华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比:年代学、地球化学和动力学背景
  岩石学报  2018, Vol. 34 Issue (5): 1271-1284   PDF    
华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比:年代学、地球化学和动力学背景
徐容 , 邓军 , 程韩宇 , 崔晓琳 , 王传斌     
中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
摘要:华南板块西缘和西南三江腾冲-保山地块发育我国两个重要的Sn成矿带。两个带大规模岩浆活动和Sn成矿作用在年代学和地球化学特征等方面具有相似性。它们的成岩-成矿年龄时限均在晚白垩世,分别为78.9~60.0Ma和108.0~74.1Ma,分别集中在76.0~62.0Ma和98.0~82.0Ma,自西向东总体显示逐渐变老的趋势。晚白垩世成矿相关的岩浆岩均属于花岗质岩类,表现出高硅、富铝、富钾,富集轻稀土而亏损重稀土,相对富集Rb、Th、U而相对亏损Ba、Nb、Sr、Ti,具明显的Eu负异常,初始锶值(87Sr/86Sr)i集中在0.7038~0.7283,同时具有低的εNdt)值(-11.6~-6.9)和εHft)值(-18.1~1.2),反映岩浆岩主要起源于地壳。本文分析结果联合区域地质证据表明,腾冲-保山地块晚白垩世处于新特提斯洋俯冲环境;华南板块西缘岩石圈伸展可能受控于东侧太平洋俯冲回撤的远程效应,也可能系西侧新特提斯洋俯冲回撤的响应,抑或二者联合作用的结果。基于华南板块西缘和腾冲-保山地块的成岩-成矿年龄和岩体地球化学特征的类似性和空间差异变化,本文提出新特提斯洋俯冲联合作用模型:即华南板块西缘晚白垩世成岩-成矿活动也可能受控于特提斯构造域,为新特提斯洋俯冲后在板块逐渐回撤的过程中自东向西逐渐诱发晚白垩世广西西缘、云南东南部软流圈上涌和腾冲、保山地壳减压熔融,进而导致岩浆活动和大规模Sn成矿作用。该模型对于丰富晚白垩世西南三江-华南西缘跨区域成岩成矿构造环境提供了新认识。
关键词: 锡成矿     岩浆活动     动力学背景     华南板块西缘     腾冲-保山地块    
Geochronology, geochemistry and geodynamic setting of Late Cretaceous magmatism and Sn mineralization in the western South China and Tengchong-Baoshan.
XU Rong, DENG Jun, CHENG HanYu, CUI XiaoLin, WANG ChuanBin     
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: Two important Sn metallogenic belts are developed in the western South China and the Tengchong-Baoshan regions. The large-scale magmatism and related Sn mineralization in the two belts share many similarities in geochronological and geochemical signatures. The Late Cretaceous intrusions and Sn deposits in the two regions mainly formed in 78.9~60.0Ma and 108.0~74.1Ma, with peaks of 76.0~62.0Ma and 98.0~82.0Ma, respectively and show a younging trend from east to west. The intrusions related to the Late Cretaceous mineralization have typical granitic composition and are characterized by high SiO2 contents, high Al2O3 and K2O contents, slight enrichment in LREE with pronounced negative Eu anomalies, enrichment in Rb, Th and U, and depletion in Ba, Nb, Sr and Ti; they also have initial 87Sr/86Sr ratios ranging from 0.7038 to 0.7283 and relatively low εNd(t) values (-11.6 to -6.9) and εHf(t) value (-18.1 to +1.2). All the above features indicate an dominantly crustal origin. A comprehesive review in this paper combined with the regional geological evidence demonstrates that the Tengchong-Baoshan region was controlled by the subduction of the Neo-Tethyan Ocean in the Late Cretaceous, whereas the lithospheric extension in the western South China may have been controlled either by the remote effect of the rollback of the subducted Pacific oceanic plate in the east or by the rollback of the subducted Neo-Tethyan oceanic plate in the west, or else, by a joint action. By comparing the similarities and spatial differences of the ages and geochemical characteristics in the two regions, we suggest a joint Neo-Tethyan Ocean subduction tectonic model:the magmatism and Sn mineralization in the western South China could have been controlled by Tethyan tectonic domain, including the Neo-Tethyan Ocean flat-slab subduction, slab rollback and intracontinental back-arc extension that triggered the asthenosphere upwelling in the western South China, and crustal decompression and melting in the Tengchong-Baoshan regions. This model provides a new insight into the Late Cretaceous cross-regional tectonic setting of the magmatism and Sn mineralization in the western margin of South China and the Tengchong-Baoshan regions.
Key words: Sn mineralization     Magmatism     Geodynamic setting     Western South China     Tengchong-Baoshan    

华南板块西缘晚白垩世锡成矿带是世界最重要的锡成矿带之一。区域内晚白垩世锡矿床主要包括云南东南部的个旧(Sn-Cu)、白牛厂(Sn-Ag)、都龙(Sn-Zn)和广西西缘的大厂(Sn-Zn),其中个旧、都龙、大厂等均为世界级的超大型矿床。近年来,也有学者提出越南东北部的晚白垩世锡矿床也属于该成矿带的一部分,包括静足(Tînh Túc)钨锡矿床等(王东升等, 2011; Chen et al., 2014b; Cheng et al., 2016; Zhao et al., 2017b)。学者们普遍认为华南板块西缘(包括云南东南部、广西西部和越南东北部)的晚白垩世锡多金属成矿带形成于相同的大地构造背景之下(Feng et al., 2013; Cheng, 2015; Cheng et al., 2016)。但是,该成矿带恰好位于全球两大构造域(太平洋构造域和特提斯构造域)的交汇处(王东升等, 2011), 特殊的地理位置使其晚白垩世成岩-成矿的动力学过程是受控于特提斯构造域还是太平洋构造域仍然存在争议(Li and Li, 2007; Metcalfe, 2013; Hall and Spakman, 2015; Jiang et al., 2015a, b; Cheng et al., 2016)。前人对华南板块西缘成矿带的研究更多的是考虑太平洋构造域的影响(Li and Li, 2007; 毛景文等, 2007; Jiang et al., 2015a, b)。例如,古太平洋大洋岩石圈的平板俯冲主导了华南白垩纪的岩浆活动(Li and Li, 2007; Jiang et al., 2015a, b);毛景文等(2007)认为在中晚白垩世,古太平洋板块停止向大陆之下俯冲,转为向NNE方向走滑, 导致大陆岩石圈大面积伸展,进而导致华南大规模岩浆活动和锡多金属矿化。

