermediate magmatism in the Zhongdian arc terrane and western Yangtze block: Implications for post-collisional metallogenesis.
TAN RongYu1,2, CHEN JianLin1,3, XU JiFeng1,3,4, HUANG WenLong1,2, TANG WanLi1,2     
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China;
4. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Relin Mo-Cu deposit and Tongchanggou Mo polymetallic deposit located in the Zhongdian arc which is the southern part of the Yidun arc of Sanjiang Tethys Region. Mineralization is closely associated with the Relin monzonitic granites and Tongchanggou granodiorite-porphyry, which were formed at 79.0±1.4Ma and 81.3±1.1Ma, respectively, according to LA-ICPMS zircon U-Pb dating. Geochemically, the Relin and Tongchanggou rocks have high SiO2 ( > 65%) and Al2O3 (13.74%~14.91%), low MgO (0.86%~1.49%) and Mg# (36.3~47.3), and affinity of adakitic rocks given their high Sr (326×10-6~1174×10-6), Sr/Y (22~86) and La/Yb (30~70) ratios, and low Y (10.2×10-6~15.6×10-6) and Yb (1.00×10-6~1.51×10-6). These geochemical characters indicate that the Relin and Tongchanggou rocks were derived from partial melting of the thickened lower continental crust within garnet as residual minerals. Additionally, our zircon U-Pb dating reveals that the Dali granites in the western Yangtze block were formed at 76.4±2.3Ma, indicating that the Late Cretaceous magmatism are also developed in the western Yangtze block. We suggest that the western Yangtze block probably have the similar tectonic environment with the Zhongdian arc in the Late Cretaceous.
Key words: Zhongdian arc     Western Yangtze block     Zircon U-Pb dating     Geochemistry     Late Cretaceous    

中国西南三江构造-岩浆-成矿带是我国重要的铜、钼、铅等多金属成矿带,其典型地区为位于三江地区义敦弧南部的中甸弧(杨岳清等, 2002; 侯增谦等, 2004; Wang et al., 2014a, b);一般认为义敦弧由印支期甘孜-理塘古特提斯洋西向俯冲而形成,区内构造-岩浆活动强烈,形成了一系列印支期矿床,如普朗、雪鸡坪、红山等斑岩型Cu多金属矿床;同时,最近的研究表明,中甸弧不仅有发育大规模印支期岩浆活动,同时也发育一系列近南北(NS)向分布的燕山期岩浆以及与之相关的成矿作用,如休瓦促岩浆热液矿床、热林石英脉型矿床、红山铜多金属矿床、铜厂沟斑岩型Mo多金属矿床。相对于人们对印支期岩浆及其成矿作用的研究(吕伯西等, 1993; 莫宣学等, 1993; 杨岳清等, 2002; 侯增谦等, 2001, 2003b; 曾普胜等, 2003, 2006; 林清茶等, 2006; 李文昌, 2007; 王守旭等, 2007; 李文昌等, 2009; 李青, 2009; 庞振山等, 2009; 任江波, 2011; 任江波等, 2011a, b; 黄肖潇等, 2012; Deng et al., 2014a, b; 曹康等, 2014; Cao et al., 2016),燕山期岩浆与成矿作用研究显得明显不足,如均局限于对单个矿床的研究(李文昌等, 2012; 余海军等, 2015; Wang et al., 2014a, b; Xiang et al., 2014; Yu et al., 2014; Yang et al., 2017)。考虑到研究区在燕山期已经属于陆内环境,那么,燕山期岩浆-成矿作用在时空分布上是否仅仅局限于中甸弧地区,还是跨越了中甸弧并具有连续性,目前尚不清楚。基于以上问题,本文试图在梳理前人研究成果的基础上,结合我们对中甸弧和扬子西缘大理地区的中酸性岩石的年代学和地球化学的研究成果,探讨中甸弧及其周缘燕山期岩浆-成矿分布特征,进而对中甸弧和扬子西缘燕山期的岩浆-成矿作用的区域演化加以约束。

1 区域地质概况

义敦弧是印支期甘孜-理塘古特提斯洋西向俯冲作用形成的一个岛弧,其东部、西部和南部分别以甘孜-理塘缝合带、金沙江缝合带和扬子板块西缘为界(Hou, 1993; Yang et al., 2017)(图 1)。前人根据区域地理位置和构造背景演化将义敦弧分为南北两段,北为昌台弧,由于甘孜-理塘洋俯冲角度较陡,构造背景以张性为主,形成了呷村式块状硫化物矿床(VMS)(侯增谦等, 2003a; 曹康等, 2014; 余海军等, 2015; Cao et al., 2016);南为中甸弧,俯冲角度较缓,构造背景以压性为主,形成了岛弧斑岩及斑岩型铜矿床(曾普胜等, 2003; 曹康等, 2014; 余海军等, 2015; Cao et al., 2016)。

图 1 青藏高原东部三江特提斯大地构造位置与框架 (据邓军等, 2012修编) Fig. 1 Geological map showing tectonic framework in eastern Tibet (modified after Deng et al., 2012)

中甸弧向西以近南北向的乡城-格咱断裂为界,东以甘孜-理塘缝合带为界,南以扬子西缘为界。中甸弧作为义敦弧南段部分,基本保留了义敦弧的构造演化特征,即经历了印支期俯冲造山、燕山期碰撞造山及喜山期陆内汇聚三个阶段,相应发育了三期岩浆活动,如印支期广泛发育了以岛弧型钙碱性为主的岩浆岩和燕山期少量的以中酸性为主以及喜山期以正长岩-二长岩为主的侵入岩(侯增谦等, 2001, 2003b)。同时与之相对应,发育了一系列与岩浆同期的成矿作用,如印支期的普朗、红山、雪鸡平等斑岩型矿床,燕山期的热林、铜厂沟、红山等矿床。