另一方面,处于太平洋和特提斯构造域的交界部位的华南板块西缘成矿带,从空间上看紧邻西部的特提斯构造域(图 1a);而且从时间上看,华南板块西缘晚白垩世发生的区域成岩-成矿事件与新特提斯洋构造域的构造-岩浆-成矿活动具有同时性。近年来,也有学者认为华南板块西缘晚白垩世岩浆活动受控于特提斯构造域(Metcalfe, 2013; Xie et al., 2016)。王东升等(2011)认为个旧-大厂花岗岩带可能受到太平洋构造域和特提斯构造域的双重影响,但以后者为主。

图 1 华南板块西缘和腾冲-保山地块大地构造位置(a, 据Feng et al., 2013修改)、华南板块西缘地质简图(b, 据Feng et al., 2014; Cheng et al., 2013修改)及腾冲-保山地块大地构造格架(c)和地质简图(d)(据Deng et al., 2014a, b修改) Fig. 1 Geological location of the studied area (a, modified after Feng et al., 2013), simplified geological map of the western South China (b, modified after Feng et al., 2014; Cheng et al., 2013) and simplified tectonic map (c) and simplified geological map (d) of the Tengchng-Baoshan area (modified after Deng et al., 2014a, b)

位于西南三江特提斯西南部的腾冲-保山地块也发育晚白垩世锡成矿作用,是中国乃至东南亚重要的Sn成矿带(Deng et al., 2014a, b, 2017a, b, c; Wang et al., 2014, 2016, 2017; 邓军等, 2016),而且与华南板块西缘锡成矿带在时间上具有一致性。腾冲-保山地块是研究新特提斯洋演化和欧亚大陆碰撞的关键地带(Zhao et al., 2017a),学者们对其晚白垩世锡成矿的大地构造背景的认识较为一致,归属于特提斯构造域,为新特提斯洋俯冲所引起的岩浆活动和成矿事件(马楠等, 2013; 李龚健, 2014; Deng et al., 2014a, b, 2017c; 邓军等, 2016)。

华南板块西缘晚白垩世成矿带特殊的时空分布特点使其成矿的动力学背景仍然存在争议,其晚白垩世岩石圈伸展可能受控于东侧太平洋俯冲回撤的远程效应,也可能系西侧新特提斯洋俯冲回撤的响应,抑或二者联合作用的结果。前人对于华南板块西缘晚白垩世成矿带的对比研究多为与南岭中晚侏罗世钨锡成矿带进行对比,认为其共同形成于古太平洋构造域(毛景文等, 2007)。腾冲-保山地块晚白垩世锡成矿作用是新特提斯洋俯冲背景下成矿作用的典型代表。将华南板块西缘晚白垩世成矿作用与腾冲-保山地块进行对比,可以为丰富晚白垩世西南三江-华南西缘跨区域成岩成矿构造环境提供新认识。本文将华南地块西缘晚白垩世Sn成矿带的典型矿床和成矿岩体的年代学、岩石地球化学及Sr-Nd-Hf同位素等与腾冲-保山地块进行对比,结合区域地质资料,以期探讨腾冲-保山地块和华南板块西缘成岩成矿构造环境,并提出统一的新特提斯洋俯冲构造环境模型。

1 区域地质背景

西南三江特提斯构造带地处全球特提斯构造带东段及青藏高原东南侧,经历了古生代与中生代原-古-中-新特提斯洋闭合引发的增生造山和新生代印度-欧亚大陆汇聚导致的碰撞造山过程(邓军等, 2016)。晚二叠世,伴随古特提斯洋分支——哀牢山洋的闭合,华南板块与思茅地块拼合(Wang et al., 2014),发育了全球两大构造域——特提斯构造域和太平洋构造域的交汇区。中三叠世,古特提斯洋主洋——昌宁-孟连洋闭合使得保山地块与思茅地块拼合;中特提斯洋于中三叠世发生俯冲,于早白垩世关闭,腾冲与保山地块拼合(Deng et al., 2014a)。自此,腾冲-保山地块和华南板块西缘成为一个整体受到特提斯洋和古太平洋双重构造域的影响,其中腾冲-保山地块位于西南三江特提斯构造域的西南缘,华南板块西缘恰好位于两大构造域交汇处的关键地带。随后,新特提斯洋于中三叠世开启,早白垩世开始北向俯冲,于古近纪关闭,随后印度与欧亚大陆碰撞拼合(Deng et al., 2014a)。同时,其东侧的古太平洋板块自中侏罗统开始向华南地块之下俯冲(毛景文等, 2007)。

1.1 华南板块西缘

华南板块西缘位于华南西部地区的右江裂谷盆地内(程彦博等, 2010),处于多个主要构造单元的交汇处,北邻扬子地块,东邻华夏地块,西边与思茅地块以哀牢山剪切带相隔,南部为印度支那地块(图 1a, b; Cheng et al., 2013a)。区域内新元古代地层为滨海-浅海相的碳酸盐岩沉积,寒武纪到中奥陶世发育碎屑质、泥质和碳酸盐质沉积,上奥陶统和志留系缺失(Feng et al., 2013)。泥盆纪早期发育河流相砂砾岩建造;随后,海西期发育浅海陆棚-滨海相的碳酸盐岩沉积建造;晚二叠世,区域遭受构造抬升接受剥蚀,并在此期间发育峨眉山玄武岩,龙潭期再次接受海侵,形成含煤细碎屑岩建造;三叠纪发育碳酸盐岩-滨海相陆屑和海陆交互相砂泥质建造;侏罗系、白垩系及第三系缺失(程彦博等, 2010)。

晚白垩世花岗岩在区域内广泛分布(图 1b; 谢洪晶等, 2009; 刘艳宾等, 2014)。自西向东,区域内出露的晚白垩世花岗质岩体依次为个旧、薄竹山、老君山、大厂岩体,与之伴生的超大型矿床分别为个旧(Sn-Cu, Cheng et al., 2013a, b)、白牛厂(Sn-Pb-Zn-Ag, 李开文等, 2013)、都龙(Sn-Zu, Zhao et al., 2013b)、大厂(Sn-Zn, Cheng, 2015, 图 1b)。位于越南东北部的静足(Tînh Túc, Sn-W)矿床也被认为属于该成矿带的一部分(王东升等, 2011),与成矿相关的岩体为派洼岩体(Pia Oac),空间位置上位于都龙西南,介于都龙与大厂之间(图 1b)。个旧地区与成矿密切相关的晚白垩世岩浆岩包括等粒花岗岩和斑状花岗岩(Cheng et al., 2013a, b)。薄竹山为复式花岗岩体(程彦博等, 2010; Li et al., 2013)。老君山杂岩体包括等粒花岗岩、斑状花岗岩和花岗斑岩(Feng et al., 2013)。派洼岩体为花岗岩(王东升等, 2011; Roger et al., 2012)。大厂岩体主要为斑状花岗岩、黑云母花岗岩(蔡明海等, 2006; 梁婷等, 2011; Cheng, 2015)。