热林钼铜矿床位于中甸弧东北缘热林背斜轴部附近。矿区内主要出露有上三叠统含火山岩的图姆沟组(T3t2)和曲嘎寺组(T3q3)地层,并且矿区构造活动强烈,断裂和褶皱大量发育,控制了地层的分布及岩体的侵入深度;矿区岩浆岩分布广泛,侵入岩主要为燕山晚期二长花岗斑岩,还有少量的喜山期二长花岗斑岩及印支期石英二长斑岩;矿体大多赋存于二长花岗斑岩内(尹光候等, 2009; 魏超, 2017; 杨富成等, 2017; Gao et al., 2017)。燕山期含矿二长花岗岩体呈北西(NW)向展布,主要分布于矿区东部;出露面积约6.5km2,岩体长约1~4km,宽约0.6~3.4km,呈岩株、岩枝状侵入于图姆沟组砂岩、板岩中,围岩具角岩化。岩性主要为浅灰白色,呈似斑状结构,块状构造,斑晶和基质为显晶质,主要有斜长石(25%~30%)+石英(25%~30%)+钾长石(25%~30%)+黑云母(~10%)为主。斜长石呈半自形-自形板条状,发育聚片双晶;石英他形粒状,钾长石呈半自形板状,局部可见大颗粒钾长石斑晶,达1~2cm;黑云母半自形片状,少量绿泥石化。副矿物组合为锆石+独居石+磷灰石。

燕山期铜厂沟Mo多金属矿床位于中甸弧的南部边缘,为义敦弧与甘孜-理塘缝合带及扬子板块西缘坳陷带的交汇处。矿区断裂、褶皱发育,NS向的背斜纵贯矿区中部,其中拉巴河断裂沿背斜轴部发育,控制了矿区岩浆岩、斑岩型Mo多金属矿体的分布;矿区主要出露地层为二叠系黑泥哨组(P2h)的灰绿色、深灰色、灰黑色玄武岩以及三叠系北衙组(T2b)的灰岩和大理岩,黑泥哨组和北衙组为断层接触(余海军等, 2015)。含矿花岗闪长斑岩体多为浅成、超浅成侵入岩,在地表仅有一些零散的并强烈风化成高岭土的露头出露。岩性主要为浅肉红色-灰白色,斑状结构,块状构造。斑晶粒径1~3mm,成分为斜长石(25%~45%)、黑云母(5%~10%)、石英约5%;基质隐晶质结构,由斜长石、黑云母、石英及暗色矿物组成(图 2)。斜长石部分可见绢云母化,角闪石部分可见绿泥石化,副矿物为磷灰石+榍石+锆石。

图 2 铜厂沟岩体正交偏光显微照片(样品0449-410) Pl-斜长石;Bi-黑云母 Fig. 2 Photomicrographs of the Tongchanggou rock (Sample 0449-410)

燕山期大理花岗岩体位于扬子板块西缘,大理市区北西方向约22km处。区域内近NS向断裂发育,沿断裂方向发育有花岗斑岩脉和辉绿岩脉,主要出露地层为二叠系(P1)灰色石灰岩和泥盆系康廊组(D1k)灰白色白云质灰岩、白云岩。岩体出露面积小于0.2km2,主要以岩脉、岩枝状产出。岩性为灰白色花岗岩,中细粒结构,块状构造;主要矿物为石英、钾长石和斜长石,次要矿物为黑云母,副矿物有锆石。石英主要呈无色,他形粒状;钾长石(40%~45%)和斜长石(25%~35%)均呈半自形-自形板状、长柱状,部分晶面浑浊。

2 样品与分析方法

本次研究所选样品均为蚀变较弱或新鲜的地表露头和钻孔岩芯,样品10RL-01采自热林矿区的钻孔ZK002岩芯;样品0449-365、0449-410、0449-518、0449-520和0449-523分别采自铜厂沟矿区的0449号钻孔岩芯,样品0451'-462、0451'-469和0451'-494采自铜厂沟矿区0451'号钻孔岩芯,样品3201-338采自铜厂沟矿区3201号钻孔岩芯;样品16DL-08采自大理岩体露头。同时也采集热林钻孔岩芯中的2个样品(10RL-08、10RL-09)。对样品10RL-01、0449-410和16DL-08作了锆石U-Pb年代学研究。对分别采自热林和铜厂沟矿区的11件样品进行了主微量元素分析。

用于锆石U-Pb年代学定年的岩石样品,进行粗碎、淘洗后用传统重磁筛选法进行锆石分选,将挑选出的锆石粘在环氧树脂上制靶、抛光,然后进行阴极发光照相(CL图),选择未被破坏的锆石颗粒进行定年。锆石U-Pb定年分析在中国科学院广州地球化学研究所的激光剥蚀等离子质谱(LA-ICPMS)实验室完成。测试所用的激光剥蚀系统为193nm ArF-excimer激光器的GeoLas 2005,激光束直径为32μm,以He作为剥蚀物载气。分析数据的离线处理(包括对样品的空白和信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2008, 2010)完成。加权平均年龄和谐和图的绘制采用Ludwig的Isoplot 3.0(Ludwig, 2003)完成。

样品的主微量元素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,选取新鲜的岩石样品,手工粉碎至1mm,用3%的HCl浸泡,然后用去离子水清洗烘干,烘干后的样品用玛瑙研钵碎至200目后用于化学分析。主量元素采用碱熔玻璃片法在Rigaku RIX 2000型X射线荧光光谱仪(XRF)上测试分析,分析精度优于5%,详细流程参见李献华等(2005);微量元素采用酸溶法在高温、高压下消减后,在Perkin-Elmer Sciex Elan 6000型电感耦合等离子体质谱(ICP-MS)上完成测试分析,分析精度一般优于10%,详细流程参见李献华等(2002)

3 分析结果 3.1 锆石U-Pb年龄

研究区3件样品的锆石U-Pb测试结果详见表 1

表 1 热林、铜厂沟和大理岩体锆石U-Pb定年分析结果表 Table 1 U-Pb zircon dating results of Relin, Tongchanggou and Dali rocks

样品10RL-01(二长花岗岩)采自热林矿区。阴极发光图像(CL)显示,锆石自形程度较好,晶形大多为长柱状,长100~200μm,长宽比为2: 1~4: 1;发育明显的岩浆振荡环带;锆石的Th含量为185×10-6~2156×10-6,U含量为698×10-6~2883×10-6,Th/U比为0.12~1.17,属于典型的岩浆成因锆石(Williams et al., 1996; 吴元保和郑永飞, 2004)。样品的13个分析点的206Pb/238U年龄集中在74.7~82.2Ma之间,所有分析点均在谐和线上或靠近谐和线分布(图 3a),206Pb/238U年龄的加权平均值为79.0±1.4Ma(MSWD=1.9),代表了二长花岗岩的岩浆结晶年龄。

图 3 热林(a)、铜厂沟(b)和大理(c)岩体锆石U-Pb年龄谐和图 Fig. 3 Concordia diagram of LA-ICP-MS zircon U-Pb data for the Relin (a), Tongchanggou (b) and Dali (c) rocks

样品0449-410(花岗闪长斑岩)采自铜厂沟0449号钻孔岩芯410m处。阴极发光图像(CL)显示,锆石自形程度较好,晶形大多为长柱状,长100~250μm,长宽比为2: 1~3: 1;发育明显的岩浆振荡环带;锆石的Th含量为279×10-6~1852×10-6,U含量为688×10-6~1245×10-6,Th/U比为0.26~1.49,属于典型的岩浆成因锆石(Williams et al., 1996; 吴元保和郑永飞, 2004)。样品的22个分析点的206Pb/238U年龄集中在77.5~84.8Ma之间,所有分析点均在谐和线上或靠近谐和线分布(图 3b),206Pb/238U年龄的加权平均值为81.3±1.1Ma(MSWD=2.4),代表了花岗闪长斑岩的岩浆结晶年龄。

样品16DL-08采自扬子西缘大理地区。阴极发光图像(CL)显示,锆石自形程度较好,晶形大多为板状、长柱状,长100~150μm,长宽比为2: 1~3: 1;发育明显的岩浆振荡环带;锆石的Th含量为46×10-6~632×10-6,U含量为99×10-6~778×10-6,Th/U比为0.29~0.88,属于典型的岩浆成因锆石(Williams et al., 1996; 吴元保和郑永飞, 2004)。样品的12个分析点的206Pb/238U年龄集中在72.0~77.8Ma之间,所有分析点均在谐和线上或靠近谐和线分布(图 3c),206Pb/238U年龄的加权平均值为76.4±2.3Ma(MSWD=3.1),代表了花岗岩的岩浆结晶年龄。

3.2 全岩元素组成

热林二长花岗岩和铜厂沟花岗闪长斑岩体的主微量元素分析测试数据见表 2。考虑到样品采自铜厂沟矿区岩芯,部分样品已经遭受轻微蚀变,本文主要通过微量元素进行岩性分类,如Zr/TiO2-Nb/Y图解(图 4)所示,热林二长花岗岩和铜厂沟花岗闪长斑岩与中甸弧同时期休瓦促、热林、红山和铜厂沟岩体有着相似的分布范围(Wang et al., 2014a, b; 余海军等, 2015; 余海军和李文昌, 2016; Yang et al., 2016, 2017; Gao et al., 2017)。如研究区的样品具有高的SiO2(65.34%~71.40%)、Al2O3(13.74%~14.91%),和较低的MgO(0.86%~1.49%)含量以及低的Mg#值(36.3~47.3)。

表 2 中甸弧热林、铜厂沟岩体主量(wt%)和微量(×10-6)分析结果 Table 2 Major (wt%) and trace element (×10-6) analyzing results for Relin and Tongchanggou rocks in the Zhongdian arc

图 4 铜厂沟岩体Zr/TiO2-Nb/Y岩石分类图解(据Winchester and Floyd, 1977) 休瓦促岩体、热林岩体、红山岩体和铜厂沟岩体数据引自Wang et al., 2014a, b余海军等, 2015; 余海军和李文昌, 2016; Yang et al., 2016, 2017; Gao et al., 2017.图 5图 7图 8数据来源同此图 Fig. 4 Zr/TiO2 vs. Nb/Y diagram of Tongchanggou rocks (after Winchester and Floyd, 1977)

图 5 球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据McDonough and Sun, 1995) Fig. 5 Chondrite-normalized rare earth element distribution patterns (a) and primitive mantle-normalized trace element spider grams (b) of Tongchanggou rocks (normalization values after McDonough and Sun, 1995)

图 7 铜厂沟岩体Sr/Y-Y (a)和La/Yb-Yb (b)图解 (据Richards and Kerrich, 2007) Fig. 7 Sr/Y vs. Y (a) and La/Yb vs. Yb (b) diagrams of Tongchanggou rocks (after Richards and Kerrich, 2007)

图 8 铜厂沟岩体地球化学判别图解(据Wang et al., 2006b) MgO含量(a)、Mg#值(b)、Cr含量(c)和Ni含量(d)与SiO2含量散点图 Fig. 8 Geochemical illustrations for Tongchanggou rocks (after Wang et al., 2006b)