1.2 腾冲-保山地块

腾冲-保山地块位于西南三江特提斯的西南部,滇缅泰马地块的北端(图 1a, Deng et al., 2014a, b; Wang et al., 2015a, b, 2018)。其中,腾冲地块的东西两侧分别为高黎贡山剪切带和掸邦缝合带(图 1cDeng et al., 2014a, b; Cao et al., 2016),保山地块的东西两侧分别为昌宁-孟连缝合带和高黎贡山剪切带(图 1c, dChen et al., 2017, 2018)。腾冲地块出露早元古宙变质基底,为绿片岩相-角闪岩相变质岩,主要由片麻岩、角闪岩、混合岩、大理岩和片岩组成。晚古生代-中生代沉积岩零星出露于变质基底之上,泥盆-三叠纪地层主要为碳酸盐岩,缺失侏罗-白垩纪地层(图 1d马楠等, 2013)。保山地块基底为新元古代-寒武系公养河群,由一套类复理石砂岩、板岩及硅质岩组成。沉积盖层为古生代和中生代的台地浅海相碎屑岩和碳酸盐岩,仅上石炭统、上三叠统和中侏罗统地层中夹有中基性火山岩(图 1d禹丽等, 2014)。

由于腾冲地块处于新特提斯洋俯冲闭合和印度-欧亚陆陆碰撞的前缘,强烈的构造运动导致该地区岩浆活动异常频繁,中新生代岩浆岩出露面积达50%(图 1d, 马楠等, 2013)。腾冲地块岩浆岩主要可分为三期,自东向西分别为早白垩世(139~113Ma)、晚白垩世(85~65Ma)和古近纪(65~46Ma),表现出自东向西年龄逐渐递减的规律。其中,晚白垩世的岩浆岩主要为古永岩体,岩性以二长花岗岩和黑云母花岗岩为主,与之伴生的锡矿床为小龙河锡矿(马楠等, 2013; Cao et al., 2016; Zhao et al., 2017a)。保山地块的岩浆岩主要为早古生代和白垩纪花岗岩。云龙成矿带位于保山地块北侧,是滇西重要的锡(钨)成矿带。区内主要的矿床包括铁厂锡矿、石缸河钨锡矿和五叉树钨锡矿等(廖世勇等, 2013)。与成矿相关的岩体为晚白垩世漕涧岩体,岩性主要为二云母花岗岩(廖世勇等, 2013; 禹丽等, 2014)。

2 岩浆活动时空格架

腾冲地块晚白垩世锡矿主要为小龙河-大松坡锡矿,与成矿紧密相关的岩体为隶属于古永岩基的小龙河花岗岩体。小龙河锡矿的LA-ICP-MS锡石U-Pb年龄分别为71.6±4.8Ma(Cao et al., 2016)、75.5±2.6(马楠等, 2013)、71.9±2.3Ma(Chen et al., 2014a)。不同矿床类型的白云母和黑云母Ar-Ar年龄为70.6±0.2Ma、72.3±0.4Ma(Cao et al., 2016)和71.9±1.4Ma(Chen et al., 2014a)。古永岩体的LA-ICP-MS锆石U-Pb年龄为71.4±0.4Ma(Cao et al., 2016)、64±1Ma~65±2Ma(Zhao et al., 2017a)、70.5±3.4Ma~75.2±4.2Ma(马楠等, 2013)。Chen et al. (2015)测得的小龙河花岗岩体LA-ICP-MS锆石U-Pb年龄为73.3±0.3Ma和73.3±0.2Ma。

与保山地区云龙锡矿带相关的岩体为漕涧岩体,其LA-ICP-MS锆石U-Pb年龄为72.2±0.8Ma(廖世勇等, 2013)、73.32±0.19Ma和73.44±0.20Ma(禹丽等, 2014)。

个旧花岗岩的LA-ICP-MS和SHRIMP锆石U-Pb年龄范围集中在77.4±2.5Ma~85.8±0.6Ma(Cheng and Mao, 2010; Cheng et al., 2012, 2013a)。个旧不同矿床类型的白云母和金云母Ar-Ar年龄范围为77.4±0.6Ma~95.3±0.7Ma(Cheng et al., 2013b)。

薄竹山花岗岩体的LA-ICP-MS锆石U-Pb年龄为86.51±0.52Ma、87.54±0.65Ma和87.83±0.39Ma(程彦博等, 2010);85.58±0.46~87.86±0.65Ma(Li et al., 2013)。薄竹山岩体被认为是白牛厂Sn-Ag矿床的成矿岩体。李开文等(2013)报道的白牛厂锡矿的LA-ICP-MS锡石U-Pb年龄为87.4±3.7Ma和88.4±4.3Ma。

老君山花岗岩体也是云南东南部锡-钨成矿带的重要成矿岩体(图 1d),与其伴生的矿床以都龙锡-锌超大型矿床为代表。老君山岩体的LA-ICP-MS锆石U-Pb年龄为86.0±0.5Ma~86.83±0.45Ma(Feng et al., 2013)、82.8±1.6Ma~87.53±0.6Ma(Zhao et al., 2017b);SHRIMP锆石U-Pb年龄为86.9±1.4Ma~92.9±1.9Ma(刘玉平等, 2007)。都龙锡-锌矿床的锡石U-Pb年龄为89.4±1.4Ma(Zhao et al., 2017b)、87.2±3.9Ma~89.2±4.1Ma(王小娟等, 2013)、79.8±3.2Ma~82.0±9.6Ma(刘玉平等, 2007);辉钼矿Re-Os年龄为90.0±2.3Ma(Cheng et al., 2016);白云母Ar-Ar年龄为81.07±0.58Ma和81.78±0.64Ma(Cheng et al., 2016)。

位于广西西缘的大厂超大型锡多金属矿床也是华南西缘晚白垩世锡成矿带的重要组成部分。其花岗岩体的SHRIMP和LA-ICP-MS锆石U-Pb年龄分别为91.0±1.0Ma~93.0±1.0Ma(蔡明海等, 2006)和93.86±0.84Ma~96.6±2.5Ma(梁婷等, 2011)。大厂锡矿床的石英和透长石的Ar-Ar年龄为91.4±2.9Ma~95.4±0.5Ma(王登红等, 2004)。