热林二长花岗岩和铜厂沟花岗闪长斑岩在球粒陨石标准化的稀土元素配分图中(图 5a)显示轻重稀土元素分异明显(La/Yb为30~70),亏损重稀土元素(HREEs)Yb(1.00×10-6~1.51×10-6)和Y(10.2×10-6~15.6×10-6)。在原始地幔标准化微量元素蛛网图中(图 5b)显示出富集大离子亲石元素(LILEs),亏损高场强元素(HFSE,如Ti)。

4 讨论 4.1 中甸弧及其扬子板块西缘燕山期岩浆与成矿作用

上面的分析结果显示,中甸弧热林和铜厂沟的含矿二长花岗岩和花岗闪长斑岩分别形成于79.0±1.4Ma和81.3±1.1Ma。他们分别与成矿区内热林辉钼矿的Re-Os等时线年龄81.2±2.3Ma(吕伯西等, 1993; 李建康等, 2007)、模式年龄84.3~81.3Ma(Gao et al., 2017),铜厂沟辉钼矿的Re-Os等时线年龄85.0±2.0Ma(吕伯西等, 1993; 李文昌等, 2012)、模式年龄86.8~85.2Ma(Yang et al., 2017)在误差范围内保持一致,即成岩与成矿在同一时期,说明热林Cu-Mo矿床、铜厂沟Mo多金属矿床,其成矿作用均与燕山晚期的岩浆活动有关。且热林、铜厂沟矿床的成岩与成矿年龄与中甸弧北部的休瓦促Mo-W矿床(休瓦促岩体的锆石U-Pb年龄85.6~83.6Ma, Wang et al., 2014a; 余海军和李文昌, 2016; 辉钼矿Re-Os等时性年龄86.7~83.0Ma, 吕伯西等, 1993; 侯增谦等, 2003a, b; 李建康等, 2007)、中甸弧南部的红山斑岩Cu矿床(含矿花岗斑岩体的锆石U-Pb年龄75.8~81.1Ma, 王新松等, 2011; 黄肖潇等, 2012; Yang et al., 2016; 辉钼矿Re-Os等时性年龄77.0~80.2Ma, 吕伯西等, 1993; 徐兴旺等, 2006; 李文昌等, 2011, 2012)、拉巴Mo-Cu多金属矿床(花岗闪长斑岩的锆石U-Pb年龄85.0±2.0Ma, Yu et al., 2014)等在成岩与成矿时间上保持一致(表 3图 6),指示中甸弧地区在燕山晚期发育了一期近NS向展布的岩浆活动,且与同时期区域上Mo-Cu-W成矿作用有关。

表 3 中甸弧燕山晚期成岩成矿同位素年龄 Table 3 Late Yanshanian diagenetic and metallogenic isotopic dates from the Zhongdian arc

图 6 中甸弧晚白垩世岩体年龄分布图 Fig. 6 Age spectrum of Late Cretaceous rocks in the Zhongdian arc

根据目前研究现状可知,穿过中甸弧往南进入扬子板块西缘,至今尚无燕山晚期岩浆活动的详细报道,仅在铜厂沟外围东炉房地区有燕山晚期岩浆作用并伴随有铜钼金矿化(余海军,私人通讯)。本研究中大理花岗岩的锆石U-Pb年龄为73.6±1.6Ma,代表其成岩时代在燕山晚期,首次在扬子西缘证实存在燕山晚期岩浆活动,表明燕山晚期的岩浆作用不仅仅集中在中甸弧,而且已经跨越了中甸弧进入了扬子西缘。

4.2 岩石成因

如上所述,热林二长花岗岩和铜厂沟花岗闪长斑岩具有较高的SiO2(>65%)和Al2O3(13.74%~14.91%)含量,以及较低的MgO(0.86%~1.49%)含量和Mg#值(36.3~47.3)。同时也具有高的Sr(326×10-6~1174×10-6)、低的Yb(1.00×10-6~1.51×10-6)和Y(10.2×10-6~15.6×10-6)含量,以及较高的Sr/Y(22~86)和La/Yb(30~70)比值(图 7),并亏损高场强元素。由此可见,热林二长花岗岩和铜厂沟花岗闪长斑岩具有类似于埃达克质岩的特征(Defant and Drummond, 1990; Martin et al., 2005; Richards and Kerrich, 2007; Castillo, 2012; 许继峰等, 2014)。

通常认为,埃达克质岩石的形成主要有以下几种观点:(1)俯冲大洋板片的部分熔融(Thiéblemont et al., 1997; Oyarzun et al., 2001; Mungall, 2002);(2)正常弧环境下幔源玄武质岩浆演化的混染-分离-结晶(AFC)过程(Castillo et al., 1999; Macpherson et al., 2006; Richards and Kerrich, 2007; Li et al., 2009);(3)拆沉下地壳的部分熔融(Xu et al., 2002; Wang et al., 2006a);(4)加厚下地壳的部分熔融(Chung et al., 2003; Hou et al., 2004)。