近年来,与个旧-都龙-大厂成矿区紧密相连的越南北部也有白垩纪岩浆活动和成矿的报道。其中,与静足锡-钨矿床相关的派洼花岗岩体的SHRIMP锆石U-Pb年龄为93.9±3Ma(王东升等, 2011)。Roger (2012)报道的派洼岩体的TIMS和LA-ICP-MS锆石U-Pb年龄和云母Ar-Ar年龄范围为83.5~90.6Ma。二者年龄的一致性可以判断其代表了越南北部的晚白垩世锡成矿事件。

图 2表明腾冲-保山地块晚白垩世岩浆活动和Sn成矿的年龄范围为60~78.9Ma,年龄集中在62~76Ma;华南板块西缘晚白垩世岩浆活动和Sn成矿的年龄范围为74.1~108Ma,集中在82~98Ma。

图 2 腾冲-保山地块(a)和华南板块西缘(b)成岩-成矿年龄分布直方图 数据来源:腾冲据Cao et al., 2016; Zhao et al., 2017a; 马楠等, 2013; Chen et al., 2014a, 2015;保山据廖世勇等, 2013; 禹丽等, 2014;个旧据Cheng et al., 2012, 2013a, b; Cheng and Mao, 2010;薄竹山据程彦博等, 2010; Li et al., 2013;都龙据Feng et al., 2013; Zhao et al., 2017b; Cheng et al., 2016;静足据王东升等, 2011;大厂据梁婷等, 2011 Fig. 2 Histogram of magmatic-mineralization ages from Tengchong-Baoshan (a) and western South China (b)

为了进一步研究腾冲-保山地块和华南板块西缘的成岩-成矿活动时空分布特征,在图 3中将两个研究区的矿床按经度自西向东排列,依次为腾冲(98°12′~98°17′)-保山(99°05′52″)-个旧(102°58′~103°22′)-薄竹山(105°00″)-都龙(105°20′~25′)-静足(105°52′)-大厂(108°20′),我们可以看出成岩-成矿年龄自西向东有逐渐变老的趋势。腾冲地块的年龄范围为60~78.9Ma(马楠等, 2013; Chen et al., 2014a, 2015; Cao et al., 2016; Zhao et al., 2017a);保山漕涧岩体的锆石U-Pb年龄范围为70.1~75.2Ma(廖世勇等, 2013; 禹丽等, 2014);个旧的成岩-成矿年龄集中在76.7~94.4Ma(Cheng and Mao, 2010; Cheng et al., 2012, 2013a);薄竹山岩体的锆石U-Pb年龄范围为84.1~89.8Ma(程彦博等, 2010; Li et al., 2013);都龙老君山的成岩-成矿年龄范围为79~92.4Ma(Feng et al., 2013; Cheng et al., 2016; Zhao et al., 2017b);越南派洼岩体的锆石U-Pb年龄范围为86.1~103Ma(王东升等, 2011);广西大厂岩体的锆石U-Pb年龄范围为90.1~108Ma(梁婷等, 2011)。

图 3 华南板块西缘和腾冲-保山地块成岩-成矿年龄分布图 上端点代表最大值,下端点代表最小值,图形代表协和年龄.数据来源:腾冲据Cao et al., 2016; Zhao et al., 2017a; 马楠等, 2013; Chen et al., 2014a, 2015;保山据廖世勇等, 2013; 禹丽等, 2014;个旧据Cheng et al., 2012, 2013a, b; Cheng and Mao, 2010;薄竹山据程彦博等, 2010; Li et al., 2013;都龙据Feng et al., 2013; Zhao et al., 2017b; 静足据王东升等, 2011;大厂据梁婷等, 2011. 图 8数据来源同此图 Fig. 3 The temperal distribution of the magmatic-mineralization activities in western South China and Tengchong-Baoshan

图 8 华南板块西缘和腾冲-保山地块晚白垩世岩浆岩构造判别图解 Fig. 8 Tectonic setting discriminating diagrams of trace elements of igneous rocks in western South China and Tengchong-Baoshan ORG: Oceanic ridge granite; syn-COLG: Syn-collision granite; VAG: Volcanic arc granite; VAG+syn-COLG: Volcanic arc and syn-collision granite; WPG: within-plate granite

总体来看,腾冲-保山地块和华南板块西缘的岩浆活动和大规模锡成矿作用的年龄集中在晚白垩世(60~108Ma),说明晚白垩世是一个重要的成岩-成矿年龄时限。但是,二者具有明显错开的成岩-成矿年龄峰值(图 2),而且自西向东年龄呈现出逐渐变老的趋势,表明二者的岩浆活动并不具有同时性,可能是构造事件逐渐诱发岩浆活动的过程。

3 岩浆源区特征

腾冲-保山地块的花岗岩体具有高硅、富铝、富碱和贫镁铁的特征。在K2O+Na2O-SiO2判别图解上,投点均位于花岗岩区域(图 4a);在K2O-SiO2岩石判别图解上,投点均位于钾玄岩系列(图 4b);在A/CNK-A/NK图解中,腾冲地块小龙河岩体除1个点落在过铝质区域外,其余点均落在准铝质区域(图 4c),保山地块漕涧岩体均落在过铝质区域(图 4c)。图 5a, b显示腾冲-保山地块的花岗岩体均有富集轻稀土而亏损重稀土和相对富集Rb、Th、U等大离子亲石元素而相对亏损Ba、Nb、Sr、Ti等元素的特点,表明岩体具有大陆地壳的特征。腾冲小龙河岩体具有较高的初始(87Sr/86Sr)i值(0.706511~0.711753)和较低的εNd(t)值(-11.6~-9.2),在εNd(t)-(87Sr/86Sr)i图解中落在了地壳范围内(Zhao et al., 2017a; 图 6)。腾冲和保山岩体的εHf(t)值均为负值(-18.1~-4.4),且落在了球粒陨石演化线之下的区域(Cao et al., 2016; Zhao et al., 2017a; 图 7)。Sr-Nd-Hf同位素特征同样表明了岩浆源区的单一性,应来自于地壳物质。

图 4 华南板块西缘和腾冲-保山地块晚白垩世岩浆岩TAS分类图解(a)、K2O-SiO2岩石分类图解(b)和A/CNK-A/NK分类图解(c) 数据来源:腾冲据Cao et al., 2016;保山据禹丽等, 2014;个旧据Cheng and Mao, 2010a; Cheng et al., 2013a;都龙据Feng et al., 2013;静足据王东升等, 2011 Fig. 4 TAS classification diagram (a), K2O vs. SiO2 diagram (b), A/CNK vs. A/NK diagram (c) of igneous rocks in western South China and Tengchong-Baoshan

图 5 华南板块西缘和腾冲-保山地块晚白垩世岩浆岩球粒陨石标准化稀土元素配分曲线图(a, 标准化数值据Sun and McDonough, 1989)和原始地幔标准化微量元素蛛网图(b, 标准化值据McDonough and Sun, 1995) 数据来源:腾冲据Cao et al., 2016;保山据禹丽等, 2014;个旧据Cheng and Mao, 2010; Cheng et al., 2013a;都龙据Zhao et al., 2017; Feng et al., 2013;静足据据王东升等, 2011 Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Sun and McDonough, 1989) and primitive mantle-normalized trace element patterns (b, normalization values after McDonough and Sun, 1995) for the igneous rocks in western South China and Tengchong-Baoshan

图 6 华南板块西缘和腾冲-保山地块晚白垩世岩浆岩εNd(t)-(87Sr/86Sr)i图解 数据来源:腾冲据Zhao et al., 2017;个旧据Cheng et al., 2013a;越南派洼据Chen et al., 2014b Fig. 6 εNd(t) vs. (87Sr/86Sr)i diagram for the Late Cretaceous igneous rocks in western South China and Tengchong-Baoshan

图 7 华南板块西缘和腾冲-保山地块晚白垩世岩浆岩εHf(t)-年龄图解 数据来源:腾冲据Cao et al., 2016; Zhao et al., 2017;保山据禹丽等, 2014;个旧据Cheng et al., 2013a;都龙据Zhao et al., 2017 Fig. 7 εHf(t) vs. Age diagram for the Late Cretaceous igneous rocks in western South China and Tengchong-Baoshan

薄竹山、老君山、大厂、派洼花岗岩体同样有高硅富铝富碱(图 4)、富集轻稀土而亏损重稀土和相对富集Rb、Th、U等大离子亲石元素而相对亏损Ba、Nb、Sr、Ti等元素的特点(图 5a, b),表明岩体具有大陆地壳的特点。派洼花岗岩具有高的初始(87Sr/86Sr)i值(0.7151和0.7283)和较低的εNd(t)值(-11和-10.5),在εNd(t)-(87Sr/86Sr)i图解中落在了地壳范围内(Chen et al., 2011; 图 6)。都龙老君山岩体的εHf(t)值均也为负值(-9.6~-1.5),同样落在了球粒陨石演化线之下的区域(Zhao et al., 2017b; 图 7),表明岩浆应来源于地壳物质。个旧的岩浆岩类型较为复杂,包括花岗岩、辉长岩、碱性岩和MME。与成矿紧密相关的花岗岩表现为富集轻稀土和亏损重稀土(图 5a),稀土总量(∑REE)为150.2×10-6~284.1×10-6,轻重稀土的比值(LREE/HREE)为1.5~21.3;相对富集Rb、Th、U等大离子亲石元素,相对亏损Ba、K、Nb、Sr、Eu和Ti(图 5b)。不同岩石类型的εNd(t)值有从辉长岩-MME-碱性岩-花岗岩逐渐降低的趋势(Cheng et al., 2013a)。花岗岩的初始(87Sr/86Sr)i变化范围为0.7038~0.720224,εNd(t)的变化范围为-9.27~-6.9,在εNd(t)-(87Sr/86Sr)i图解中,花岗岩落在了地壳范围内(Cheng et al., 2013a; 图 6)。花岗岩的εHf(t)值为-8.1~1.2(图 7),从辉长岩到花岗岩,εHf(t)值逐渐变为更低的负值(Cheng et al., 2013a)。综上所述,华南板块西缘成矿相关的岩浆活动主要来自于地壳物质,有地幔物质的参与。

4 晚白垩世区域动力学背景 4.1 腾冲-保山地块成岩构造环境

腾冲-保山地块位于西南三江特提斯构造域的西南缘,主要受中-新特提斯洋的演化和印度-欧亚大陆的碰撞过程的影响,发育腾冲-保山岩浆岩带。中特提斯洋于晚石炭世末期开启,中三叠世发生俯冲,于早白垩世关闭;新特提斯洋于中三叠世开启,早白垩世开始北向俯冲,于古近纪关闭,随后印度与欧亚大陆碰撞拼合(Deng et al., 2014a)。

上文总结到,腾冲-保山地块晚白垩世岩浆活动和锡成矿作用的年龄范围为60~78.9Ma,此时中特提斯洋已经闭合,而正值新特提斯洋俯冲的高峰期。前人的研究对于腾冲-保山地块晚白垩世岩浆活动构造背景的认识较为一致,是受新特提斯洋俯冲作用影响。新特提斯洋俯冲导致弧后地壳加厚和地形隆升,当抬升达到最大值后,加厚的地壳会向两侧伸展垮塌,在弧后拉张的环境下引起地壳减压熔融形成岩浆岩(Xu et al., 2012; 禹丽等, 2014)。

4.2 华南板块西缘成岩构造环境

华南板块西缘晚白垩世成岩-成矿的年龄范围为74~108Ma(图 2),在大地构造位置上紧邻太平洋构造域,前人的研究多认为其晚白垩世岩浆活动和锡钨大规模成矿作用是受控于太平洋构造域。毛景文等(2007)认为南岭中侏罗世的大规模钨锡成矿作用的构造背景是古太平板块向大陆之下俯冲,在中晚白垩世古太平洋板块停止俯冲转为向NNE方向走滑,导致大陆岩石圈大面积伸展,在华南板块西缘形成了面积不大却广泛分布的花岗岩及其锡多金属矿化。程彦博等(2009)对比了华南板块西缘和腾冲-保山锡矿带的成岩-成矿年龄(分别为69~85Ma和80~100Ma),根据二者时间并不重合推测华南板块西缘更多地收到了太平洋构造域的影响,与南岭地区存在较多的可比性。Cheng et al. (2016)对比了亚洲东部(包括中国华南、日本西南部、韩国南部、越南东部等)晚白垩世成岩-成矿年龄,认为年龄的一致性表明其受控于相同的大地构造背景,而作者更倾向于是古太平洋板块的俯冲所导致的岩石圈伸展。近年来,也有学者开始把华南板块西缘晚白垩世的成岩-成矿活动考虑进特提斯构造域的影响范围。王东升等(2011)将越南静足锡钨矿床成矿岩体的地球化学特征与腾冲-毛淡棉花岗岩带的岩体进行对比,认为华南板块西缘的岩浆作用很可能受到太平洋构造域和特提斯构造域的共同影响,但以后者为主。