义敦岛弧形成于晚三叠世甘孜-理塘古特提斯洋盆的西向俯冲,随后发生弧-陆碰撞,侏罗纪时期,义敦岛弧与松潘-甘孜地块板内岩浆的发育,表明该时期区内已经进入陆内环境(张能德和张怀举, 1993; 曲晓明等, 2003; 胡健民等, 2005; 赵永久等, 2007; Liu et al., 2007; 王全伟等, 2008; Wang et al., 2014a, b; Wu et al., 2014),且Wang et al. (2014a)研究表明,中甸弧晚白垩世弧岩浆岩具有比区域上拉萨地体等同期的弧岩浆岩更低的εHf(t)的值,说明中甸弧晚白垩世时期的热林和铜厂沟等岩体不可能形成于俯冲大洋板片的部分熔融。我们野外工作期间,在热林二长花岗岩体和铜厂沟花岗闪长斑岩体中并没有发现壳源捕掳体,而且截止目前中甸弧地区也没有晚白垩世玄武质岩浆作用的报道;同时Yang et al. (2017)研究表明铜厂沟花岗闪长斑岩具有较低的(87Sr/86Sr)i比值及均一的εNd(t),因此研究区晚白垩世岩体也并非是幔源玄武质岩浆的AFC演化的结果。同源于拆沉下地壳部分熔融形成的埃达克质岩相比,热林和铜厂沟岩浆岩具有低的MgO(0.86%~1.49%)、Mg#值(36.3~47.3)以及Cr(10.5×10-6~28.6×10-6)、Ni(6.80×10-6~12.5×10-6)含量,表明其并非是源于拆沉下地壳,而很可能为加厚下地壳部分熔融的产物(图 8)。研究区样品微量元素REE配分图中显示出亏损HREEs和Y,指示热林和铜厂沟岩体起源于含有石榴石的物质源区,源区深度>30km(Rapp and Watson, 1995)。上述推论与研究区前人的研究结果相一致(Wang et al., 2014a, b; Yang et al., 2016, 2017; Gao et al., 2017; 余海军等, 2015; 余海军和李文昌, 2016)。

4.3 构造背景

如前所述,义敦岛弧是印支晚期甘孜-理塘古特提斯洋西向俯冲过程中形成的陆缘弧(Hou, 1993; 侯增谦等, 2003b; Yang et al., 2017),在晚三叠世时期随着甘孜-理塘古特提斯洋的闭合,义敦岛弧与松潘-甘孜地块碰撞拼贴。在早侏罗纪时期(189~182Ma),义敦岛弧与松潘-甘孜地块板内长英质火山岩和A型花岗岩出现,表明该时期义敦岛弧已经处于板内伸展环境(张能德和张怀举, 1993; 曲晓明等, 2003; 胡健民等, 2005; 赵永久等, 2007; Liu et al., 2007; 王全伟等, 2008; Wang et al., 2014a, b; Wu et al., 2014)。中甸弧作为义敦岛弧的南段部分,其时空演化具有义敦弧的特征。在Rb/30-Hf-3Ta构造判别图解中(图略),中甸弧晚白垩世休瓦促、热林、红山和铜厂沟岩体均落入晚-后碰撞花岗岩区域,表明区内晚白垩世岩体可能形成于晚-后碰撞构造环境(Wang et al., 2014a, b; 余海军等, 2015)。即在晚白垩世前义敦岛弧可能发生过地壳加厚,这与本研究中热林和铜厂沟岩体可能起源于加厚下地壳的部分熔融相一致。Wang et al.(2014a, b)认为,义敦弧晚白垩世埃达克质岩及相关的Cu-Mo-(W)成矿作用,可能形成于晚白垩世时期拉萨-羌塘地块的晚碰撞和后碰撞伸展环境。

最近的研究结果(Deng et al., 2010, 2014a, b; Metcalfe, 2011, 2013; Zhu et al., 2013; 禹丽等, 2014)也显示,晚白垩世时期,保山地块以西同样处于一个加厚地壳伸展的构造背景(Xu et al., 2012)。本研究中的大理岩体,其大地构造位置位于扬子板块西缘,介于北部义敦弧和南部保山地块之间(图 1);晚白垩世时期,该地区是否具有与中甸弧以及保山地块以西地区相似的构造背景?此前,该地区尚未有任何有关晚白垩世时期岩浆活动的报道,本文首次在扬子西缘大理地区发现了晚白垩世岩浆作用,对证实该地区晚白垩世时期所处构造背景的推测提供了可能性,即晚白垩世时期扬子西缘也可能与中甸弧及保山地块类似,处于加厚地壳伸展构造背景,大理岩体可能是该伸展构造背景的产物,该地区也有可能发育与中甸弧类似的矿床。当然,这个推测的证实还需要开展更更深入的研究工作。

5 结论

(1) 中甸弧热林二长花岗岩、铜厂沟花岗闪长斑岩分别形成于79.0±1.4Ma和81.3±1.1Ma,与热林、铜厂沟矿床的矿化时间一致,表明热林、铜厂沟岩浆作用与热林、铜厂沟矿床的矿化作用有关;而大理花岗岩同样形成于晚白垩世时期(73.6±1.6Ma),与中甸弧晚白垩世时期发育的一期近NS向展布的岩浆活动时代一致,表明燕山晚期的岩浆作用已经跨越了中甸弧进入了扬子板块的西缘。