4.3 华南板块西缘和腾冲-保山地块成岩成矿可能关联

尽管对于华南板块西缘晚白垩世的成岩-成矿作用是受控于特提斯构造域还是太平洋构造域仍然存在争议,但前人的研究对于其形成于岩石圈伸展的构造背景之下已基本达成共识。腾冲-保山地块晚白垩世岩浆活动形成于新特提斯洋俯冲所导致的伸展背景已被普遍接受。华南板块西缘处于特提斯构造域和太平洋构造域的交界部位,其伸展的构造环境也可能形成于新特提斯洋俯冲。

花岗岩构造判别图解表明两个研究区域的花岗岩均为同碰撞花岗岩和板内花岗岩(图 8)。在Rb-Yb+Ta投点图(图 8b),花岗岩投点全部落在同碰撞花岗岩区域。在Rb-Y+Nb投点图(图 8a),投点均落在同碰撞花岗岩区域和同碰撞花岗岩与板内花岗岩交界处。构造环境判别图解表明华南板块西缘岩浆活动表现出碰撞造山向板内转化的形成背景。特提斯构造域主要表现为陆-陆碰撞造山,而太平洋构造域主要表现为洋对陆的消减-伸展造山(周新民等, 2007)。并且,华南板块西缘和腾冲-保山地块的成矿岩体地球化学特征十分相近。以上特征表明它们可能同为特提斯构造域成岩-成矿事件的一种响应。

对于二者不吻合的成岩-成矿年龄时限,可能是由于新特提斯洋俯冲后在板块回撤的过程中,自东向西逐渐诱发了一系列岩浆活动和Sn成矿事件。在晚白垩世,新特提斯洋自腾冲-保山西侧俯冲,腾冲、保山、个旧、薄竹山、都龙、静足、大厂自西向东的位置关系恰好对应其晚白垩世距离新特提斯洋由近及远的位置关系(图 9表 1),其成岩-成矿的协和年龄范围依次分别为64±1Ma~75.2±4.2Ma(马楠等, 2013; Chen et al., 2014a, 2015; Cao et al., 2016; Zhao et al., 2017a)、72.2±0.8Ma~73.44±0.20Ma(廖世勇等, 2013; 禹丽等, 2014)、77.4±0.6Ma~85.8±0.6Ma(Cheng and Mao, 2010; Cheng et al., 2012, 2013a, b)、85.58±1Ma~88.4±4.3Ma(程彦博等, 2010; Li et al., 2013)、79.8±3.2Ma~92.9±1.9Ma(Feng et al., 2013; Zhao et al., 2017b)、93.9±3Ma(王东升等, 2011)和91.0±1.0Ma~96.6±2.5Ma(梁婷等, 2011; 王登红等, 2004)。总体来看,腾冲-保山地块和华南板块西缘的成岩-成矿活动年龄具有自西向东逐渐变老的趋势。故本文推测,晚白垩世新特提斯洋俯冲可能越过了哀牢山缝合带一直延伸到了华南板块西缘。而在随后板块回撤的过程中,自东向西逐渐诱发了一系列岩浆活动和Sn成矿事件。而这种俯冲板块回撤引发广泛的岩浆活动和成矿作用,在其他地区也很常见(Shu et al., 2016)。

图 9 华南板块西缘和腾冲-保山地块晚白垩世成岩-成矿时空分布(底图据程彦博等, 2009修改) 年龄数据来源见表 1 Fig. 9 The temperal and spacial distribution of the Late Cretaceous magmatic-mineralization activities in western South China and Tengchong-Baoshan (motified after Cheng et al., 2009)

表 1 华南板块西缘和腾冲-保山地块晚白垩世成岩-成矿同位素年龄 Table 1 Ages of the Late Cretaceous granites and mineralization in the western South China and Tengchong-Baoshan

个旧地区除了与成矿密切相关的花岗岩外,还发育辉长岩、碱性岩、MME和镁铁质岩脉。Cheng et al. (2013a)认为个旧杂岩体的成因是在统一的构造伸展背景下,软流圈物质上涌镁铁质岩浆底侵(辉长岩、碱性岩)从而导致壳幔反应(MME)诱发地壳熔融(花岗岩)。Liu et al. (2017)报道了哀牢山地区晚白垩世的富Nb型角闪岩(ca.68Ma)和OIB型角闪岩(ca.73Ma),经过一系列地球化学数据分析,作者认为其形成于新特提斯洋俯冲所引起的板内伸展的构造背景之下。新特提斯洋俯冲,随后板块回撤导致哀牢山构造带陆内伸展,进而导致软流圈上涌形成角闪岩(Liu et al., 2017)。哀牢山构造带位于腾冲-保山地块和华南板块西缘之间(图 9),与二者晚白垩世的伸展构造背景相一致。

根据以上分析,古太平洋的俯冲和新特提斯洋的俯冲都可以为华南板块西缘晚白垩世成岩-成矿作用提供伸展的大地构造背景。所以本文认为华南板块西缘晚白垩世成岩-成矿作用受控于特提斯构造域也是一种合理的可能性,可能与腾冲-保山地块晚白垩世岩浆活动和大规模Sn成矿事件形成于相同的大地构造背景之下。一种可能的岩浆活动模型是:在晚白垩世,新特提斯洋俯冲达到高峰期,随后板块回撤,首先引起华南地块西缘软流圈上涌、壳幔反应形成基性和花岗质岩浆岩组合(图 10a),随后引起腾冲-保山地块在俯冲后伸展背景下地壳减压熔融形成花岗质岩浆(图 10b)。

图 10 华南板块西缘和腾冲-保山地块晚白垩世大规模岩浆活动和锡成矿作用构造演化模式简图(据Liu et al., 2017修改) Fig. 10 Schematic diagram of the tectonic evolution pattern of the Late Cretaceous large-scale tin mineralization and magmatic activities in western South China and Tengchong-Baoshan (modified after Liu et al., 2017)
5 结论

(1) 华南板块西缘和腾冲-保山地块晚白垩世岩浆活动和大规模Sn成矿作用年龄时限分别为60~78.9Ma和74.1~108Ma,并且自东向西年龄总体上有逐渐变新的趋势。

(2) 跨区域晚白垩世成矿相关的岩浆岩具有相似的地球化学特征,岩浆岩主要起源于地壳,形成于俯冲后板内伸展环境。

(3) 华南板块西缘晚白垩世成岩-成矿活动也可能受控于新特提斯洋的俯冲,与腾冲-保山地块的成岩-成矿活动共同形成于新特提斯洋俯冲-板块回撤-陆内伸展的动力背景之下。

致谢 王庆飞教授对论文的构思和成文提供了指导;舒启海老师对论文撰写和修改给予了悉心的指导和帮助;李龚健老师对论文修改提出了宝贵意见;陈福川博士和邢凯博士也为论文撰写提供了帮助;两位匿名审稿人对论文提出了宝贵的修改意见;在此一并致谢。
参考文献
Cai JX and Zhang KJ. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43. DOI:10.1016/j.tecto.2008.12.003
Cai MH, He LQ, Liu GQ, Wu DC and Huang HM. 2006. SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin polymetallic ore field, Guangxi and their geological significance. Geological Review, 52(3): 409-414.
Cao HW, Zou H, Zhang YH, Zhang ST, Zheng L and Zhang LK. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area:Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196-212. DOI:10.1016/j.oregeorev.2016.04.002
Chen FC, Deng J, Shu QH, Li GJ, Cui XL, Zhao F and Wang QF. 2017. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China. Ore Geology Reviews, 90: 913-927. DOI:10.1016/j.oregeorev.2016.10.013
Chen FC, Deng J, Wang QF, Li GJ, Shu QH, Yang CH, Liu JY and Xu R. 2018. The source and evolution of ore fluids in the Heiniuwa gold deposit, Baoshan Block, Sanjiang Region:Constraints from sulfide trace element, fluid inclusion and stable isotope studies. Ore Geology Reviews, 95: 725-745. DOI:10.1016/j.oregeorev.2018.03.013
Chen XC, Hu RZ, Bi XW, Li HM, Lan JB, Zhao CH and Zhu JJ. 2014a. Cassiterite LA-MC-ICP-MS U-Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China. Mineralium Deposita, 49: 843-860. DOI:10.1007/s00126-014-0513-8
Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH and Zhu JJ. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212-215: 93-110. DOI:10.1016/j.lithos.2014.11.010
Chen ZC, Lin W, Faure M, Lepvrier C, Van N and Tich VV. 2014b. Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block. Journal of Asian Earth Sciences, 86: 131-150. DOI:10.1016/j.jseaes.2013.07.039
Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China:Constraints on their petrogenesis and tectonic setting. Lithos, 120: 258-276. DOI:10.1016/j.lithos.2010.08.013
Cheng YB, Mao JW, Chen XL and Li W. 2010. LA-ICP-MS zircon U-Pb dating of the Bozhushan granite in southeastern Yunnan Province and its significance. Journal of Jilin University (Earth Science Edition), 40(4): 869-878.
Cheng YB, Mao JW, Rusk B and Yang ZX. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180-196. DOI:10.1016/j.oregeorev.2012.03.004
Cheng YB, Mao JW and Spandler C. 2013a. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos, 175-176: 213-229. DOI:10.1016/j.lithos.2013.04.002
Cheng YB, Mao JW, Chang ZS and Pirajno F. 2013b. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China:Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geology Reviews, 53: 50-62. DOI:10.1016/j.oregeorev.2012.12.008
Cheng YB, Mao JW and Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sciences, 1: 79-88. DOI:10.1016/j.sesci.2016.12.001
Cheng YS. 2015. Geochemistry of intrusive rock in Dachang tin-polymetallic ore field, Guangxi, China:Implications for petrogenesis and geodynamics. Trans. Nonferrous Met. Soc. China, 25: 284-292. DOI:10.1016/S1003-6326(15)63603-2
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437. DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Science Reviews, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
Deng J, Wang QF and Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225-2247.
Deng J, Wang CM, Bagas L, Selvaraja V, Jeond H, Wu B and Yang L. 2017a. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China:Evidence from Zn and insitu S isotopes. Ore Geology Reviews, 90: 943-957. DOI:10.1016/j.oregeorev.2016.10.036
Deng J, Wang CM, Zi JW, Xia R and Li Q. 2017b. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Research, https://doi.org/10.1016/j.gr.2017.10.008
Deng J, Wang QF and Li GJ. 2017c. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research, 50: 216-266. DOI:10.1016/j.gr.2017.02.005
Feng JR, Mao JW and Pei RF. 2013. Ages and geochemistry of Laojunshan granite in southeastern Yunnan, China:Implications for W-Sn polymetallic ore deposits. Mineralogy and Petrology, 107: 573-589. DOI:10.1007/s00710-012-0253-3
LiHall R and Spakman W. 2015. Mantle structure and tectonic history of SE Asia. Tectonophysics, 658: 14-45. DOI:10.1016/j.tecto.2015.07.003
Jiang XY, Li XH, Collins WJ and Huang HQ. 2015a. U-Pb age and Hf-O isotopes of detrital zircons from Hainan Island:Implications for Mesozoic subduction models. Lithos, 239: 60-70. DOI:10.1016/j.lithos.2015.10.006
Jiang YH, Wang GC, Liu Z, Ni CY, Qing L and Zhang Q. 2015b. Repeated slab advance-retreat of the palaeo-Pacific plate underneath SE China. International Geology Review, 57: 472-491. DOI:10.1080/00206814.2015.1017775
Li GJ. 2014. Tethys tectonic evolution and metallogenesis of important mineral deposits in the Sanjiang Region, SW China. Ph. D. Dissertation. Beijing: China university of Geosciences, 1-142 (in Chinese with English summary)
Li KW, Zhang Q, Wang DP, Cai Y and Liu YP. 2013. LA-ICP-MS U-Pb zircon dating of the Bozhushan granite in Southeast Yunnan. Chinese Journal of Geochemistry, 32: 170-180. DOI:10.1007/s11631-013-0619-1
Li KW, Zhang Q, Wang DP, Cai Y and Liu YP. 2013. LA-MC-ICP-MS U-Pb geochronology of cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China. Acta Mineralogica Sinica, 33(2): 203-207.
Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology, 35: 179-182. DOI:10.1130/G23193A.1
Liang T, Wang DH, Hou KJ, Li HQ, Huang HM, Cai MH and Wang DM. 2011. LA-MC-ICP-MS zircon U-Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance. Acta Petrologica Sinica, 27(6): 1624-1636.
Liao SY, Wang DB, Tang Y, Yin FG, Sun ZM and Sun J. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450-462.