(2) 铜厂沟和热林含矿岩体具有高的SiO2、Sr和低的Yb和Y含量以及高的Sr/Y、La/Yb比值,指示其具有埃达克质岩特征,可能为加厚下地壳部分熔融的结果。

(3) 在燕山晚期,中甸弧以及扬子西缘晚白垩世岩浆作用指示其在该时期很可能处于同一构造背景。

参考文献
Cao K, Xu JF, Chen JL, Huang XX and Ren JB. 2014. Origin of porphyry intrusions hosting superlarge Pulang porphyry copper deposit in Yunnan Province:Implications for metallogenesis. Mineral Deposits, 33(2): 307-322.
Cao K, Xu JF, Chen JL, Huang XX, Ren JB, Zhao XD and Liu ZX. 2016. Double-layer structure of the crust beneath the Zhongdian arc, SW China:U-Pb geochronology and Hf isotope evidence. Journal of Asian Earth Sciences, 115: 455-467. DOI:10.1016/j.jseaes.2015.10.024
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. DOI:10.1007/s004100050467
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316. DOI:10.1016/j.lithos.2011.09.013
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. DOI:10.1130/G19796.1
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Deng J, Wang QF, Yang LQ, Wang YR, Gong QJ and Liu H. 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3): 95-105. DOI:10.1016/j.gexplo.2010.04.005
Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361.
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437. DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
Gao X, Yang LQ, Meng JY and Zhang LJ. 2017. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, Northwest Yunnan, China. Ore Geology Reviews, 91: 945-962. DOI:10.1016/j.oregeorev.2017.08.012
Hou ZQ. 1993. Tectono-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfide deposits in Sanjiang region, China. Resource Geology, 17: 336-350.
Hou ZQ, Qu XM, Zhou JR, Yang YQ, Huang DH, Lv QT, Tang SH, Yu JJ, Wang HP and Zhao JH. 2001. Collision-orogenic processes of the Yidun arc in the Sanjiang Region:Record of granites. Acta Geologica Sinica, 75(4): 484-497.
Hou ZQ, Li YQ, Zhang QL and Qu XM. 2003a. End-members and mixing of fluids in submarine hydrothermal system:Evidence from fluid inclusions in the Baiyinchang and Gacun VMS deposits. Acta Petrologica Sinica, 19(2): 221-234.
Hou ZQ, Yang YQ, Wang HP, Qu XM, Lü QT, Huang DH, Wu XZ, Yu JJ, Tang SH and Zhao JH. 2003b. Collision-orogenic Processes and Mineralization Systems of the Yidun Arc. Beijing: Geological Publishing House: 1-345.
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Yang YQ and Qu XM, et al. 2004. Tectonic evolution and mineralization systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120.
Hu JM, Meng QR, Shi YR and Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica, 21(3): 867-880.
Huang XX, Xu JF, Chen JL and Ren JB. 2012. Geochronology, geochemistry and petrogenesis of two periods of intermediate-acid intrusive rocks from Hongshan area in Zhongdian arc. Acta Petrologica Sinica, 28(5): 1493-1506.
Li JK, Li WC, Wang DH, Lu YX, Yin GH and Xue SR. 2007. Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian Arc. Acta Petrologica Sinica, 23(10): 2415-2422.
Li JW, Zhao XF, Zhou MF, Ma CQ, De Souza ZS and Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. DOI:10.1007/s00410-008-0341-x
Li Q. 2009. Porphyry characteristics and metallogenic significance of Pulang porphyry copper deposit. Master Degree Thesis. Beijing: China University of Geosciences.
Li WC. 2007. The tectonic evolution of the Yidun island arc and the metallogenic model of the Pulang porphtry copper deposit, Yunnan, SW China. Ph. D. Dissertation. Beijing: China University of Geosciences.
Li WC, Yin GH and Lu YX, et al. 2009. The evolution and 40Ar-39Ar isotopic evidence of the Pulang complex in Zhongdian. Acta Geologica Sinica, 83(10): 1421-1429.
Li WC, Yin GH, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552.
Li WC, Yu HJ, Yin GH, Cao XM, Huang DZ and Dong T. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in Northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2): 282-292.
Li XH, Liu Y, Tu XL, Hu GQ and Zeng W. 2002. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS:A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31(3): 289-294.
Li XH, Qi CS, Liu Y, Liang XR, Tu XL, Xie LW and Yang YH. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block:New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50(19): 2155-2160.
Lin QC, Xia B and Zhang YQ. 2006. Zircon SHRIMP U-Pb dating of the syn-collision Xuejiping quartz diorite porphyrite in Zhongdian, Yunnan, China, and its geological implications. Geological Bulletin of China, 25(1-2): 133-137.
Liu Y, Deng J, Li CF, Shi GH and Zheng AL. 2007. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan. Chinese Science Bulletin, 52(18): 2543-2550. DOI:10.1007/s11434-007-0355-1
Liu YS, Hu ZC and Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S and Hu ZC, et al. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Lü BX, Wang Z, Zhang ND, Duan JZ, Gao ZY, Shen GF, Pan CY and Yao P. 1993. Granitoids in the Sanjiang Region and Their Metallogenic Specialization. Beijing: Geological Publishing House.
Ludwig KR. 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Exce. California: Berkeley Geochronology Center.
Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. DOI:10.1016/j.epsl.2005.12.034
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24. DOI:10.1016/j.lithos.2004.04.048
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253. DOI:10.1016/0009-2541(94)00140-4
Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3-21. DOI:10.1016/j.gr.2010.02.016
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. DOI:10.1016/j.jseaes.2012.12.020
Mo XX, Lu FX and Shen SY, et al. 1993. Volcanic Rocks and Metallogeny of the Sanjiang Region, Southwestern China. Beijing: Geological Publishing House.
Mungall JE. 2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918. DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Oyarzun R, Márquez A, Lillo J, López I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36(8): 794-798. DOI:10.1007/s001260100205
Pang ZS, Du YS and Wang GW, et al. 2009. Single-grain zircon U-Pb isotopic ages, geochemistry and its implication of the Pulang complex in Yunnan Province, China. Acta Petrologica Sinica, 25(1): 159-165.
Qu XM, Hou ZQ and Tang SH. 2003. Age of intraplate volcanism in the back-arc area of Yidun island arc and its significance. Acta Petrologica et Mineralogica, 22(2): 131-137.
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Ren JB. 2011. The chronology, geochemistry and mineraliziong significance of porphyry copper deposits in Zhongdian island arc. Master Degree Thesis. Beijing: Graduate School of Chinese Academy of Sciences.
Ren JB, Xu JF and Chen JL. 2011a. Zircon geochronology and geological implications of ore-bearing porphyries from Zhongdian arc. Acta Petrologica Sinica, 27(9): 2591-2599.
Ren JB, Xu JF and Chen JL, et al. 2011b. Geochemistry and petrogenesis of Pulang porphyries in Sanjiang region. Acta Petrologica et Mineralogica, 30(4): 581-592.
Richards JP and Kerrich R. 2007. Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537-576. DOI:10.2113/gsecongeo.102.4.537
Thiéblemont D, Stein G and Lescuyer JL. 1997. Gisements épithermaux et porphyriques:La connexion adakite. Comptes Rendus de l'Academie des Sciences-Series ⅡA-Earth and Planetary Science, 325(2): 103-109.
Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH. 2006a. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446. DOI:10.1016/j.lithos.2005.12.010
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006b. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144. DOI:10.1093/petrology/egi070
Wang QW, Wang KM and Kan ZZ, et al. 2008. The Granite in West Sichuan and Its Metallogenic Series. Beijing: Geological Publishing House: 1-305.
Wang SX, Zhang XC and Leng CB, et al. 2007. A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian, northwestern Yunnan. Mineral Deposits, 26(3): 277-288.
Wang XS, Bi XW, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS zircon U-Pb dating of granite porphyry in the Hongshan Cu-polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 31(3): 316-321.
Wang XS, Bi XW and Leng CB, et al. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 61: 73-95. DOI:10.1016/j.oregeorev.2014.01.006
Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ and Chen YW. 2014b. Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202-219. DOI:10.1016/j.lithos.2014.08.016
Wei C. 2017. Ore-forming fluids characteristics and the separation mechanism of molybdenum and copper of Relin molybdenum-copper deposit, western Yunnan, China. Master Degree Thesis. Beijing: China University of Geosciences.
Williams IS, Buick IS and Cartwright I. 1996. An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. Journal of Metamorphic Geology, 14(1): 29-47.
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343. DOI:10.1016/0009-2541(77)90057-2
Wu T, Xiao L, Ma CQ, Pirajno F, Sun Y and Zhan QY. 2014. A mafic intrusion of "arc affinity" in a post-orogenic extensional setting:A case study from Ganluogou gabbro in the northern Yidun arc belt, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 94: 139-156. DOI:10.1016/j.jseaes.2014.08.026
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604.
Xiang K, Xue CD, Li SL, Qureshi JA and Nguyen BD. 2014. The Laba Yanshanian porphyry Mo(-Cu) deposit in Shangri-La, NW Yunnan, China:Alteration, Mineralization and its genesis. Acta Geologica Sinica, 88(S2): 626-628. DOI:10.1111/1755-6724.12374_61
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust. Geology, 30(12): 1111-1114. DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu JF, Wu JB, Wang Q, Chen JL and Cao K. 2014. Research advances of adakites and adakitic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13.
Xu XW, Cai XP, Qu WJ, Song BC, Qin KZ and Zhang BL. 2006. Later Cretaceous granitic porphyritic Cu-Mo mineralization system in the Hongshan area, northwestern Yunnan and its significances for tectonics. Acta Geologica Sinica, 80(9): 1422-1433.
Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175. DOI:10.1016/j.jseaes.2011.06.018
Yang FC, Li WC, Liu XL, Yan TL, Wang SS and Luo Y. 2017. Rock genesis and dynamic background of the Relin monzogranite in the Geza arc belt, Yunnan:Constrains from petrogeochemistry, chronology, and Hf isotope. Geology and Exploration, 53(2): 283-299.
Yang LQ, Deng J, Dilek Y, Meng JY, Gao X, Santosh M, Wang D and Yan H. 2016. Melt source and evolution of Ⅰ-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos, 245: 258-273. DOI:10.1016/j.lithos.2015.10.005
Yang LQ, Deng J, Gao X, He WY, Meng JY, Santosh M, Yu HJ, Yang Z and Wang D. 2017. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015-1032. DOI:10.1016/j.oregeorev.2016.03.015