Liu HC, Wang YJ, Cawood PA and Guo XF. 2017. Episodic slab rollback and back-arc extension in the Yunnan-Burma region:Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks. GSA Bulletin, 129(5/6): 698-714.
Liu YB, Mo XX, Zhang D, Que CY, Di YJ, Pu XM, Cheng GS and Ma HH. 2014. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province. Acta Petrologica Sinica, 30(11): 3271-3286.
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province. China. Acta Petrologica Sinica, 23: 967-976.
Ma N, Denng J, Wang QF, Wang CM, Zhang J and Li GJ. 2013. Geochronology of the Dasongpo tin deposit, Yunnan Province:Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age. Acta Petrologica Sinica, 29(4): 1223-1235.
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China:Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338.
McDonough WF and Sun SS. 1995. Composition of the Earth. Chemical Geology, 120(3): 223-253.
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. DOI:10.1016/j.jseaes.2012.12.020
Shu QH, Chang ZS, Lai Y, Zhou YT, Sun Y and Yan C. 2016. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Economic Geology, 111: 1783-1798. DOI:10.2113/econgeo.111.7.1783
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Wang CM, Deng J, Carranza EJM and Santosh M. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26: 576-593. DOI:10.1016/j.gr.2013.05.005
Wang CM, Deng J, Santosh M, McCuaig TC, Lu YJ, Carranza EJM and Wang QF. 2015a. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Science, 113: 656-676. DOI:10.1016/j.jseaes.2015.05.001
Wang CM, Deng J, Lu YJ, Bagas L, Kemp AIS and McCuaig TC. 2015b. Age, nature, and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution. Internal Geology Review, 57: 1922-1939. DOI:10.1080/00206814.2015.1043358
Wang CM, Bagas L, Lu YJ, Santosh M, Du B and McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39-65. DOI:10.1016/j.earscirev.2016.02.008
Wang CM, Deng J, Bagas L and Wang Q. 2017. Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 50: 293-310. DOI:10.1016/j.gr.2017.04.008
Wang CM, Bagas L, Chen JY, Yang LF, Zhang D, Du B and Shi KX. 2018. The genesis of the Liancheng Cu-Mo deposit in the Lanping Basin of SW China:Constraints from geology, fluid inclusions, and Cu-S-H-O isotopes. Ore Geology Reviews, 92: 113-128. DOI:10.1016/j.oregeorev.2017.11.012
Wang DH, Chen YC, Chen W, Sang HQ and Li HQ. 2004. Dating the Dachang giant tin-polymetallic deposit in Nandan, Guangxi. Acta Geologica Sinica, 78: 132-139.
Wang DS, Liu JL, Tran MD, Ngyuen QL, Guo Q, Wu WB, Zhang ZC and Zhao ZD. 2011. Geochronology, geochemistry and tectonic significance of granites in the Tinh Túc W-Sn ore deposits, Northeast Vietnam. Acta Petrologica Sinica, 27(9): 2795-2808.
Wang XJ, Liu YP, Miao YL, Bao T, Ye L and Zhang Q. 2014. In-situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrologica Sinica, 30(3): 867-876.
Xie JC, Zhu DC, Dong GC, Zhao ZD and Wang Q. 2016. Linking Tengchong terrane in SW Yunnan with Lhasa terrane in southern Tibet through magmatic correlation. Gondwana Research, 39: 217-229. DOI:10.1016/j.gr.2016.02.007
Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan:Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175. DOI:10.1016/j.jseaes.2011.06.018
Yu L, Li GJ, Wang QF and Liu XF. 2014. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block:Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 30(9): 2709-2724.
Zhao SW, Lai SC, Qin JF, Zhu RZ and Wang JB. 2017a. Geochemical and geochronological characteristics of Late Cretaceous to Early Paleocene granitoids in the Tengchong Block, southwestern China:Implications for crustal anatexis and thickness variations along the eastern Neo-Tethys subduction zone. Tectonophysics, 694: 87-100. DOI:10.1016/j.tecto.2016.11.038
Zhao ZY, Hou L, Ding J, Zhang QM and Wu SY. 2017b. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block:A case study of the Dulong Sn dominant polymetallic deposit. Ore Geology Reviews, 93: 268-289.
Zhou XM, Sun T and Shen WZ. 2007. The Causes and Dynamic Evolution of Lithosphere of Mesozoic Granitoids in Nanling Region. Beijing: Science Press: 179-192.
蔡明海, 何龙清, 刘国庆, 吴德成, 黄惠明. 2006. 广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义. 地质评论, 52(3): 409-414.
程彦博, 毛景文, 陈小林, 李伟. 2010. 滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义. 吉林大学学报(地球科学版), 40(4): 869-878.
邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225-2247.
李龚健. 2014. 三江特提斯复合造山带构造演化与典型矿床成矿过程研究. 博士学位论文. 北京: 中国地质大学, 1-142 http://cdmd.cnki.com.cn/Article/CDMD-11415-1014249425.htm
李开文, 张乾, 王大鹏, 蔡伊, 刘玉平. 2013. 云南蒙自白牛厂多金属矿床锡石原位LA-MC-ICP-MS U-Pb年代学. 矿物学报, 33(2): 203-207.
梁婷, 王登红, 侯可军, 李华芹, 黄惠明, 蔡明海, 王东明. 2011. 广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 岩石学报, 27(6): 1624-1636.
廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. "三江"云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450-462.
刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因. 岩石学报, 30(11): 3271-3286.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩成矿事件. 岩石学报, 23(5): 967-976.
马楠, 邓军, 王庆飞, 王长明, 张静, 李龚建. 2013. 云南腾冲大松坡锡矿成矿年代学研究:锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICPMS U-Pb年龄证据. 岩石学报, 29(4): 1223-1235.
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. DOI:10.3969/j.issn.1000-0569.2007.10.002
王东升, 刘俊来, Tran MD, Ngyuen QL, 郭强, 吴文彬, 张招崇, 赵志丹. 2011. 越南东北部静足(Tinh Túc)钨锡矿区花岗岩年代学、地球化学与区域构造意义. 岩石学报, 27(9): 2795-2808.
王小娟, 刘玉平, 缪应理, 鲍谈, 叶霖, 张乾. 2014. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义. 岩石学报, 30(3): 867-886.
禹丽, 李龚建, 王庆飞, 刘学飞. 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724.
周新民, 孙涛, 沈渭洲. 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社: 179-192.