Yang YQ, Hou ZQ and Huang DH, et al. 2002. Collision orogenic process and magmatic metallogenic system in Zhongdian arc. Acta Geoscientia Sinica, 23(1): 17-24.
Yin GH, Li WC, Jiang CX, Xu D, Li JK and Yang SR. 2009. The evolution of relin uplex rock masses in Yanshan phase and Ar-Ar dating age and copper-molybdenum mineralization characteristics of Zhongdian volcanic-magma arc. Geology and Exploration, 45(4): 385-394.
Yu HJ, Li WC, Yin GH, Lu YX, Cao XM, Huang DZ, Dong T and Zhang YM. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication. Acta Geologica Sinica, 88(4): 1183-1194. DOI:10.1111/1755-6724.12282
Yu HJ, Li WC, Yin GH, Wang JH, Jiang WT, Wu S and Tang Z. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan. Acta Petrologica Sinica, 31(11): 3217-3233.
Yu HJ and Li WC. 2016. Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization. Acta Petrologica Sinica, 32(8): 2265-2280.
Yu L, Li GJ, Wang QF and Liu XF. 2014. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 30(9): 2709-2724.
Zeng PS, Mo XX and Yu XH, et al. 2003. Porphyries and porphyry copper deposits in Zhongdian area, northwestern Yunnan. Mineral Deposits, 22(4): 393-400.
Zeng PS, Li WC and Wang HP, et al. 2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:Petrology and Chronolog. Acta Petrologica Sinic, 22(4): 989-1000.
Zhang ND and Zhang HJ. 1993. Ages of several granite plutons in northwestern Sichuan. Geochimica, (3): 303-312.
Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP and Cai KD. 2007. Post-orogenic extension of Songpan-Garzê orogeny in Early Jurassic:Constraints from Niuxingou monzodiorite and Siguniangshan A-type granite of western Sichuan, China. Geochimica, 36(2): 139-152.
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002
曹康, 许继峰, 陈建林, 黄肖潇, 任江波. 2014. 云南普朗超大型斑岩铜矿床含矿斑岩成因及其成矿意义. 矿床地质, 33(2): 307-322.
邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361.
侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余今杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程:花岗岩记录. 地质学报, 75(4): 484-497.
侯增谦, 李荫清, 张绮玲, 曲晓明. 2003a. 海底热水成矿系统中的流体端员与混合过程:来自白银厂和呷村VMS矿床的流体包裹体证据. 岩石学报, 19(2): 221-234.
侯增谦, 杨岳清, 王海平, 曲晓明, 吕庆田, 黄典豪, 吴宣志, 余金杰, 唐绍华, 赵金花. 2003b. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社: 1-345.
侯增谦, 杨岳清, 曲晓明, 等. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120.
胡健民, 孟庆任, 石玉若, 渠洪杰. 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 867-880.
黄肖潇, 许继峰, 陈建林, 任江波. 2012. 中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因. 岩石学报, 28(5): 1493-1506.
李建康, 李文昌, 王登红, 卢映祥, 尹光候, 薛顺荣. 2007. 中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究. 岩石学报, 23(10): 2415-2422. DOI:10.3969/j.issn.1000-0569.2007.10.010
李青. 2009. 普朗斑岩铜矿床斑岩特征及其成矿意义.硕士学位论文. 北京: 中国地质大学.
李文昌. 2007. 义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型.博士学位论文. 北京: 中国地质大学.
李文昌, 尹光候, 卢映祥, 等. 2009. 中甸普朗复式斑岩体演化及40Ar/39Ar同位素依据. 地质学报, 83(10): 1421-1429. DOI:10.3321/j.issn:0001-5717.2009.10.006
李文昌, 尹光候, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552.
李文昌, 余海军, 尹光候, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282-292.
李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294.
李献华, 祁昌实, 刘颖, 梁细荣, 涂湘林, 谢烈文, 杨岳衡. 2005. 扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约. 科学通报, 50(19): 2155-2160. DOI:10.3321/j.issn:0023-074X.2005.19.015
林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义. 地质通报, 25(1-2): 133-137.
吕伯西, 王增, 张能德, 段建中, 高子英, 沈敢富, 潘长云, 姚鹏. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版社.
莫宣学, 路凤香, 沈上越, 等. 1993. "三江"特提斯火山作用与成矿. 北京: 地质出版社.
庞振山, 杜杨松, 王功文, 等. 2009. 云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义. 岩石学报, 25(1): 159-165.
曲晓明, 侯增谦, 唐邵华. 2003. 义敦岛弧带弧后区板内岩浆作用的时代及意义. 岩石矿物学杂志, 22(2): 131-137.
任江波. 2011. 中甸岛弧成矿斑岩和矿床的年代学、地球化学研究.硕士学位论文. 北京: 中国科学院研究生院.
任江波, 许继峰, 陈建林. 2011a. 中甸岛弧成矿斑岩的锆石年代学及其意义. 岩石学报, 27(9): 2591-2599.
任江波, 许继峰, 陈建林, 等. 2011b. "三江"地区中甸弧普朗成矿斑岩地球化学特征及其成因. 岩石矿物学杂志, 30(4): 581-592.
王全伟, 王康明, 阚泽忠, 等. 2008. 川西地区花岗岩及其成矿系列. 北京: 地质出版社: 1-305.
王守旭, 张兴春, 冷成彪, 等. 2007. 滇西北中甸普朗斑岩铜矿床地球化学与成矿机理初探. 矿床地质, 26(3): 277-288.
王新松, 毕献武, 冷成彪, 唐永永, 兰江波, 齐有强, 沈能平. 2011. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义. 矿物学报, 31(3): 316-321.
魏超. 2017. 滇西热林钼铜矿床成矿流体特征与钼铜分离机制.硕士学位论文. 北京: 中国地质大学.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
许继峰, 邬建斌, 王强, 陈建林, 曹康. 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13.
徐兴旺, 蔡新平, 屈文俊, 宋保昌, 秦克章, 张宝林. 2006. 滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义. 地质学报, 80(9): 1422-1433.
杨富成, 李文昌, 刘学龙, 彦廷龙, 王帅帅, 罗云. 2017. 格咱岛弧带热林二长花岗岩的岩石成因及动力学背景:岩石地球化学、年代学及Hf同位素约束. 地质与勘探, 53(2): 282-299.
杨岳清, 侯增谦, 黄典豪, 等. 2002. 中甸弧碰撞造山作用和岩浆成矿系统. 地球学报, 23(1): 17-24.
尹光候, 李文昌, 蒋成兴, 许东, 李建康, 杨舒然. 2009. 中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化. 地质与勘探, 45(4): 385-394.
余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义. 岩石学报, 31(11): 3217-3233.
余海军, 李文昌. 2016. 滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据. 岩石学报, 32(8): 2265-2280.
禹丽, 李龚健, 王庆飞, 刘学飞. 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724.
曾普胜, 莫宣学, 喻学惠, 等. 2003. 滇西北中甸斑岩及斑岩铜矿. 矿床地质, 22(4): 393-400.
曾普胜, 李文昌, 王海平, 等. 2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报, 22(4): 989-1000.
张能德, 张怀举. 1993. 四川西北部几个花岗岩体的时代. 地球化学, (3): 303-312.
赵永久, 袁超, 周美夫, 颜丹平, 龙晓平, 蔡克大. 2007. 松潘-甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约. 地球化学, 36(2): 139-152.